page allocator: inline __rmqueue_fallback()
[linux-2.6/mini2440.git] / mm / page_alloc.c
blob91e29b3ed2b601893d6d50b65613478483f7adf3
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49 #include <linux/kmemleak.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 #include "internal.h"
56 * Array of node states.
58 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61 #ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63 #ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65 #endif
66 [N_CPU] = { { [0] = 1UL } },
67 #endif /* NUMA */
69 EXPORT_SYMBOL(node_states);
71 unsigned long totalram_pages __read_mostly;
72 unsigned long totalreserve_pages __read_mostly;
73 unsigned long highest_memmap_pfn __read_mostly;
74 int percpu_pagelist_fraction;
76 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77 int pageblock_order __read_mostly;
78 #endif
80 static void __free_pages_ok(struct page *page, unsigned int order);
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
93 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
94 #ifdef CONFIG_ZONE_DMA
95 256,
96 #endif
97 #ifdef CONFIG_ZONE_DMA32
98 256,
99 #endif
100 #ifdef CONFIG_HIGHMEM
102 #endif
106 EXPORT_SYMBOL(totalram_pages);
108 static char * const zone_names[MAX_NR_ZONES] = {
109 #ifdef CONFIG_ZONE_DMA
110 "DMA",
111 #endif
112 #ifdef CONFIG_ZONE_DMA32
113 "DMA32",
114 #endif
115 "Normal",
116 #ifdef CONFIG_HIGHMEM
117 "HighMem",
118 #endif
119 "Movable",
122 int min_free_kbytes = 1024;
124 unsigned long __meminitdata nr_kernel_pages;
125 unsigned long __meminitdata nr_all_pages;
126 static unsigned long __meminitdata dma_reserve;
128 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
153 static unsigned long __initdata required_kernelcore;
154 static unsigned long __initdata required_movablecore;
155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
162 #if MAX_NUMNODES > 1
163 int nr_node_ids __read_mostly = MAX_NUMNODES;
164 EXPORT_SYMBOL(nr_node_ids);
165 #endif
167 int page_group_by_mobility_disabled __read_mostly;
169 static void set_pageblock_migratetype(struct page *page, int migratetype)
172 if (unlikely(page_group_by_mobility_disabled))
173 migratetype = MIGRATE_UNMOVABLE;
175 set_pageblock_flags_group(page, (unsigned long)migratetype,
176 PB_migrate, PB_migrate_end);
179 #ifdef CONFIG_DEBUG_VM
180 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
182 int ret = 0;
183 unsigned seq;
184 unsigned long pfn = page_to_pfn(page);
186 do {
187 seq = zone_span_seqbegin(zone);
188 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
189 ret = 1;
190 else if (pfn < zone->zone_start_pfn)
191 ret = 1;
192 } while (zone_span_seqretry(zone, seq));
194 return ret;
197 static int page_is_consistent(struct zone *zone, struct page *page)
199 if (!pfn_valid_within(page_to_pfn(page)))
200 return 0;
201 if (zone != page_zone(page))
202 return 0;
204 return 1;
207 * Temporary debugging check for pages not lying within a given zone.
209 static int bad_range(struct zone *zone, struct page *page)
211 if (page_outside_zone_boundaries(zone, page))
212 return 1;
213 if (!page_is_consistent(zone, page))
214 return 1;
216 return 0;
218 #else
219 static inline int bad_range(struct zone *zone, struct page *page)
221 return 0;
223 #endif
225 static void bad_page(struct page *page)
227 static unsigned long resume;
228 static unsigned long nr_shown;
229 static unsigned long nr_unshown;
232 * Allow a burst of 60 reports, then keep quiet for that minute;
233 * or allow a steady drip of one report per second.
235 if (nr_shown == 60) {
236 if (time_before(jiffies, resume)) {
237 nr_unshown++;
238 goto out;
240 if (nr_unshown) {
241 printk(KERN_ALERT
242 "BUG: Bad page state: %lu messages suppressed\n",
243 nr_unshown);
244 nr_unshown = 0;
246 nr_shown = 0;
248 if (nr_shown++ == 0)
249 resume = jiffies + 60 * HZ;
251 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
252 current->comm, page_to_pfn(page));
253 printk(KERN_ALERT
254 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
255 page, (void *)page->flags, page_count(page),
256 page_mapcount(page), page->mapping, page->index);
258 dump_stack();
259 out:
260 /* Leave bad fields for debug, except PageBuddy could make trouble */
261 __ClearPageBuddy(page);
262 add_taint(TAINT_BAD_PAGE);
266 * Higher-order pages are called "compound pages". They are structured thusly:
268 * The first PAGE_SIZE page is called the "head page".
270 * The remaining PAGE_SIZE pages are called "tail pages".
272 * All pages have PG_compound set. All pages have their ->private pointing at
273 * the head page (even the head page has this).
275 * The first tail page's ->lru.next holds the address of the compound page's
276 * put_page() function. Its ->lru.prev holds the order of allocation.
277 * This usage means that zero-order pages may not be compound.
280 static void free_compound_page(struct page *page)
282 __free_pages_ok(page, compound_order(page));
285 void prep_compound_page(struct page *page, unsigned long order)
287 int i;
288 int nr_pages = 1 << order;
290 set_compound_page_dtor(page, free_compound_page);
291 set_compound_order(page, order);
292 __SetPageHead(page);
293 for (i = 1; i < nr_pages; i++) {
294 struct page *p = page + i;
296 __SetPageTail(p);
297 p->first_page = page;
301 #ifdef CONFIG_HUGETLBFS
302 void prep_compound_gigantic_page(struct page *page, unsigned long order)
304 int i;
305 int nr_pages = 1 << order;
306 struct page *p = page + 1;
308 set_compound_page_dtor(page, free_compound_page);
309 set_compound_order(page, order);
310 __SetPageHead(page);
311 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
312 __SetPageTail(p);
313 p->first_page = page;
316 #endif
318 static int destroy_compound_page(struct page *page, unsigned long order)
320 int i;
321 int nr_pages = 1 << order;
322 int bad = 0;
324 if (unlikely(compound_order(page) != order) ||
325 unlikely(!PageHead(page))) {
326 bad_page(page);
327 bad++;
330 __ClearPageHead(page);
332 for (i = 1; i < nr_pages; i++) {
333 struct page *p = page + i;
335 if (unlikely(!PageTail(p) || (p->first_page != page))) {
336 bad_page(page);
337 bad++;
339 __ClearPageTail(p);
342 return bad;
345 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
347 int i;
350 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
351 * and __GFP_HIGHMEM from hard or soft interrupt context.
353 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
354 for (i = 0; i < (1 << order); i++)
355 clear_highpage(page + i);
358 static inline void set_page_order(struct page *page, int order)
360 set_page_private(page, order);
361 __SetPageBuddy(page);
364 static inline void rmv_page_order(struct page *page)
366 __ClearPageBuddy(page);
367 set_page_private(page, 0);
371 * Locate the struct page for both the matching buddy in our
372 * pair (buddy1) and the combined O(n+1) page they form (page).
374 * 1) Any buddy B1 will have an order O twin B2 which satisfies
375 * the following equation:
376 * B2 = B1 ^ (1 << O)
377 * For example, if the starting buddy (buddy2) is #8 its order
378 * 1 buddy is #10:
379 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
381 * 2) Any buddy B will have an order O+1 parent P which
382 * satisfies the following equation:
383 * P = B & ~(1 << O)
385 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
387 static inline struct page *
388 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
390 unsigned long buddy_idx = page_idx ^ (1 << order);
392 return page + (buddy_idx - page_idx);
395 static inline unsigned long
396 __find_combined_index(unsigned long page_idx, unsigned int order)
398 return (page_idx & ~(1 << order));
402 * This function checks whether a page is free && is the buddy
403 * we can do coalesce a page and its buddy if
404 * (a) the buddy is not in a hole &&
405 * (b) the buddy is in the buddy system &&
406 * (c) a page and its buddy have the same order &&
407 * (d) a page and its buddy are in the same zone.
409 * For recording whether a page is in the buddy system, we use PG_buddy.
410 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
412 * For recording page's order, we use page_private(page).
414 static inline int page_is_buddy(struct page *page, struct page *buddy,
415 int order)
417 if (!pfn_valid_within(page_to_pfn(buddy)))
418 return 0;
420 if (page_zone_id(page) != page_zone_id(buddy))
421 return 0;
423 if (PageBuddy(buddy) && page_order(buddy) == order) {
424 BUG_ON(page_count(buddy) != 0);
425 return 1;
427 return 0;
431 * Freeing function for a buddy system allocator.
433 * The concept of a buddy system is to maintain direct-mapped table
434 * (containing bit values) for memory blocks of various "orders".
435 * The bottom level table contains the map for the smallest allocatable
436 * units of memory (here, pages), and each level above it describes
437 * pairs of units from the levels below, hence, "buddies".
438 * At a high level, all that happens here is marking the table entry
439 * at the bottom level available, and propagating the changes upward
440 * as necessary, plus some accounting needed to play nicely with other
441 * parts of the VM system.
442 * At each level, we keep a list of pages, which are heads of continuous
443 * free pages of length of (1 << order) and marked with PG_buddy. Page's
444 * order is recorded in page_private(page) field.
445 * So when we are allocating or freeing one, we can derive the state of the
446 * other. That is, if we allocate a small block, and both were
447 * free, the remainder of the region must be split into blocks.
448 * If a block is freed, and its buddy is also free, then this
449 * triggers coalescing into a block of larger size.
451 * -- wli
454 static inline void __free_one_page(struct page *page,
455 struct zone *zone, unsigned int order)
457 unsigned long page_idx;
458 int order_size = 1 << order;
459 int migratetype = get_pageblock_migratetype(page);
461 if (unlikely(PageCompound(page)))
462 if (unlikely(destroy_compound_page(page, order)))
463 return;
465 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
467 VM_BUG_ON(page_idx & (order_size - 1));
468 VM_BUG_ON(bad_range(zone, page));
470 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
471 while (order < MAX_ORDER-1) {
472 unsigned long combined_idx;
473 struct page *buddy;
475 buddy = __page_find_buddy(page, page_idx, order);
476 if (!page_is_buddy(page, buddy, order))
477 break;
479 /* Our buddy is free, merge with it and move up one order. */
480 list_del(&buddy->lru);
481 zone->free_area[order].nr_free--;
482 rmv_page_order(buddy);
483 combined_idx = __find_combined_index(page_idx, order);
484 page = page + (combined_idx - page_idx);
485 page_idx = combined_idx;
486 order++;
488 set_page_order(page, order);
489 list_add(&page->lru,
490 &zone->free_area[order].free_list[migratetype]);
491 zone->free_area[order].nr_free++;
494 static inline int free_pages_check(struct page *page)
496 free_page_mlock(page);
497 if (unlikely(page_mapcount(page) |
498 (page->mapping != NULL) |
499 (page_count(page) != 0) |
500 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
501 bad_page(page);
502 return 1;
504 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
505 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
506 return 0;
510 * Frees a list of pages.
511 * Assumes all pages on list are in same zone, and of same order.
512 * count is the number of pages to free.
514 * If the zone was previously in an "all pages pinned" state then look to
515 * see if this freeing clears that state.
517 * And clear the zone's pages_scanned counter, to hold off the "all pages are
518 * pinned" detection logic.
520 static void free_pages_bulk(struct zone *zone, int count,
521 struct list_head *list, int order)
523 spin_lock(&zone->lock);
524 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
525 zone->pages_scanned = 0;
526 while (count--) {
527 struct page *page;
529 VM_BUG_ON(list_empty(list));
530 page = list_entry(list->prev, struct page, lru);
531 /* have to delete it as __free_one_page list manipulates */
532 list_del(&page->lru);
533 __free_one_page(page, zone, order);
535 spin_unlock(&zone->lock);
538 static void free_one_page(struct zone *zone, struct page *page, int order)
540 spin_lock(&zone->lock);
541 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
542 zone->pages_scanned = 0;
543 __free_one_page(page, zone, order);
544 spin_unlock(&zone->lock);
547 static void __free_pages_ok(struct page *page, unsigned int order)
549 unsigned long flags;
550 int i;
551 int bad = 0;
553 for (i = 0 ; i < (1 << order) ; ++i)
554 bad += free_pages_check(page + i);
555 if (bad)
556 return;
558 if (!PageHighMem(page)) {
559 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
560 debug_check_no_obj_freed(page_address(page),
561 PAGE_SIZE << order);
563 arch_free_page(page, order);
564 kernel_map_pages(page, 1 << order, 0);
566 local_irq_save(flags);
567 __count_vm_events(PGFREE, 1 << order);
568 free_one_page(page_zone(page), page, order);
569 local_irq_restore(flags);
573 * permit the bootmem allocator to evade page validation on high-order frees
575 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
577 if (order == 0) {
578 __ClearPageReserved(page);
579 set_page_count(page, 0);
580 set_page_refcounted(page);
581 __free_page(page);
582 } else {
583 int loop;
585 prefetchw(page);
586 for (loop = 0; loop < BITS_PER_LONG; loop++) {
587 struct page *p = &page[loop];
589 if (loop + 1 < BITS_PER_LONG)
590 prefetchw(p + 1);
591 __ClearPageReserved(p);
592 set_page_count(p, 0);
595 set_page_refcounted(page);
596 __free_pages(page, order);
602 * The order of subdivision here is critical for the IO subsystem.
603 * Please do not alter this order without good reasons and regression
604 * testing. Specifically, as large blocks of memory are subdivided,
605 * the order in which smaller blocks are delivered depends on the order
606 * they're subdivided in this function. This is the primary factor
607 * influencing the order in which pages are delivered to the IO
608 * subsystem according to empirical testing, and this is also justified
609 * by considering the behavior of a buddy system containing a single
610 * large block of memory acted on by a series of small allocations.
611 * This behavior is a critical factor in sglist merging's success.
613 * -- wli
615 static inline void expand(struct zone *zone, struct page *page,
616 int low, int high, struct free_area *area,
617 int migratetype)
619 unsigned long size = 1 << high;
621 while (high > low) {
622 area--;
623 high--;
624 size >>= 1;
625 VM_BUG_ON(bad_range(zone, &page[size]));
626 list_add(&page[size].lru, &area->free_list[migratetype]);
627 area->nr_free++;
628 set_page_order(&page[size], high);
633 * This page is about to be returned from the page allocator
635 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
637 if (unlikely(page_mapcount(page) |
638 (page->mapping != NULL) |
639 (page_count(page) != 0) |
640 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
641 bad_page(page);
642 return 1;
645 set_page_private(page, 0);
646 set_page_refcounted(page);
648 arch_alloc_page(page, order);
649 kernel_map_pages(page, 1 << order, 1);
651 if (gfp_flags & __GFP_ZERO)
652 prep_zero_page(page, order, gfp_flags);
654 if (order && (gfp_flags & __GFP_COMP))
655 prep_compound_page(page, order);
657 return 0;
661 * Go through the free lists for the given migratetype and remove
662 * the smallest available page from the freelists
664 static inline
665 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
666 int migratetype)
668 unsigned int current_order;
669 struct free_area * area;
670 struct page *page;
672 /* Find a page of the appropriate size in the preferred list */
673 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
674 area = &(zone->free_area[current_order]);
675 if (list_empty(&area->free_list[migratetype]))
676 continue;
678 page = list_entry(area->free_list[migratetype].next,
679 struct page, lru);
680 list_del(&page->lru);
681 rmv_page_order(page);
682 area->nr_free--;
683 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
684 expand(zone, page, order, current_order, area, migratetype);
685 return page;
688 return NULL;
693 * This array describes the order lists are fallen back to when
694 * the free lists for the desirable migrate type are depleted
696 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
697 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
698 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
699 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
700 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
704 * Move the free pages in a range to the free lists of the requested type.
705 * Note that start_page and end_pages are not aligned on a pageblock
706 * boundary. If alignment is required, use move_freepages_block()
708 static int move_freepages(struct zone *zone,
709 struct page *start_page, struct page *end_page,
710 int migratetype)
712 struct page *page;
713 unsigned long order;
714 int pages_moved = 0;
716 #ifndef CONFIG_HOLES_IN_ZONE
718 * page_zone is not safe to call in this context when
719 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
720 * anyway as we check zone boundaries in move_freepages_block().
721 * Remove at a later date when no bug reports exist related to
722 * grouping pages by mobility
724 BUG_ON(page_zone(start_page) != page_zone(end_page));
725 #endif
727 for (page = start_page; page <= end_page;) {
728 /* Make sure we are not inadvertently changing nodes */
729 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
731 if (!pfn_valid_within(page_to_pfn(page))) {
732 page++;
733 continue;
736 if (!PageBuddy(page)) {
737 page++;
738 continue;
741 order = page_order(page);
742 list_del(&page->lru);
743 list_add(&page->lru,
744 &zone->free_area[order].free_list[migratetype]);
745 page += 1 << order;
746 pages_moved += 1 << order;
749 return pages_moved;
752 static int move_freepages_block(struct zone *zone, struct page *page,
753 int migratetype)
755 unsigned long start_pfn, end_pfn;
756 struct page *start_page, *end_page;
758 start_pfn = page_to_pfn(page);
759 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
760 start_page = pfn_to_page(start_pfn);
761 end_page = start_page + pageblock_nr_pages - 1;
762 end_pfn = start_pfn + pageblock_nr_pages - 1;
764 /* Do not cross zone boundaries */
765 if (start_pfn < zone->zone_start_pfn)
766 start_page = page;
767 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
768 return 0;
770 return move_freepages(zone, start_page, end_page, migratetype);
773 /* Remove an element from the buddy allocator from the fallback list */
774 static inline struct page *
775 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
777 struct free_area * area;
778 int current_order;
779 struct page *page;
780 int migratetype, i;
782 /* Find the largest possible block of pages in the other list */
783 for (current_order = MAX_ORDER-1; current_order >= order;
784 --current_order) {
785 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
786 migratetype = fallbacks[start_migratetype][i];
788 /* MIGRATE_RESERVE handled later if necessary */
789 if (migratetype == MIGRATE_RESERVE)
790 continue;
792 area = &(zone->free_area[current_order]);
793 if (list_empty(&area->free_list[migratetype]))
794 continue;
796 page = list_entry(area->free_list[migratetype].next,
797 struct page, lru);
798 area->nr_free--;
801 * If breaking a large block of pages, move all free
802 * pages to the preferred allocation list. If falling
803 * back for a reclaimable kernel allocation, be more
804 * agressive about taking ownership of free pages
806 if (unlikely(current_order >= (pageblock_order >> 1)) ||
807 start_migratetype == MIGRATE_RECLAIMABLE) {
808 unsigned long pages;
809 pages = move_freepages_block(zone, page,
810 start_migratetype);
812 /* Claim the whole block if over half of it is free */
813 if (pages >= (1 << (pageblock_order-1)))
814 set_pageblock_migratetype(page,
815 start_migratetype);
817 migratetype = start_migratetype;
820 /* Remove the page from the freelists */
821 list_del(&page->lru);
822 rmv_page_order(page);
823 __mod_zone_page_state(zone, NR_FREE_PAGES,
824 -(1UL << order));
826 if (current_order == pageblock_order)
827 set_pageblock_migratetype(page,
828 start_migratetype);
830 expand(zone, page, order, current_order, area, migratetype);
831 return page;
835 return NULL;
839 * Do the hard work of removing an element from the buddy allocator.
840 * Call me with the zone->lock already held.
842 static struct page *__rmqueue(struct zone *zone, unsigned int order,
843 int migratetype)
845 struct page *page;
847 retry_reserve:
848 page = __rmqueue_smallest(zone, order, migratetype);
850 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
851 page = __rmqueue_fallback(zone, order, migratetype);
854 * Use MIGRATE_RESERVE rather than fail an allocation. goto
855 * is used because __rmqueue_smallest is an inline function
856 * and we want just one call site
858 if (!page) {
859 migratetype = MIGRATE_RESERVE;
860 goto retry_reserve;
864 return page;
868 * Obtain a specified number of elements from the buddy allocator, all under
869 * a single hold of the lock, for efficiency. Add them to the supplied list.
870 * Returns the number of new pages which were placed at *list.
872 static int rmqueue_bulk(struct zone *zone, unsigned int order,
873 unsigned long count, struct list_head *list,
874 int migratetype)
876 int i;
878 spin_lock(&zone->lock);
879 for (i = 0; i < count; ++i) {
880 struct page *page = __rmqueue(zone, order, migratetype);
881 if (unlikely(page == NULL))
882 break;
885 * Split buddy pages returned by expand() are received here
886 * in physical page order. The page is added to the callers and
887 * list and the list head then moves forward. From the callers
888 * perspective, the linked list is ordered by page number in
889 * some conditions. This is useful for IO devices that can
890 * merge IO requests if the physical pages are ordered
891 * properly.
893 list_add(&page->lru, list);
894 set_page_private(page, migratetype);
895 list = &page->lru;
897 spin_unlock(&zone->lock);
898 return i;
901 #ifdef CONFIG_NUMA
903 * Called from the vmstat counter updater to drain pagesets of this
904 * currently executing processor on remote nodes after they have
905 * expired.
907 * Note that this function must be called with the thread pinned to
908 * a single processor.
910 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
912 unsigned long flags;
913 int to_drain;
915 local_irq_save(flags);
916 if (pcp->count >= pcp->batch)
917 to_drain = pcp->batch;
918 else
919 to_drain = pcp->count;
920 free_pages_bulk(zone, to_drain, &pcp->list, 0);
921 pcp->count -= to_drain;
922 local_irq_restore(flags);
924 #endif
927 * Drain pages of the indicated processor.
929 * The processor must either be the current processor and the
930 * thread pinned to the current processor or a processor that
931 * is not online.
933 static void drain_pages(unsigned int cpu)
935 unsigned long flags;
936 struct zone *zone;
938 for_each_populated_zone(zone) {
939 struct per_cpu_pageset *pset;
940 struct per_cpu_pages *pcp;
942 pset = zone_pcp(zone, cpu);
944 pcp = &pset->pcp;
945 local_irq_save(flags);
946 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
947 pcp->count = 0;
948 local_irq_restore(flags);
953 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
955 void drain_local_pages(void *arg)
957 drain_pages(smp_processor_id());
961 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
963 void drain_all_pages(void)
965 on_each_cpu(drain_local_pages, NULL, 1);
968 #ifdef CONFIG_HIBERNATION
970 void mark_free_pages(struct zone *zone)
972 unsigned long pfn, max_zone_pfn;
973 unsigned long flags;
974 int order, t;
975 struct list_head *curr;
977 if (!zone->spanned_pages)
978 return;
980 spin_lock_irqsave(&zone->lock, flags);
982 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
983 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
984 if (pfn_valid(pfn)) {
985 struct page *page = pfn_to_page(pfn);
987 if (!swsusp_page_is_forbidden(page))
988 swsusp_unset_page_free(page);
991 for_each_migratetype_order(order, t) {
992 list_for_each(curr, &zone->free_area[order].free_list[t]) {
993 unsigned long i;
995 pfn = page_to_pfn(list_entry(curr, struct page, lru));
996 for (i = 0; i < (1UL << order); i++)
997 swsusp_set_page_free(pfn_to_page(pfn + i));
1000 spin_unlock_irqrestore(&zone->lock, flags);
1002 #endif /* CONFIG_PM */
1005 * Free a 0-order page
1007 static void free_hot_cold_page(struct page *page, int cold)
1009 struct zone *zone = page_zone(page);
1010 struct per_cpu_pages *pcp;
1011 unsigned long flags;
1013 if (PageAnon(page))
1014 page->mapping = NULL;
1015 if (free_pages_check(page))
1016 return;
1018 if (!PageHighMem(page)) {
1019 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1020 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1022 arch_free_page(page, 0);
1023 kernel_map_pages(page, 1, 0);
1025 pcp = &zone_pcp(zone, get_cpu())->pcp;
1026 local_irq_save(flags);
1027 __count_vm_event(PGFREE);
1028 if (cold)
1029 list_add_tail(&page->lru, &pcp->list);
1030 else
1031 list_add(&page->lru, &pcp->list);
1032 set_page_private(page, get_pageblock_migratetype(page));
1033 pcp->count++;
1034 if (pcp->count >= pcp->high) {
1035 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1036 pcp->count -= pcp->batch;
1038 local_irq_restore(flags);
1039 put_cpu();
1042 void free_hot_page(struct page *page)
1044 free_hot_cold_page(page, 0);
1047 void free_cold_page(struct page *page)
1049 free_hot_cold_page(page, 1);
1053 * split_page takes a non-compound higher-order page, and splits it into
1054 * n (1<<order) sub-pages: page[0..n]
1055 * Each sub-page must be freed individually.
1057 * Note: this is probably too low level an operation for use in drivers.
1058 * Please consult with lkml before using this in your driver.
1060 void split_page(struct page *page, unsigned int order)
1062 int i;
1064 VM_BUG_ON(PageCompound(page));
1065 VM_BUG_ON(!page_count(page));
1066 for (i = 1; i < (1 << order); i++)
1067 set_page_refcounted(page + i);
1071 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1072 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1073 * or two.
1075 static inline
1076 struct page *buffered_rmqueue(struct zone *preferred_zone,
1077 struct zone *zone, int order, gfp_t gfp_flags,
1078 int migratetype)
1080 unsigned long flags;
1081 struct page *page;
1082 int cold = !!(gfp_flags & __GFP_COLD);
1083 int cpu;
1085 again:
1086 cpu = get_cpu();
1087 if (likely(order == 0)) {
1088 struct per_cpu_pages *pcp;
1090 pcp = &zone_pcp(zone, cpu)->pcp;
1091 local_irq_save(flags);
1092 if (!pcp->count) {
1093 pcp->count = rmqueue_bulk(zone, 0,
1094 pcp->batch, &pcp->list, migratetype);
1095 if (unlikely(!pcp->count))
1096 goto failed;
1099 /* Find a page of the appropriate migrate type */
1100 if (cold) {
1101 list_for_each_entry_reverse(page, &pcp->list, lru)
1102 if (page_private(page) == migratetype)
1103 break;
1104 } else {
1105 list_for_each_entry(page, &pcp->list, lru)
1106 if (page_private(page) == migratetype)
1107 break;
1110 /* Allocate more to the pcp list if necessary */
1111 if (unlikely(&page->lru == &pcp->list)) {
1112 pcp->count += rmqueue_bulk(zone, 0,
1113 pcp->batch, &pcp->list, migratetype);
1114 page = list_entry(pcp->list.next, struct page, lru);
1117 list_del(&page->lru);
1118 pcp->count--;
1119 } else {
1120 spin_lock_irqsave(&zone->lock, flags);
1121 page = __rmqueue(zone, order, migratetype);
1122 spin_unlock(&zone->lock);
1123 if (!page)
1124 goto failed;
1127 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1128 zone_statistics(preferred_zone, zone);
1129 local_irq_restore(flags);
1130 put_cpu();
1132 VM_BUG_ON(bad_range(zone, page));
1133 if (prep_new_page(page, order, gfp_flags))
1134 goto again;
1135 return page;
1137 failed:
1138 local_irq_restore(flags);
1139 put_cpu();
1140 return NULL;
1143 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1144 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1145 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1146 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1147 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1148 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1149 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1151 #ifdef CONFIG_FAIL_PAGE_ALLOC
1153 static struct fail_page_alloc_attr {
1154 struct fault_attr attr;
1156 u32 ignore_gfp_highmem;
1157 u32 ignore_gfp_wait;
1158 u32 min_order;
1160 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1162 struct dentry *ignore_gfp_highmem_file;
1163 struct dentry *ignore_gfp_wait_file;
1164 struct dentry *min_order_file;
1166 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1168 } fail_page_alloc = {
1169 .attr = FAULT_ATTR_INITIALIZER,
1170 .ignore_gfp_wait = 1,
1171 .ignore_gfp_highmem = 1,
1172 .min_order = 1,
1175 static int __init setup_fail_page_alloc(char *str)
1177 return setup_fault_attr(&fail_page_alloc.attr, str);
1179 __setup("fail_page_alloc=", setup_fail_page_alloc);
1181 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1183 if (order < fail_page_alloc.min_order)
1184 return 0;
1185 if (gfp_mask & __GFP_NOFAIL)
1186 return 0;
1187 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1188 return 0;
1189 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1190 return 0;
1192 return should_fail(&fail_page_alloc.attr, 1 << order);
1195 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1197 static int __init fail_page_alloc_debugfs(void)
1199 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1200 struct dentry *dir;
1201 int err;
1203 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1204 "fail_page_alloc");
1205 if (err)
1206 return err;
1207 dir = fail_page_alloc.attr.dentries.dir;
1209 fail_page_alloc.ignore_gfp_wait_file =
1210 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1211 &fail_page_alloc.ignore_gfp_wait);
1213 fail_page_alloc.ignore_gfp_highmem_file =
1214 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1215 &fail_page_alloc.ignore_gfp_highmem);
1216 fail_page_alloc.min_order_file =
1217 debugfs_create_u32("min-order", mode, dir,
1218 &fail_page_alloc.min_order);
1220 if (!fail_page_alloc.ignore_gfp_wait_file ||
1221 !fail_page_alloc.ignore_gfp_highmem_file ||
1222 !fail_page_alloc.min_order_file) {
1223 err = -ENOMEM;
1224 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1225 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1226 debugfs_remove(fail_page_alloc.min_order_file);
1227 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1230 return err;
1233 late_initcall(fail_page_alloc_debugfs);
1235 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1237 #else /* CONFIG_FAIL_PAGE_ALLOC */
1239 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1241 return 0;
1244 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1247 * Return 1 if free pages are above 'mark'. This takes into account the order
1248 * of the allocation.
1250 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1251 int classzone_idx, int alloc_flags)
1253 /* free_pages my go negative - that's OK */
1254 long min = mark;
1255 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1256 int o;
1258 if (alloc_flags & ALLOC_HIGH)
1259 min -= min / 2;
1260 if (alloc_flags & ALLOC_HARDER)
1261 min -= min / 4;
1263 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1264 return 0;
1265 for (o = 0; o < order; o++) {
1266 /* At the next order, this order's pages become unavailable */
1267 free_pages -= z->free_area[o].nr_free << o;
1269 /* Require fewer higher order pages to be free */
1270 min >>= 1;
1272 if (free_pages <= min)
1273 return 0;
1275 return 1;
1278 #ifdef CONFIG_NUMA
1280 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1281 * skip over zones that are not allowed by the cpuset, or that have
1282 * been recently (in last second) found to be nearly full. See further
1283 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1284 * that have to skip over a lot of full or unallowed zones.
1286 * If the zonelist cache is present in the passed in zonelist, then
1287 * returns a pointer to the allowed node mask (either the current
1288 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1290 * If the zonelist cache is not available for this zonelist, does
1291 * nothing and returns NULL.
1293 * If the fullzones BITMAP in the zonelist cache is stale (more than
1294 * a second since last zap'd) then we zap it out (clear its bits.)
1296 * We hold off even calling zlc_setup, until after we've checked the
1297 * first zone in the zonelist, on the theory that most allocations will
1298 * be satisfied from that first zone, so best to examine that zone as
1299 * quickly as we can.
1301 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1303 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1304 nodemask_t *allowednodes; /* zonelist_cache approximation */
1306 zlc = zonelist->zlcache_ptr;
1307 if (!zlc)
1308 return NULL;
1310 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1311 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1312 zlc->last_full_zap = jiffies;
1315 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1316 &cpuset_current_mems_allowed :
1317 &node_states[N_HIGH_MEMORY];
1318 return allowednodes;
1322 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1323 * if it is worth looking at further for free memory:
1324 * 1) Check that the zone isn't thought to be full (doesn't have its
1325 * bit set in the zonelist_cache fullzones BITMAP).
1326 * 2) Check that the zones node (obtained from the zonelist_cache
1327 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1328 * Return true (non-zero) if zone is worth looking at further, or
1329 * else return false (zero) if it is not.
1331 * This check -ignores- the distinction between various watermarks,
1332 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1333 * found to be full for any variation of these watermarks, it will
1334 * be considered full for up to one second by all requests, unless
1335 * we are so low on memory on all allowed nodes that we are forced
1336 * into the second scan of the zonelist.
1338 * In the second scan we ignore this zonelist cache and exactly
1339 * apply the watermarks to all zones, even it is slower to do so.
1340 * We are low on memory in the second scan, and should leave no stone
1341 * unturned looking for a free page.
1343 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1344 nodemask_t *allowednodes)
1346 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1347 int i; /* index of *z in zonelist zones */
1348 int n; /* node that zone *z is on */
1350 zlc = zonelist->zlcache_ptr;
1351 if (!zlc)
1352 return 1;
1354 i = z - zonelist->_zonerefs;
1355 n = zlc->z_to_n[i];
1357 /* This zone is worth trying if it is allowed but not full */
1358 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1362 * Given 'z' scanning a zonelist, set the corresponding bit in
1363 * zlc->fullzones, so that subsequent attempts to allocate a page
1364 * from that zone don't waste time re-examining it.
1366 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1368 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1369 int i; /* index of *z in zonelist zones */
1371 zlc = zonelist->zlcache_ptr;
1372 if (!zlc)
1373 return;
1375 i = z - zonelist->_zonerefs;
1377 set_bit(i, zlc->fullzones);
1380 #else /* CONFIG_NUMA */
1382 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1384 return NULL;
1387 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1388 nodemask_t *allowednodes)
1390 return 1;
1393 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1396 #endif /* CONFIG_NUMA */
1399 * get_page_from_freelist goes through the zonelist trying to allocate
1400 * a page.
1402 static struct page *
1403 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1404 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1405 struct zone *preferred_zone, int migratetype)
1407 struct zoneref *z;
1408 struct page *page = NULL;
1409 int classzone_idx;
1410 struct zone *zone;
1411 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1412 int zlc_active = 0; /* set if using zonelist_cache */
1413 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1415 if (WARN_ON_ONCE(order >= MAX_ORDER))
1416 return NULL;
1418 classzone_idx = zone_idx(preferred_zone);
1419 zonelist_scan:
1421 * Scan zonelist, looking for a zone with enough free.
1422 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1424 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1425 high_zoneidx, nodemask) {
1426 if (NUMA_BUILD && zlc_active &&
1427 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1428 continue;
1429 if ((alloc_flags & ALLOC_CPUSET) &&
1430 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1431 goto try_next_zone;
1433 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1434 unsigned long mark;
1435 if (alloc_flags & ALLOC_WMARK_MIN)
1436 mark = zone->pages_min;
1437 else if (alloc_flags & ALLOC_WMARK_LOW)
1438 mark = zone->pages_low;
1439 else
1440 mark = zone->pages_high;
1441 if (!zone_watermark_ok(zone, order, mark,
1442 classzone_idx, alloc_flags)) {
1443 if (!zone_reclaim_mode ||
1444 !zone_reclaim(zone, gfp_mask, order))
1445 goto this_zone_full;
1449 page = buffered_rmqueue(preferred_zone, zone, order,
1450 gfp_mask, migratetype);
1451 if (page)
1452 break;
1453 this_zone_full:
1454 if (NUMA_BUILD)
1455 zlc_mark_zone_full(zonelist, z);
1456 try_next_zone:
1457 if (NUMA_BUILD && !did_zlc_setup) {
1458 /* we do zlc_setup after the first zone is tried */
1459 allowednodes = zlc_setup(zonelist, alloc_flags);
1460 zlc_active = 1;
1461 did_zlc_setup = 1;
1465 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1466 /* Disable zlc cache for second zonelist scan */
1467 zlc_active = 0;
1468 goto zonelist_scan;
1470 return page;
1473 static inline int
1474 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1475 unsigned long pages_reclaimed)
1477 /* Do not loop if specifically requested */
1478 if (gfp_mask & __GFP_NORETRY)
1479 return 0;
1482 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1483 * means __GFP_NOFAIL, but that may not be true in other
1484 * implementations.
1486 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1487 return 1;
1490 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1491 * specified, then we retry until we no longer reclaim any pages
1492 * (above), or we've reclaimed an order of pages at least as
1493 * large as the allocation's order. In both cases, if the
1494 * allocation still fails, we stop retrying.
1496 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1497 return 1;
1500 * Don't let big-order allocations loop unless the caller
1501 * explicitly requests that.
1503 if (gfp_mask & __GFP_NOFAIL)
1504 return 1;
1506 return 0;
1509 static inline struct page *
1510 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1511 struct zonelist *zonelist, enum zone_type high_zoneidx,
1512 nodemask_t *nodemask, struct zone *preferred_zone,
1513 int migratetype)
1515 struct page *page;
1517 /* Acquire the OOM killer lock for the zones in zonelist */
1518 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1519 schedule_timeout_uninterruptible(1);
1520 return NULL;
1524 * Go through the zonelist yet one more time, keep very high watermark
1525 * here, this is only to catch a parallel oom killing, we must fail if
1526 * we're still under heavy pressure.
1528 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1529 order, zonelist, high_zoneidx,
1530 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1531 preferred_zone, migratetype);
1532 if (page)
1533 goto out;
1535 /* The OOM killer will not help higher order allocs */
1536 if (order > PAGE_ALLOC_COSTLY_ORDER)
1537 goto out;
1539 /* Exhausted what can be done so it's blamo time */
1540 out_of_memory(zonelist, gfp_mask, order);
1542 out:
1543 clear_zonelist_oom(zonelist, gfp_mask);
1544 return page;
1547 /* The really slow allocator path where we enter direct reclaim */
1548 static inline struct page *
1549 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1550 struct zonelist *zonelist, enum zone_type high_zoneidx,
1551 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1552 int migratetype, unsigned long *did_some_progress)
1554 struct page *page = NULL;
1555 struct reclaim_state reclaim_state;
1556 struct task_struct *p = current;
1558 cond_resched();
1560 /* We now go into synchronous reclaim */
1561 cpuset_memory_pressure_bump();
1564 * The task's cpuset might have expanded its set of allowable nodes
1566 p->flags |= PF_MEMALLOC;
1567 lockdep_set_current_reclaim_state(gfp_mask);
1568 reclaim_state.reclaimed_slab = 0;
1569 p->reclaim_state = &reclaim_state;
1571 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1573 p->reclaim_state = NULL;
1574 lockdep_clear_current_reclaim_state();
1575 p->flags &= ~PF_MEMALLOC;
1577 cond_resched();
1579 if (order != 0)
1580 drain_all_pages();
1582 if (likely(*did_some_progress))
1583 page = get_page_from_freelist(gfp_mask, nodemask, order,
1584 zonelist, high_zoneidx,
1585 alloc_flags, preferred_zone,
1586 migratetype);
1587 return page;
1591 * This is called in the allocator slow-path if the allocation request is of
1592 * sufficient urgency to ignore watermarks and take other desperate measures
1594 static inline struct page *
1595 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1596 struct zonelist *zonelist, enum zone_type high_zoneidx,
1597 nodemask_t *nodemask, struct zone *preferred_zone,
1598 int migratetype)
1600 struct page *page;
1602 do {
1603 page = get_page_from_freelist(gfp_mask, nodemask, order,
1604 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1605 preferred_zone, migratetype);
1607 if (!page && gfp_mask & __GFP_NOFAIL)
1608 congestion_wait(WRITE, HZ/50);
1609 } while (!page && (gfp_mask & __GFP_NOFAIL));
1611 return page;
1614 static inline
1615 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1616 enum zone_type high_zoneidx)
1618 struct zoneref *z;
1619 struct zone *zone;
1621 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1622 wakeup_kswapd(zone, order);
1625 static inline int
1626 gfp_to_alloc_flags(gfp_t gfp_mask)
1628 struct task_struct *p = current;
1629 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1630 const gfp_t wait = gfp_mask & __GFP_WAIT;
1632 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1633 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1636 * The caller may dip into page reserves a bit more if the caller
1637 * cannot run direct reclaim, or if the caller has realtime scheduling
1638 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1639 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1641 alloc_flags |= (gfp_mask & __GFP_HIGH);
1643 if (!wait) {
1644 alloc_flags |= ALLOC_HARDER;
1646 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1647 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1649 alloc_flags &= ~ALLOC_CPUSET;
1650 } else if (unlikely(rt_task(p)))
1651 alloc_flags |= ALLOC_HARDER;
1653 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1654 if (!in_interrupt() &&
1655 ((p->flags & PF_MEMALLOC) ||
1656 unlikely(test_thread_flag(TIF_MEMDIE))))
1657 alloc_flags |= ALLOC_NO_WATERMARKS;
1660 return alloc_flags;
1663 static inline struct page *
1664 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1665 struct zonelist *zonelist, enum zone_type high_zoneidx,
1666 nodemask_t *nodemask, struct zone *preferred_zone,
1667 int migratetype)
1669 const gfp_t wait = gfp_mask & __GFP_WAIT;
1670 struct page *page = NULL;
1671 int alloc_flags;
1672 unsigned long pages_reclaimed = 0;
1673 unsigned long did_some_progress;
1674 struct task_struct *p = current;
1677 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1678 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1679 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1680 * using a larger set of nodes after it has established that the
1681 * allowed per node queues are empty and that nodes are
1682 * over allocated.
1684 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1685 goto nopage;
1687 wake_all_kswapd(order, zonelist, high_zoneidx);
1690 * OK, we're below the kswapd watermark and have kicked background
1691 * reclaim. Now things get more complex, so set up alloc_flags according
1692 * to how we want to proceed.
1694 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1696 restart:
1697 /* This is the last chance, in general, before the goto nopage. */
1698 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1699 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1700 preferred_zone, migratetype);
1701 if (page)
1702 goto got_pg;
1704 rebalance:
1705 /* Allocate without watermarks if the context allows */
1706 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1707 page = __alloc_pages_high_priority(gfp_mask, order,
1708 zonelist, high_zoneidx, nodemask,
1709 preferred_zone, migratetype);
1710 if (page)
1711 goto got_pg;
1714 /* Atomic allocations - we can't balance anything */
1715 if (!wait)
1716 goto nopage;
1718 /* Avoid recursion of direct reclaim */
1719 if (p->flags & PF_MEMALLOC)
1720 goto nopage;
1722 /* Try direct reclaim and then allocating */
1723 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1724 zonelist, high_zoneidx,
1725 nodemask,
1726 alloc_flags, preferred_zone,
1727 migratetype, &did_some_progress);
1728 if (page)
1729 goto got_pg;
1732 * If we failed to make any progress reclaiming, then we are
1733 * running out of options and have to consider going OOM
1735 if (!did_some_progress) {
1736 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1737 page = __alloc_pages_may_oom(gfp_mask, order,
1738 zonelist, high_zoneidx,
1739 nodemask, preferred_zone,
1740 migratetype);
1741 if (page)
1742 goto got_pg;
1745 * The OOM killer does not trigger for high-order allocations
1746 * but if no progress is being made, there are no other
1747 * options and retrying is unlikely to help
1749 if (order > PAGE_ALLOC_COSTLY_ORDER)
1750 goto nopage;
1752 goto restart;
1756 /* Check if we should retry the allocation */
1757 pages_reclaimed += did_some_progress;
1758 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1759 /* Wait for some write requests to complete then retry */
1760 congestion_wait(WRITE, HZ/50);
1761 goto rebalance;
1764 nopage:
1765 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1766 printk(KERN_WARNING "%s: page allocation failure."
1767 " order:%d, mode:0x%x\n",
1768 p->comm, order, gfp_mask);
1769 dump_stack();
1770 show_mem();
1772 got_pg:
1773 return page;
1778 * This is the 'heart' of the zoned buddy allocator.
1780 struct page *
1781 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1782 struct zonelist *zonelist, nodemask_t *nodemask)
1784 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1785 struct zone *preferred_zone;
1786 struct page *page;
1787 int migratetype = allocflags_to_migratetype(gfp_mask);
1789 lockdep_trace_alloc(gfp_mask);
1791 might_sleep_if(gfp_mask & __GFP_WAIT);
1793 if (should_fail_alloc_page(gfp_mask, order))
1794 return NULL;
1797 * Check the zones suitable for the gfp_mask contain at least one
1798 * valid zone. It's possible to have an empty zonelist as a result
1799 * of GFP_THISNODE and a memoryless node
1801 if (unlikely(!zonelist->_zonerefs->zone))
1802 return NULL;
1804 /* The preferred zone is used for statistics later */
1805 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1806 if (!preferred_zone)
1807 return NULL;
1809 /* First allocation attempt */
1810 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1811 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1812 preferred_zone, migratetype);
1813 if (unlikely(!page))
1814 page = __alloc_pages_slowpath(gfp_mask, order,
1815 zonelist, high_zoneidx, nodemask,
1816 preferred_zone, migratetype);
1818 return page;
1820 EXPORT_SYMBOL(__alloc_pages_nodemask);
1823 * Common helper functions.
1825 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1827 struct page * page;
1828 page = alloc_pages(gfp_mask, order);
1829 if (!page)
1830 return 0;
1831 return (unsigned long) page_address(page);
1834 EXPORT_SYMBOL(__get_free_pages);
1836 unsigned long get_zeroed_page(gfp_t gfp_mask)
1838 struct page * page;
1841 * get_zeroed_page() returns a 32-bit address, which cannot represent
1842 * a highmem page
1844 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1846 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1847 if (page)
1848 return (unsigned long) page_address(page);
1849 return 0;
1852 EXPORT_SYMBOL(get_zeroed_page);
1854 void __pagevec_free(struct pagevec *pvec)
1856 int i = pagevec_count(pvec);
1858 while (--i >= 0)
1859 free_hot_cold_page(pvec->pages[i], pvec->cold);
1862 void __free_pages(struct page *page, unsigned int order)
1864 if (put_page_testzero(page)) {
1865 if (order == 0)
1866 free_hot_page(page);
1867 else
1868 __free_pages_ok(page, order);
1872 EXPORT_SYMBOL(__free_pages);
1874 void free_pages(unsigned long addr, unsigned int order)
1876 if (addr != 0) {
1877 VM_BUG_ON(!virt_addr_valid((void *)addr));
1878 __free_pages(virt_to_page((void *)addr), order);
1882 EXPORT_SYMBOL(free_pages);
1885 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1886 * @size: the number of bytes to allocate
1887 * @gfp_mask: GFP flags for the allocation
1889 * This function is similar to alloc_pages(), except that it allocates the
1890 * minimum number of pages to satisfy the request. alloc_pages() can only
1891 * allocate memory in power-of-two pages.
1893 * This function is also limited by MAX_ORDER.
1895 * Memory allocated by this function must be released by free_pages_exact().
1897 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1899 unsigned int order = get_order(size);
1900 unsigned long addr;
1902 addr = __get_free_pages(gfp_mask, order);
1903 if (addr) {
1904 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1905 unsigned long used = addr + PAGE_ALIGN(size);
1907 split_page(virt_to_page(addr), order);
1908 while (used < alloc_end) {
1909 free_page(used);
1910 used += PAGE_SIZE;
1914 return (void *)addr;
1916 EXPORT_SYMBOL(alloc_pages_exact);
1919 * free_pages_exact - release memory allocated via alloc_pages_exact()
1920 * @virt: the value returned by alloc_pages_exact.
1921 * @size: size of allocation, same value as passed to alloc_pages_exact().
1923 * Release the memory allocated by a previous call to alloc_pages_exact.
1925 void free_pages_exact(void *virt, size_t size)
1927 unsigned long addr = (unsigned long)virt;
1928 unsigned long end = addr + PAGE_ALIGN(size);
1930 while (addr < end) {
1931 free_page(addr);
1932 addr += PAGE_SIZE;
1935 EXPORT_SYMBOL(free_pages_exact);
1937 static unsigned int nr_free_zone_pages(int offset)
1939 struct zoneref *z;
1940 struct zone *zone;
1942 /* Just pick one node, since fallback list is circular */
1943 unsigned int sum = 0;
1945 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1947 for_each_zone_zonelist(zone, z, zonelist, offset) {
1948 unsigned long size = zone->present_pages;
1949 unsigned long high = zone->pages_high;
1950 if (size > high)
1951 sum += size - high;
1954 return sum;
1958 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1960 unsigned int nr_free_buffer_pages(void)
1962 return nr_free_zone_pages(gfp_zone(GFP_USER));
1964 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1967 * Amount of free RAM allocatable within all zones
1969 unsigned int nr_free_pagecache_pages(void)
1971 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1974 static inline void show_node(struct zone *zone)
1976 if (NUMA_BUILD)
1977 printk("Node %d ", zone_to_nid(zone));
1980 void si_meminfo(struct sysinfo *val)
1982 val->totalram = totalram_pages;
1983 val->sharedram = 0;
1984 val->freeram = global_page_state(NR_FREE_PAGES);
1985 val->bufferram = nr_blockdev_pages();
1986 val->totalhigh = totalhigh_pages;
1987 val->freehigh = nr_free_highpages();
1988 val->mem_unit = PAGE_SIZE;
1991 EXPORT_SYMBOL(si_meminfo);
1993 #ifdef CONFIG_NUMA
1994 void si_meminfo_node(struct sysinfo *val, int nid)
1996 pg_data_t *pgdat = NODE_DATA(nid);
1998 val->totalram = pgdat->node_present_pages;
1999 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2000 #ifdef CONFIG_HIGHMEM
2001 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2002 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2003 NR_FREE_PAGES);
2004 #else
2005 val->totalhigh = 0;
2006 val->freehigh = 0;
2007 #endif
2008 val->mem_unit = PAGE_SIZE;
2010 #endif
2012 #define K(x) ((x) << (PAGE_SHIFT-10))
2015 * Show free area list (used inside shift_scroll-lock stuff)
2016 * We also calculate the percentage fragmentation. We do this by counting the
2017 * memory on each free list with the exception of the first item on the list.
2019 void show_free_areas(void)
2021 int cpu;
2022 struct zone *zone;
2024 for_each_populated_zone(zone) {
2025 show_node(zone);
2026 printk("%s per-cpu:\n", zone->name);
2028 for_each_online_cpu(cpu) {
2029 struct per_cpu_pageset *pageset;
2031 pageset = zone_pcp(zone, cpu);
2033 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2034 cpu, pageset->pcp.high,
2035 pageset->pcp.batch, pageset->pcp.count);
2039 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2040 " inactive_file:%lu"
2041 //TODO: check/adjust line lengths
2042 #ifdef CONFIG_UNEVICTABLE_LRU
2043 " unevictable:%lu"
2044 #endif
2045 " dirty:%lu writeback:%lu unstable:%lu\n"
2046 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2047 global_page_state(NR_ACTIVE_ANON),
2048 global_page_state(NR_ACTIVE_FILE),
2049 global_page_state(NR_INACTIVE_ANON),
2050 global_page_state(NR_INACTIVE_FILE),
2051 #ifdef CONFIG_UNEVICTABLE_LRU
2052 global_page_state(NR_UNEVICTABLE),
2053 #endif
2054 global_page_state(NR_FILE_DIRTY),
2055 global_page_state(NR_WRITEBACK),
2056 global_page_state(NR_UNSTABLE_NFS),
2057 global_page_state(NR_FREE_PAGES),
2058 global_page_state(NR_SLAB_RECLAIMABLE) +
2059 global_page_state(NR_SLAB_UNRECLAIMABLE),
2060 global_page_state(NR_FILE_MAPPED),
2061 global_page_state(NR_PAGETABLE),
2062 global_page_state(NR_BOUNCE));
2064 for_each_populated_zone(zone) {
2065 int i;
2067 show_node(zone);
2068 printk("%s"
2069 " free:%lukB"
2070 " min:%lukB"
2071 " low:%lukB"
2072 " high:%lukB"
2073 " active_anon:%lukB"
2074 " inactive_anon:%lukB"
2075 " active_file:%lukB"
2076 " inactive_file:%lukB"
2077 #ifdef CONFIG_UNEVICTABLE_LRU
2078 " unevictable:%lukB"
2079 #endif
2080 " present:%lukB"
2081 " pages_scanned:%lu"
2082 " all_unreclaimable? %s"
2083 "\n",
2084 zone->name,
2085 K(zone_page_state(zone, NR_FREE_PAGES)),
2086 K(zone->pages_min),
2087 K(zone->pages_low),
2088 K(zone->pages_high),
2089 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2090 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2091 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2092 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2093 #ifdef CONFIG_UNEVICTABLE_LRU
2094 K(zone_page_state(zone, NR_UNEVICTABLE)),
2095 #endif
2096 K(zone->present_pages),
2097 zone->pages_scanned,
2098 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2100 printk("lowmem_reserve[]:");
2101 for (i = 0; i < MAX_NR_ZONES; i++)
2102 printk(" %lu", zone->lowmem_reserve[i]);
2103 printk("\n");
2106 for_each_populated_zone(zone) {
2107 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2109 show_node(zone);
2110 printk("%s: ", zone->name);
2112 spin_lock_irqsave(&zone->lock, flags);
2113 for (order = 0; order < MAX_ORDER; order++) {
2114 nr[order] = zone->free_area[order].nr_free;
2115 total += nr[order] << order;
2117 spin_unlock_irqrestore(&zone->lock, flags);
2118 for (order = 0; order < MAX_ORDER; order++)
2119 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2120 printk("= %lukB\n", K(total));
2123 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2125 show_swap_cache_info();
2128 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2130 zoneref->zone = zone;
2131 zoneref->zone_idx = zone_idx(zone);
2135 * Builds allocation fallback zone lists.
2137 * Add all populated zones of a node to the zonelist.
2139 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2140 int nr_zones, enum zone_type zone_type)
2142 struct zone *zone;
2144 BUG_ON(zone_type >= MAX_NR_ZONES);
2145 zone_type++;
2147 do {
2148 zone_type--;
2149 zone = pgdat->node_zones + zone_type;
2150 if (populated_zone(zone)) {
2151 zoneref_set_zone(zone,
2152 &zonelist->_zonerefs[nr_zones++]);
2153 check_highest_zone(zone_type);
2156 } while (zone_type);
2157 return nr_zones;
2162 * zonelist_order:
2163 * 0 = automatic detection of better ordering.
2164 * 1 = order by ([node] distance, -zonetype)
2165 * 2 = order by (-zonetype, [node] distance)
2167 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2168 * the same zonelist. So only NUMA can configure this param.
2170 #define ZONELIST_ORDER_DEFAULT 0
2171 #define ZONELIST_ORDER_NODE 1
2172 #define ZONELIST_ORDER_ZONE 2
2174 /* zonelist order in the kernel.
2175 * set_zonelist_order() will set this to NODE or ZONE.
2177 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2178 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2181 #ifdef CONFIG_NUMA
2182 /* The value user specified ....changed by config */
2183 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2184 /* string for sysctl */
2185 #define NUMA_ZONELIST_ORDER_LEN 16
2186 char numa_zonelist_order[16] = "default";
2189 * interface for configure zonelist ordering.
2190 * command line option "numa_zonelist_order"
2191 * = "[dD]efault - default, automatic configuration.
2192 * = "[nN]ode - order by node locality, then by zone within node
2193 * = "[zZ]one - order by zone, then by locality within zone
2196 static int __parse_numa_zonelist_order(char *s)
2198 if (*s == 'd' || *s == 'D') {
2199 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2200 } else if (*s == 'n' || *s == 'N') {
2201 user_zonelist_order = ZONELIST_ORDER_NODE;
2202 } else if (*s == 'z' || *s == 'Z') {
2203 user_zonelist_order = ZONELIST_ORDER_ZONE;
2204 } else {
2205 printk(KERN_WARNING
2206 "Ignoring invalid numa_zonelist_order value: "
2207 "%s\n", s);
2208 return -EINVAL;
2210 return 0;
2213 static __init int setup_numa_zonelist_order(char *s)
2215 if (s)
2216 return __parse_numa_zonelist_order(s);
2217 return 0;
2219 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2222 * sysctl handler for numa_zonelist_order
2224 int numa_zonelist_order_handler(ctl_table *table, int write,
2225 struct file *file, void __user *buffer, size_t *length,
2226 loff_t *ppos)
2228 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2229 int ret;
2231 if (write)
2232 strncpy(saved_string, (char*)table->data,
2233 NUMA_ZONELIST_ORDER_LEN);
2234 ret = proc_dostring(table, write, file, buffer, length, ppos);
2235 if (ret)
2236 return ret;
2237 if (write) {
2238 int oldval = user_zonelist_order;
2239 if (__parse_numa_zonelist_order((char*)table->data)) {
2241 * bogus value. restore saved string
2243 strncpy((char*)table->data, saved_string,
2244 NUMA_ZONELIST_ORDER_LEN);
2245 user_zonelist_order = oldval;
2246 } else if (oldval != user_zonelist_order)
2247 build_all_zonelists();
2249 return 0;
2253 #define MAX_NODE_LOAD (num_online_nodes())
2254 static int node_load[MAX_NUMNODES];
2257 * find_next_best_node - find the next node that should appear in a given node's fallback list
2258 * @node: node whose fallback list we're appending
2259 * @used_node_mask: nodemask_t of already used nodes
2261 * We use a number of factors to determine which is the next node that should
2262 * appear on a given node's fallback list. The node should not have appeared
2263 * already in @node's fallback list, and it should be the next closest node
2264 * according to the distance array (which contains arbitrary distance values
2265 * from each node to each node in the system), and should also prefer nodes
2266 * with no CPUs, since presumably they'll have very little allocation pressure
2267 * on them otherwise.
2268 * It returns -1 if no node is found.
2270 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2272 int n, val;
2273 int min_val = INT_MAX;
2274 int best_node = -1;
2275 const struct cpumask *tmp = cpumask_of_node(0);
2277 /* Use the local node if we haven't already */
2278 if (!node_isset(node, *used_node_mask)) {
2279 node_set(node, *used_node_mask);
2280 return node;
2283 for_each_node_state(n, N_HIGH_MEMORY) {
2285 /* Don't want a node to appear more than once */
2286 if (node_isset(n, *used_node_mask))
2287 continue;
2289 /* Use the distance array to find the distance */
2290 val = node_distance(node, n);
2292 /* Penalize nodes under us ("prefer the next node") */
2293 val += (n < node);
2295 /* Give preference to headless and unused nodes */
2296 tmp = cpumask_of_node(n);
2297 if (!cpumask_empty(tmp))
2298 val += PENALTY_FOR_NODE_WITH_CPUS;
2300 /* Slight preference for less loaded node */
2301 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2302 val += node_load[n];
2304 if (val < min_val) {
2305 min_val = val;
2306 best_node = n;
2310 if (best_node >= 0)
2311 node_set(best_node, *used_node_mask);
2313 return best_node;
2318 * Build zonelists ordered by node and zones within node.
2319 * This results in maximum locality--normal zone overflows into local
2320 * DMA zone, if any--but risks exhausting DMA zone.
2322 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2324 int j;
2325 struct zonelist *zonelist;
2327 zonelist = &pgdat->node_zonelists[0];
2328 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2330 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2331 MAX_NR_ZONES - 1);
2332 zonelist->_zonerefs[j].zone = NULL;
2333 zonelist->_zonerefs[j].zone_idx = 0;
2337 * Build gfp_thisnode zonelists
2339 static void build_thisnode_zonelists(pg_data_t *pgdat)
2341 int j;
2342 struct zonelist *zonelist;
2344 zonelist = &pgdat->node_zonelists[1];
2345 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2346 zonelist->_zonerefs[j].zone = NULL;
2347 zonelist->_zonerefs[j].zone_idx = 0;
2351 * Build zonelists ordered by zone and nodes within zones.
2352 * This results in conserving DMA zone[s] until all Normal memory is
2353 * exhausted, but results in overflowing to remote node while memory
2354 * may still exist in local DMA zone.
2356 static int node_order[MAX_NUMNODES];
2358 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2360 int pos, j, node;
2361 int zone_type; /* needs to be signed */
2362 struct zone *z;
2363 struct zonelist *zonelist;
2365 zonelist = &pgdat->node_zonelists[0];
2366 pos = 0;
2367 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2368 for (j = 0; j < nr_nodes; j++) {
2369 node = node_order[j];
2370 z = &NODE_DATA(node)->node_zones[zone_type];
2371 if (populated_zone(z)) {
2372 zoneref_set_zone(z,
2373 &zonelist->_zonerefs[pos++]);
2374 check_highest_zone(zone_type);
2378 zonelist->_zonerefs[pos].zone = NULL;
2379 zonelist->_zonerefs[pos].zone_idx = 0;
2382 static int default_zonelist_order(void)
2384 int nid, zone_type;
2385 unsigned long low_kmem_size,total_size;
2386 struct zone *z;
2387 int average_size;
2389 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2390 * If they are really small and used heavily, the system can fall
2391 * into OOM very easily.
2392 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2394 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2395 low_kmem_size = 0;
2396 total_size = 0;
2397 for_each_online_node(nid) {
2398 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2399 z = &NODE_DATA(nid)->node_zones[zone_type];
2400 if (populated_zone(z)) {
2401 if (zone_type < ZONE_NORMAL)
2402 low_kmem_size += z->present_pages;
2403 total_size += z->present_pages;
2407 if (!low_kmem_size || /* there are no DMA area. */
2408 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2409 return ZONELIST_ORDER_NODE;
2411 * look into each node's config.
2412 * If there is a node whose DMA/DMA32 memory is very big area on
2413 * local memory, NODE_ORDER may be suitable.
2415 average_size = total_size /
2416 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2417 for_each_online_node(nid) {
2418 low_kmem_size = 0;
2419 total_size = 0;
2420 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2421 z = &NODE_DATA(nid)->node_zones[zone_type];
2422 if (populated_zone(z)) {
2423 if (zone_type < ZONE_NORMAL)
2424 low_kmem_size += z->present_pages;
2425 total_size += z->present_pages;
2428 if (low_kmem_size &&
2429 total_size > average_size && /* ignore small node */
2430 low_kmem_size > total_size * 70/100)
2431 return ZONELIST_ORDER_NODE;
2433 return ZONELIST_ORDER_ZONE;
2436 static void set_zonelist_order(void)
2438 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2439 current_zonelist_order = default_zonelist_order();
2440 else
2441 current_zonelist_order = user_zonelist_order;
2444 static void build_zonelists(pg_data_t *pgdat)
2446 int j, node, load;
2447 enum zone_type i;
2448 nodemask_t used_mask;
2449 int local_node, prev_node;
2450 struct zonelist *zonelist;
2451 int order = current_zonelist_order;
2453 /* initialize zonelists */
2454 for (i = 0; i < MAX_ZONELISTS; i++) {
2455 zonelist = pgdat->node_zonelists + i;
2456 zonelist->_zonerefs[0].zone = NULL;
2457 zonelist->_zonerefs[0].zone_idx = 0;
2460 /* NUMA-aware ordering of nodes */
2461 local_node = pgdat->node_id;
2462 load = num_online_nodes();
2463 prev_node = local_node;
2464 nodes_clear(used_mask);
2466 memset(node_load, 0, sizeof(node_load));
2467 memset(node_order, 0, sizeof(node_order));
2468 j = 0;
2470 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2471 int distance = node_distance(local_node, node);
2474 * If another node is sufficiently far away then it is better
2475 * to reclaim pages in a zone before going off node.
2477 if (distance > RECLAIM_DISTANCE)
2478 zone_reclaim_mode = 1;
2481 * We don't want to pressure a particular node.
2482 * So adding penalty to the first node in same
2483 * distance group to make it round-robin.
2485 if (distance != node_distance(local_node, prev_node))
2486 node_load[node] = load;
2488 prev_node = node;
2489 load--;
2490 if (order == ZONELIST_ORDER_NODE)
2491 build_zonelists_in_node_order(pgdat, node);
2492 else
2493 node_order[j++] = node; /* remember order */
2496 if (order == ZONELIST_ORDER_ZONE) {
2497 /* calculate node order -- i.e., DMA last! */
2498 build_zonelists_in_zone_order(pgdat, j);
2501 build_thisnode_zonelists(pgdat);
2504 /* Construct the zonelist performance cache - see further mmzone.h */
2505 static void build_zonelist_cache(pg_data_t *pgdat)
2507 struct zonelist *zonelist;
2508 struct zonelist_cache *zlc;
2509 struct zoneref *z;
2511 zonelist = &pgdat->node_zonelists[0];
2512 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2513 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2514 for (z = zonelist->_zonerefs; z->zone; z++)
2515 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2519 #else /* CONFIG_NUMA */
2521 static void set_zonelist_order(void)
2523 current_zonelist_order = ZONELIST_ORDER_ZONE;
2526 static void build_zonelists(pg_data_t *pgdat)
2528 int node, local_node;
2529 enum zone_type j;
2530 struct zonelist *zonelist;
2532 local_node = pgdat->node_id;
2534 zonelist = &pgdat->node_zonelists[0];
2535 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2538 * Now we build the zonelist so that it contains the zones
2539 * of all the other nodes.
2540 * We don't want to pressure a particular node, so when
2541 * building the zones for node N, we make sure that the
2542 * zones coming right after the local ones are those from
2543 * node N+1 (modulo N)
2545 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2546 if (!node_online(node))
2547 continue;
2548 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2549 MAX_NR_ZONES - 1);
2551 for (node = 0; node < local_node; node++) {
2552 if (!node_online(node))
2553 continue;
2554 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2555 MAX_NR_ZONES - 1);
2558 zonelist->_zonerefs[j].zone = NULL;
2559 zonelist->_zonerefs[j].zone_idx = 0;
2562 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2563 static void build_zonelist_cache(pg_data_t *pgdat)
2565 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2568 #endif /* CONFIG_NUMA */
2570 /* return values int ....just for stop_machine() */
2571 static int __build_all_zonelists(void *dummy)
2573 int nid;
2575 for_each_online_node(nid) {
2576 pg_data_t *pgdat = NODE_DATA(nid);
2578 build_zonelists(pgdat);
2579 build_zonelist_cache(pgdat);
2581 return 0;
2584 void build_all_zonelists(void)
2586 set_zonelist_order();
2588 if (system_state == SYSTEM_BOOTING) {
2589 __build_all_zonelists(NULL);
2590 mminit_verify_zonelist();
2591 cpuset_init_current_mems_allowed();
2592 } else {
2593 /* we have to stop all cpus to guarantee there is no user
2594 of zonelist */
2595 stop_machine(__build_all_zonelists, NULL, NULL);
2596 /* cpuset refresh routine should be here */
2598 vm_total_pages = nr_free_pagecache_pages();
2600 * Disable grouping by mobility if the number of pages in the
2601 * system is too low to allow the mechanism to work. It would be
2602 * more accurate, but expensive to check per-zone. This check is
2603 * made on memory-hotadd so a system can start with mobility
2604 * disabled and enable it later
2606 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2607 page_group_by_mobility_disabled = 1;
2608 else
2609 page_group_by_mobility_disabled = 0;
2611 printk("Built %i zonelists in %s order, mobility grouping %s. "
2612 "Total pages: %ld\n",
2613 num_online_nodes(),
2614 zonelist_order_name[current_zonelist_order],
2615 page_group_by_mobility_disabled ? "off" : "on",
2616 vm_total_pages);
2617 #ifdef CONFIG_NUMA
2618 printk("Policy zone: %s\n", zone_names[policy_zone]);
2619 #endif
2623 * Helper functions to size the waitqueue hash table.
2624 * Essentially these want to choose hash table sizes sufficiently
2625 * large so that collisions trying to wait on pages are rare.
2626 * But in fact, the number of active page waitqueues on typical
2627 * systems is ridiculously low, less than 200. So this is even
2628 * conservative, even though it seems large.
2630 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2631 * waitqueues, i.e. the size of the waitq table given the number of pages.
2633 #define PAGES_PER_WAITQUEUE 256
2635 #ifndef CONFIG_MEMORY_HOTPLUG
2636 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2638 unsigned long size = 1;
2640 pages /= PAGES_PER_WAITQUEUE;
2642 while (size < pages)
2643 size <<= 1;
2646 * Once we have dozens or even hundreds of threads sleeping
2647 * on IO we've got bigger problems than wait queue collision.
2648 * Limit the size of the wait table to a reasonable size.
2650 size = min(size, 4096UL);
2652 return max(size, 4UL);
2654 #else
2656 * A zone's size might be changed by hot-add, so it is not possible to determine
2657 * a suitable size for its wait_table. So we use the maximum size now.
2659 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2661 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2662 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2663 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2665 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2666 * or more by the traditional way. (See above). It equals:
2668 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2669 * ia64(16K page size) : = ( 8G + 4M)byte.
2670 * powerpc (64K page size) : = (32G +16M)byte.
2672 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2674 return 4096UL;
2676 #endif
2679 * This is an integer logarithm so that shifts can be used later
2680 * to extract the more random high bits from the multiplicative
2681 * hash function before the remainder is taken.
2683 static inline unsigned long wait_table_bits(unsigned long size)
2685 return ffz(~size);
2688 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2691 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2692 * of blocks reserved is based on zone->pages_min. The memory within the
2693 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2694 * higher will lead to a bigger reserve which will get freed as contiguous
2695 * blocks as reclaim kicks in
2697 static void setup_zone_migrate_reserve(struct zone *zone)
2699 unsigned long start_pfn, pfn, end_pfn;
2700 struct page *page;
2701 unsigned long reserve, block_migratetype;
2703 /* Get the start pfn, end pfn and the number of blocks to reserve */
2704 start_pfn = zone->zone_start_pfn;
2705 end_pfn = start_pfn + zone->spanned_pages;
2706 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2707 pageblock_order;
2709 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2710 if (!pfn_valid(pfn))
2711 continue;
2712 page = pfn_to_page(pfn);
2714 /* Watch out for overlapping nodes */
2715 if (page_to_nid(page) != zone_to_nid(zone))
2716 continue;
2718 /* Blocks with reserved pages will never free, skip them. */
2719 if (PageReserved(page))
2720 continue;
2722 block_migratetype = get_pageblock_migratetype(page);
2724 /* If this block is reserved, account for it */
2725 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2726 reserve--;
2727 continue;
2730 /* Suitable for reserving if this block is movable */
2731 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2732 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2733 move_freepages_block(zone, page, MIGRATE_RESERVE);
2734 reserve--;
2735 continue;
2739 * If the reserve is met and this is a previous reserved block,
2740 * take it back
2742 if (block_migratetype == MIGRATE_RESERVE) {
2743 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2744 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2750 * Initially all pages are reserved - free ones are freed
2751 * up by free_all_bootmem() once the early boot process is
2752 * done. Non-atomic initialization, single-pass.
2754 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2755 unsigned long start_pfn, enum memmap_context context)
2757 struct page *page;
2758 unsigned long end_pfn = start_pfn + size;
2759 unsigned long pfn;
2760 struct zone *z;
2762 if (highest_memmap_pfn < end_pfn - 1)
2763 highest_memmap_pfn = end_pfn - 1;
2765 z = &NODE_DATA(nid)->node_zones[zone];
2766 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2768 * There can be holes in boot-time mem_map[]s
2769 * handed to this function. They do not
2770 * exist on hotplugged memory.
2772 if (context == MEMMAP_EARLY) {
2773 if (!early_pfn_valid(pfn))
2774 continue;
2775 if (!early_pfn_in_nid(pfn, nid))
2776 continue;
2778 page = pfn_to_page(pfn);
2779 set_page_links(page, zone, nid, pfn);
2780 mminit_verify_page_links(page, zone, nid, pfn);
2781 init_page_count(page);
2782 reset_page_mapcount(page);
2783 SetPageReserved(page);
2785 * Mark the block movable so that blocks are reserved for
2786 * movable at startup. This will force kernel allocations
2787 * to reserve their blocks rather than leaking throughout
2788 * the address space during boot when many long-lived
2789 * kernel allocations are made. Later some blocks near
2790 * the start are marked MIGRATE_RESERVE by
2791 * setup_zone_migrate_reserve()
2793 * bitmap is created for zone's valid pfn range. but memmap
2794 * can be created for invalid pages (for alignment)
2795 * check here not to call set_pageblock_migratetype() against
2796 * pfn out of zone.
2798 if ((z->zone_start_pfn <= pfn)
2799 && (pfn < z->zone_start_pfn + z->spanned_pages)
2800 && !(pfn & (pageblock_nr_pages - 1)))
2801 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2803 INIT_LIST_HEAD(&page->lru);
2804 #ifdef WANT_PAGE_VIRTUAL
2805 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2806 if (!is_highmem_idx(zone))
2807 set_page_address(page, __va(pfn << PAGE_SHIFT));
2808 #endif
2812 static void __meminit zone_init_free_lists(struct zone *zone)
2814 int order, t;
2815 for_each_migratetype_order(order, t) {
2816 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2817 zone->free_area[order].nr_free = 0;
2821 #ifndef __HAVE_ARCH_MEMMAP_INIT
2822 #define memmap_init(size, nid, zone, start_pfn) \
2823 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2824 #endif
2826 static int zone_batchsize(struct zone *zone)
2828 #ifdef CONFIG_MMU
2829 int batch;
2832 * The per-cpu-pages pools are set to around 1000th of the
2833 * size of the zone. But no more than 1/2 of a meg.
2835 * OK, so we don't know how big the cache is. So guess.
2837 batch = zone->present_pages / 1024;
2838 if (batch * PAGE_SIZE > 512 * 1024)
2839 batch = (512 * 1024) / PAGE_SIZE;
2840 batch /= 4; /* We effectively *= 4 below */
2841 if (batch < 1)
2842 batch = 1;
2845 * Clamp the batch to a 2^n - 1 value. Having a power
2846 * of 2 value was found to be more likely to have
2847 * suboptimal cache aliasing properties in some cases.
2849 * For example if 2 tasks are alternately allocating
2850 * batches of pages, one task can end up with a lot
2851 * of pages of one half of the possible page colors
2852 * and the other with pages of the other colors.
2854 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2856 return batch;
2858 #else
2859 /* The deferral and batching of frees should be suppressed under NOMMU
2860 * conditions.
2862 * The problem is that NOMMU needs to be able to allocate large chunks
2863 * of contiguous memory as there's no hardware page translation to
2864 * assemble apparent contiguous memory from discontiguous pages.
2866 * Queueing large contiguous runs of pages for batching, however,
2867 * causes the pages to actually be freed in smaller chunks. As there
2868 * can be a significant delay between the individual batches being
2869 * recycled, this leads to the once large chunks of space being
2870 * fragmented and becoming unavailable for high-order allocations.
2872 return 0;
2873 #endif
2876 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2878 struct per_cpu_pages *pcp;
2880 memset(p, 0, sizeof(*p));
2882 pcp = &p->pcp;
2883 pcp->count = 0;
2884 pcp->high = 6 * batch;
2885 pcp->batch = max(1UL, 1 * batch);
2886 INIT_LIST_HEAD(&pcp->list);
2890 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2891 * to the value high for the pageset p.
2894 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2895 unsigned long high)
2897 struct per_cpu_pages *pcp;
2899 pcp = &p->pcp;
2900 pcp->high = high;
2901 pcp->batch = max(1UL, high/4);
2902 if ((high/4) > (PAGE_SHIFT * 8))
2903 pcp->batch = PAGE_SHIFT * 8;
2907 #ifdef CONFIG_NUMA
2909 * Boot pageset table. One per cpu which is going to be used for all
2910 * zones and all nodes. The parameters will be set in such a way
2911 * that an item put on a list will immediately be handed over to
2912 * the buddy list. This is safe since pageset manipulation is done
2913 * with interrupts disabled.
2915 * Some NUMA counter updates may also be caught by the boot pagesets.
2917 * The boot_pagesets must be kept even after bootup is complete for
2918 * unused processors and/or zones. They do play a role for bootstrapping
2919 * hotplugged processors.
2921 * zoneinfo_show() and maybe other functions do
2922 * not check if the processor is online before following the pageset pointer.
2923 * Other parts of the kernel may not check if the zone is available.
2925 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2928 * Dynamically allocate memory for the
2929 * per cpu pageset array in struct zone.
2931 static int __cpuinit process_zones(int cpu)
2933 struct zone *zone, *dzone;
2934 int node = cpu_to_node(cpu);
2936 node_set_state(node, N_CPU); /* this node has a cpu */
2938 for_each_populated_zone(zone) {
2939 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2940 GFP_KERNEL, node);
2941 if (!zone_pcp(zone, cpu))
2942 goto bad;
2944 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2946 if (percpu_pagelist_fraction)
2947 setup_pagelist_highmark(zone_pcp(zone, cpu),
2948 (zone->present_pages / percpu_pagelist_fraction));
2951 return 0;
2952 bad:
2953 for_each_zone(dzone) {
2954 if (!populated_zone(dzone))
2955 continue;
2956 if (dzone == zone)
2957 break;
2958 kfree(zone_pcp(dzone, cpu));
2959 zone_pcp(dzone, cpu) = NULL;
2961 return -ENOMEM;
2964 static inline void free_zone_pagesets(int cpu)
2966 struct zone *zone;
2968 for_each_zone(zone) {
2969 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2971 /* Free per_cpu_pageset if it is slab allocated */
2972 if (pset != &boot_pageset[cpu])
2973 kfree(pset);
2974 zone_pcp(zone, cpu) = NULL;
2978 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2979 unsigned long action,
2980 void *hcpu)
2982 int cpu = (long)hcpu;
2983 int ret = NOTIFY_OK;
2985 switch (action) {
2986 case CPU_UP_PREPARE:
2987 case CPU_UP_PREPARE_FROZEN:
2988 if (process_zones(cpu))
2989 ret = NOTIFY_BAD;
2990 break;
2991 case CPU_UP_CANCELED:
2992 case CPU_UP_CANCELED_FROZEN:
2993 case CPU_DEAD:
2994 case CPU_DEAD_FROZEN:
2995 free_zone_pagesets(cpu);
2996 break;
2997 default:
2998 break;
3000 return ret;
3003 static struct notifier_block __cpuinitdata pageset_notifier =
3004 { &pageset_cpuup_callback, NULL, 0 };
3006 void __init setup_per_cpu_pageset(void)
3008 int err;
3010 /* Initialize per_cpu_pageset for cpu 0.
3011 * A cpuup callback will do this for every cpu
3012 * as it comes online
3014 err = process_zones(smp_processor_id());
3015 BUG_ON(err);
3016 register_cpu_notifier(&pageset_notifier);
3019 #endif
3021 static noinline __init_refok
3022 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3024 int i;
3025 struct pglist_data *pgdat = zone->zone_pgdat;
3026 size_t alloc_size;
3029 * The per-page waitqueue mechanism uses hashed waitqueues
3030 * per zone.
3032 zone->wait_table_hash_nr_entries =
3033 wait_table_hash_nr_entries(zone_size_pages);
3034 zone->wait_table_bits =
3035 wait_table_bits(zone->wait_table_hash_nr_entries);
3036 alloc_size = zone->wait_table_hash_nr_entries
3037 * sizeof(wait_queue_head_t);
3039 if (!slab_is_available()) {
3040 zone->wait_table = (wait_queue_head_t *)
3041 alloc_bootmem_node(pgdat, alloc_size);
3042 } else {
3044 * This case means that a zone whose size was 0 gets new memory
3045 * via memory hot-add.
3046 * But it may be the case that a new node was hot-added. In
3047 * this case vmalloc() will not be able to use this new node's
3048 * memory - this wait_table must be initialized to use this new
3049 * node itself as well.
3050 * To use this new node's memory, further consideration will be
3051 * necessary.
3053 zone->wait_table = vmalloc(alloc_size);
3055 if (!zone->wait_table)
3056 return -ENOMEM;
3058 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3059 init_waitqueue_head(zone->wait_table + i);
3061 return 0;
3064 static __meminit void zone_pcp_init(struct zone *zone)
3066 int cpu;
3067 unsigned long batch = zone_batchsize(zone);
3069 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3070 #ifdef CONFIG_NUMA
3071 /* Early boot. Slab allocator not functional yet */
3072 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3073 setup_pageset(&boot_pageset[cpu],0);
3074 #else
3075 setup_pageset(zone_pcp(zone,cpu), batch);
3076 #endif
3078 if (zone->present_pages)
3079 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3080 zone->name, zone->present_pages, batch);
3083 __meminit int init_currently_empty_zone(struct zone *zone,
3084 unsigned long zone_start_pfn,
3085 unsigned long size,
3086 enum memmap_context context)
3088 struct pglist_data *pgdat = zone->zone_pgdat;
3089 int ret;
3090 ret = zone_wait_table_init(zone, size);
3091 if (ret)
3092 return ret;
3093 pgdat->nr_zones = zone_idx(zone) + 1;
3095 zone->zone_start_pfn = zone_start_pfn;
3097 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3098 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3099 pgdat->node_id,
3100 (unsigned long)zone_idx(zone),
3101 zone_start_pfn, (zone_start_pfn + size));
3103 zone_init_free_lists(zone);
3105 return 0;
3108 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3110 * Basic iterator support. Return the first range of PFNs for a node
3111 * Note: nid == MAX_NUMNODES returns first region regardless of node
3113 static int __meminit first_active_region_index_in_nid(int nid)
3115 int i;
3117 for (i = 0; i < nr_nodemap_entries; i++)
3118 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3119 return i;
3121 return -1;
3125 * Basic iterator support. Return the next active range of PFNs for a node
3126 * Note: nid == MAX_NUMNODES returns next region regardless of node
3128 static int __meminit next_active_region_index_in_nid(int index, int nid)
3130 for (index = index + 1; index < nr_nodemap_entries; index++)
3131 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3132 return index;
3134 return -1;
3137 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3139 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3140 * Architectures may implement their own version but if add_active_range()
3141 * was used and there are no special requirements, this is a convenient
3142 * alternative
3144 int __meminit __early_pfn_to_nid(unsigned long pfn)
3146 int i;
3148 for (i = 0; i < nr_nodemap_entries; i++) {
3149 unsigned long start_pfn = early_node_map[i].start_pfn;
3150 unsigned long end_pfn = early_node_map[i].end_pfn;
3152 if (start_pfn <= pfn && pfn < end_pfn)
3153 return early_node_map[i].nid;
3155 /* This is a memory hole */
3156 return -1;
3158 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3160 int __meminit early_pfn_to_nid(unsigned long pfn)
3162 int nid;
3164 nid = __early_pfn_to_nid(pfn);
3165 if (nid >= 0)
3166 return nid;
3167 /* just returns 0 */
3168 return 0;
3171 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3172 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3174 int nid;
3176 nid = __early_pfn_to_nid(pfn);
3177 if (nid >= 0 && nid != node)
3178 return false;
3179 return true;
3181 #endif
3183 /* Basic iterator support to walk early_node_map[] */
3184 #define for_each_active_range_index_in_nid(i, nid) \
3185 for (i = first_active_region_index_in_nid(nid); i != -1; \
3186 i = next_active_region_index_in_nid(i, nid))
3189 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3190 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3191 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3193 * If an architecture guarantees that all ranges registered with
3194 * add_active_ranges() contain no holes and may be freed, this
3195 * this function may be used instead of calling free_bootmem() manually.
3197 void __init free_bootmem_with_active_regions(int nid,
3198 unsigned long max_low_pfn)
3200 int i;
3202 for_each_active_range_index_in_nid(i, nid) {
3203 unsigned long size_pages = 0;
3204 unsigned long end_pfn = early_node_map[i].end_pfn;
3206 if (early_node_map[i].start_pfn >= max_low_pfn)
3207 continue;
3209 if (end_pfn > max_low_pfn)
3210 end_pfn = max_low_pfn;
3212 size_pages = end_pfn - early_node_map[i].start_pfn;
3213 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3214 PFN_PHYS(early_node_map[i].start_pfn),
3215 size_pages << PAGE_SHIFT);
3219 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3221 int i;
3222 int ret;
3224 for_each_active_range_index_in_nid(i, nid) {
3225 ret = work_fn(early_node_map[i].start_pfn,
3226 early_node_map[i].end_pfn, data);
3227 if (ret)
3228 break;
3232 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3233 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3235 * If an architecture guarantees that all ranges registered with
3236 * add_active_ranges() contain no holes and may be freed, this
3237 * function may be used instead of calling memory_present() manually.
3239 void __init sparse_memory_present_with_active_regions(int nid)
3241 int i;
3243 for_each_active_range_index_in_nid(i, nid)
3244 memory_present(early_node_map[i].nid,
3245 early_node_map[i].start_pfn,
3246 early_node_map[i].end_pfn);
3250 * get_pfn_range_for_nid - Return the start and end page frames for a node
3251 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3252 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3253 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3255 * It returns the start and end page frame of a node based on information
3256 * provided by an arch calling add_active_range(). If called for a node
3257 * with no available memory, a warning is printed and the start and end
3258 * PFNs will be 0.
3260 void __meminit get_pfn_range_for_nid(unsigned int nid,
3261 unsigned long *start_pfn, unsigned long *end_pfn)
3263 int i;
3264 *start_pfn = -1UL;
3265 *end_pfn = 0;
3267 for_each_active_range_index_in_nid(i, nid) {
3268 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3269 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3272 if (*start_pfn == -1UL)
3273 *start_pfn = 0;
3277 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3278 * assumption is made that zones within a node are ordered in monotonic
3279 * increasing memory addresses so that the "highest" populated zone is used
3281 static void __init find_usable_zone_for_movable(void)
3283 int zone_index;
3284 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3285 if (zone_index == ZONE_MOVABLE)
3286 continue;
3288 if (arch_zone_highest_possible_pfn[zone_index] >
3289 arch_zone_lowest_possible_pfn[zone_index])
3290 break;
3293 VM_BUG_ON(zone_index == -1);
3294 movable_zone = zone_index;
3298 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3299 * because it is sized independant of architecture. Unlike the other zones,
3300 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3301 * in each node depending on the size of each node and how evenly kernelcore
3302 * is distributed. This helper function adjusts the zone ranges
3303 * provided by the architecture for a given node by using the end of the
3304 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3305 * zones within a node are in order of monotonic increases memory addresses
3307 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3308 unsigned long zone_type,
3309 unsigned long node_start_pfn,
3310 unsigned long node_end_pfn,
3311 unsigned long *zone_start_pfn,
3312 unsigned long *zone_end_pfn)
3314 /* Only adjust if ZONE_MOVABLE is on this node */
3315 if (zone_movable_pfn[nid]) {
3316 /* Size ZONE_MOVABLE */
3317 if (zone_type == ZONE_MOVABLE) {
3318 *zone_start_pfn = zone_movable_pfn[nid];
3319 *zone_end_pfn = min(node_end_pfn,
3320 arch_zone_highest_possible_pfn[movable_zone]);
3322 /* Adjust for ZONE_MOVABLE starting within this range */
3323 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3324 *zone_end_pfn > zone_movable_pfn[nid]) {
3325 *zone_end_pfn = zone_movable_pfn[nid];
3327 /* Check if this whole range is within ZONE_MOVABLE */
3328 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3329 *zone_start_pfn = *zone_end_pfn;
3334 * Return the number of pages a zone spans in a node, including holes
3335 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3337 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3338 unsigned long zone_type,
3339 unsigned long *ignored)
3341 unsigned long node_start_pfn, node_end_pfn;
3342 unsigned long zone_start_pfn, zone_end_pfn;
3344 /* Get the start and end of the node and zone */
3345 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3346 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3347 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3348 adjust_zone_range_for_zone_movable(nid, zone_type,
3349 node_start_pfn, node_end_pfn,
3350 &zone_start_pfn, &zone_end_pfn);
3352 /* Check that this node has pages within the zone's required range */
3353 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3354 return 0;
3356 /* Move the zone boundaries inside the node if necessary */
3357 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3358 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3360 /* Return the spanned pages */
3361 return zone_end_pfn - zone_start_pfn;
3365 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3366 * then all holes in the requested range will be accounted for.
3368 static unsigned long __meminit __absent_pages_in_range(int nid,
3369 unsigned long range_start_pfn,
3370 unsigned long range_end_pfn)
3372 int i = 0;
3373 unsigned long prev_end_pfn = 0, hole_pages = 0;
3374 unsigned long start_pfn;
3376 /* Find the end_pfn of the first active range of pfns in the node */
3377 i = first_active_region_index_in_nid(nid);
3378 if (i == -1)
3379 return 0;
3381 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3383 /* Account for ranges before physical memory on this node */
3384 if (early_node_map[i].start_pfn > range_start_pfn)
3385 hole_pages = prev_end_pfn - range_start_pfn;
3387 /* Find all holes for the zone within the node */
3388 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3390 /* No need to continue if prev_end_pfn is outside the zone */
3391 if (prev_end_pfn >= range_end_pfn)
3392 break;
3394 /* Make sure the end of the zone is not within the hole */
3395 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3396 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3398 /* Update the hole size cound and move on */
3399 if (start_pfn > range_start_pfn) {
3400 BUG_ON(prev_end_pfn > start_pfn);
3401 hole_pages += start_pfn - prev_end_pfn;
3403 prev_end_pfn = early_node_map[i].end_pfn;
3406 /* Account for ranges past physical memory on this node */
3407 if (range_end_pfn > prev_end_pfn)
3408 hole_pages += range_end_pfn -
3409 max(range_start_pfn, prev_end_pfn);
3411 return hole_pages;
3415 * absent_pages_in_range - Return number of page frames in holes within a range
3416 * @start_pfn: The start PFN to start searching for holes
3417 * @end_pfn: The end PFN to stop searching for holes
3419 * It returns the number of pages frames in memory holes within a range.
3421 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3422 unsigned long end_pfn)
3424 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3427 /* Return the number of page frames in holes in a zone on a node */
3428 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3429 unsigned long zone_type,
3430 unsigned long *ignored)
3432 unsigned long node_start_pfn, node_end_pfn;
3433 unsigned long zone_start_pfn, zone_end_pfn;
3435 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3436 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3437 node_start_pfn);
3438 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3439 node_end_pfn);
3441 adjust_zone_range_for_zone_movable(nid, zone_type,
3442 node_start_pfn, node_end_pfn,
3443 &zone_start_pfn, &zone_end_pfn);
3444 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3447 #else
3448 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3449 unsigned long zone_type,
3450 unsigned long *zones_size)
3452 return zones_size[zone_type];
3455 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3456 unsigned long zone_type,
3457 unsigned long *zholes_size)
3459 if (!zholes_size)
3460 return 0;
3462 return zholes_size[zone_type];
3465 #endif
3467 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3468 unsigned long *zones_size, unsigned long *zholes_size)
3470 unsigned long realtotalpages, totalpages = 0;
3471 enum zone_type i;
3473 for (i = 0; i < MAX_NR_ZONES; i++)
3474 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3475 zones_size);
3476 pgdat->node_spanned_pages = totalpages;
3478 realtotalpages = totalpages;
3479 for (i = 0; i < MAX_NR_ZONES; i++)
3480 realtotalpages -=
3481 zone_absent_pages_in_node(pgdat->node_id, i,
3482 zholes_size);
3483 pgdat->node_present_pages = realtotalpages;
3484 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3485 realtotalpages);
3488 #ifndef CONFIG_SPARSEMEM
3490 * Calculate the size of the zone->blockflags rounded to an unsigned long
3491 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3492 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3493 * round what is now in bits to nearest long in bits, then return it in
3494 * bytes.
3496 static unsigned long __init usemap_size(unsigned long zonesize)
3498 unsigned long usemapsize;
3500 usemapsize = roundup(zonesize, pageblock_nr_pages);
3501 usemapsize = usemapsize >> pageblock_order;
3502 usemapsize *= NR_PAGEBLOCK_BITS;
3503 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3505 return usemapsize / 8;
3508 static void __init setup_usemap(struct pglist_data *pgdat,
3509 struct zone *zone, unsigned long zonesize)
3511 unsigned long usemapsize = usemap_size(zonesize);
3512 zone->pageblock_flags = NULL;
3513 if (usemapsize)
3514 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3516 #else
3517 static void inline setup_usemap(struct pglist_data *pgdat,
3518 struct zone *zone, unsigned long zonesize) {}
3519 #endif /* CONFIG_SPARSEMEM */
3521 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3523 /* Return a sensible default order for the pageblock size. */
3524 static inline int pageblock_default_order(void)
3526 if (HPAGE_SHIFT > PAGE_SHIFT)
3527 return HUGETLB_PAGE_ORDER;
3529 return MAX_ORDER-1;
3532 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3533 static inline void __init set_pageblock_order(unsigned int order)
3535 /* Check that pageblock_nr_pages has not already been setup */
3536 if (pageblock_order)
3537 return;
3540 * Assume the largest contiguous order of interest is a huge page.
3541 * This value may be variable depending on boot parameters on IA64
3543 pageblock_order = order;
3545 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3548 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3549 * and pageblock_default_order() are unused as pageblock_order is set
3550 * at compile-time. See include/linux/pageblock-flags.h for the values of
3551 * pageblock_order based on the kernel config
3553 static inline int pageblock_default_order(unsigned int order)
3555 return MAX_ORDER-1;
3557 #define set_pageblock_order(x) do {} while (0)
3559 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3562 * Set up the zone data structures:
3563 * - mark all pages reserved
3564 * - mark all memory queues empty
3565 * - clear the memory bitmaps
3567 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3568 unsigned long *zones_size, unsigned long *zholes_size)
3570 enum zone_type j;
3571 int nid = pgdat->node_id;
3572 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3573 int ret;
3575 pgdat_resize_init(pgdat);
3576 pgdat->nr_zones = 0;
3577 init_waitqueue_head(&pgdat->kswapd_wait);
3578 pgdat->kswapd_max_order = 0;
3579 pgdat_page_cgroup_init(pgdat);
3581 for (j = 0; j < MAX_NR_ZONES; j++) {
3582 struct zone *zone = pgdat->node_zones + j;
3583 unsigned long size, realsize, memmap_pages;
3584 enum lru_list l;
3586 size = zone_spanned_pages_in_node(nid, j, zones_size);
3587 realsize = size - zone_absent_pages_in_node(nid, j,
3588 zholes_size);
3591 * Adjust realsize so that it accounts for how much memory
3592 * is used by this zone for memmap. This affects the watermark
3593 * and per-cpu initialisations
3595 memmap_pages =
3596 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3597 if (realsize >= memmap_pages) {
3598 realsize -= memmap_pages;
3599 if (memmap_pages)
3600 printk(KERN_DEBUG
3601 " %s zone: %lu pages used for memmap\n",
3602 zone_names[j], memmap_pages);
3603 } else
3604 printk(KERN_WARNING
3605 " %s zone: %lu pages exceeds realsize %lu\n",
3606 zone_names[j], memmap_pages, realsize);
3608 /* Account for reserved pages */
3609 if (j == 0 && realsize > dma_reserve) {
3610 realsize -= dma_reserve;
3611 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3612 zone_names[0], dma_reserve);
3615 if (!is_highmem_idx(j))
3616 nr_kernel_pages += realsize;
3617 nr_all_pages += realsize;
3619 zone->spanned_pages = size;
3620 zone->present_pages = realsize;
3621 #ifdef CONFIG_NUMA
3622 zone->node = nid;
3623 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3624 / 100;
3625 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3626 #endif
3627 zone->name = zone_names[j];
3628 spin_lock_init(&zone->lock);
3629 spin_lock_init(&zone->lru_lock);
3630 zone_seqlock_init(zone);
3631 zone->zone_pgdat = pgdat;
3633 zone->prev_priority = DEF_PRIORITY;
3635 zone_pcp_init(zone);
3636 for_each_lru(l) {
3637 INIT_LIST_HEAD(&zone->lru[l].list);
3638 zone->lru[l].nr_scan = 0;
3640 zone->reclaim_stat.recent_rotated[0] = 0;
3641 zone->reclaim_stat.recent_rotated[1] = 0;
3642 zone->reclaim_stat.recent_scanned[0] = 0;
3643 zone->reclaim_stat.recent_scanned[1] = 0;
3644 zap_zone_vm_stats(zone);
3645 zone->flags = 0;
3646 if (!size)
3647 continue;
3649 set_pageblock_order(pageblock_default_order());
3650 setup_usemap(pgdat, zone, size);
3651 ret = init_currently_empty_zone(zone, zone_start_pfn,
3652 size, MEMMAP_EARLY);
3653 BUG_ON(ret);
3654 memmap_init(size, nid, j, zone_start_pfn);
3655 zone_start_pfn += size;
3659 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3661 /* Skip empty nodes */
3662 if (!pgdat->node_spanned_pages)
3663 return;
3665 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3666 /* ia64 gets its own node_mem_map, before this, without bootmem */
3667 if (!pgdat->node_mem_map) {
3668 unsigned long size, start, end;
3669 struct page *map;
3672 * The zone's endpoints aren't required to be MAX_ORDER
3673 * aligned but the node_mem_map endpoints must be in order
3674 * for the buddy allocator to function correctly.
3676 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3677 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3678 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3679 size = (end - start) * sizeof(struct page);
3680 map = alloc_remap(pgdat->node_id, size);
3681 if (!map)
3682 map = alloc_bootmem_node(pgdat, size);
3683 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3685 #ifndef CONFIG_NEED_MULTIPLE_NODES
3687 * With no DISCONTIG, the global mem_map is just set as node 0's
3689 if (pgdat == NODE_DATA(0)) {
3690 mem_map = NODE_DATA(0)->node_mem_map;
3691 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3692 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3693 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3694 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3696 #endif
3697 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3700 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3701 unsigned long node_start_pfn, unsigned long *zholes_size)
3703 pg_data_t *pgdat = NODE_DATA(nid);
3705 pgdat->node_id = nid;
3706 pgdat->node_start_pfn = node_start_pfn;
3707 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3709 alloc_node_mem_map(pgdat);
3710 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3711 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3712 nid, (unsigned long)pgdat,
3713 (unsigned long)pgdat->node_mem_map);
3714 #endif
3716 free_area_init_core(pgdat, zones_size, zholes_size);
3719 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3721 #if MAX_NUMNODES > 1
3723 * Figure out the number of possible node ids.
3725 static void __init setup_nr_node_ids(void)
3727 unsigned int node;
3728 unsigned int highest = 0;
3730 for_each_node_mask(node, node_possible_map)
3731 highest = node;
3732 nr_node_ids = highest + 1;
3734 #else
3735 static inline void setup_nr_node_ids(void)
3738 #endif
3741 * add_active_range - Register a range of PFNs backed by physical memory
3742 * @nid: The node ID the range resides on
3743 * @start_pfn: The start PFN of the available physical memory
3744 * @end_pfn: The end PFN of the available physical memory
3746 * These ranges are stored in an early_node_map[] and later used by
3747 * free_area_init_nodes() to calculate zone sizes and holes. If the
3748 * range spans a memory hole, it is up to the architecture to ensure
3749 * the memory is not freed by the bootmem allocator. If possible
3750 * the range being registered will be merged with existing ranges.
3752 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3753 unsigned long end_pfn)
3755 int i;
3757 mminit_dprintk(MMINIT_TRACE, "memory_register",
3758 "Entering add_active_range(%d, %#lx, %#lx) "
3759 "%d entries of %d used\n",
3760 nid, start_pfn, end_pfn,
3761 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3763 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3765 /* Merge with existing active regions if possible */
3766 for (i = 0; i < nr_nodemap_entries; i++) {
3767 if (early_node_map[i].nid != nid)
3768 continue;
3770 /* Skip if an existing region covers this new one */
3771 if (start_pfn >= early_node_map[i].start_pfn &&
3772 end_pfn <= early_node_map[i].end_pfn)
3773 return;
3775 /* Merge forward if suitable */
3776 if (start_pfn <= early_node_map[i].end_pfn &&
3777 end_pfn > early_node_map[i].end_pfn) {
3778 early_node_map[i].end_pfn = end_pfn;
3779 return;
3782 /* Merge backward if suitable */
3783 if (start_pfn < early_node_map[i].end_pfn &&
3784 end_pfn >= early_node_map[i].start_pfn) {
3785 early_node_map[i].start_pfn = start_pfn;
3786 return;
3790 /* Check that early_node_map is large enough */
3791 if (i >= MAX_ACTIVE_REGIONS) {
3792 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3793 MAX_ACTIVE_REGIONS);
3794 return;
3797 early_node_map[i].nid = nid;
3798 early_node_map[i].start_pfn = start_pfn;
3799 early_node_map[i].end_pfn = end_pfn;
3800 nr_nodemap_entries = i + 1;
3804 * remove_active_range - Shrink an existing registered range of PFNs
3805 * @nid: The node id the range is on that should be shrunk
3806 * @start_pfn: The new PFN of the range
3807 * @end_pfn: The new PFN of the range
3809 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3810 * The map is kept near the end physical page range that has already been
3811 * registered. This function allows an arch to shrink an existing registered
3812 * range.
3814 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3815 unsigned long end_pfn)
3817 int i, j;
3818 int removed = 0;
3820 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3821 nid, start_pfn, end_pfn);
3823 /* Find the old active region end and shrink */
3824 for_each_active_range_index_in_nid(i, nid) {
3825 if (early_node_map[i].start_pfn >= start_pfn &&
3826 early_node_map[i].end_pfn <= end_pfn) {
3827 /* clear it */
3828 early_node_map[i].start_pfn = 0;
3829 early_node_map[i].end_pfn = 0;
3830 removed = 1;
3831 continue;
3833 if (early_node_map[i].start_pfn < start_pfn &&
3834 early_node_map[i].end_pfn > start_pfn) {
3835 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3836 early_node_map[i].end_pfn = start_pfn;
3837 if (temp_end_pfn > end_pfn)
3838 add_active_range(nid, end_pfn, temp_end_pfn);
3839 continue;
3841 if (early_node_map[i].start_pfn >= start_pfn &&
3842 early_node_map[i].end_pfn > end_pfn &&
3843 early_node_map[i].start_pfn < end_pfn) {
3844 early_node_map[i].start_pfn = end_pfn;
3845 continue;
3849 if (!removed)
3850 return;
3852 /* remove the blank ones */
3853 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3854 if (early_node_map[i].nid != nid)
3855 continue;
3856 if (early_node_map[i].end_pfn)
3857 continue;
3858 /* we found it, get rid of it */
3859 for (j = i; j < nr_nodemap_entries - 1; j++)
3860 memcpy(&early_node_map[j], &early_node_map[j+1],
3861 sizeof(early_node_map[j]));
3862 j = nr_nodemap_entries - 1;
3863 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3864 nr_nodemap_entries--;
3869 * remove_all_active_ranges - Remove all currently registered regions
3871 * During discovery, it may be found that a table like SRAT is invalid
3872 * and an alternative discovery method must be used. This function removes
3873 * all currently registered regions.
3875 void __init remove_all_active_ranges(void)
3877 memset(early_node_map, 0, sizeof(early_node_map));
3878 nr_nodemap_entries = 0;
3881 /* Compare two active node_active_regions */
3882 static int __init cmp_node_active_region(const void *a, const void *b)
3884 struct node_active_region *arange = (struct node_active_region *)a;
3885 struct node_active_region *brange = (struct node_active_region *)b;
3887 /* Done this way to avoid overflows */
3888 if (arange->start_pfn > brange->start_pfn)
3889 return 1;
3890 if (arange->start_pfn < brange->start_pfn)
3891 return -1;
3893 return 0;
3896 /* sort the node_map by start_pfn */
3897 static void __init sort_node_map(void)
3899 sort(early_node_map, (size_t)nr_nodemap_entries,
3900 sizeof(struct node_active_region),
3901 cmp_node_active_region, NULL);
3904 /* Find the lowest pfn for a node */
3905 static unsigned long __init find_min_pfn_for_node(int nid)
3907 int i;
3908 unsigned long min_pfn = ULONG_MAX;
3910 /* Assuming a sorted map, the first range found has the starting pfn */
3911 for_each_active_range_index_in_nid(i, nid)
3912 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3914 if (min_pfn == ULONG_MAX) {
3915 printk(KERN_WARNING
3916 "Could not find start_pfn for node %d\n", nid);
3917 return 0;
3920 return min_pfn;
3924 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3926 * It returns the minimum PFN based on information provided via
3927 * add_active_range().
3929 unsigned long __init find_min_pfn_with_active_regions(void)
3931 return find_min_pfn_for_node(MAX_NUMNODES);
3935 * early_calculate_totalpages()
3936 * Sum pages in active regions for movable zone.
3937 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3939 static unsigned long __init early_calculate_totalpages(void)
3941 int i;
3942 unsigned long totalpages = 0;
3944 for (i = 0; i < nr_nodemap_entries; i++) {
3945 unsigned long pages = early_node_map[i].end_pfn -
3946 early_node_map[i].start_pfn;
3947 totalpages += pages;
3948 if (pages)
3949 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3951 return totalpages;
3955 * Find the PFN the Movable zone begins in each node. Kernel memory
3956 * is spread evenly between nodes as long as the nodes have enough
3957 * memory. When they don't, some nodes will have more kernelcore than
3958 * others
3960 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3962 int i, nid;
3963 unsigned long usable_startpfn;
3964 unsigned long kernelcore_node, kernelcore_remaining;
3965 unsigned long totalpages = early_calculate_totalpages();
3966 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3969 * If movablecore was specified, calculate what size of
3970 * kernelcore that corresponds so that memory usable for
3971 * any allocation type is evenly spread. If both kernelcore
3972 * and movablecore are specified, then the value of kernelcore
3973 * will be used for required_kernelcore if it's greater than
3974 * what movablecore would have allowed.
3976 if (required_movablecore) {
3977 unsigned long corepages;
3980 * Round-up so that ZONE_MOVABLE is at least as large as what
3981 * was requested by the user
3983 required_movablecore =
3984 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3985 corepages = totalpages - required_movablecore;
3987 required_kernelcore = max(required_kernelcore, corepages);
3990 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3991 if (!required_kernelcore)
3992 return;
3994 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3995 find_usable_zone_for_movable();
3996 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3998 restart:
3999 /* Spread kernelcore memory as evenly as possible throughout nodes */
4000 kernelcore_node = required_kernelcore / usable_nodes;
4001 for_each_node_state(nid, N_HIGH_MEMORY) {
4003 * Recalculate kernelcore_node if the division per node
4004 * now exceeds what is necessary to satisfy the requested
4005 * amount of memory for the kernel
4007 if (required_kernelcore < kernelcore_node)
4008 kernelcore_node = required_kernelcore / usable_nodes;
4011 * As the map is walked, we track how much memory is usable
4012 * by the kernel using kernelcore_remaining. When it is
4013 * 0, the rest of the node is usable by ZONE_MOVABLE
4015 kernelcore_remaining = kernelcore_node;
4017 /* Go through each range of PFNs within this node */
4018 for_each_active_range_index_in_nid(i, nid) {
4019 unsigned long start_pfn, end_pfn;
4020 unsigned long size_pages;
4022 start_pfn = max(early_node_map[i].start_pfn,
4023 zone_movable_pfn[nid]);
4024 end_pfn = early_node_map[i].end_pfn;
4025 if (start_pfn >= end_pfn)
4026 continue;
4028 /* Account for what is only usable for kernelcore */
4029 if (start_pfn < usable_startpfn) {
4030 unsigned long kernel_pages;
4031 kernel_pages = min(end_pfn, usable_startpfn)
4032 - start_pfn;
4034 kernelcore_remaining -= min(kernel_pages,
4035 kernelcore_remaining);
4036 required_kernelcore -= min(kernel_pages,
4037 required_kernelcore);
4039 /* Continue if range is now fully accounted */
4040 if (end_pfn <= usable_startpfn) {
4043 * Push zone_movable_pfn to the end so
4044 * that if we have to rebalance
4045 * kernelcore across nodes, we will
4046 * not double account here
4048 zone_movable_pfn[nid] = end_pfn;
4049 continue;
4051 start_pfn = usable_startpfn;
4055 * The usable PFN range for ZONE_MOVABLE is from
4056 * start_pfn->end_pfn. Calculate size_pages as the
4057 * number of pages used as kernelcore
4059 size_pages = end_pfn - start_pfn;
4060 if (size_pages > kernelcore_remaining)
4061 size_pages = kernelcore_remaining;
4062 zone_movable_pfn[nid] = start_pfn + size_pages;
4065 * Some kernelcore has been met, update counts and
4066 * break if the kernelcore for this node has been
4067 * satisified
4069 required_kernelcore -= min(required_kernelcore,
4070 size_pages);
4071 kernelcore_remaining -= size_pages;
4072 if (!kernelcore_remaining)
4073 break;
4078 * If there is still required_kernelcore, we do another pass with one
4079 * less node in the count. This will push zone_movable_pfn[nid] further
4080 * along on the nodes that still have memory until kernelcore is
4081 * satisified
4083 usable_nodes--;
4084 if (usable_nodes && required_kernelcore > usable_nodes)
4085 goto restart;
4087 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4088 for (nid = 0; nid < MAX_NUMNODES; nid++)
4089 zone_movable_pfn[nid] =
4090 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4093 /* Any regular memory on that node ? */
4094 static void check_for_regular_memory(pg_data_t *pgdat)
4096 #ifdef CONFIG_HIGHMEM
4097 enum zone_type zone_type;
4099 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4100 struct zone *zone = &pgdat->node_zones[zone_type];
4101 if (zone->present_pages)
4102 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4104 #endif
4108 * free_area_init_nodes - Initialise all pg_data_t and zone data
4109 * @max_zone_pfn: an array of max PFNs for each zone
4111 * This will call free_area_init_node() for each active node in the system.
4112 * Using the page ranges provided by add_active_range(), the size of each
4113 * zone in each node and their holes is calculated. If the maximum PFN
4114 * between two adjacent zones match, it is assumed that the zone is empty.
4115 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4116 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4117 * starts where the previous one ended. For example, ZONE_DMA32 starts
4118 * at arch_max_dma_pfn.
4120 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4122 unsigned long nid;
4123 int i;
4125 /* Sort early_node_map as initialisation assumes it is sorted */
4126 sort_node_map();
4128 /* Record where the zone boundaries are */
4129 memset(arch_zone_lowest_possible_pfn, 0,
4130 sizeof(arch_zone_lowest_possible_pfn));
4131 memset(arch_zone_highest_possible_pfn, 0,
4132 sizeof(arch_zone_highest_possible_pfn));
4133 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4134 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4135 for (i = 1; i < MAX_NR_ZONES; i++) {
4136 if (i == ZONE_MOVABLE)
4137 continue;
4138 arch_zone_lowest_possible_pfn[i] =
4139 arch_zone_highest_possible_pfn[i-1];
4140 arch_zone_highest_possible_pfn[i] =
4141 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4143 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4144 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4146 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4147 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4148 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4150 /* Print out the zone ranges */
4151 printk("Zone PFN ranges:\n");
4152 for (i = 0; i < MAX_NR_ZONES; i++) {
4153 if (i == ZONE_MOVABLE)
4154 continue;
4155 printk(" %-8s %0#10lx -> %0#10lx\n",
4156 zone_names[i],
4157 arch_zone_lowest_possible_pfn[i],
4158 arch_zone_highest_possible_pfn[i]);
4161 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4162 printk("Movable zone start PFN for each node\n");
4163 for (i = 0; i < MAX_NUMNODES; i++) {
4164 if (zone_movable_pfn[i])
4165 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4168 /* Print out the early_node_map[] */
4169 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4170 for (i = 0; i < nr_nodemap_entries; i++)
4171 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4172 early_node_map[i].start_pfn,
4173 early_node_map[i].end_pfn);
4175 /* Initialise every node */
4176 mminit_verify_pageflags_layout();
4177 setup_nr_node_ids();
4178 for_each_online_node(nid) {
4179 pg_data_t *pgdat = NODE_DATA(nid);
4180 free_area_init_node(nid, NULL,
4181 find_min_pfn_for_node(nid), NULL);
4183 /* Any memory on that node */
4184 if (pgdat->node_present_pages)
4185 node_set_state(nid, N_HIGH_MEMORY);
4186 check_for_regular_memory(pgdat);
4190 static int __init cmdline_parse_core(char *p, unsigned long *core)
4192 unsigned long long coremem;
4193 if (!p)
4194 return -EINVAL;
4196 coremem = memparse(p, &p);
4197 *core = coremem >> PAGE_SHIFT;
4199 /* Paranoid check that UL is enough for the coremem value */
4200 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4202 return 0;
4206 * kernelcore=size sets the amount of memory for use for allocations that
4207 * cannot be reclaimed or migrated.
4209 static int __init cmdline_parse_kernelcore(char *p)
4211 return cmdline_parse_core(p, &required_kernelcore);
4215 * movablecore=size sets the amount of memory for use for allocations that
4216 * can be reclaimed or migrated.
4218 static int __init cmdline_parse_movablecore(char *p)
4220 return cmdline_parse_core(p, &required_movablecore);
4223 early_param("kernelcore", cmdline_parse_kernelcore);
4224 early_param("movablecore", cmdline_parse_movablecore);
4226 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4229 * set_dma_reserve - set the specified number of pages reserved in the first zone
4230 * @new_dma_reserve: The number of pages to mark reserved
4232 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4233 * In the DMA zone, a significant percentage may be consumed by kernel image
4234 * and other unfreeable allocations which can skew the watermarks badly. This
4235 * function may optionally be used to account for unfreeable pages in the
4236 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4237 * smaller per-cpu batchsize.
4239 void __init set_dma_reserve(unsigned long new_dma_reserve)
4241 dma_reserve = new_dma_reserve;
4244 #ifndef CONFIG_NEED_MULTIPLE_NODES
4245 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4246 EXPORT_SYMBOL(contig_page_data);
4247 #endif
4249 void __init free_area_init(unsigned long *zones_size)
4251 free_area_init_node(0, zones_size,
4252 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4255 static int page_alloc_cpu_notify(struct notifier_block *self,
4256 unsigned long action, void *hcpu)
4258 int cpu = (unsigned long)hcpu;
4260 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4261 drain_pages(cpu);
4264 * Spill the event counters of the dead processor
4265 * into the current processors event counters.
4266 * This artificially elevates the count of the current
4267 * processor.
4269 vm_events_fold_cpu(cpu);
4272 * Zero the differential counters of the dead processor
4273 * so that the vm statistics are consistent.
4275 * This is only okay since the processor is dead and cannot
4276 * race with what we are doing.
4278 refresh_cpu_vm_stats(cpu);
4280 return NOTIFY_OK;
4283 void __init page_alloc_init(void)
4285 hotcpu_notifier(page_alloc_cpu_notify, 0);
4289 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4290 * or min_free_kbytes changes.
4292 static void calculate_totalreserve_pages(void)
4294 struct pglist_data *pgdat;
4295 unsigned long reserve_pages = 0;
4296 enum zone_type i, j;
4298 for_each_online_pgdat(pgdat) {
4299 for (i = 0; i < MAX_NR_ZONES; i++) {
4300 struct zone *zone = pgdat->node_zones + i;
4301 unsigned long max = 0;
4303 /* Find valid and maximum lowmem_reserve in the zone */
4304 for (j = i; j < MAX_NR_ZONES; j++) {
4305 if (zone->lowmem_reserve[j] > max)
4306 max = zone->lowmem_reserve[j];
4309 /* we treat pages_high as reserved pages. */
4310 max += zone->pages_high;
4312 if (max > zone->present_pages)
4313 max = zone->present_pages;
4314 reserve_pages += max;
4317 totalreserve_pages = reserve_pages;
4321 * setup_per_zone_lowmem_reserve - called whenever
4322 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4323 * has a correct pages reserved value, so an adequate number of
4324 * pages are left in the zone after a successful __alloc_pages().
4326 static void setup_per_zone_lowmem_reserve(void)
4328 struct pglist_data *pgdat;
4329 enum zone_type j, idx;
4331 for_each_online_pgdat(pgdat) {
4332 for (j = 0; j < MAX_NR_ZONES; j++) {
4333 struct zone *zone = pgdat->node_zones + j;
4334 unsigned long present_pages = zone->present_pages;
4336 zone->lowmem_reserve[j] = 0;
4338 idx = j;
4339 while (idx) {
4340 struct zone *lower_zone;
4342 idx--;
4344 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4345 sysctl_lowmem_reserve_ratio[idx] = 1;
4347 lower_zone = pgdat->node_zones + idx;
4348 lower_zone->lowmem_reserve[j] = present_pages /
4349 sysctl_lowmem_reserve_ratio[idx];
4350 present_pages += lower_zone->present_pages;
4355 /* update totalreserve_pages */
4356 calculate_totalreserve_pages();
4360 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4362 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4363 * with respect to min_free_kbytes.
4365 void setup_per_zone_pages_min(void)
4367 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4368 unsigned long lowmem_pages = 0;
4369 struct zone *zone;
4370 unsigned long flags;
4372 /* Calculate total number of !ZONE_HIGHMEM pages */
4373 for_each_zone(zone) {
4374 if (!is_highmem(zone))
4375 lowmem_pages += zone->present_pages;
4378 for_each_zone(zone) {
4379 u64 tmp;
4381 spin_lock_irqsave(&zone->lock, flags);
4382 tmp = (u64)pages_min * zone->present_pages;
4383 do_div(tmp, lowmem_pages);
4384 if (is_highmem(zone)) {
4386 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4387 * need highmem pages, so cap pages_min to a small
4388 * value here.
4390 * The (pages_high-pages_low) and (pages_low-pages_min)
4391 * deltas controls asynch page reclaim, and so should
4392 * not be capped for highmem.
4394 int min_pages;
4396 min_pages = zone->present_pages / 1024;
4397 if (min_pages < SWAP_CLUSTER_MAX)
4398 min_pages = SWAP_CLUSTER_MAX;
4399 if (min_pages > 128)
4400 min_pages = 128;
4401 zone->pages_min = min_pages;
4402 } else {
4404 * If it's a lowmem zone, reserve a number of pages
4405 * proportionate to the zone's size.
4407 zone->pages_min = tmp;
4410 zone->pages_low = zone->pages_min + (tmp >> 2);
4411 zone->pages_high = zone->pages_min + (tmp >> 1);
4412 setup_zone_migrate_reserve(zone);
4413 spin_unlock_irqrestore(&zone->lock, flags);
4416 /* update totalreserve_pages */
4417 calculate_totalreserve_pages();
4421 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4423 * The inactive anon list should be small enough that the VM never has to
4424 * do too much work, but large enough that each inactive page has a chance
4425 * to be referenced again before it is swapped out.
4427 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4428 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4429 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4430 * the anonymous pages are kept on the inactive list.
4432 * total target max
4433 * memory ratio inactive anon
4434 * -------------------------------------
4435 * 10MB 1 5MB
4436 * 100MB 1 50MB
4437 * 1GB 3 250MB
4438 * 10GB 10 0.9GB
4439 * 100GB 31 3GB
4440 * 1TB 101 10GB
4441 * 10TB 320 32GB
4443 static void setup_per_zone_inactive_ratio(void)
4445 struct zone *zone;
4447 for_each_zone(zone) {
4448 unsigned int gb, ratio;
4450 /* Zone size in gigabytes */
4451 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4452 ratio = int_sqrt(10 * gb);
4453 if (!ratio)
4454 ratio = 1;
4456 zone->inactive_ratio = ratio;
4461 * Initialise min_free_kbytes.
4463 * For small machines we want it small (128k min). For large machines
4464 * we want it large (64MB max). But it is not linear, because network
4465 * bandwidth does not increase linearly with machine size. We use
4467 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4468 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4470 * which yields
4472 * 16MB: 512k
4473 * 32MB: 724k
4474 * 64MB: 1024k
4475 * 128MB: 1448k
4476 * 256MB: 2048k
4477 * 512MB: 2896k
4478 * 1024MB: 4096k
4479 * 2048MB: 5792k
4480 * 4096MB: 8192k
4481 * 8192MB: 11584k
4482 * 16384MB: 16384k
4484 static int __init init_per_zone_pages_min(void)
4486 unsigned long lowmem_kbytes;
4488 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4490 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4491 if (min_free_kbytes < 128)
4492 min_free_kbytes = 128;
4493 if (min_free_kbytes > 65536)
4494 min_free_kbytes = 65536;
4495 setup_per_zone_pages_min();
4496 setup_per_zone_lowmem_reserve();
4497 setup_per_zone_inactive_ratio();
4498 return 0;
4500 module_init(init_per_zone_pages_min)
4503 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4504 * that we can call two helper functions whenever min_free_kbytes
4505 * changes.
4507 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4508 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4510 proc_dointvec(table, write, file, buffer, length, ppos);
4511 if (write)
4512 setup_per_zone_pages_min();
4513 return 0;
4516 #ifdef CONFIG_NUMA
4517 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4518 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4520 struct zone *zone;
4521 int rc;
4523 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4524 if (rc)
4525 return rc;
4527 for_each_zone(zone)
4528 zone->min_unmapped_pages = (zone->present_pages *
4529 sysctl_min_unmapped_ratio) / 100;
4530 return 0;
4533 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4534 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4536 struct zone *zone;
4537 int rc;
4539 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4540 if (rc)
4541 return rc;
4543 for_each_zone(zone)
4544 zone->min_slab_pages = (zone->present_pages *
4545 sysctl_min_slab_ratio) / 100;
4546 return 0;
4548 #endif
4551 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4552 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4553 * whenever sysctl_lowmem_reserve_ratio changes.
4555 * The reserve ratio obviously has absolutely no relation with the
4556 * pages_min watermarks. The lowmem reserve ratio can only make sense
4557 * if in function of the boot time zone sizes.
4559 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4560 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4562 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4563 setup_per_zone_lowmem_reserve();
4564 return 0;
4568 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4569 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4570 * can have before it gets flushed back to buddy allocator.
4573 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4574 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4576 struct zone *zone;
4577 unsigned int cpu;
4578 int ret;
4580 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4581 if (!write || (ret == -EINVAL))
4582 return ret;
4583 for_each_zone(zone) {
4584 for_each_online_cpu(cpu) {
4585 unsigned long high;
4586 high = zone->present_pages / percpu_pagelist_fraction;
4587 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4590 return 0;
4593 int hashdist = HASHDIST_DEFAULT;
4595 #ifdef CONFIG_NUMA
4596 static int __init set_hashdist(char *str)
4598 if (!str)
4599 return 0;
4600 hashdist = simple_strtoul(str, &str, 0);
4601 return 1;
4603 __setup("hashdist=", set_hashdist);
4604 #endif
4607 * allocate a large system hash table from bootmem
4608 * - it is assumed that the hash table must contain an exact power-of-2
4609 * quantity of entries
4610 * - limit is the number of hash buckets, not the total allocation size
4612 void *__init alloc_large_system_hash(const char *tablename,
4613 unsigned long bucketsize,
4614 unsigned long numentries,
4615 int scale,
4616 int flags,
4617 unsigned int *_hash_shift,
4618 unsigned int *_hash_mask,
4619 unsigned long limit)
4621 unsigned long long max = limit;
4622 unsigned long log2qty, size;
4623 void *table = NULL;
4625 /* allow the kernel cmdline to have a say */
4626 if (!numentries) {
4627 /* round applicable memory size up to nearest megabyte */
4628 numentries = nr_kernel_pages;
4629 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4630 numentries >>= 20 - PAGE_SHIFT;
4631 numentries <<= 20 - PAGE_SHIFT;
4633 /* limit to 1 bucket per 2^scale bytes of low memory */
4634 if (scale > PAGE_SHIFT)
4635 numentries >>= (scale - PAGE_SHIFT);
4636 else
4637 numentries <<= (PAGE_SHIFT - scale);
4639 /* Make sure we've got at least a 0-order allocation.. */
4640 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4641 numentries = PAGE_SIZE / bucketsize;
4643 numentries = roundup_pow_of_two(numentries);
4645 /* limit allocation size to 1/16 total memory by default */
4646 if (max == 0) {
4647 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4648 do_div(max, bucketsize);
4651 if (numentries > max)
4652 numentries = max;
4654 log2qty = ilog2(numentries);
4656 do {
4657 size = bucketsize << log2qty;
4658 if (flags & HASH_EARLY)
4659 table = alloc_bootmem_nopanic(size);
4660 else if (hashdist)
4661 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4662 else {
4663 unsigned long order = get_order(size);
4665 if (order < MAX_ORDER)
4666 table = (void *)__get_free_pages(GFP_ATOMIC,
4667 order);
4669 * If bucketsize is not a power-of-two, we may free
4670 * some pages at the end of hash table.
4672 if (table) {
4673 unsigned long alloc_end = (unsigned long)table +
4674 (PAGE_SIZE << order);
4675 unsigned long used = (unsigned long)table +
4676 PAGE_ALIGN(size);
4677 split_page(virt_to_page(table), order);
4678 while (used < alloc_end) {
4679 free_page(used);
4680 used += PAGE_SIZE;
4684 } while (!table && size > PAGE_SIZE && --log2qty);
4686 if (!table)
4687 panic("Failed to allocate %s hash table\n", tablename);
4689 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4690 tablename,
4691 (1U << log2qty),
4692 ilog2(size) - PAGE_SHIFT,
4693 size);
4695 if (_hash_shift)
4696 *_hash_shift = log2qty;
4697 if (_hash_mask)
4698 *_hash_mask = (1 << log2qty) - 1;
4701 * If hashdist is set, the table allocation is done with __vmalloc()
4702 * which invokes the kmemleak_alloc() callback. This function may also
4703 * be called before the slab and kmemleak are initialised when
4704 * kmemleak simply buffers the request to be executed later
4705 * (GFP_ATOMIC flag ignored in this case).
4707 if (!hashdist)
4708 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4710 return table;
4713 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4714 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4715 unsigned long pfn)
4717 #ifdef CONFIG_SPARSEMEM
4718 return __pfn_to_section(pfn)->pageblock_flags;
4719 #else
4720 return zone->pageblock_flags;
4721 #endif /* CONFIG_SPARSEMEM */
4724 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4726 #ifdef CONFIG_SPARSEMEM
4727 pfn &= (PAGES_PER_SECTION-1);
4728 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4729 #else
4730 pfn = pfn - zone->zone_start_pfn;
4731 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4732 #endif /* CONFIG_SPARSEMEM */
4736 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4737 * @page: The page within the block of interest
4738 * @start_bitidx: The first bit of interest to retrieve
4739 * @end_bitidx: The last bit of interest
4740 * returns pageblock_bits flags
4742 unsigned long get_pageblock_flags_group(struct page *page,
4743 int start_bitidx, int end_bitidx)
4745 struct zone *zone;
4746 unsigned long *bitmap;
4747 unsigned long pfn, bitidx;
4748 unsigned long flags = 0;
4749 unsigned long value = 1;
4751 zone = page_zone(page);
4752 pfn = page_to_pfn(page);
4753 bitmap = get_pageblock_bitmap(zone, pfn);
4754 bitidx = pfn_to_bitidx(zone, pfn);
4756 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4757 if (test_bit(bitidx + start_bitidx, bitmap))
4758 flags |= value;
4760 return flags;
4764 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4765 * @page: The page within the block of interest
4766 * @start_bitidx: The first bit of interest
4767 * @end_bitidx: The last bit of interest
4768 * @flags: The flags to set
4770 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4771 int start_bitidx, int end_bitidx)
4773 struct zone *zone;
4774 unsigned long *bitmap;
4775 unsigned long pfn, bitidx;
4776 unsigned long value = 1;
4778 zone = page_zone(page);
4779 pfn = page_to_pfn(page);
4780 bitmap = get_pageblock_bitmap(zone, pfn);
4781 bitidx = pfn_to_bitidx(zone, pfn);
4782 VM_BUG_ON(pfn < zone->zone_start_pfn);
4783 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4785 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4786 if (flags & value)
4787 __set_bit(bitidx + start_bitidx, bitmap);
4788 else
4789 __clear_bit(bitidx + start_bitidx, bitmap);
4793 * This is designed as sub function...plz see page_isolation.c also.
4794 * set/clear page block's type to be ISOLATE.
4795 * page allocater never alloc memory from ISOLATE block.
4798 int set_migratetype_isolate(struct page *page)
4800 struct zone *zone;
4801 unsigned long flags;
4802 int ret = -EBUSY;
4804 zone = page_zone(page);
4805 spin_lock_irqsave(&zone->lock, flags);
4807 * In future, more migrate types will be able to be isolation target.
4809 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4810 goto out;
4811 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4812 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4813 ret = 0;
4814 out:
4815 spin_unlock_irqrestore(&zone->lock, flags);
4816 if (!ret)
4817 drain_all_pages();
4818 return ret;
4821 void unset_migratetype_isolate(struct page *page)
4823 struct zone *zone;
4824 unsigned long flags;
4825 zone = page_zone(page);
4826 spin_lock_irqsave(&zone->lock, flags);
4827 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4828 goto out;
4829 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4830 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4831 out:
4832 spin_unlock_irqrestore(&zone->lock, flags);
4835 #ifdef CONFIG_MEMORY_HOTREMOVE
4837 * All pages in the range must be isolated before calling this.
4839 void
4840 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4842 struct page *page;
4843 struct zone *zone;
4844 int order, i;
4845 unsigned long pfn;
4846 unsigned long flags;
4847 /* find the first valid pfn */
4848 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4849 if (pfn_valid(pfn))
4850 break;
4851 if (pfn == end_pfn)
4852 return;
4853 zone = page_zone(pfn_to_page(pfn));
4854 spin_lock_irqsave(&zone->lock, flags);
4855 pfn = start_pfn;
4856 while (pfn < end_pfn) {
4857 if (!pfn_valid(pfn)) {
4858 pfn++;
4859 continue;
4861 page = pfn_to_page(pfn);
4862 BUG_ON(page_count(page));
4863 BUG_ON(!PageBuddy(page));
4864 order = page_order(page);
4865 #ifdef CONFIG_DEBUG_VM
4866 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4867 pfn, 1 << order, end_pfn);
4868 #endif
4869 list_del(&page->lru);
4870 rmv_page_order(page);
4871 zone->free_area[order].nr_free--;
4872 __mod_zone_page_state(zone, NR_FREE_PAGES,
4873 - (1UL << order));
4874 for (i = 0; i < (1 << order); i++)
4875 SetPageReserved((page+i));
4876 pfn += (1 << order);
4878 spin_unlock_irqrestore(&zone->lock, flags);
4880 #endif