Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[linux-2.6/mini2440.git] / kernel / time / tick-broadcast.c
blob118a3b3b3f9a3de4ffa48a2d30a73f6d8a56d3ef
1 /*
2 * linux/kernel/time/tick-broadcast.c
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
23 #include "tick-internal.h"
26 * Broadcast support for broken x86 hardware, where the local apic
27 * timer stops in C3 state.
30 struct tick_device tick_broadcast_device;
31 /* FIXME: Use cpumask_var_t. */
32 static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS);
33 static DECLARE_BITMAP(tmpmask, NR_CPUS);
34 static DEFINE_SPINLOCK(tick_broadcast_lock);
35 static int tick_broadcast_force;
37 #ifdef CONFIG_TICK_ONESHOT
38 static void tick_broadcast_clear_oneshot(int cpu);
39 #else
40 static inline void tick_broadcast_clear_oneshot(int cpu) { }
41 #endif
44 * Debugging: see timer_list.c
46 struct tick_device *tick_get_broadcast_device(void)
48 return &tick_broadcast_device;
51 struct cpumask *tick_get_broadcast_mask(void)
53 return to_cpumask(tick_broadcast_mask);
57 * Start the device in periodic mode
59 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
61 if (bc)
62 tick_setup_periodic(bc, 1);
66 * Check, if the device can be utilized as broadcast device:
68 int tick_check_broadcast_device(struct clock_event_device *dev)
70 if ((tick_broadcast_device.evtdev &&
71 tick_broadcast_device.evtdev->rating >= dev->rating) ||
72 (dev->features & CLOCK_EVT_FEAT_C3STOP))
73 return 0;
75 clockevents_exchange_device(NULL, dev);
76 tick_broadcast_device.evtdev = dev;
77 if (!cpumask_empty(tick_get_broadcast_mask()))
78 tick_broadcast_start_periodic(dev);
79 return 1;
83 * Check, if the device is the broadcast device
85 int tick_is_broadcast_device(struct clock_event_device *dev)
87 return (dev && tick_broadcast_device.evtdev == dev);
91 * Check, if the device is disfunctional and a place holder, which
92 * needs to be handled by the broadcast device.
94 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
96 unsigned long flags;
97 int ret = 0;
99 spin_lock_irqsave(&tick_broadcast_lock, flags);
102 * Devices might be registered with both periodic and oneshot
103 * mode disabled. This signals, that the device needs to be
104 * operated from the broadcast device and is a placeholder for
105 * the cpu local device.
107 if (!tick_device_is_functional(dev)) {
108 dev->event_handler = tick_handle_periodic;
109 cpumask_set_cpu(cpu, tick_get_broadcast_mask());
110 tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
111 ret = 1;
112 } else {
114 * When the new device is not affected by the stop
115 * feature and the cpu is marked in the broadcast mask
116 * then clear the broadcast bit.
118 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
119 int cpu = smp_processor_id();
121 cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
122 tick_broadcast_clear_oneshot(cpu);
125 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
126 return ret;
130 * Broadcast the event to the cpus, which are set in the mask (mangled).
132 static void tick_do_broadcast(struct cpumask *mask)
134 int cpu = smp_processor_id();
135 struct tick_device *td;
138 * Check, if the current cpu is in the mask
140 if (cpumask_test_cpu(cpu, mask)) {
141 cpumask_clear_cpu(cpu, mask);
142 td = &per_cpu(tick_cpu_device, cpu);
143 td->evtdev->event_handler(td->evtdev);
146 if (!cpumask_empty(mask)) {
148 * It might be necessary to actually check whether the devices
149 * have different broadcast functions. For now, just use the
150 * one of the first device. This works as long as we have this
151 * misfeature only on x86 (lapic)
153 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
154 td->evtdev->broadcast(mask);
159 * Periodic broadcast:
160 * - invoke the broadcast handlers
162 static void tick_do_periodic_broadcast(void)
164 spin_lock(&tick_broadcast_lock);
166 cpumask_and(to_cpumask(tmpmask),
167 cpu_online_mask, tick_get_broadcast_mask());
168 tick_do_broadcast(to_cpumask(tmpmask));
170 spin_unlock(&tick_broadcast_lock);
174 * Event handler for periodic broadcast ticks
176 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
178 ktime_t next;
180 tick_do_periodic_broadcast();
183 * The device is in periodic mode. No reprogramming necessary:
185 if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
186 return;
189 * Setup the next period for devices, which do not have
190 * periodic mode. We read dev->next_event first and add to it
191 * when the event alrady expired. clockevents_program_event()
192 * sets dev->next_event only when the event is really
193 * programmed to the device.
195 for (next = dev->next_event; ;) {
196 next = ktime_add(next, tick_period);
198 if (!clockevents_program_event(dev, next, ktime_get()))
199 return;
200 tick_do_periodic_broadcast();
205 * Powerstate information: The system enters/leaves a state, where
206 * affected devices might stop
208 static void tick_do_broadcast_on_off(void *why)
210 struct clock_event_device *bc, *dev;
211 struct tick_device *td;
212 unsigned long flags, *reason = why;
213 int cpu, bc_stopped;
215 spin_lock_irqsave(&tick_broadcast_lock, flags);
217 cpu = smp_processor_id();
218 td = &per_cpu(tick_cpu_device, cpu);
219 dev = td->evtdev;
220 bc = tick_broadcast_device.evtdev;
223 * Is the device not affected by the powerstate ?
225 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
226 goto out;
228 if (!tick_device_is_functional(dev))
229 goto out;
231 bc_stopped = cpumask_empty(tick_get_broadcast_mask());
233 switch (*reason) {
234 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
235 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
236 if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
237 cpumask_set_cpu(cpu, tick_get_broadcast_mask());
238 if (tick_broadcast_device.mode ==
239 TICKDEV_MODE_PERIODIC)
240 clockevents_shutdown(dev);
242 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
243 tick_broadcast_force = 1;
244 break;
245 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
246 if (!tick_broadcast_force &&
247 cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
248 cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
249 if (tick_broadcast_device.mode ==
250 TICKDEV_MODE_PERIODIC)
251 tick_setup_periodic(dev, 0);
253 break;
256 if (cpumask_empty(tick_get_broadcast_mask())) {
257 if (!bc_stopped)
258 clockevents_shutdown(bc);
259 } else if (bc_stopped) {
260 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
261 tick_broadcast_start_periodic(bc);
262 else
263 tick_broadcast_setup_oneshot(bc);
265 out:
266 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
270 * Powerstate information: The system enters/leaves a state, where
271 * affected devices might stop.
273 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
275 if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
276 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
277 "offline CPU #%d\n", *oncpu);
278 else
279 smp_call_function_single(*oncpu, tick_do_broadcast_on_off,
280 &reason, 1);
284 * Set the periodic handler depending on broadcast on/off
286 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
288 if (!broadcast)
289 dev->event_handler = tick_handle_periodic;
290 else
291 dev->event_handler = tick_handle_periodic_broadcast;
295 * Remove a CPU from broadcasting
297 void tick_shutdown_broadcast(unsigned int *cpup)
299 struct clock_event_device *bc;
300 unsigned long flags;
301 unsigned int cpu = *cpup;
303 spin_lock_irqsave(&tick_broadcast_lock, flags);
305 bc = tick_broadcast_device.evtdev;
306 cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
308 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
309 if (bc && cpumask_empty(tick_get_broadcast_mask()))
310 clockevents_shutdown(bc);
313 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
316 void tick_suspend_broadcast(void)
318 struct clock_event_device *bc;
319 unsigned long flags;
321 spin_lock_irqsave(&tick_broadcast_lock, flags);
323 bc = tick_broadcast_device.evtdev;
324 if (bc)
325 clockevents_shutdown(bc);
327 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
330 int tick_resume_broadcast(void)
332 struct clock_event_device *bc;
333 unsigned long flags;
334 int broadcast = 0;
336 spin_lock_irqsave(&tick_broadcast_lock, flags);
338 bc = tick_broadcast_device.evtdev;
340 if (bc) {
341 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
343 switch (tick_broadcast_device.mode) {
344 case TICKDEV_MODE_PERIODIC:
345 if (!cpumask_empty(tick_get_broadcast_mask()))
346 tick_broadcast_start_periodic(bc);
347 broadcast = cpumask_test_cpu(smp_processor_id(),
348 tick_get_broadcast_mask());
349 break;
350 case TICKDEV_MODE_ONESHOT:
351 broadcast = tick_resume_broadcast_oneshot(bc);
352 break;
355 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
357 return broadcast;
361 #ifdef CONFIG_TICK_ONESHOT
363 /* FIXME: use cpumask_var_t. */
364 static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS);
367 * Exposed for debugging: see timer_list.c
369 struct cpumask *tick_get_broadcast_oneshot_mask(void)
371 return to_cpumask(tick_broadcast_oneshot_mask);
374 static int tick_broadcast_set_event(ktime_t expires, int force)
376 struct clock_event_device *bc = tick_broadcast_device.evtdev;
378 return tick_dev_program_event(bc, expires, force);
381 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
383 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
384 return 0;
388 * Called from irq_enter() when idle was interrupted to reenable the
389 * per cpu device.
391 void tick_check_oneshot_broadcast(int cpu)
393 if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) {
394 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
396 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
401 * Handle oneshot mode broadcasting
403 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
405 struct tick_device *td;
406 ktime_t now, next_event;
407 int cpu;
409 spin_lock(&tick_broadcast_lock);
410 again:
411 dev->next_event.tv64 = KTIME_MAX;
412 next_event.tv64 = KTIME_MAX;
413 cpumask_clear(to_cpumask(tmpmask));
414 now = ktime_get();
415 /* Find all expired events */
416 for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) {
417 td = &per_cpu(tick_cpu_device, cpu);
418 if (td->evtdev->next_event.tv64 <= now.tv64)
419 cpumask_set_cpu(cpu, to_cpumask(tmpmask));
420 else if (td->evtdev->next_event.tv64 < next_event.tv64)
421 next_event.tv64 = td->evtdev->next_event.tv64;
425 * Wakeup the cpus which have an expired event.
427 tick_do_broadcast(to_cpumask(tmpmask));
430 * Two reasons for reprogram:
432 * - The global event did not expire any CPU local
433 * events. This happens in dyntick mode, as the maximum PIT
434 * delta is quite small.
436 * - There are pending events on sleeping CPUs which were not
437 * in the event mask
439 if (next_event.tv64 != KTIME_MAX) {
441 * Rearm the broadcast device. If event expired,
442 * repeat the above
444 if (tick_broadcast_set_event(next_event, 0))
445 goto again;
447 spin_unlock(&tick_broadcast_lock);
451 * Powerstate information: The system enters/leaves a state, where
452 * affected devices might stop
454 void tick_broadcast_oneshot_control(unsigned long reason)
456 struct clock_event_device *bc, *dev;
457 struct tick_device *td;
458 unsigned long flags;
459 int cpu;
461 spin_lock_irqsave(&tick_broadcast_lock, flags);
464 * Periodic mode does not care about the enter/exit of power
465 * states
467 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
468 goto out;
470 bc = tick_broadcast_device.evtdev;
471 cpu = smp_processor_id();
472 td = &per_cpu(tick_cpu_device, cpu);
473 dev = td->evtdev;
475 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
476 goto out;
478 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
479 if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
480 cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask());
481 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
482 if (dev->next_event.tv64 < bc->next_event.tv64)
483 tick_broadcast_set_event(dev->next_event, 1);
485 } else {
486 if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
487 cpumask_clear_cpu(cpu,
488 tick_get_broadcast_oneshot_mask());
489 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
490 if (dev->next_event.tv64 != KTIME_MAX)
491 tick_program_event(dev->next_event, 1);
495 out:
496 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
500 * Reset the one shot broadcast for a cpu
502 * Called with tick_broadcast_lock held
504 static void tick_broadcast_clear_oneshot(int cpu)
506 cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
509 static void tick_broadcast_init_next_event(struct cpumask *mask,
510 ktime_t expires)
512 struct tick_device *td;
513 int cpu;
515 for_each_cpu(cpu, mask) {
516 td = &per_cpu(tick_cpu_device, cpu);
517 if (td->evtdev)
518 td->evtdev->next_event = expires;
523 * tick_broadcast_setup_oneshot - setup the broadcast device
525 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
527 /* Set it up only once ! */
528 if (bc->event_handler != tick_handle_oneshot_broadcast) {
529 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
530 int cpu = smp_processor_id();
532 bc->event_handler = tick_handle_oneshot_broadcast;
533 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
535 /* Take the do_timer update */
536 tick_do_timer_cpu = cpu;
539 * We must be careful here. There might be other CPUs
540 * waiting for periodic broadcast. We need to set the
541 * oneshot_mask bits for those and program the
542 * broadcast device to fire.
544 cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask());
545 cpumask_clear_cpu(cpu, to_cpumask(tmpmask));
546 cpumask_or(tick_get_broadcast_oneshot_mask(),
547 tick_get_broadcast_oneshot_mask(),
548 to_cpumask(tmpmask));
550 if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) {
551 tick_broadcast_init_next_event(to_cpumask(tmpmask),
552 tick_next_period);
553 tick_broadcast_set_event(tick_next_period, 1);
554 } else
555 bc->next_event.tv64 = KTIME_MAX;
560 * Select oneshot operating mode for the broadcast device
562 void tick_broadcast_switch_to_oneshot(void)
564 struct clock_event_device *bc;
565 unsigned long flags;
567 spin_lock_irqsave(&tick_broadcast_lock, flags);
569 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
570 bc = tick_broadcast_device.evtdev;
571 if (bc)
572 tick_broadcast_setup_oneshot(bc);
573 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
578 * Remove a dead CPU from broadcasting
580 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
582 unsigned long flags;
583 unsigned int cpu = *cpup;
585 spin_lock_irqsave(&tick_broadcast_lock, flags);
588 * Clear the broadcast mask flag for the dead cpu, but do not
589 * stop the broadcast device!
591 cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
593 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
597 * Check, whether the broadcast device is in one shot mode
599 int tick_broadcast_oneshot_active(void)
601 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
604 #endif