x86: cpa_flush_array wbinvd should be done on all CPUs
[linux-2.6/mini2440.git] / arch / x86 / mm / pageattr.c
blob0f9052bcec4b7572cb8519f7972294fa716ac51a
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
15 #include <asm/e820.h>
16 #include <asm/processor.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 #include <asm/setup.h>
20 #include <asm/uaccess.h>
21 #include <asm/pgalloc.h>
22 #include <asm/proto.h>
23 #include <asm/pat.h>
26 * The current flushing context - we pass it instead of 5 arguments:
28 struct cpa_data {
29 unsigned long *vaddr;
30 pgprot_t mask_set;
31 pgprot_t mask_clr;
32 int numpages;
33 int flags;
34 unsigned long pfn;
35 unsigned force_split : 1;
36 int curpage;
37 struct page **pages;
41 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
42 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
43 * entries change the page attribute in parallel to some other cpu
44 * splitting a large page entry along with changing the attribute.
46 static DEFINE_SPINLOCK(cpa_lock);
48 #define CPA_FLUSHTLB 1
49 #define CPA_ARRAY 2
50 #define CPA_PAGES_ARRAY 4
52 #ifdef CONFIG_PROC_FS
53 static unsigned long direct_pages_count[PG_LEVEL_NUM];
55 void update_page_count(int level, unsigned long pages)
57 unsigned long flags;
59 /* Protect against CPA */
60 spin_lock_irqsave(&pgd_lock, flags);
61 direct_pages_count[level] += pages;
62 spin_unlock_irqrestore(&pgd_lock, flags);
65 static void split_page_count(int level)
67 direct_pages_count[level]--;
68 direct_pages_count[level - 1] += PTRS_PER_PTE;
71 void arch_report_meminfo(struct seq_file *m)
73 seq_printf(m, "DirectMap4k: %8lu kB\n",
74 direct_pages_count[PG_LEVEL_4K] << 2);
75 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
76 seq_printf(m, "DirectMap2M: %8lu kB\n",
77 direct_pages_count[PG_LEVEL_2M] << 11);
78 #else
79 seq_printf(m, "DirectMap4M: %8lu kB\n",
80 direct_pages_count[PG_LEVEL_2M] << 12);
81 #endif
82 #ifdef CONFIG_X86_64
83 if (direct_gbpages)
84 seq_printf(m, "DirectMap1G: %8lu kB\n",
85 direct_pages_count[PG_LEVEL_1G] << 20);
86 #endif
88 #else
89 static inline void split_page_count(int level) { }
90 #endif
92 #ifdef CONFIG_X86_64
94 static inline unsigned long highmap_start_pfn(void)
96 return __pa(_text) >> PAGE_SHIFT;
99 static inline unsigned long highmap_end_pfn(void)
101 return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
104 #endif
106 #ifdef CONFIG_DEBUG_PAGEALLOC
107 # define debug_pagealloc 1
108 #else
109 # define debug_pagealloc 0
110 #endif
112 static inline int
113 within(unsigned long addr, unsigned long start, unsigned long end)
115 return addr >= start && addr < end;
119 * Flushing functions
123 * clflush_cache_range - flush a cache range with clflush
124 * @addr: virtual start address
125 * @size: number of bytes to flush
127 * clflush is an unordered instruction which needs fencing with mfence
128 * to avoid ordering issues.
130 void clflush_cache_range(void *vaddr, unsigned int size)
132 void *vend = vaddr + size - 1;
134 mb();
136 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
137 clflush(vaddr);
139 * Flush any possible final partial cacheline:
141 clflush(vend);
143 mb();
146 static void __cpa_flush_all(void *arg)
148 unsigned long cache = (unsigned long)arg;
151 * Flush all to work around Errata in early athlons regarding
152 * large page flushing.
154 __flush_tlb_all();
156 if (cache && boot_cpu_data.x86 >= 4)
157 wbinvd();
160 static void cpa_flush_all(unsigned long cache)
162 BUG_ON(irqs_disabled());
164 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
167 static void __cpa_flush_range(void *arg)
170 * We could optimize that further and do individual per page
171 * tlb invalidates for a low number of pages. Caveat: we must
172 * flush the high aliases on 64bit as well.
174 __flush_tlb_all();
177 static void cpa_flush_range(unsigned long start, int numpages, int cache)
179 unsigned int i, level;
180 unsigned long addr;
182 BUG_ON(irqs_disabled());
183 WARN_ON(PAGE_ALIGN(start) != start);
185 on_each_cpu(__cpa_flush_range, NULL, 1);
187 if (!cache)
188 return;
191 * We only need to flush on one CPU,
192 * clflush is a MESI-coherent instruction that
193 * will cause all other CPUs to flush the same
194 * cachelines:
196 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
197 pte_t *pte = lookup_address(addr, &level);
200 * Only flush present addresses:
202 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
203 clflush_cache_range((void *) addr, PAGE_SIZE);
207 static void wbinvd_local(void *unused)
209 wbinvd();
212 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
213 int in_flags, struct page **pages)
215 unsigned int i, level;
217 BUG_ON(irqs_disabled());
219 on_each_cpu(__cpa_flush_range, NULL, 1);
221 if (!cache)
222 return;
224 /* 4M threshold */
225 if (numpages >= 1024) {
226 if (boot_cpu_data.x86 >= 4)
227 on_each_cpu(wbinvd_local, NULL, 1);
229 return;
232 * We only need to flush on one CPU,
233 * clflush is a MESI-coherent instruction that
234 * will cause all other CPUs to flush the same
235 * cachelines:
237 for (i = 0; i < numpages; i++) {
238 unsigned long addr;
239 pte_t *pte;
241 if (in_flags & CPA_PAGES_ARRAY)
242 addr = (unsigned long)page_address(pages[i]);
243 else
244 addr = start[i];
246 pte = lookup_address(addr, &level);
249 * Only flush present addresses:
251 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
252 clflush_cache_range((void *)addr, PAGE_SIZE);
257 * Certain areas of memory on x86 require very specific protection flags,
258 * for example the BIOS area or kernel text. Callers don't always get this
259 * right (again, ioremap() on BIOS memory is not uncommon) so this function
260 * checks and fixes these known static required protection bits.
262 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
263 unsigned long pfn)
265 pgprot_t forbidden = __pgprot(0);
268 * The BIOS area between 640k and 1Mb needs to be executable for
269 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
271 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
272 pgprot_val(forbidden) |= _PAGE_NX;
275 * The kernel text needs to be executable for obvious reasons
276 * Does not cover __inittext since that is gone later on. On
277 * 64bit we do not enforce !NX on the low mapping
279 if (within(address, (unsigned long)_text, (unsigned long)_etext))
280 pgprot_val(forbidden) |= _PAGE_NX;
283 * The .rodata section needs to be read-only. Using the pfn
284 * catches all aliases.
286 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
287 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
288 pgprot_val(forbidden) |= _PAGE_RW;
290 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
292 return prot;
296 * Lookup the page table entry for a virtual address. Return a pointer
297 * to the entry and the level of the mapping.
299 * Note: We return pud and pmd either when the entry is marked large
300 * or when the present bit is not set. Otherwise we would return a
301 * pointer to a nonexisting mapping.
303 pte_t *lookup_address(unsigned long address, unsigned int *level)
305 pgd_t *pgd = pgd_offset_k(address);
306 pud_t *pud;
307 pmd_t *pmd;
309 *level = PG_LEVEL_NONE;
311 if (pgd_none(*pgd))
312 return NULL;
314 pud = pud_offset(pgd, address);
315 if (pud_none(*pud))
316 return NULL;
318 *level = PG_LEVEL_1G;
319 if (pud_large(*pud) || !pud_present(*pud))
320 return (pte_t *)pud;
322 pmd = pmd_offset(pud, address);
323 if (pmd_none(*pmd))
324 return NULL;
326 *level = PG_LEVEL_2M;
327 if (pmd_large(*pmd) || !pmd_present(*pmd))
328 return (pte_t *)pmd;
330 *level = PG_LEVEL_4K;
332 return pte_offset_kernel(pmd, address);
334 EXPORT_SYMBOL_GPL(lookup_address);
337 * Set the new pmd in all the pgds we know about:
339 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
341 /* change init_mm */
342 set_pte_atomic(kpte, pte);
343 #ifdef CONFIG_X86_32
344 if (!SHARED_KERNEL_PMD) {
345 struct page *page;
347 list_for_each_entry(page, &pgd_list, lru) {
348 pgd_t *pgd;
349 pud_t *pud;
350 pmd_t *pmd;
352 pgd = (pgd_t *)page_address(page) + pgd_index(address);
353 pud = pud_offset(pgd, address);
354 pmd = pmd_offset(pud, address);
355 set_pte_atomic((pte_t *)pmd, pte);
358 #endif
361 static int
362 try_preserve_large_page(pte_t *kpte, unsigned long address,
363 struct cpa_data *cpa)
365 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
366 pte_t new_pte, old_pte, *tmp;
367 pgprot_t old_prot, new_prot;
368 int i, do_split = 1;
369 unsigned int level;
371 if (cpa->force_split)
372 return 1;
374 spin_lock_irqsave(&pgd_lock, flags);
376 * Check for races, another CPU might have split this page
377 * up already:
379 tmp = lookup_address(address, &level);
380 if (tmp != kpte)
381 goto out_unlock;
383 switch (level) {
384 case PG_LEVEL_2M:
385 psize = PMD_PAGE_SIZE;
386 pmask = PMD_PAGE_MASK;
387 break;
388 #ifdef CONFIG_X86_64
389 case PG_LEVEL_1G:
390 psize = PUD_PAGE_SIZE;
391 pmask = PUD_PAGE_MASK;
392 break;
393 #endif
394 default:
395 do_split = -EINVAL;
396 goto out_unlock;
400 * Calculate the number of pages, which fit into this large
401 * page starting at address:
403 nextpage_addr = (address + psize) & pmask;
404 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
405 if (numpages < cpa->numpages)
406 cpa->numpages = numpages;
409 * We are safe now. Check whether the new pgprot is the same:
411 old_pte = *kpte;
412 old_prot = new_prot = pte_pgprot(old_pte);
414 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
415 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
418 * old_pte points to the large page base address. So we need
419 * to add the offset of the virtual address:
421 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
422 cpa->pfn = pfn;
424 new_prot = static_protections(new_prot, address, pfn);
427 * We need to check the full range, whether
428 * static_protection() requires a different pgprot for one of
429 * the pages in the range we try to preserve:
431 addr = address + PAGE_SIZE;
432 pfn++;
433 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
434 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
436 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
437 goto out_unlock;
441 * If there are no changes, return. maxpages has been updated
442 * above:
444 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
445 do_split = 0;
446 goto out_unlock;
450 * We need to change the attributes. Check, whether we can
451 * change the large page in one go. We request a split, when
452 * the address is not aligned and the number of pages is
453 * smaller than the number of pages in the large page. Note
454 * that we limited the number of possible pages already to
455 * the number of pages in the large page.
457 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
459 * The address is aligned and the number of pages
460 * covers the full page.
462 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
463 __set_pmd_pte(kpte, address, new_pte);
464 cpa->flags |= CPA_FLUSHTLB;
465 do_split = 0;
468 out_unlock:
469 spin_unlock_irqrestore(&pgd_lock, flags);
471 return do_split;
474 static int split_large_page(pte_t *kpte, unsigned long address)
476 unsigned long flags, pfn, pfninc = 1;
477 unsigned int i, level;
478 pte_t *pbase, *tmp;
479 pgprot_t ref_prot;
480 struct page *base;
482 if (!debug_pagealloc)
483 spin_unlock(&cpa_lock);
484 base = alloc_pages(GFP_KERNEL, 0);
485 if (!debug_pagealloc)
486 spin_lock(&cpa_lock);
487 if (!base)
488 return -ENOMEM;
490 spin_lock_irqsave(&pgd_lock, flags);
492 * Check for races, another CPU might have split this page
493 * up for us already:
495 tmp = lookup_address(address, &level);
496 if (tmp != kpte)
497 goto out_unlock;
499 pbase = (pte_t *)page_address(base);
500 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
501 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
503 * If we ever want to utilize the PAT bit, we need to
504 * update this function to make sure it's converted from
505 * bit 12 to bit 7 when we cross from the 2MB level to
506 * the 4K level:
508 WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
510 #ifdef CONFIG_X86_64
511 if (level == PG_LEVEL_1G) {
512 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
513 pgprot_val(ref_prot) |= _PAGE_PSE;
515 #endif
518 * Get the target pfn from the original entry:
520 pfn = pte_pfn(*kpte);
521 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
522 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
524 if (address >= (unsigned long)__va(0) &&
525 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
526 split_page_count(level);
528 #ifdef CONFIG_X86_64
529 if (address >= (unsigned long)__va(1UL<<32) &&
530 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
531 split_page_count(level);
532 #endif
535 * Install the new, split up pagetable.
537 * We use the standard kernel pagetable protections for the new
538 * pagetable protections, the actual ptes set above control the
539 * primary protection behavior:
541 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
544 * Intel Atom errata AAH41 workaround.
546 * The real fix should be in hw or in a microcode update, but
547 * we also probabilistically try to reduce the window of having
548 * a large TLB mixed with 4K TLBs while instruction fetches are
549 * going on.
551 __flush_tlb_all();
553 base = NULL;
555 out_unlock:
557 * If we dropped out via the lookup_address check under
558 * pgd_lock then stick the page back into the pool:
560 if (base)
561 __free_page(base);
562 spin_unlock_irqrestore(&pgd_lock, flags);
564 return 0;
567 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
568 int primary)
571 * Ignore all non primary paths.
573 if (!primary)
574 return 0;
577 * Ignore the NULL PTE for kernel identity mapping, as it is expected
578 * to have holes.
579 * Also set numpages to '1' indicating that we processed cpa req for
580 * one virtual address page and its pfn. TBD: numpages can be set based
581 * on the initial value and the level returned by lookup_address().
583 if (within(vaddr, PAGE_OFFSET,
584 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
585 cpa->numpages = 1;
586 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
587 return 0;
588 } else {
589 WARN(1, KERN_WARNING "CPA: called for zero pte. "
590 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
591 *cpa->vaddr);
593 return -EFAULT;
597 static int __change_page_attr(struct cpa_data *cpa, int primary)
599 unsigned long address;
600 int do_split, err;
601 unsigned int level;
602 pte_t *kpte, old_pte;
604 if (cpa->flags & CPA_PAGES_ARRAY)
605 address = (unsigned long)page_address(cpa->pages[cpa->curpage]);
606 else if (cpa->flags & CPA_ARRAY)
607 address = cpa->vaddr[cpa->curpage];
608 else
609 address = *cpa->vaddr;
610 repeat:
611 kpte = lookup_address(address, &level);
612 if (!kpte)
613 return __cpa_process_fault(cpa, address, primary);
615 old_pte = *kpte;
616 if (!pte_val(old_pte))
617 return __cpa_process_fault(cpa, address, primary);
619 if (level == PG_LEVEL_4K) {
620 pte_t new_pte;
621 pgprot_t new_prot = pte_pgprot(old_pte);
622 unsigned long pfn = pte_pfn(old_pte);
624 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
625 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
627 new_prot = static_protections(new_prot, address, pfn);
630 * We need to keep the pfn from the existing PTE,
631 * after all we're only going to change it's attributes
632 * not the memory it points to
634 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
635 cpa->pfn = pfn;
637 * Do we really change anything ?
639 if (pte_val(old_pte) != pte_val(new_pte)) {
640 set_pte_atomic(kpte, new_pte);
641 cpa->flags |= CPA_FLUSHTLB;
643 cpa->numpages = 1;
644 return 0;
648 * Check, whether we can keep the large page intact
649 * and just change the pte:
651 do_split = try_preserve_large_page(kpte, address, cpa);
653 * When the range fits into the existing large page,
654 * return. cp->numpages and cpa->tlbflush have been updated in
655 * try_large_page:
657 if (do_split <= 0)
658 return do_split;
661 * We have to split the large page:
663 err = split_large_page(kpte, address);
664 if (!err) {
666 * Do a global flush tlb after splitting the large page
667 * and before we do the actual change page attribute in the PTE.
669 * With out this, we violate the TLB application note, that says
670 * "The TLBs may contain both ordinary and large-page
671 * translations for a 4-KByte range of linear addresses. This
672 * may occur if software modifies the paging structures so that
673 * the page size used for the address range changes. If the two
674 * translations differ with respect to page frame or attributes
675 * (e.g., permissions), processor behavior is undefined and may
676 * be implementation-specific."
678 * We do this global tlb flush inside the cpa_lock, so that we
679 * don't allow any other cpu, with stale tlb entries change the
680 * page attribute in parallel, that also falls into the
681 * just split large page entry.
683 flush_tlb_all();
684 goto repeat;
687 return err;
690 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
692 static int cpa_process_alias(struct cpa_data *cpa)
694 struct cpa_data alias_cpa;
695 int ret = 0;
696 unsigned long temp_cpa_vaddr, vaddr;
698 if (cpa->pfn >= max_pfn_mapped)
699 return 0;
701 #ifdef CONFIG_X86_64
702 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
703 return 0;
704 #endif
706 * No need to redo, when the primary call touched the direct
707 * mapping already:
709 if (cpa->flags & CPA_PAGES_ARRAY)
710 vaddr = (unsigned long)page_address(cpa->pages[cpa->curpage]);
711 else if (cpa->flags & CPA_ARRAY)
712 vaddr = cpa->vaddr[cpa->curpage];
713 else
714 vaddr = *cpa->vaddr;
716 if (!(within(vaddr, PAGE_OFFSET,
717 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
719 alias_cpa = *cpa;
720 temp_cpa_vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
721 alias_cpa.vaddr = &temp_cpa_vaddr;
722 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
725 ret = __change_page_attr_set_clr(&alias_cpa, 0);
728 #ifdef CONFIG_X86_64
729 if (ret)
730 return ret;
732 * No need to redo, when the primary call touched the high
733 * mapping already:
735 if (within(vaddr, (unsigned long) _text, _brk_end))
736 return 0;
739 * If the physical address is inside the kernel map, we need
740 * to touch the high mapped kernel as well:
742 if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
743 return 0;
745 alias_cpa = *cpa;
746 temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
747 alias_cpa.vaddr = &temp_cpa_vaddr;
748 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
751 * The high mapping range is imprecise, so ignore the return value.
753 __change_page_attr_set_clr(&alias_cpa, 0);
754 #endif
755 return ret;
758 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
760 int ret, numpages = cpa->numpages;
762 while (numpages) {
764 * Store the remaining nr of pages for the large page
765 * preservation check.
767 cpa->numpages = numpages;
768 /* for array changes, we can't use large page */
769 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
770 cpa->numpages = 1;
772 if (!debug_pagealloc)
773 spin_lock(&cpa_lock);
774 ret = __change_page_attr(cpa, checkalias);
775 if (!debug_pagealloc)
776 spin_unlock(&cpa_lock);
777 if (ret)
778 return ret;
780 if (checkalias) {
781 ret = cpa_process_alias(cpa);
782 if (ret)
783 return ret;
787 * Adjust the number of pages with the result of the
788 * CPA operation. Either a large page has been
789 * preserved or a single page update happened.
791 BUG_ON(cpa->numpages > numpages);
792 numpages -= cpa->numpages;
793 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
794 cpa->curpage++;
795 else
796 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
799 return 0;
802 static inline int cache_attr(pgprot_t attr)
804 return pgprot_val(attr) &
805 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
808 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
809 pgprot_t mask_set, pgprot_t mask_clr,
810 int force_split, int in_flag,
811 struct page **pages)
813 struct cpa_data cpa;
814 int ret, cache, checkalias;
817 * Check, if we are requested to change a not supported
818 * feature:
820 mask_set = canon_pgprot(mask_set);
821 mask_clr = canon_pgprot(mask_clr);
822 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
823 return 0;
825 /* Ensure we are PAGE_SIZE aligned */
826 if (in_flag & CPA_ARRAY) {
827 int i;
828 for (i = 0; i < numpages; i++) {
829 if (addr[i] & ~PAGE_MASK) {
830 addr[i] &= PAGE_MASK;
831 WARN_ON_ONCE(1);
834 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
836 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
837 * No need to cehck in that case
839 if (*addr & ~PAGE_MASK) {
840 *addr &= PAGE_MASK;
842 * People should not be passing in unaligned addresses:
844 WARN_ON_ONCE(1);
848 /* Must avoid aliasing mappings in the highmem code */
849 kmap_flush_unused();
851 vm_unmap_aliases();
854 * If we're called with lazy mmu updates enabled, the
855 * in-memory pte state may be stale. Flush pending updates to
856 * bring them up to date.
858 arch_flush_lazy_mmu_mode();
860 cpa.vaddr = addr;
861 cpa.pages = pages;
862 cpa.numpages = numpages;
863 cpa.mask_set = mask_set;
864 cpa.mask_clr = mask_clr;
865 cpa.flags = 0;
866 cpa.curpage = 0;
867 cpa.force_split = force_split;
869 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
870 cpa.flags |= in_flag;
872 /* No alias checking for _NX bit modifications */
873 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
875 ret = __change_page_attr_set_clr(&cpa, checkalias);
878 * Check whether we really changed something:
880 if (!(cpa.flags & CPA_FLUSHTLB))
881 goto out;
884 * No need to flush, when we did not set any of the caching
885 * attributes:
887 cache = cache_attr(mask_set);
890 * On success we use clflush, when the CPU supports it to
891 * avoid the wbindv. If the CPU does not support it and in the
892 * error case we fall back to cpa_flush_all (which uses
893 * wbindv):
895 if (!ret && cpu_has_clflush) {
896 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
897 cpa_flush_array(addr, numpages, cache,
898 cpa.flags, pages);
899 } else
900 cpa_flush_range(*addr, numpages, cache);
901 } else
902 cpa_flush_all(cache);
905 * If we've been called with lazy mmu updates enabled, then
906 * make sure that everything gets flushed out before we
907 * return.
909 arch_flush_lazy_mmu_mode();
911 out:
912 return ret;
915 static inline int change_page_attr_set(unsigned long *addr, int numpages,
916 pgprot_t mask, int array)
918 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
919 (array ? CPA_ARRAY : 0), NULL);
922 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
923 pgprot_t mask, int array)
925 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
926 (array ? CPA_ARRAY : 0), NULL);
929 static inline int cpa_set_pages_array(struct page **pages, int numpages,
930 pgprot_t mask)
932 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
933 CPA_PAGES_ARRAY, pages);
936 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
937 pgprot_t mask)
939 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
940 CPA_PAGES_ARRAY, pages);
943 int _set_memory_uc(unsigned long addr, int numpages)
946 * for now UC MINUS. see comments in ioremap_nocache()
948 return change_page_attr_set(&addr, numpages,
949 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
952 int set_memory_uc(unsigned long addr, int numpages)
954 int ret;
957 * for now UC MINUS. see comments in ioremap_nocache()
959 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
960 _PAGE_CACHE_UC_MINUS, NULL);
961 if (ret)
962 goto out_err;
964 ret = _set_memory_uc(addr, numpages);
965 if (ret)
966 goto out_free;
968 return 0;
970 out_free:
971 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
972 out_err:
973 return ret;
975 EXPORT_SYMBOL(set_memory_uc);
977 int set_memory_array_uc(unsigned long *addr, int addrinarray)
979 int i, j;
980 int ret;
983 * for now UC MINUS. see comments in ioremap_nocache()
985 for (i = 0; i < addrinarray; i++) {
986 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
987 _PAGE_CACHE_UC_MINUS, NULL);
988 if (ret)
989 goto out_free;
992 ret = change_page_attr_set(addr, addrinarray,
993 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
994 if (ret)
995 goto out_free;
997 return 0;
999 out_free:
1000 for (j = 0; j < i; j++)
1001 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1003 return ret;
1005 EXPORT_SYMBOL(set_memory_array_uc);
1007 int _set_memory_wc(unsigned long addr, int numpages)
1009 int ret;
1010 ret = change_page_attr_set(&addr, numpages,
1011 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1013 if (!ret) {
1014 ret = change_page_attr_set(&addr, numpages,
1015 __pgprot(_PAGE_CACHE_WC), 0);
1017 return ret;
1020 int set_memory_wc(unsigned long addr, int numpages)
1022 int ret;
1024 if (!pat_enabled)
1025 return set_memory_uc(addr, numpages);
1027 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1028 _PAGE_CACHE_WC, NULL);
1029 if (ret)
1030 goto out_err;
1032 ret = _set_memory_wc(addr, numpages);
1033 if (ret)
1034 goto out_free;
1036 return 0;
1038 out_free:
1039 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1040 out_err:
1041 return ret;
1043 EXPORT_SYMBOL(set_memory_wc);
1045 int _set_memory_wb(unsigned long addr, int numpages)
1047 return change_page_attr_clear(&addr, numpages,
1048 __pgprot(_PAGE_CACHE_MASK), 0);
1051 int set_memory_wb(unsigned long addr, int numpages)
1053 int ret;
1055 ret = _set_memory_wb(addr, numpages);
1056 if (ret)
1057 return ret;
1059 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1060 return 0;
1062 EXPORT_SYMBOL(set_memory_wb);
1064 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1066 int i;
1067 int ret;
1069 ret = change_page_attr_clear(addr, addrinarray,
1070 __pgprot(_PAGE_CACHE_MASK), 1);
1071 if (ret)
1072 return ret;
1074 for (i = 0; i < addrinarray; i++)
1075 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1077 return 0;
1079 EXPORT_SYMBOL(set_memory_array_wb);
1081 int set_memory_x(unsigned long addr, int numpages)
1083 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1085 EXPORT_SYMBOL(set_memory_x);
1087 int set_memory_nx(unsigned long addr, int numpages)
1089 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1091 EXPORT_SYMBOL(set_memory_nx);
1093 int set_memory_ro(unsigned long addr, int numpages)
1095 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1097 EXPORT_SYMBOL_GPL(set_memory_ro);
1099 int set_memory_rw(unsigned long addr, int numpages)
1101 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1103 EXPORT_SYMBOL_GPL(set_memory_rw);
1105 int set_memory_np(unsigned long addr, int numpages)
1107 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1110 int set_memory_4k(unsigned long addr, int numpages)
1112 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1113 __pgprot(0), 1, 0, NULL);
1116 int set_pages_uc(struct page *page, int numpages)
1118 unsigned long addr = (unsigned long)page_address(page);
1120 return set_memory_uc(addr, numpages);
1122 EXPORT_SYMBOL(set_pages_uc);
1124 int set_pages_array_uc(struct page **pages, int addrinarray)
1126 unsigned long start;
1127 unsigned long end;
1128 int i;
1129 int free_idx;
1131 for (i = 0; i < addrinarray; i++) {
1132 start = (unsigned long)page_address(pages[i]);
1133 end = start + PAGE_SIZE;
1134 if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
1135 goto err_out;
1138 if (cpa_set_pages_array(pages, addrinarray,
1139 __pgprot(_PAGE_CACHE_UC_MINUS)) == 0) {
1140 return 0; /* Success */
1142 err_out:
1143 free_idx = i;
1144 for (i = 0; i < free_idx; i++) {
1145 start = (unsigned long)page_address(pages[i]);
1146 end = start + PAGE_SIZE;
1147 free_memtype(start, end);
1149 return -EINVAL;
1151 EXPORT_SYMBOL(set_pages_array_uc);
1153 int set_pages_wb(struct page *page, int numpages)
1155 unsigned long addr = (unsigned long)page_address(page);
1157 return set_memory_wb(addr, numpages);
1159 EXPORT_SYMBOL(set_pages_wb);
1161 int set_pages_array_wb(struct page **pages, int addrinarray)
1163 int retval;
1164 unsigned long start;
1165 unsigned long end;
1166 int i;
1168 retval = cpa_clear_pages_array(pages, addrinarray,
1169 __pgprot(_PAGE_CACHE_MASK));
1170 if (retval)
1171 return retval;
1173 for (i = 0; i < addrinarray; i++) {
1174 start = (unsigned long)page_address(pages[i]);
1175 end = start + PAGE_SIZE;
1176 free_memtype(start, end);
1179 return 0;
1181 EXPORT_SYMBOL(set_pages_array_wb);
1183 int set_pages_x(struct page *page, int numpages)
1185 unsigned long addr = (unsigned long)page_address(page);
1187 return set_memory_x(addr, numpages);
1189 EXPORT_SYMBOL(set_pages_x);
1191 int set_pages_nx(struct page *page, int numpages)
1193 unsigned long addr = (unsigned long)page_address(page);
1195 return set_memory_nx(addr, numpages);
1197 EXPORT_SYMBOL(set_pages_nx);
1199 int set_pages_ro(struct page *page, int numpages)
1201 unsigned long addr = (unsigned long)page_address(page);
1203 return set_memory_ro(addr, numpages);
1206 int set_pages_rw(struct page *page, int numpages)
1208 unsigned long addr = (unsigned long)page_address(page);
1210 return set_memory_rw(addr, numpages);
1213 #ifdef CONFIG_DEBUG_PAGEALLOC
1215 static int __set_pages_p(struct page *page, int numpages)
1217 unsigned long tempaddr = (unsigned long) page_address(page);
1218 struct cpa_data cpa = { .vaddr = &tempaddr,
1219 .numpages = numpages,
1220 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1221 .mask_clr = __pgprot(0),
1222 .flags = 0};
1225 * No alias checking needed for setting present flag. otherwise,
1226 * we may need to break large pages for 64-bit kernel text
1227 * mappings (this adds to complexity if we want to do this from
1228 * atomic context especially). Let's keep it simple!
1230 return __change_page_attr_set_clr(&cpa, 0);
1233 static int __set_pages_np(struct page *page, int numpages)
1235 unsigned long tempaddr = (unsigned long) page_address(page);
1236 struct cpa_data cpa = { .vaddr = &tempaddr,
1237 .numpages = numpages,
1238 .mask_set = __pgprot(0),
1239 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1240 .flags = 0};
1243 * No alias checking needed for setting not present flag. otherwise,
1244 * we may need to break large pages for 64-bit kernel text
1245 * mappings (this adds to complexity if we want to do this from
1246 * atomic context especially). Let's keep it simple!
1248 return __change_page_attr_set_clr(&cpa, 0);
1251 void kernel_map_pages(struct page *page, int numpages, int enable)
1253 if (PageHighMem(page))
1254 return;
1255 if (!enable) {
1256 debug_check_no_locks_freed(page_address(page),
1257 numpages * PAGE_SIZE);
1261 * If page allocator is not up yet then do not call c_p_a():
1263 if (!debug_pagealloc_enabled)
1264 return;
1267 * The return value is ignored as the calls cannot fail.
1268 * Large pages for identity mappings are not used at boot time
1269 * and hence no memory allocations during large page split.
1271 if (enable)
1272 __set_pages_p(page, numpages);
1273 else
1274 __set_pages_np(page, numpages);
1277 * We should perform an IPI and flush all tlbs,
1278 * but that can deadlock->flush only current cpu:
1280 __flush_tlb_all();
1283 #ifdef CONFIG_HIBERNATION
1285 bool kernel_page_present(struct page *page)
1287 unsigned int level;
1288 pte_t *pte;
1290 if (PageHighMem(page))
1291 return false;
1293 pte = lookup_address((unsigned long)page_address(page), &level);
1294 return (pte_val(*pte) & _PAGE_PRESENT);
1297 #endif /* CONFIG_HIBERNATION */
1299 #endif /* CONFIG_DEBUG_PAGEALLOC */
1302 * The testcases use internal knowledge of the implementation that shouldn't
1303 * be exposed to the rest of the kernel. Include these directly here.
1305 #ifdef CONFIG_CPA_DEBUG
1306 #include "pageattr-test.c"
1307 #endif