Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[linux-2.6/mini2440.git] / drivers / net / 3c527.c
blobb61073c42bf8641b1623243e5fa30d19299b79aa
1 /* 3c527.c: 3Com Etherlink/MC32 driver for Linux 2.4 and 2.6.
3 * (c) Copyright 1998 Red Hat Software Inc
4 * Written by Alan Cox.
5 * Further debugging by Carl Drougge.
6 * Initial SMP support by Felipe W Damasio <felipewd@terra.com.br>
7 * Heavily modified by Richard Procter <rnp@paradise.net.nz>
9 * Based on skeleton.c written 1993-94 by Donald Becker and ne2.c
10 * (for the MCA stuff) written by Wim Dumon.
12 * Thanks to 3Com for making this possible by providing me with the
13 * documentation.
15 * This software may be used and distributed according to the terms
16 * of the GNU General Public License, incorporated herein by reference.
20 #define DRV_NAME "3c527"
21 #define DRV_VERSION "0.7-SMP"
22 #define DRV_RELDATE "2003/09/21"
24 static const char *version =
25 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Richard Procter <rnp@paradise.net.nz>\n";
27 /**
28 * DOC: Traps for the unwary
30 * The diagram (Figure 1-1) and the POS summary disagree with the
31 * "Interrupt Level" section in the manual.
33 * The manual contradicts itself when describing the minimum number
34 * buffers in the 'configure lists' command.
35 * My card accepts a buffer config of 4/4.
37 * Setting the SAV BP bit does not save bad packets, but
38 * only enables RX on-card stats collection.
40 * The documentation in places seems to miss things. In actual fact
41 * I've always eventually found everything is documented, it just
42 * requires careful study.
44 * DOC: Theory Of Operation
46 * The 3com 3c527 is a 32bit MCA bus mastering adapter with a large
47 * amount of on board intelligence that housekeeps a somewhat dumber
48 * Intel NIC. For performance we want to keep the transmit queue deep
49 * as the card can transmit packets while fetching others from main
50 * memory by bus master DMA. Transmission and reception are driven by
51 * circular buffer queues.
53 * The mailboxes can be used for controlling how the card traverses
54 * its buffer rings, but are used only for inital setup in this
55 * implementation. The exec mailbox allows a variety of commands to
56 * be executed. Each command must complete before the next is
57 * executed. Primarily we use the exec mailbox for controlling the
58 * multicast lists. We have to do a certain amount of interesting
59 * hoop jumping as the multicast list changes can occur in interrupt
60 * state when the card has an exec command pending. We defer such
61 * events until the command completion interrupt.
63 * A copy break scheme (taken from 3c59x.c) is employed whereby
64 * received frames exceeding a configurable length are passed
65 * directly to the higher networking layers without incuring a copy,
66 * in what amounts to a time/space trade-off.
68 * The card also keeps a large amount of statistical information
69 * on-board. In a perfect world, these could be used safely at no
70 * cost. However, lacking information to the contrary, processing
71 * them without races would involve so much extra complexity as to
72 * make it unworthwhile to do so. In the end, a hybrid SW/HW
73 * implementation was made necessary --- see mc32_update_stats().
75 * DOC: Notes
77 * It should be possible to use two or more cards, but at this stage
78 * only by loading two copies of the same module.
80 * The on-board 82586 NIC has trouble receiving multiple
81 * back-to-back frames and so is likely to drop packets from fast
82 * senders.
83 **/
85 #include <linux/module.h>
87 #include <linux/errno.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/if_ether.h>
91 #include <linux/init.h>
92 #include <linux/kernel.h>
93 #include <linux/types.h>
94 #include <linux/fcntl.h>
95 #include <linux/interrupt.h>
96 #include <linux/mca-legacy.h>
97 #include <linux/ioport.h>
98 #include <linux/in.h>
99 #include <linux/skbuff.h>
100 #include <linux/slab.h>
101 #include <linux/string.h>
102 #include <linux/wait.h>
103 #include <linux/ethtool.h>
104 #include <linux/completion.h>
105 #include <linux/bitops.h>
106 #include <linux/semaphore.h>
108 #include <asm/uaccess.h>
109 #include <asm/system.h>
110 #include <asm/io.h>
111 #include <asm/dma.h>
113 #include "3c527.h"
115 MODULE_LICENSE("GPL");
118 * The name of the card. Is used for messages and in the requests for
119 * io regions, irqs and dma channels
121 static const char* cardname = DRV_NAME;
123 /* use 0 for production, 1 for verification, >2 for debug */
124 #ifndef NET_DEBUG
125 #define NET_DEBUG 2
126 #endif
128 #undef DEBUG_IRQ
130 static unsigned int mc32_debug = NET_DEBUG;
132 /* The number of low I/O ports used by the ethercard. */
133 #define MC32_IO_EXTENT 8
135 /* As implemented, values must be a power-of-2 -- 4/8/16/32 */
136 #define TX_RING_LEN 32 /* Typically the card supports 37 */
137 #define RX_RING_LEN 8 /* " " " */
139 /* Copy break point, see above for details.
140 * Setting to > 1512 effectively disables this feature. */
141 #define RX_COPYBREAK 200 /* Value from 3c59x.c */
143 /* Issue the 82586 workaround command - this is for "busy lans", but
144 * basically means for all lans now days - has a performance (latency)
145 * cost, but best set. */
146 static const int WORKAROUND_82586=1;
148 /* Pointers to buffers and their on-card records */
149 struct mc32_ring_desc
151 volatile struct skb_header *p;
152 struct sk_buff *skb;
155 /* Information that needs to be kept for each board. */
156 struct mc32_local
158 int slot;
160 u32 base;
161 volatile struct mc32_mailbox *rx_box;
162 volatile struct mc32_mailbox *tx_box;
163 volatile struct mc32_mailbox *exec_box;
164 volatile struct mc32_stats *stats; /* Start of on-card statistics */
165 u16 tx_chain; /* Transmit list start offset */
166 u16 rx_chain; /* Receive list start offset */
167 u16 tx_len; /* Transmit list count */
168 u16 rx_len; /* Receive list count */
170 u16 xceiver_desired_state; /* HALTED or RUNNING */
171 u16 cmd_nonblocking; /* Thread is uninterested in command result */
172 u16 mc_reload_wait; /* A multicast load request is pending */
173 u32 mc_list_valid; /* True when the mclist is set */
175 struct mc32_ring_desc tx_ring[TX_RING_LEN]; /* Host Transmit ring */
176 struct mc32_ring_desc rx_ring[RX_RING_LEN]; /* Host Receive ring */
178 atomic_t tx_count; /* buffers left */
179 atomic_t tx_ring_head; /* index to tx en-queue end */
180 u16 tx_ring_tail; /* index to tx de-queue end */
182 u16 rx_ring_tail; /* index to rx de-queue end */
184 struct semaphore cmd_mutex; /* Serialises issuing of execute commands */
185 struct completion execution_cmd; /* Card has completed an execute command */
186 struct completion xceiver_cmd; /* Card has completed a tx or rx command */
189 /* The station (ethernet) address prefix, used for a sanity check. */
190 #define SA_ADDR0 0x02
191 #define SA_ADDR1 0x60
192 #define SA_ADDR2 0xAC
194 struct mca_adapters_t {
195 unsigned int id;
196 char *name;
199 static const struct mca_adapters_t mc32_adapters[] = {
200 { 0x0041, "3COM EtherLink MC/32" },
201 { 0x8EF5, "IBM High Performance Lan Adapter" },
202 { 0x0000, NULL }
206 /* Macros for ring index manipulations */
207 static inline u16 next_rx(u16 rx) { return (rx+1)&(RX_RING_LEN-1); };
208 static inline u16 prev_rx(u16 rx) { return (rx-1)&(RX_RING_LEN-1); };
210 static inline u16 next_tx(u16 tx) { return (tx+1)&(TX_RING_LEN-1); };
213 /* Index to functions, as function prototypes. */
214 static int mc32_probe1(struct net_device *dev, int ioaddr);
215 static int mc32_command(struct net_device *dev, u16 cmd, void *data, int len);
216 static int mc32_open(struct net_device *dev);
217 static void mc32_timeout(struct net_device *dev);
218 static int mc32_send_packet(struct sk_buff *skb, struct net_device *dev);
219 static irqreturn_t mc32_interrupt(int irq, void *dev_id);
220 static int mc32_close(struct net_device *dev);
221 static struct net_device_stats *mc32_get_stats(struct net_device *dev);
222 static void mc32_set_multicast_list(struct net_device *dev);
223 static void mc32_reset_multicast_list(struct net_device *dev);
224 static const struct ethtool_ops netdev_ethtool_ops;
226 static void cleanup_card(struct net_device *dev)
228 struct mc32_local *lp = netdev_priv(dev);
229 unsigned slot = lp->slot;
230 mca_mark_as_unused(slot);
231 mca_set_adapter_name(slot, NULL);
232 free_irq(dev->irq, dev);
233 release_region(dev->base_addr, MC32_IO_EXTENT);
237 * mc32_probe - Search for supported boards
238 * @unit: interface number to use
240 * Because MCA bus is a real bus and we can scan for cards we could do a
241 * single scan for all boards here. Right now we use the passed in device
242 * structure and scan for only one board. This needs fixing for modules
243 * in particular.
246 struct net_device *__init mc32_probe(int unit)
248 struct net_device *dev = alloc_etherdev(sizeof(struct mc32_local));
249 static int current_mca_slot = -1;
250 int i;
251 int err;
253 if (!dev)
254 return ERR_PTR(-ENOMEM);
256 if (unit >= 0)
257 sprintf(dev->name, "eth%d", unit);
259 /* Do not check any supplied i/o locations.
260 POS registers usually don't fail :) */
262 /* MCA cards have POS registers.
263 Autodetecting MCA cards is extremely simple.
264 Just search for the card. */
266 for(i = 0; (mc32_adapters[i].name != NULL); i++) {
267 current_mca_slot =
268 mca_find_unused_adapter(mc32_adapters[i].id, 0);
270 if(current_mca_slot != MCA_NOTFOUND) {
271 if(!mc32_probe1(dev, current_mca_slot))
273 mca_set_adapter_name(current_mca_slot,
274 mc32_adapters[i].name);
275 mca_mark_as_used(current_mca_slot);
276 err = register_netdev(dev);
277 if (err) {
278 cleanup_card(dev);
279 free_netdev(dev);
280 dev = ERR_PTR(err);
282 return dev;
287 free_netdev(dev);
288 return ERR_PTR(-ENODEV);
291 static const struct net_device_ops netdev_ops = {
292 .ndo_open = mc32_open,
293 .ndo_stop = mc32_close,
294 .ndo_start_xmit = mc32_send_packet,
295 .ndo_get_stats = mc32_get_stats,
296 .ndo_set_multicast_list = mc32_set_multicast_list,
297 .ndo_tx_timeout = mc32_timeout,
298 .ndo_change_mtu = eth_change_mtu,
299 .ndo_set_mac_address = eth_mac_addr,
300 .ndo_validate_addr = eth_validate_addr,
304 * mc32_probe1 - Check a given slot for a board and test the card
305 * @dev: Device structure to fill in
306 * @slot: The MCA bus slot being used by this card
308 * Decode the slot data and configure the card structures. Having done this we
309 * can reset the card and configure it. The card does a full self test cycle
310 * in firmware so we have to wait for it to return and post us either a
311 * failure case or some addresses we use to find the board internals.
314 static int __init mc32_probe1(struct net_device *dev, int slot)
316 static unsigned version_printed;
317 int i, err;
318 u8 POS;
319 u32 base;
320 struct mc32_local *lp = netdev_priv(dev);
321 static u16 mca_io_bases[]={
322 0x7280,0x7290,
323 0x7680,0x7690,
324 0x7A80,0x7A90,
325 0x7E80,0x7E90
327 static u32 mca_mem_bases[]={
328 0x00C0000,
329 0x00C4000,
330 0x00C8000,
331 0x00CC000,
332 0x00D0000,
333 0x00D4000,
334 0x00D8000,
335 0x00DC000
337 static char *failures[]={
338 "Processor instruction",
339 "Processor data bus",
340 "Processor data bus",
341 "Processor data bus",
342 "Adapter bus",
343 "ROM checksum",
344 "Base RAM",
345 "Extended RAM",
346 "82586 internal loopback",
347 "82586 initialisation failure",
348 "Adapter list configuration error"
351 /* Time to play MCA games */
353 if (mc32_debug && version_printed++ == 0)
354 printk(KERN_DEBUG "%s", version);
356 printk(KERN_INFO "%s: %s found in slot %d:", dev->name, cardname, slot);
358 POS = mca_read_stored_pos(slot, 2);
360 if(!(POS&1))
362 printk(" disabled.\n");
363 return -ENODEV;
366 /* Fill in the 'dev' fields. */
367 dev->base_addr = mca_io_bases[(POS>>1)&7];
368 dev->mem_start = mca_mem_bases[(POS>>4)&7];
370 POS = mca_read_stored_pos(slot, 4);
371 if(!(POS&1))
373 printk("memory window disabled.\n");
374 return -ENODEV;
377 POS = mca_read_stored_pos(slot, 5);
379 i=(POS>>4)&3;
380 if(i==3)
382 printk("invalid memory window.\n");
383 return -ENODEV;
386 i*=16384;
387 i+=16384;
389 dev->mem_end=dev->mem_start + i;
391 dev->irq = ((POS>>2)&3)+9;
393 if(!request_region(dev->base_addr, MC32_IO_EXTENT, cardname))
395 printk("io 0x%3lX, which is busy.\n", dev->base_addr);
396 return -EBUSY;
399 printk("io 0x%3lX irq %d mem 0x%lX (%dK)\n",
400 dev->base_addr, dev->irq, dev->mem_start, i/1024);
403 /* We ought to set the cache line size here.. */
407 * Go PROM browsing
410 /* Retrieve and print the ethernet address. */
411 for (i = 0; i < 6; i++)
413 mca_write_pos(slot, 6, i+12);
414 mca_write_pos(slot, 7, 0);
416 dev->dev_addr[i] = mca_read_pos(slot,3);
419 printk("%s: Address %pM", dev->name, dev->dev_addr);
421 mca_write_pos(slot, 6, 0);
422 mca_write_pos(slot, 7, 0);
424 POS = mca_read_stored_pos(slot, 4);
426 if(POS&2)
427 printk(" : BNC port selected.\n");
428 else
429 printk(" : AUI port selected.\n");
431 POS=inb(dev->base_addr+HOST_CTRL);
432 POS|=HOST_CTRL_ATTN|HOST_CTRL_RESET;
433 POS&=~HOST_CTRL_INTE;
434 outb(POS, dev->base_addr+HOST_CTRL);
435 /* Reset adapter */
436 udelay(100);
437 /* Reset off */
438 POS&=~(HOST_CTRL_ATTN|HOST_CTRL_RESET);
439 outb(POS, dev->base_addr+HOST_CTRL);
441 udelay(300);
444 * Grab the IRQ
447 err = request_irq(dev->irq, &mc32_interrupt, IRQF_SHARED | IRQF_SAMPLE_RANDOM, DRV_NAME, dev);
448 if (err) {
449 release_region(dev->base_addr, MC32_IO_EXTENT);
450 printk(KERN_ERR "%s: unable to get IRQ %d.\n", DRV_NAME, dev->irq);
451 goto err_exit_ports;
454 memset(lp, 0, sizeof(struct mc32_local));
455 lp->slot = slot;
457 i=0;
459 base = inb(dev->base_addr);
461 while(base == 0xFF)
463 i++;
464 if(i == 1000)
466 printk(KERN_ERR "%s: failed to boot adapter.\n", dev->name);
467 err = -ENODEV;
468 goto err_exit_irq;
470 udelay(1000);
471 if(inb(dev->base_addr+2)&(1<<5))
472 base = inb(dev->base_addr);
475 if(base>0)
477 if(base < 0x0C)
478 printk(KERN_ERR "%s: %s%s.\n", dev->name, failures[base-1],
479 base<0x0A?" test failure":"");
480 else
481 printk(KERN_ERR "%s: unknown failure %d.\n", dev->name, base);
482 err = -ENODEV;
483 goto err_exit_irq;
486 base=0;
487 for(i=0;i<4;i++)
489 int n=0;
491 while(!(inb(dev->base_addr+2)&(1<<5)))
493 n++;
494 udelay(50);
495 if(n>100)
497 printk(KERN_ERR "%s: mailbox read fail (%d).\n", dev->name, i);
498 err = -ENODEV;
499 goto err_exit_irq;
503 base|=(inb(dev->base_addr)<<(8*i));
506 lp->exec_box=isa_bus_to_virt(dev->mem_start+base);
508 base=lp->exec_box->data[1]<<16|lp->exec_box->data[0];
510 lp->base = dev->mem_start+base;
512 lp->rx_box=isa_bus_to_virt(lp->base + lp->exec_box->data[2]);
513 lp->tx_box=isa_bus_to_virt(lp->base + lp->exec_box->data[3]);
515 lp->stats = isa_bus_to_virt(lp->base + lp->exec_box->data[5]);
518 * Descriptor chains (card relative)
521 lp->tx_chain = lp->exec_box->data[8]; /* Transmit list start offset */
522 lp->rx_chain = lp->exec_box->data[10]; /* Receive list start offset */
523 lp->tx_len = lp->exec_box->data[9]; /* Transmit list count */
524 lp->rx_len = lp->exec_box->data[11]; /* Receive list count */
526 init_MUTEX_LOCKED(&lp->cmd_mutex);
527 init_completion(&lp->execution_cmd);
528 init_completion(&lp->xceiver_cmd);
530 printk("%s: Firmware Rev %d. %d RX buffers, %d TX buffers. Base of 0x%08X.\n",
531 dev->name, lp->exec_box->data[12], lp->rx_len, lp->tx_len, lp->base);
533 dev->netdev_ops = &netdev_ops;
534 dev->watchdog_timeo = HZ*5; /* Board does all the work */
535 dev->ethtool_ops = &netdev_ethtool_ops;
537 return 0;
539 err_exit_irq:
540 free_irq(dev->irq, dev);
541 err_exit_ports:
542 release_region(dev->base_addr, MC32_IO_EXTENT);
543 return err;
548 * mc32_ready_poll - wait until we can feed it a command
549 * @dev: The device to wait for
551 * Wait until the card becomes ready to accept a command via the
552 * command register. This tells us nothing about the completion
553 * status of any pending commands and takes very little time at all.
556 static inline void mc32_ready_poll(struct net_device *dev)
558 int ioaddr = dev->base_addr;
559 while(!(inb(ioaddr+HOST_STATUS)&HOST_STATUS_CRR));
564 * mc32_command_nowait - send a command non blocking
565 * @dev: The 3c527 to issue the command to
566 * @cmd: The command word to write to the mailbox
567 * @data: A data block if the command expects one
568 * @len: Length of the data block
570 * Send a command from interrupt state. If there is a command
571 * currently being executed then we return an error of -1. It
572 * simply isn't viable to wait around as commands may be
573 * slow. This can theoretically be starved on SMP, but it's hard
574 * to see a realistic situation. We do not wait for the command
575 * to complete --- we rely on the interrupt handler to tidy up
576 * after us.
579 static int mc32_command_nowait(struct net_device *dev, u16 cmd, void *data, int len)
581 struct mc32_local *lp = netdev_priv(dev);
582 int ioaddr = dev->base_addr;
583 int ret = -1;
585 if (down_trylock(&lp->cmd_mutex) == 0)
587 lp->cmd_nonblocking=1;
588 lp->exec_box->mbox=0;
589 lp->exec_box->mbox=cmd;
590 memcpy((void *)lp->exec_box->data, data, len);
591 barrier(); /* the memcpy forgot the volatile so be sure */
593 /* Send the command */
594 mc32_ready_poll(dev);
595 outb(1<<6, ioaddr+HOST_CMD);
597 ret = 0;
599 /* Interrupt handler will signal mutex on completion */
602 return ret;
607 * mc32_command - send a command and sleep until completion
608 * @dev: The 3c527 card to issue the command to
609 * @cmd: The command word to write to the mailbox
610 * @data: A data block if the command expects one
611 * @len: Length of the data block
613 * Sends exec commands in a user context. This permits us to wait around
614 * for the replies and also to wait for the command buffer to complete
615 * from a previous command before we execute our command. After our
616 * command completes we will attempt any pending multicast reload
617 * we blocked off by hogging the exec buffer.
619 * You feed the card a command, you wait, it interrupts you get a
620 * reply. All well and good. The complication arises because you use
621 * commands for filter list changes which come in at bh level from things
622 * like IPV6 group stuff.
625 static int mc32_command(struct net_device *dev, u16 cmd, void *data, int len)
627 struct mc32_local *lp = netdev_priv(dev);
628 int ioaddr = dev->base_addr;
629 int ret = 0;
631 down(&lp->cmd_mutex);
634 * My Turn
637 lp->cmd_nonblocking=0;
638 lp->exec_box->mbox=0;
639 lp->exec_box->mbox=cmd;
640 memcpy((void *)lp->exec_box->data, data, len);
641 barrier(); /* the memcpy forgot the volatile so be sure */
643 mc32_ready_poll(dev);
644 outb(1<<6, ioaddr+HOST_CMD);
646 wait_for_completion(&lp->execution_cmd);
648 if(lp->exec_box->mbox&(1<<13))
649 ret = -1;
651 up(&lp->cmd_mutex);
654 * A multicast set got blocked - try it now
657 if(lp->mc_reload_wait)
659 mc32_reset_multicast_list(dev);
662 return ret;
667 * mc32_start_transceiver - tell board to restart tx/rx
668 * @dev: The 3c527 card to issue the command to
670 * This may be called from the interrupt state, where it is used
671 * to restart the rx ring if the card runs out of rx buffers.
673 * We must first check if it's ok to (re)start the transceiver. See
674 * mc32_close for details.
677 static void mc32_start_transceiver(struct net_device *dev) {
679 struct mc32_local *lp = netdev_priv(dev);
680 int ioaddr = dev->base_addr;
682 /* Ignore RX overflow on device closure */
683 if (lp->xceiver_desired_state==HALTED)
684 return;
686 /* Give the card the offset to the post-EOL-bit RX descriptor */
687 mc32_ready_poll(dev);
688 lp->rx_box->mbox=0;
689 lp->rx_box->data[0]=lp->rx_ring[prev_rx(lp->rx_ring_tail)].p->next;
690 outb(HOST_CMD_START_RX, ioaddr+HOST_CMD);
692 mc32_ready_poll(dev);
693 lp->tx_box->mbox=0;
694 outb(HOST_CMD_RESTRT_TX, ioaddr+HOST_CMD); /* card ignores this on RX restart */
696 /* We are not interrupted on start completion */
701 * mc32_halt_transceiver - tell board to stop tx/rx
702 * @dev: The 3c527 card to issue the command to
704 * We issue the commands to halt the card's transceiver. In fact,
705 * after some experimenting we now simply tell the card to
706 * suspend. When issuing aborts occasionally odd things happened.
708 * We then sleep until the card has notified us that both rx and
709 * tx have been suspended.
712 static void mc32_halt_transceiver(struct net_device *dev)
714 struct mc32_local *lp = netdev_priv(dev);
715 int ioaddr = dev->base_addr;
717 mc32_ready_poll(dev);
718 lp->rx_box->mbox=0;
719 outb(HOST_CMD_SUSPND_RX, ioaddr+HOST_CMD);
720 wait_for_completion(&lp->xceiver_cmd);
722 mc32_ready_poll(dev);
723 lp->tx_box->mbox=0;
724 outb(HOST_CMD_SUSPND_TX, ioaddr+HOST_CMD);
725 wait_for_completion(&lp->xceiver_cmd);
730 * mc32_load_rx_ring - load the ring of receive buffers
731 * @dev: 3c527 to build the ring for
733 * This initalises the on-card and driver datastructures to
734 * the point where mc32_start_transceiver() can be called.
736 * The card sets up the receive ring for us. We are required to use the
737 * ring it provides, although the size of the ring is configurable.
739 * We allocate an sk_buff for each ring entry in turn and
740 * initalise its house-keeping info. At the same time, we read
741 * each 'next' pointer in our rx_ring array. This reduces slow
742 * shared-memory reads and makes it easy to access predecessor
743 * descriptors.
745 * We then set the end-of-list bit for the last entry so that the
746 * card will know when it has run out of buffers.
749 static int mc32_load_rx_ring(struct net_device *dev)
751 struct mc32_local *lp = netdev_priv(dev);
752 int i;
753 u16 rx_base;
754 volatile struct skb_header *p;
756 rx_base=lp->rx_chain;
758 for(i=0; i<RX_RING_LEN; i++) {
759 lp->rx_ring[i].skb=alloc_skb(1532, GFP_KERNEL);
760 if (lp->rx_ring[i].skb==NULL) {
761 for (;i>=0;i--)
762 kfree_skb(lp->rx_ring[i].skb);
763 return -ENOBUFS;
765 skb_reserve(lp->rx_ring[i].skb, 18);
767 p=isa_bus_to_virt(lp->base+rx_base);
769 p->control=0;
770 p->data=isa_virt_to_bus(lp->rx_ring[i].skb->data);
771 p->status=0;
772 p->length=1532;
774 lp->rx_ring[i].p=p;
775 rx_base=p->next;
778 lp->rx_ring[i-1].p->control |= CONTROL_EOL;
780 lp->rx_ring_tail=0;
782 return 0;
787 * mc32_flush_rx_ring - free the ring of receive buffers
788 * @lp: Local data of 3c527 to flush the rx ring of
790 * Free the buffer for each ring slot. This may be called
791 * before mc32_load_rx_ring(), eg. on error in mc32_open().
792 * Requires rx skb pointers to point to a valid skb, or NULL.
795 static void mc32_flush_rx_ring(struct net_device *dev)
797 struct mc32_local *lp = netdev_priv(dev);
798 int i;
800 for(i=0; i < RX_RING_LEN; i++)
802 if (lp->rx_ring[i].skb) {
803 dev_kfree_skb(lp->rx_ring[i].skb);
804 lp->rx_ring[i].skb = NULL;
806 lp->rx_ring[i].p=NULL;
812 * mc32_load_tx_ring - load transmit ring
813 * @dev: The 3c527 card to issue the command to
815 * This sets up the host transmit data-structures.
817 * First, we obtain from the card it's current postion in the tx
818 * ring, so that we will know where to begin transmitting
819 * packets.
821 * Then, we read the 'next' pointers from the on-card tx ring into
822 * our tx_ring array to reduce slow shared-mem reads. Finally, we
823 * intitalise the tx house keeping variables.
827 static void mc32_load_tx_ring(struct net_device *dev)
829 struct mc32_local *lp = netdev_priv(dev);
830 volatile struct skb_header *p;
831 int i;
832 u16 tx_base;
834 tx_base=lp->tx_box->data[0];
836 for(i=0 ; i<TX_RING_LEN ; i++)
838 p=isa_bus_to_virt(lp->base+tx_base);
839 lp->tx_ring[i].p=p;
840 lp->tx_ring[i].skb=NULL;
842 tx_base=p->next;
845 /* -1 so that tx_ring_head cannot "lap" tx_ring_tail */
846 /* see mc32_tx_ring */
848 atomic_set(&lp->tx_count, TX_RING_LEN-1);
849 atomic_set(&lp->tx_ring_head, 0);
850 lp->tx_ring_tail=0;
855 * mc32_flush_tx_ring - free transmit ring
856 * @lp: Local data of 3c527 to flush the tx ring of
858 * If the ring is non-empty, zip over the it, freeing any
859 * allocated skb_buffs. The tx ring house-keeping variables are
860 * then reset. Requires rx skb pointers to point to a valid skb,
861 * or NULL.
864 static void mc32_flush_tx_ring(struct net_device *dev)
866 struct mc32_local *lp = netdev_priv(dev);
867 int i;
869 for (i=0; i < TX_RING_LEN; i++)
871 if (lp->tx_ring[i].skb)
873 dev_kfree_skb(lp->tx_ring[i].skb);
874 lp->tx_ring[i].skb = NULL;
878 atomic_set(&lp->tx_count, 0);
879 atomic_set(&lp->tx_ring_head, 0);
880 lp->tx_ring_tail=0;
885 * mc32_open - handle 'up' of card
886 * @dev: device to open
888 * The user is trying to bring the card into ready state. This requires
889 * a brief dialogue with the card. Firstly we enable interrupts and then
890 * 'indications'. Without these enabled the card doesn't bother telling
891 * us what it has done. This had me puzzled for a week.
893 * We configure the number of card descriptors, then load the network
894 * address and multicast filters. Turn on the workaround mode. This
895 * works around a bug in the 82586 - it asks the firmware to do
896 * so. It has a performance (latency) hit but is needed on busy
897 * [read most] lans. We load the ring with buffers then we kick it
898 * all off.
901 static int mc32_open(struct net_device *dev)
903 int ioaddr = dev->base_addr;
904 struct mc32_local *lp = netdev_priv(dev);
905 u8 one=1;
906 u8 regs;
907 u16 descnumbuffs[2] = {TX_RING_LEN, RX_RING_LEN};
910 * Interrupts enabled
913 regs=inb(ioaddr+HOST_CTRL);
914 regs|=HOST_CTRL_INTE;
915 outb(regs, ioaddr+HOST_CTRL);
918 * Allow ourselves to issue commands
921 up(&lp->cmd_mutex);
925 * Send the indications on command
928 mc32_command(dev, 4, &one, 2);
931 * Poke it to make sure it's really dead.
934 mc32_halt_transceiver(dev);
935 mc32_flush_tx_ring(dev);
938 * Ask card to set up on-card descriptors to our spec
941 if(mc32_command(dev, 8, descnumbuffs, 4)) {
942 printk("%s: %s rejected our buffer configuration!\n",
943 dev->name, cardname);
944 mc32_close(dev);
945 return -ENOBUFS;
948 /* Report new configuration */
949 mc32_command(dev, 6, NULL, 0);
951 lp->tx_chain = lp->exec_box->data[8]; /* Transmit list start offset */
952 lp->rx_chain = lp->exec_box->data[10]; /* Receive list start offset */
953 lp->tx_len = lp->exec_box->data[9]; /* Transmit list count */
954 lp->rx_len = lp->exec_box->data[11]; /* Receive list count */
956 /* Set Network Address */
957 mc32_command(dev, 1, dev->dev_addr, 6);
959 /* Set the filters */
960 mc32_set_multicast_list(dev);
962 if (WORKAROUND_82586) {
963 u16 zero_word=0;
964 mc32_command(dev, 0x0D, &zero_word, 2); /* 82586 bug workaround on */
967 mc32_load_tx_ring(dev);
969 if(mc32_load_rx_ring(dev))
971 mc32_close(dev);
972 return -ENOBUFS;
975 lp->xceiver_desired_state = RUNNING;
977 /* And finally, set the ball rolling... */
978 mc32_start_transceiver(dev);
980 netif_start_queue(dev);
982 return 0;
987 * mc32_timeout - handle a timeout from the network layer
988 * @dev: 3c527 that timed out
990 * Handle a timeout on transmit from the 3c527. This normally means
991 * bad things as the hardware handles cable timeouts and mess for
992 * us.
996 static void mc32_timeout(struct net_device *dev)
998 printk(KERN_WARNING "%s: transmit timed out?\n", dev->name);
999 /* Try to restart the adaptor. */
1000 netif_wake_queue(dev);
1005 * mc32_send_packet - queue a frame for transmit
1006 * @skb: buffer to transmit
1007 * @dev: 3c527 to send it out of
1009 * Transmit a buffer. This normally means throwing the buffer onto
1010 * the transmit queue as the queue is quite large. If the queue is
1011 * full then we set tx_busy and return. Once the interrupt handler
1012 * gets messages telling it to reclaim transmit queue entries, we will
1013 * clear tx_busy and the kernel will start calling this again.
1015 * We do not disable interrupts or acquire any locks; this can
1016 * run concurrently with mc32_tx_ring(), and the function itself
1017 * is serialised at a higher layer. However, similarly for the
1018 * card itself, we must ensure that we update tx_ring_head only
1019 * after we've established a valid packet on the tx ring (and
1020 * before we let the card "see" it, to prevent it racing with the
1021 * irq handler).
1025 static int mc32_send_packet(struct sk_buff *skb, struct net_device *dev)
1027 struct mc32_local *lp = netdev_priv(dev);
1028 u32 head = atomic_read(&lp->tx_ring_head);
1030 volatile struct skb_header *p, *np;
1032 netif_stop_queue(dev);
1034 if(atomic_read(&lp->tx_count)==0) {
1035 return 1;
1038 if (skb_padto(skb, ETH_ZLEN)) {
1039 netif_wake_queue(dev);
1040 return 0;
1043 atomic_dec(&lp->tx_count);
1045 /* P is the last sending/sent buffer as a pointer */
1046 p=lp->tx_ring[head].p;
1048 head = next_tx(head);
1050 /* NP is the buffer we will be loading */
1051 np=lp->tx_ring[head].p;
1053 /* We will need this to flush the buffer out */
1054 lp->tx_ring[head].skb=skb;
1056 np->length = unlikely(skb->len < ETH_ZLEN) ? ETH_ZLEN : skb->len;
1057 np->data = isa_virt_to_bus(skb->data);
1058 np->status = 0;
1059 np->control = CONTROL_EOP | CONTROL_EOL;
1060 wmb();
1063 * The new frame has been setup; we can now
1064 * let the interrupt handler and card "see" it
1067 atomic_set(&lp->tx_ring_head, head);
1068 p->control &= ~CONTROL_EOL;
1070 netif_wake_queue(dev);
1071 return 0;
1076 * mc32_update_stats - pull off the on board statistics
1077 * @dev: 3c527 to service
1080 * Query and reset the on-card stats. There's the small possibility
1081 * of a race here, which would result in an underestimation of
1082 * actual errors. As such, we'd prefer to keep all our stats
1083 * collection in software. As a rule, we do. However it can't be
1084 * used for rx errors and collisions as, by default, the card discards
1085 * bad rx packets.
1087 * Setting the SAV BP in the rx filter command supposedly
1088 * stops this behaviour. However, testing shows that it only seems to
1089 * enable the collation of on-card rx statistics --- the driver
1090 * never sees an RX descriptor with an error status set.
1094 static void mc32_update_stats(struct net_device *dev)
1096 struct mc32_local *lp = netdev_priv(dev);
1097 volatile struct mc32_stats *st = lp->stats;
1099 u32 rx_errors=0;
1101 rx_errors+=dev->stats.rx_crc_errors +=st->rx_crc_errors;
1102 st->rx_crc_errors=0;
1103 rx_errors+=dev->stats.rx_fifo_errors +=st->rx_overrun_errors;
1104 st->rx_overrun_errors=0;
1105 rx_errors+=dev->stats.rx_frame_errors +=st->rx_alignment_errors;
1106 st->rx_alignment_errors=0;
1107 rx_errors+=dev->stats.rx_length_errors+=st->rx_tooshort_errors;
1108 st->rx_tooshort_errors=0;
1109 rx_errors+=dev->stats.rx_missed_errors+=st->rx_outofresource_errors;
1110 st->rx_outofresource_errors=0;
1111 dev->stats.rx_errors=rx_errors;
1113 /* Number of packets which saw one collision */
1114 dev->stats.collisions+=st->dataC[10];
1115 st->dataC[10]=0;
1117 /* Number of packets which saw 2--15 collisions */
1118 dev->stats.collisions+=st->dataC[11];
1119 st->dataC[11]=0;
1124 * mc32_rx_ring - process the receive ring
1125 * @dev: 3c527 that needs its receive ring processing
1128 * We have received one or more indications from the card that a
1129 * receive has completed. The buffer ring thus contains dirty
1130 * entries. We walk the ring by iterating over the circular rx_ring
1131 * array, starting at the next dirty buffer (which happens to be the
1132 * one we finished up at last time around).
1134 * For each completed packet, we will either copy it and pass it up
1135 * the stack or, if the packet is near MTU sized, we allocate
1136 * another buffer and flip the old one up the stack.
1138 * We must succeed in keeping a buffer on the ring. If necessary we
1139 * will toss a received packet rather than lose a ring entry. Once
1140 * the first uncompleted descriptor is found, we move the
1141 * End-Of-List bit to include the buffers just processed.
1145 static void mc32_rx_ring(struct net_device *dev)
1147 struct mc32_local *lp = netdev_priv(dev);
1148 volatile struct skb_header *p;
1149 u16 rx_ring_tail;
1150 u16 rx_old_tail;
1151 int x=0;
1153 rx_old_tail = rx_ring_tail = lp->rx_ring_tail;
1157 p=lp->rx_ring[rx_ring_tail].p;
1159 if(!(p->status & (1<<7))) { /* Not COMPLETED */
1160 break;
1162 if(p->status & (1<<6)) /* COMPLETED_OK */
1165 u16 length=p->length;
1166 struct sk_buff *skb;
1167 struct sk_buff *newskb;
1169 /* Try to save time by avoiding a copy on big frames */
1171 if ((length > RX_COPYBREAK)
1172 && ((newskb=dev_alloc_skb(1532)) != NULL))
1174 skb=lp->rx_ring[rx_ring_tail].skb;
1175 skb_put(skb, length);
1177 skb_reserve(newskb,18);
1178 lp->rx_ring[rx_ring_tail].skb=newskb;
1179 p->data=isa_virt_to_bus(newskb->data);
1181 else
1183 skb=dev_alloc_skb(length+2);
1185 if(skb==NULL) {
1186 dev->stats.rx_dropped++;
1187 goto dropped;
1190 skb_reserve(skb,2);
1191 memcpy(skb_put(skb, length),
1192 lp->rx_ring[rx_ring_tail].skb->data, length);
1195 skb->protocol=eth_type_trans(skb,dev);
1196 dev->stats.rx_packets++;
1197 dev->stats.rx_bytes += length;
1198 netif_rx(skb);
1201 dropped:
1202 p->length = 1532;
1203 p->status = 0;
1205 rx_ring_tail=next_rx(rx_ring_tail);
1207 while(x++<48);
1209 /* If there was actually a frame to be processed, place the EOL bit */
1210 /* at the descriptor prior to the one to be filled next */
1212 if (rx_ring_tail != rx_old_tail)
1214 lp->rx_ring[prev_rx(rx_ring_tail)].p->control |= CONTROL_EOL;
1215 lp->rx_ring[prev_rx(rx_old_tail)].p->control &= ~CONTROL_EOL;
1217 lp->rx_ring_tail=rx_ring_tail;
1223 * mc32_tx_ring - process completed transmits
1224 * @dev: 3c527 that needs its transmit ring processing
1227 * This operates in a similar fashion to mc32_rx_ring. We iterate
1228 * over the transmit ring. For each descriptor which has been
1229 * processed by the card, we free its associated buffer and note
1230 * any errors. This continues until the transmit ring is emptied
1231 * or we reach a descriptor that hasn't yet been processed by the
1232 * card.
1236 static void mc32_tx_ring(struct net_device *dev)
1238 struct mc32_local *lp = netdev_priv(dev);
1239 volatile struct skb_header *np;
1242 * We rely on head==tail to mean 'queue empty'.
1243 * This is why lp->tx_count=TX_RING_LEN-1: in order to prevent
1244 * tx_ring_head wrapping to tail and confusing a 'queue empty'
1245 * condition with 'queue full'
1248 while (lp->tx_ring_tail != atomic_read(&lp->tx_ring_head))
1250 u16 t;
1252 t=next_tx(lp->tx_ring_tail);
1253 np=lp->tx_ring[t].p;
1255 if(!(np->status & (1<<7)))
1257 /* Not COMPLETED */
1258 break;
1260 dev->stats.tx_packets++;
1261 if(!(np->status & (1<<6))) /* Not COMPLETED_OK */
1263 dev->stats.tx_errors++;
1265 switch(np->status&0x0F)
1267 case 1:
1268 dev->stats.tx_aborted_errors++;
1269 break; /* Max collisions */
1270 case 2:
1271 dev->stats.tx_fifo_errors++;
1272 break;
1273 case 3:
1274 dev->stats.tx_carrier_errors++;
1275 break;
1276 case 4:
1277 dev->stats.tx_window_errors++;
1278 break; /* CTS Lost */
1279 case 5:
1280 dev->stats.tx_aborted_errors++;
1281 break; /* Transmit timeout */
1284 /* Packets are sent in order - this is
1285 basically a FIFO queue of buffers matching
1286 the card ring */
1287 dev->stats.tx_bytes+=lp->tx_ring[t].skb->len;
1288 dev_kfree_skb_irq(lp->tx_ring[t].skb);
1289 lp->tx_ring[t].skb=NULL;
1290 atomic_inc(&lp->tx_count);
1291 netif_wake_queue(dev);
1293 lp->tx_ring_tail=t;
1300 * mc32_interrupt - handle an interrupt from a 3c527
1301 * @irq: Interrupt number
1302 * @dev_id: 3c527 that requires servicing
1303 * @regs: Registers (unused)
1306 * An interrupt is raised whenever the 3c527 writes to the command
1307 * register. This register contains the message it wishes to send us
1308 * packed into a single byte field. We keep reading status entries
1309 * until we have processed all the control items, but simply count
1310 * transmit and receive reports. When all reports are in we empty the
1311 * transceiver rings as appropriate. This saves the overhead of
1312 * multiple command requests.
1314 * Because MCA is level-triggered, we shouldn't miss indications.
1315 * Therefore, we needn't ask the card to suspend interrupts within
1316 * this handler. The card receives an implicit acknowledgment of the
1317 * current interrupt when we read the command register.
1321 static irqreturn_t mc32_interrupt(int irq, void *dev_id)
1323 struct net_device *dev = dev_id;
1324 struct mc32_local *lp;
1325 int ioaddr, status, boguscount = 0;
1326 int rx_event = 0;
1327 int tx_event = 0;
1329 ioaddr = dev->base_addr;
1330 lp = netdev_priv(dev);
1332 /* See whats cooking */
1334 while((inb(ioaddr+HOST_STATUS)&HOST_STATUS_CWR) && boguscount++<2000)
1336 status=inb(ioaddr+HOST_CMD);
1338 #ifdef DEBUG_IRQ
1339 printk("Status TX%d RX%d EX%d OV%d BC%d\n",
1340 (status&7), (status>>3)&7, (status>>6)&1,
1341 (status>>7)&1, boguscount);
1342 #endif
1344 switch(status&7)
1346 case 0:
1347 break;
1348 case 6: /* TX fail */
1349 case 2: /* TX ok */
1350 tx_event = 1;
1351 break;
1352 case 3: /* Halt */
1353 case 4: /* Abort */
1354 complete(&lp->xceiver_cmd);
1355 break;
1356 default:
1357 printk("%s: strange tx ack %d\n", dev->name, status&7);
1359 status>>=3;
1360 switch(status&7)
1362 case 0:
1363 break;
1364 case 2: /* RX */
1365 rx_event=1;
1366 break;
1367 case 3: /* Halt */
1368 case 4: /* Abort */
1369 complete(&lp->xceiver_cmd);
1370 break;
1371 case 6:
1372 /* Out of RX buffers stat */
1373 /* Must restart rx */
1374 dev->stats.rx_dropped++;
1375 mc32_rx_ring(dev);
1376 mc32_start_transceiver(dev);
1377 break;
1378 default:
1379 printk("%s: strange rx ack %d\n",
1380 dev->name, status&7);
1382 status>>=3;
1383 if(status&1)
1386 * No thread is waiting: we need to tidy
1387 * up ourself.
1390 if (lp->cmd_nonblocking) {
1391 up(&lp->cmd_mutex);
1392 if (lp->mc_reload_wait)
1393 mc32_reset_multicast_list(dev);
1395 else complete(&lp->execution_cmd);
1397 if(status&2)
1400 * We get interrupted once per
1401 * counter that is about to overflow.
1404 mc32_update_stats(dev);
1410 * Process the transmit and receive rings
1413 if(tx_event)
1414 mc32_tx_ring(dev);
1416 if(rx_event)
1417 mc32_rx_ring(dev);
1419 return IRQ_HANDLED;
1424 * mc32_close - user configuring the 3c527 down
1425 * @dev: 3c527 card to shut down
1427 * The 3c527 is a bus mastering device. We must be careful how we
1428 * shut it down. It may also be running shared interrupt so we have
1429 * to be sure to silence it properly
1431 * We indicate that the card is closing to the rest of the
1432 * driver. Otherwise, it is possible that the card may run out
1433 * of receive buffers and restart the transceiver while we're
1434 * trying to close it.
1436 * We abort any receive and transmits going on and then wait until
1437 * any pending exec commands have completed in other code threads.
1438 * In theory we can't get here while that is true, in practice I am
1439 * paranoid
1441 * We turn off the interrupt enable for the board to be sure it can't
1442 * intefere with other devices.
1445 static int mc32_close(struct net_device *dev)
1447 struct mc32_local *lp = netdev_priv(dev);
1448 int ioaddr = dev->base_addr;
1450 u8 regs;
1451 u16 one=1;
1453 lp->xceiver_desired_state = HALTED;
1454 netif_stop_queue(dev);
1457 * Send the indications on command (handy debug check)
1460 mc32_command(dev, 4, &one, 2);
1462 /* Shut down the transceiver */
1464 mc32_halt_transceiver(dev);
1466 /* Ensure we issue no more commands beyond this point */
1468 down(&lp->cmd_mutex);
1470 /* Ok the card is now stopping */
1472 regs=inb(ioaddr+HOST_CTRL);
1473 regs&=~HOST_CTRL_INTE;
1474 outb(regs, ioaddr+HOST_CTRL);
1476 mc32_flush_rx_ring(dev);
1477 mc32_flush_tx_ring(dev);
1479 mc32_update_stats(dev);
1481 return 0;
1486 * mc32_get_stats - hand back stats to network layer
1487 * @dev: The 3c527 card to handle
1489 * We've collected all the stats we can in software already. Now
1490 * it's time to update those kept on-card and return the lot.
1494 static struct net_device_stats *mc32_get_stats(struct net_device *dev)
1496 mc32_update_stats(dev);
1497 return &dev->stats;
1502 * do_mc32_set_multicast_list - attempt to update multicasts
1503 * @dev: 3c527 device to load the list on
1504 * @retry: indicates this is not the first call.
1507 * Actually set or clear the multicast filter for this adaptor. The
1508 * locking issues are handled by this routine. We have to track
1509 * state as it may take multiple calls to get the command sequence
1510 * completed. We just keep trying to schedule the loads until we
1511 * manage to process them all.
1513 * num_addrs == -1 Promiscuous mode, receive all packets
1515 * num_addrs == 0 Normal mode, clear multicast list
1517 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1518 * and do best-effort filtering.
1520 * See mc32_update_stats() regards setting the SAV BP bit.
1524 static void do_mc32_set_multicast_list(struct net_device *dev, int retry)
1526 struct mc32_local *lp = netdev_priv(dev);
1527 u16 filt = (1<<2); /* Save Bad Packets, for stats purposes */
1529 if ((dev->flags&IFF_PROMISC) ||
1530 (dev->flags&IFF_ALLMULTI) ||
1531 dev->mc_count > 10)
1532 /* Enable promiscuous mode */
1533 filt |= 1;
1534 else if(dev->mc_count)
1536 unsigned char block[62];
1537 unsigned char *bp;
1538 struct dev_mc_list *dmc=dev->mc_list;
1540 int i;
1542 if(retry==0)
1543 lp->mc_list_valid = 0;
1544 if(!lp->mc_list_valid)
1546 block[1]=0;
1547 block[0]=dev->mc_count;
1548 bp=block+2;
1550 for(i=0;i<dev->mc_count;i++)
1552 memcpy(bp, dmc->dmi_addr, 6);
1553 bp+=6;
1554 dmc=dmc->next;
1556 if(mc32_command_nowait(dev, 2, block, 2+6*dev->mc_count)==-1)
1558 lp->mc_reload_wait = 1;
1559 return;
1561 lp->mc_list_valid=1;
1565 if(mc32_command_nowait(dev, 0, &filt, 2)==-1)
1567 lp->mc_reload_wait = 1;
1569 else {
1570 lp->mc_reload_wait = 0;
1576 * mc32_set_multicast_list - queue multicast list update
1577 * @dev: The 3c527 to use
1579 * Commence loading the multicast list. This is called when the kernel
1580 * changes the lists. It will override any pending list we are trying to
1581 * load.
1584 static void mc32_set_multicast_list(struct net_device *dev)
1586 do_mc32_set_multicast_list(dev,0);
1591 * mc32_reset_multicast_list - reset multicast list
1592 * @dev: The 3c527 to use
1594 * Attempt the next step in loading the multicast lists. If this attempt
1595 * fails to complete then it will be scheduled and this function called
1596 * again later from elsewhere.
1599 static void mc32_reset_multicast_list(struct net_device *dev)
1601 do_mc32_set_multicast_list(dev,1);
1604 static void netdev_get_drvinfo(struct net_device *dev,
1605 struct ethtool_drvinfo *info)
1607 strcpy(info->driver, DRV_NAME);
1608 strcpy(info->version, DRV_VERSION);
1609 sprintf(info->bus_info, "MCA 0x%lx", dev->base_addr);
1612 static u32 netdev_get_msglevel(struct net_device *dev)
1614 return mc32_debug;
1617 static void netdev_set_msglevel(struct net_device *dev, u32 level)
1619 mc32_debug = level;
1622 static const struct ethtool_ops netdev_ethtool_ops = {
1623 .get_drvinfo = netdev_get_drvinfo,
1624 .get_msglevel = netdev_get_msglevel,
1625 .set_msglevel = netdev_set_msglevel,
1628 #ifdef MODULE
1630 static struct net_device *this_device;
1633 * init_module - entry point
1635 * Probe and locate a 3c527 card. This really should probe and locate
1636 * all the 3c527 cards in the machine not just one of them. Yes you can
1637 * insmod multiple modules for now but it's a hack.
1640 int __init init_module(void)
1642 this_device = mc32_probe(-1);
1643 if (IS_ERR(this_device))
1644 return PTR_ERR(this_device);
1645 return 0;
1649 * cleanup_module - free resources for an unload
1651 * Unloading time. We release the MCA bus resources and the interrupt
1652 * at which point everything is ready to unload. The card must be stopped
1653 * at this point or we would not have been called. When we unload we
1654 * leave the card stopped but not totally shut down. When the card is
1655 * initialized it must be rebooted or the rings reloaded before any
1656 * transmit operations are allowed to start scribbling into memory.
1659 void __exit cleanup_module(void)
1661 unregister_netdev(this_device);
1662 cleanup_card(this_device);
1663 free_netdev(this_device);
1666 #endif /* MODULE */