Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[linux-2.6/mini2440.git] / drivers / char / istallion.c
blobfff19f7e29d25eac8c7cfbb4903638107dd8561c
1 /*****************************************************************************/
3 /*
4 * istallion.c -- stallion intelligent multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
19 /*****************************************************************************/
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/tty.h>
25 #include <linux/tty_flip.h>
26 #include <linux/serial.h>
27 #include <linux/seq_file.h>
28 #include <linux/cdk.h>
29 #include <linux/comstats.h>
30 #include <linux/istallion.h>
31 #include <linux/ioport.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/device.h>
35 #include <linux/wait.h>
36 #include <linux/eisa.h>
37 #include <linux/ctype.h>
39 #include <asm/io.h>
40 #include <asm/uaccess.h>
42 #include <linux/pci.h>
44 /*****************************************************************************/
47 * Define different board types. Not all of the following board types
48 * are supported by this driver. But I will use the standard "assigned"
49 * board numbers. Currently supported boards are abbreviated as:
50 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
51 * STAL = Stallion.
53 #define BRD_UNKNOWN 0
54 #define BRD_STALLION 1
55 #define BRD_BRUMBY4 2
56 #define BRD_ONBOARD2 3
57 #define BRD_ONBOARD 4
58 #define BRD_ONBOARDE 7
59 #define BRD_ECP 23
60 #define BRD_ECPE 24
61 #define BRD_ECPMC 25
62 #define BRD_ECPPCI 29
64 #define BRD_BRUMBY BRD_BRUMBY4
67 * Define a configuration structure to hold the board configuration.
68 * Need to set this up in the code (for now) with the boards that are
69 * to be configured into the system. This is what needs to be modified
70 * when adding/removing/modifying boards. Each line entry in the
71 * stli_brdconf[] array is a board. Each line contains io/irq/memory
72 * ranges for that board (as well as what type of board it is).
73 * Some examples:
74 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
75 * This line will configure an EasyConnection 8/64 at io address 2a0,
76 * and shared memory address of cc000. Multiple EasyConnection 8/64
77 * boards can share the same shared memory address space. No interrupt
78 * is required for this board type.
79 * Another example:
80 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
81 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
82 * shared memory address of 0x80000000 (2 GByte). Multiple
83 * EasyConnection 8/64 EISA boards can share the same shared memory
84 * address space. No interrupt is required for this board type.
85 * Another example:
86 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
87 * This line will configure an ONboard (ISA type) at io address 240,
88 * and shared memory address of d0000. Multiple ONboards can share
89 * the same shared memory address space. No interrupt required.
90 * Another example:
91 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
92 * This line will configure a Brumby board (any number of ports!) at
93 * io address 360 and shared memory address of c8000. All Brumby boards
94 * configured into a system must have their own separate io and memory
95 * addresses. No interrupt is required.
96 * Another example:
97 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
98 * This line will configure an original Stallion board at io address 330
99 * and shared memory address d0000 (this would only be valid for a "V4.0"
100 * or Rev.O Stallion board). All Stallion boards configured into the
101 * system must have their own separate io and memory addresses. No
102 * interrupt is required.
105 struct stlconf {
106 int brdtype;
107 int ioaddr1;
108 int ioaddr2;
109 unsigned long memaddr;
110 int irq;
111 int irqtype;
114 static unsigned int stli_nrbrds;
116 /* stli_lock must NOT be taken holding brd_lock */
117 static spinlock_t stli_lock; /* TTY logic lock */
118 static spinlock_t brd_lock; /* Board logic lock */
121 * There is some experimental EISA board detection code in this driver.
122 * By default it is disabled, but for those that want to try it out,
123 * then set the define below to be 1.
125 #define STLI_EISAPROBE 0
127 /*****************************************************************************/
130 * Define some important driver characteristics. Device major numbers
131 * allocated as per Linux Device Registry.
133 #ifndef STL_SIOMEMMAJOR
134 #define STL_SIOMEMMAJOR 28
135 #endif
136 #ifndef STL_SERIALMAJOR
137 #define STL_SERIALMAJOR 24
138 #endif
139 #ifndef STL_CALLOUTMAJOR
140 #define STL_CALLOUTMAJOR 25
141 #endif
143 /*****************************************************************************/
146 * Define our local driver identity first. Set up stuff to deal with
147 * all the local structures required by a serial tty driver.
149 static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
150 static char *stli_drvname = "istallion";
151 static char *stli_drvversion = "5.6.0";
152 static char *stli_serialname = "ttyE";
154 static struct tty_driver *stli_serial;
155 static const struct tty_port_operations stli_port_ops;
157 #define STLI_TXBUFSIZE 4096
160 * Use a fast local buffer for cooked characters. Typically a whole
161 * bunch of cooked characters come in for a port, 1 at a time. So we
162 * save those up into a local buffer, then write out the whole lot
163 * with a large memcpy. Just use 1 buffer for all ports, since its
164 * use it is only need for short periods of time by each port.
166 static char *stli_txcookbuf;
167 static int stli_txcooksize;
168 static int stli_txcookrealsize;
169 static struct tty_struct *stli_txcooktty;
172 * Define a local default termios struct. All ports will be created
173 * with this termios initially. Basically all it defines is a raw port
174 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
176 static struct ktermios stli_deftermios = {
177 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
178 .c_cc = INIT_C_CC,
179 .c_ispeed = 9600,
180 .c_ospeed = 9600,
184 * Define global stats structures. Not used often, and can be
185 * re-used for each stats call.
187 static comstats_t stli_comstats;
188 static combrd_t stli_brdstats;
189 static struct asystats stli_cdkstats;
191 /*****************************************************************************/
193 static DEFINE_MUTEX(stli_brdslock);
194 static struct stlibrd *stli_brds[STL_MAXBRDS];
196 static int stli_shared;
199 * Per board state flags. Used with the state field of the board struct.
200 * Not really much here... All we need to do is keep track of whether
201 * the board has been detected, and whether it is actually running a slave
202 * or not.
204 #define BST_FOUND 0x1
205 #define BST_STARTED 0x2
206 #define BST_PROBED 0x4
209 * Define the set of port state flags. These are marked for internal
210 * state purposes only, usually to do with the state of communications
211 * with the slave. Most of them need to be updated atomically, so always
212 * use the bit setting operations (unless protected by cli/sti).
214 #define ST_INITIALIZING 1
215 #define ST_OPENING 2
216 #define ST_CLOSING 3
217 #define ST_CMDING 4
218 #define ST_TXBUSY 5
219 #define ST_RXING 6
220 #define ST_DOFLUSHRX 7
221 #define ST_DOFLUSHTX 8
222 #define ST_DOSIGS 9
223 #define ST_RXSTOP 10
224 #define ST_GETSIGS 11
227 * Define an array of board names as printable strings. Handy for
228 * referencing boards when printing trace and stuff.
230 static char *stli_brdnames[] = {
231 "Unknown",
232 "Stallion",
233 "Brumby",
234 "ONboard-MC",
235 "ONboard",
236 "Brumby",
237 "Brumby",
238 "ONboard-EI",
239 NULL,
240 "ONboard",
241 "ONboard-MC",
242 "ONboard-MC",
243 NULL,
244 NULL,
245 NULL,
246 NULL,
247 NULL,
248 NULL,
249 NULL,
250 NULL,
251 "EasyIO",
252 "EC8/32-AT",
253 "EC8/32-MC",
254 "EC8/64-AT",
255 "EC8/64-EI",
256 "EC8/64-MC",
257 "EC8/32-PCI",
258 "EC8/64-PCI",
259 "EasyIO-PCI",
260 "EC/RA-PCI",
263 /*****************************************************************************/
266 * Define some string labels for arguments passed from the module
267 * load line. These allow for easy board definitions, and easy
268 * modification of the io, memory and irq resoucres.
271 static char *board0[8];
272 static char *board1[8];
273 static char *board2[8];
274 static char *board3[8];
276 static char **stli_brdsp[] = {
277 (char **) &board0,
278 (char **) &board1,
279 (char **) &board2,
280 (char **) &board3
284 * Define a set of common board names, and types. This is used to
285 * parse any module arguments.
288 static struct stlibrdtype {
289 char *name;
290 int type;
291 } stli_brdstr[] = {
292 { "stallion", BRD_STALLION },
293 { "1", BRD_STALLION },
294 { "brumby", BRD_BRUMBY },
295 { "brumby4", BRD_BRUMBY },
296 { "brumby/4", BRD_BRUMBY },
297 { "brumby-4", BRD_BRUMBY },
298 { "brumby8", BRD_BRUMBY },
299 { "brumby/8", BRD_BRUMBY },
300 { "brumby-8", BRD_BRUMBY },
301 { "brumby16", BRD_BRUMBY },
302 { "brumby/16", BRD_BRUMBY },
303 { "brumby-16", BRD_BRUMBY },
304 { "2", BRD_BRUMBY },
305 { "onboard2", BRD_ONBOARD2 },
306 { "onboard-2", BRD_ONBOARD2 },
307 { "onboard/2", BRD_ONBOARD2 },
308 { "onboard-mc", BRD_ONBOARD2 },
309 { "onboard/mc", BRD_ONBOARD2 },
310 { "onboard-mca", BRD_ONBOARD2 },
311 { "onboard/mca", BRD_ONBOARD2 },
312 { "3", BRD_ONBOARD2 },
313 { "onboard", BRD_ONBOARD },
314 { "onboardat", BRD_ONBOARD },
315 { "4", BRD_ONBOARD },
316 { "onboarde", BRD_ONBOARDE },
317 { "onboard-e", BRD_ONBOARDE },
318 { "onboard/e", BRD_ONBOARDE },
319 { "onboard-ei", BRD_ONBOARDE },
320 { "onboard/ei", BRD_ONBOARDE },
321 { "7", BRD_ONBOARDE },
322 { "ecp", BRD_ECP },
323 { "ecpat", BRD_ECP },
324 { "ec8/64", BRD_ECP },
325 { "ec8/64-at", BRD_ECP },
326 { "ec8/64-isa", BRD_ECP },
327 { "23", BRD_ECP },
328 { "ecpe", BRD_ECPE },
329 { "ecpei", BRD_ECPE },
330 { "ec8/64-e", BRD_ECPE },
331 { "ec8/64-ei", BRD_ECPE },
332 { "24", BRD_ECPE },
333 { "ecpmc", BRD_ECPMC },
334 { "ec8/64-mc", BRD_ECPMC },
335 { "ec8/64-mca", BRD_ECPMC },
336 { "25", BRD_ECPMC },
337 { "ecppci", BRD_ECPPCI },
338 { "ec/ra", BRD_ECPPCI },
339 { "ec/ra-pc", BRD_ECPPCI },
340 { "ec/ra-pci", BRD_ECPPCI },
341 { "29", BRD_ECPPCI },
345 * Define the module agruments.
347 MODULE_AUTHOR("Greg Ungerer");
348 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
349 MODULE_LICENSE("GPL");
352 module_param_array(board0, charp, NULL, 0);
353 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
354 module_param_array(board1, charp, NULL, 0);
355 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
356 module_param_array(board2, charp, NULL, 0);
357 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
358 module_param_array(board3, charp, NULL, 0);
359 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
361 #if STLI_EISAPROBE != 0
363 * Set up a default memory address table for EISA board probing.
364 * The default addresses are all bellow 1Mbyte, which has to be the
365 * case anyway. They should be safe, since we only read values from
366 * them, and interrupts are disabled while we do it. If the higher
367 * memory support is compiled in then we also try probing around
368 * the 1Gb, 2Gb and 3Gb areas as well...
370 static unsigned long stli_eisamemprobeaddrs[] = {
371 0xc0000, 0xd0000, 0xe0000, 0xf0000,
372 0x80000000, 0x80010000, 0x80020000, 0x80030000,
373 0x40000000, 0x40010000, 0x40020000, 0x40030000,
374 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
375 0xff000000, 0xff010000, 0xff020000, 0xff030000,
378 static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
379 #endif
382 * Define the Stallion PCI vendor and device IDs.
384 #ifndef PCI_DEVICE_ID_ECRA
385 #define PCI_DEVICE_ID_ECRA 0x0004
386 #endif
388 static struct pci_device_id istallion_pci_tbl[] = {
389 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA), },
390 { 0 }
392 MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
394 static struct pci_driver stli_pcidriver;
396 /*****************************************************************************/
399 * Hardware configuration info for ECP boards. These defines apply
400 * to the directly accessible io ports of the ECP. There is a set of
401 * defines for each ECP board type, ISA, EISA, MCA and PCI.
403 #define ECP_IOSIZE 4
405 #define ECP_MEMSIZE (128 * 1024)
406 #define ECP_PCIMEMSIZE (256 * 1024)
408 #define ECP_ATPAGESIZE (4 * 1024)
409 #define ECP_MCPAGESIZE (4 * 1024)
410 #define ECP_EIPAGESIZE (64 * 1024)
411 #define ECP_PCIPAGESIZE (64 * 1024)
413 #define STL_EISAID 0x8c4e
416 * Important defines for the ISA class of ECP board.
418 #define ECP_ATIREG 0
419 #define ECP_ATCONFR 1
420 #define ECP_ATMEMAR 2
421 #define ECP_ATMEMPR 3
422 #define ECP_ATSTOP 0x1
423 #define ECP_ATINTENAB 0x10
424 #define ECP_ATENABLE 0x20
425 #define ECP_ATDISABLE 0x00
426 #define ECP_ATADDRMASK 0x3f000
427 #define ECP_ATADDRSHFT 12
430 * Important defines for the EISA class of ECP board.
432 #define ECP_EIIREG 0
433 #define ECP_EIMEMARL 1
434 #define ECP_EICONFR 2
435 #define ECP_EIMEMARH 3
436 #define ECP_EIENABLE 0x1
437 #define ECP_EIDISABLE 0x0
438 #define ECP_EISTOP 0x4
439 #define ECP_EIEDGE 0x00
440 #define ECP_EILEVEL 0x80
441 #define ECP_EIADDRMASKL 0x00ff0000
442 #define ECP_EIADDRSHFTL 16
443 #define ECP_EIADDRMASKH 0xff000000
444 #define ECP_EIADDRSHFTH 24
445 #define ECP_EIBRDENAB 0xc84
447 #define ECP_EISAID 0x4
450 * Important defines for the Micro-channel class of ECP board.
451 * (It has a lot in common with the ISA boards.)
453 #define ECP_MCIREG 0
454 #define ECP_MCCONFR 1
455 #define ECP_MCSTOP 0x20
456 #define ECP_MCENABLE 0x80
457 #define ECP_MCDISABLE 0x00
460 * Important defines for the PCI class of ECP board.
461 * (It has a lot in common with the other ECP boards.)
463 #define ECP_PCIIREG 0
464 #define ECP_PCICONFR 1
465 #define ECP_PCISTOP 0x01
468 * Hardware configuration info for ONboard and Brumby boards. These
469 * defines apply to the directly accessible io ports of these boards.
471 #define ONB_IOSIZE 16
472 #define ONB_MEMSIZE (64 * 1024)
473 #define ONB_ATPAGESIZE (64 * 1024)
474 #define ONB_MCPAGESIZE (64 * 1024)
475 #define ONB_EIMEMSIZE (128 * 1024)
476 #define ONB_EIPAGESIZE (64 * 1024)
479 * Important defines for the ISA class of ONboard board.
481 #define ONB_ATIREG 0
482 #define ONB_ATMEMAR 1
483 #define ONB_ATCONFR 2
484 #define ONB_ATSTOP 0x4
485 #define ONB_ATENABLE 0x01
486 #define ONB_ATDISABLE 0x00
487 #define ONB_ATADDRMASK 0xff0000
488 #define ONB_ATADDRSHFT 16
490 #define ONB_MEMENABLO 0
491 #define ONB_MEMENABHI 0x02
494 * Important defines for the EISA class of ONboard board.
496 #define ONB_EIIREG 0
497 #define ONB_EIMEMARL 1
498 #define ONB_EICONFR 2
499 #define ONB_EIMEMARH 3
500 #define ONB_EIENABLE 0x1
501 #define ONB_EIDISABLE 0x0
502 #define ONB_EISTOP 0x4
503 #define ONB_EIEDGE 0x00
504 #define ONB_EILEVEL 0x80
505 #define ONB_EIADDRMASKL 0x00ff0000
506 #define ONB_EIADDRSHFTL 16
507 #define ONB_EIADDRMASKH 0xff000000
508 #define ONB_EIADDRSHFTH 24
509 #define ONB_EIBRDENAB 0xc84
511 #define ONB_EISAID 0x1
514 * Important defines for the Brumby boards. They are pretty simple,
515 * there is not much that is programmably configurable.
517 #define BBY_IOSIZE 16
518 #define BBY_MEMSIZE (64 * 1024)
519 #define BBY_PAGESIZE (16 * 1024)
521 #define BBY_ATIREG 0
522 #define BBY_ATCONFR 1
523 #define BBY_ATSTOP 0x4
526 * Important defines for the Stallion boards. They are pretty simple,
527 * there is not much that is programmably configurable.
529 #define STAL_IOSIZE 16
530 #define STAL_MEMSIZE (64 * 1024)
531 #define STAL_PAGESIZE (64 * 1024)
534 * Define the set of status register values for EasyConnection panels.
535 * The signature will return with the status value for each panel. From
536 * this we can determine what is attached to the board - before we have
537 * actually down loaded any code to it.
539 #define ECH_PNLSTATUS 2
540 #define ECH_PNL16PORT 0x20
541 #define ECH_PNLIDMASK 0x07
542 #define ECH_PNLXPID 0x40
543 #define ECH_PNLINTRPEND 0x80
546 * Define some macros to do things to the board. Even those these boards
547 * are somewhat related there is often significantly different ways of
548 * doing some operation on it (like enable, paging, reset, etc). So each
549 * board class has a set of functions which do the commonly required
550 * operations. The macros below basically just call these functions,
551 * generally checking for a NULL function - which means that the board
552 * needs nothing done to it to achieve this operation!
554 #define EBRDINIT(brdp) \
555 if (brdp->init != NULL) \
556 (* brdp->init)(brdp)
558 #define EBRDENABLE(brdp) \
559 if (brdp->enable != NULL) \
560 (* brdp->enable)(brdp);
562 #define EBRDDISABLE(brdp) \
563 if (brdp->disable != NULL) \
564 (* brdp->disable)(brdp);
566 #define EBRDINTR(brdp) \
567 if (brdp->intr != NULL) \
568 (* brdp->intr)(brdp);
570 #define EBRDRESET(brdp) \
571 if (brdp->reset != NULL) \
572 (* brdp->reset)(brdp);
574 #define EBRDGETMEMPTR(brdp,offset) \
575 (* brdp->getmemptr)(brdp, offset, __LINE__)
578 * Define the maximal baud rate, and the default baud base for ports.
580 #define STL_MAXBAUD 460800
581 #define STL_BAUDBASE 115200
582 #define STL_CLOSEDELAY (5 * HZ / 10)
584 /*****************************************************************************/
587 * Define macros to extract a brd or port number from a minor number.
589 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
590 #define MINOR2PORT(min) ((min) & 0x3f)
592 /*****************************************************************************/
595 * Prototype all functions in this driver!
598 static int stli_parsebrd(struct stlconf *confp, char **argp);
599 static int stli_open(struct tty_struct *tty, struct file *filp);
600 static void stli_close(struct tty_struct *tty, struct file *filp);
601 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
602 static int stli_putchar(struct tty_struct *tty, unsigned char ch);
603 static void stli_flushchars(struct tty_struct *tty);
604 static int stli_writeroom(struct tty_struct *tty);
605 static int stli_charsinbuffer(struct tty_struct *tty);
606 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
607 static void stli_settermios(struct tty_struct *tty, struct ktermios *old);
608 static void stli_throttle(struct tty_struct *tty);
609 static void stli_unthrottle(struct tty_struct *tty);
610 static void stli_stop(struct tty_struct *tty);
611 static void stli_start(struct tty_struct *tty);
612 static void stli_flushbuffer(struct tty_struct *tty);
613 static int stli_breakctl(struct tty_struct *tty, int state);
614 static void stli_waituntilsent(struct tty_struct *tty, int timeout);
615 static void stli_sendxchar(struct tty_struct *tty, char ch);
616 static void stli_hangup(struct tty_struct *tty);
618 static int stli_brdinit(struct stlibrd *brdp);
619 static int stli_startbrd(struct stlibrd *brdp);
620 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
621 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
622 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
623 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp);
624 static void stli_poll(unsigned long arg);
625 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp);
626 static int stli_initopen(struct tty_struct *tty, struct stlibrd *brdp, struct stliport *portp);
627 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
628 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
629 static int stli_setport(struct tty_struct *tty);
630 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
631 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
632 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
633 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp);
634 static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp, asyport_t *pp, struct ktermios *tiosp);
635 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
636 static long stli_mktiocm(unsigned long sigvalue);
637 static void stli_read(struct stlibrd *brdp, struct stliport *portp);
638 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp);
639 static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp);
640 static int stli_getbrdstats(combrd_t __user *bp);
641 static int stli_getportstats(struct tty_struct *tty, struct stliport *portp, comstats_t __user *cp);
642 static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp);
643 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp);
644 static int stli_getportstruct(struct stliport __user *arg);
645 static int stli_getbrdstruct(struct stlibrd __user *arg);
646 static struct stlibrd *stli_allocbrd(void);
648 static void stli_ecpinit(struct stlibrd *brdp);
649 static void stli_ecpenable(struct stlibrd *brdp);
650 static void stli_ecpdisable(struct stlibrd *brdp);
651 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
652 static void stli_ecpreset(struct stlibrd *brdp);
653 static void stli_ecpintr(struct stlibrd *brdp);
654 static void stli_ecpeiinit(struct stlibrd *brdp);
655 static void stli_ecpeienable(struct stlibrd *brdp);
656 static void stli_ecpeidisable(struct stlibrd *brdp);
657 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
658 static void stli_ecpeireset(struct stlibrd *brdp);
659 static void stli_ecpmcenable(struct stlibrd *brdp);
660 static void stli_ecpmcdisable(struct stlibrd *brdp);
661 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
662 static void stli_ecpmcreset(struct stlibrd *brdp);
663 static void stli_ecppciinit(struct stlibrd *brdp);
664 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
665 static void stli_ecppcireset(struct stlibrd *brdp);
667 static void stli_onbinit(struct stlibrd *brdp);
668 static void stli_onbenable(struct stlibrd *brdp);
669 static void stli_onbdisable(struct stlibrd *brdp);
670 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
671 static void stli_onbreset(struct stlibrd *brdp);
672 static void stli_onbeinit(struct stlibrd *brdp);
673 static void stli_onbeenable(struct stlibrd *brdp);
674 static void stli_onbedisable(struct stlibrd *brdp);
675 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
676 static void stli_onbereset(struct stlibrd *brdp);
677 static void stli_bbyinit(struct stlibrd *brdp);
678 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
679 static void stli_bbyreset(struct stlibrd *brdp);
680 static void stli_stalinit(struct stlibrd *brdp);
681 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
682 static void stli_stalreset(struct stlibrd *brdp);
684 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr, unsigned int portnr);
686 static int stli_initecp(struct stlibrd *brdp);
687 static int stli_initonb(struct stlibrd *brdp);
688 #if STLI_EISAPROBE != 0
689 static int stli_eisamemprobe(struct stlibrd *brdp);
690 #endif
691 static int stli_initports(struct stlibrd *brdp);
693 /*****************************************************************************/
696 * Define the driver info for a user level shared memory device. This
697 * device will work sort of like the /dev/kmem device - except that it
698 * will give access to the shared memory on the Stallion intelligent
699 * board. This is also a very useful debugging tool.
701 static const struct file_operations stli_fsiomem = {
702 .owner = THIS_MODULE,
703 .read = stli_memread,
704 .write = stli_memwrite,
705 .ioctl = stli_memioctl,
708 /*****************************************************************************/
711 * Define a timer_list entry for our poll routine. The slave board
712 * is polled every so often to see if anything needs doing. This is
713 * much cheaper on host cpu than using interrupts. It turns out to
714 * not increase character latency by much either...
716 static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
718 static int stli_timeron;
721 * Define the calculation for the timeout routine.
723 #define STLI_TIMEOUT (jiffies + 1)
725 /*****************************************************************************/
727 static struct class *istallion_class;
729 static void stli_cleanup_ports(struct stlibrd *brdp)
731 struct stliport *portp;
732 unsigned int j;
733 struct tty_struct *tty;
735 for (j = 0; j < STL_MAXPORTS; j++) {
736 portp = brdp->ports[j];
737 if (portp != NULL) {
738 tty = tty_port_tty_get(&portp->port);
739 if (tty != NULL) {
740 tty_hangup(tty);
741 tty_kref_put(tty);
743 kfree(portp);
748 /*****************************************************************************/
751 * Parse the supplied argument string, into the board conf struct.
754 static int stli_parsebrd(struct stlconf *confp, char **argp)
756 unsigned int i;
757 char *sp;
759 if (argp[0] == NULL || *argp[0] == 0)
760 return 0;
762 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
763 *sp = tolower(*sp);
765 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
766 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
767 break;
769 if (i == ARRAY_SIZE(stli_brdstr)) {
770 printk(KERN_WARNING "istallion: unknown board name, %s?\n", argp[0]);
771 return 0;
774 confp->brdtype = stli_brdstr[i].type;
775 if (argp[1] != NULL && *argp[1] != 0)
776 confp->ioaddr1 = simple_strtoul(argp[1], NULL, 0);
777 if (argp[2] != NULL && *argp[2] != 0)
778 confp->memaddr = simple_strtoul(argp[2], NULL, 0);
779 return(1);
782 /*****************************************************************************/
784 static int stli_open(struct tty_struct *tty, struct file *filp)
786 struct stlibrd *brdp;
787 struct stliport *portp;
788 struct tty_port *port;
789 unsigned int minordev, brdnr, portnr;
790 int rc;
792 minordev = tty->index;
793 brdnr = MINOR2BRD(minordev);
794 if (brdnr >= stli_nrbrds)
795 return -ENODEV;
796 brdp = stli_brds[brdnr];
797 if (brdp == NULL)
798 return -ENODEV;
799 if ((brdp->state & BST_STARTED) == 0)
800 return -ENODEV;
801 portnr = MINOR2PORT(minordev);
802 if (portnr > brdp->nrports)
803 return -ENODEV;
805 portp = brdp->ports[portnr];
806 if (portp == NULL)
807 return -ENODEV;
808 if (portp->devnr < 1)
809 return -ENODEV;
810 port = &portp->port;
813 * On the first open of the device setup the port hardware, and
814 * initialize the per port data structure. Since initializing the port
815 * requires several commands to the board we will need to wait for any
816 * other open that is already initializing the port.
818 * Review - locking
820 tty_port_tty_set(port, tty);
821 tty->driver_data = portp;
822 port->count++;
824 wait_event_interruptible(portp->raw_wait,
825 !test_bit(ST_INITIALIZING, &portp->state));
826 if (signal_pending(current))
827 return -ERESTARTSYS;
829 if ((portp->port.flags & ASYNC_INITIALIZED) == 0) {
830 set_bit(ST_INITIALIZING, &portp->state);
831 if ((rc = stli_initopen(tty, brdp, portp)) >= 0) {
832 /* Locking */
833 port->flags |= ASYNC_INITIALIZED;
834 clear_bit(TTY_IO_ERROR, &tty->flags);
836 clear_bit(ST_INITIALIZING, &portp->state);
837 wake_up_interruptible(&portp->raw_wait);
838 if (rc < 0)
839 return rc;
841 return tty_port_block_til_ready(&portp->port, tty, filp);
844 /*****************************************************************************/
846 static void stli_close(struct tty_struct *tty, struct file *filp)
848 struct stlibrd *brdp;
849 struct stliport *portp;
850 struct tty_port *port;
851 unsigned long flags;
853 portp = tty->driver_data;
854 if (portp == NULL)
855 return;
856 port = &portp->port;
858 if (tty_port_close_start(port, tty, filp) == 0)
859 return;
862 * May want to wait for data to drain before closing. The BUSY flag
863 * keeps track of whether we are still transmitting or not. It is
864 * updated by messages from the slave - indicating when all chars
865 * really have drained.
867 spin_lock_irqsave(&stli_lock, flags);
868 if (tty == stli_txcooktty)
869 stli_flushchars(tty);
870 spin_unlock_irqrestore(&stli_lock, flags);
872 /* We end up doing this twice for the moment. This needs looking at
873 eventually. Note we still use portp->closing_wait as a result */
874 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
875 tty_wait_until_sent(tty, portp->closing_wait);
877 /* FIXME: port locking here needs attending to */
878 port->flags &= ~ASYNC_INITIALIZED;
880 brdp = stli_brds[portp->brdnr];
881 stli_rawclose(brdp, portp, 0, 0);
882 if (tty->termios->c_cflag & HUPCL) {
883 stli_mkasysigs(&portp->asig, 0, 0);
884 if (test_bit(ST_CMDING, &portp->state))
885 set_bit(ST_DOSIGS, &portp->state);
886 else
887 stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
888 sizeof(asysigs_t), 0);
890 clear_bit(ST_TXBUSY, &portp->state);
891 clear_bit(ST_RXSTOP, &portp->state);
892 set_bit(TTY_IO_ERROR, &tty->flags);
893 tty_ldisc_flush(tty);
894 set_bit(ST_DOFLUSHRX, &portp->state);
895 stli_flushbuffer(tty);
897 tty_port_close_end(port, tty);
898 tty_port_tty_set(port, NULL);
901 /*****************************************************************************/
904 * Carry out first open operations on a port. This involves a number of
905 * commands to be sent to the slave. We need to open the port, set the
906 * notification events, set the initial port settings, get and set the
907 * initial signal values. We sleep and wait in between each one. But
908 * this still all happens pretty quickly.
911 static int stli_initopen(struct tty_struct *tty,
912 struct stlibrd *brdp, struct stliport *portp)
914 asynotify_t nt;
915 asyport_t aport;
916 int rc;
918 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
919 return rc;
921 memset(&nt, 0, sizeof(asynotify_t));
922 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
923 nt.signal = SG_DCD;
924 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
925 sizeof(asynotify_t), 0)) < 0)
926 return rc;
928 stli_mkasyport(tty, portp, &aport, tty->termios);
929 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
930 sizeof(asyport_t), 0)) < 0)
931 return rc;
933 set_bit(ST_GETSIGS, &portp->state);
934 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
935 sizeof(asysigs_t), 1)) < 0)
936 return rc;
937 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
938 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
939 stli_mkasysigs(&portp->asig, 1, 1);
940 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
941 sizeof(asysigs_t), 0)) < 0)
942 return rc;
944 return 0;
947 /*****************************************************************************/
950 * Send an open message to the slave. This will sleep waiting for the
951 * acknowledgement, so must have user context. We need to co-ordinate
952 * with close events here, since we don't want open and close events
953 * to overlap.
956 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
958 cdkhdr_t __iomem *hdrp;
959 cdkctrl_t __iomem *cp;
960 unsigned char __iomem *bits;
961 unsigned long flags;
962 int rc;
965 * Send a message to the slave to open this port.
969 * Slave is already closing this port. This can happen if a hangup
970 * occurs on this port. So we must wait until it is complete. The
971 * order of opens and closes may not be preserved across shared
972 * memory, so we must wait until it is complete.
974 wait_event_interruptible(portp->raw_wait,
975 !test_bit(ST_CLOSING, &portp->state));
976 if (signal_pending(current)) {
977 return -ERESTARTSYS;
981 * Everything is ready now, so write the open message into shared
982 * memory. Once the message is in set the service bits to say that
983 * this port wants service.
985 spin_lock_irqsave(&brd_lock, flags);
986 EBRDENABLE(brdp);
987 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
988 writel(arg, &cp->openarg);
989 writeb(1, &cp->open);
990 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
991 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
992 portp->portidx;
993 writeb(readb(bits) | portp->portbit, bits);
994 EBRDDISABLE(brdp);
996 if (wait == 0) {
997 spin_unlock_irqrestore(&brd_lock, flags);
998 return 0;
1002 * Slave is in action, so now we must wait for the open acknowledgment
1003 * to come back.
1005 rc = 0;
1006 set_bit(ST_OPENING, &portp->state);
1007 spin_unlock_irqrestore(&brd_lock, flags);
1009 wait_event_interruptible(portp->raw_wait,
1010 !test_bit(ST_OPENING, &portp->state));
1011 if (signal_pending(current))
1012 rc = -ERESTARTSYS;
1014 if ((rc == 0) && (portp->rc != 0))
1015 rc = -EIO;
1016 return rc;
1019 /*****************************************************************************/
1022 * Send a close message to the slave. Normally this will sleep waiting
1023 * for the acknowledgement, but if wait parameter is 0 it will not. If
1024 * wait is true then must have user context (to sleep).
1027 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1029 cdkhdr_t __iomem *hdrp;
1030 cdkctrl_t __iomem *cp;
1031 unsigned char __iomem *bits;
1032 unsigned long flags;
1033 int rc;
1036 * Slave is already closing this port. This can happen if a hangup
1037 * occurs on this port.
1039 if (wait) {
1040 wait_event_interruptible(portp->raw_wait,
1041 !test_bit(ST_CLOSING, &portp->state));
1042 if (signal_pending(current)) {
1043 return -ERESTARTSYS;
1048 * Write the close command into shared memory.
1050 spin_lock_irqsave(&brd_lock, flags);
1051 EBRDENABLE(brdp);
1052 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1053 writel(arg, &cp->closearg);
1054 writeb(1, &cp->close);
1055 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1056 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1057 portp->portidx;
1058 writeb(readb(bits) |portp->portbit, bits);
1059 EBRDDISABLE(brdp);
1061 set_bit(ST_CLOSING, &portp->state);
1062 spin_unlock_irqrestore(&brd_lock, flags);
1064 if (wait == 0)
1065 return 0;
1068 * Slave is in action, so now we must wait for the open acknowledgment
1069 * to come back.
1071 rc = 0;
1072 wait_event_interruptible(portp->raw_wait,
1073 !test_bit(ST_CLOSING, &portp->state));
1074 if (signal_pending(current))
1075 rc = -ERESTARTSYS;
1077 if ((rc == 0) && (portp->rc != 0))
1078 rc = -EIO;
1079 return rc;
1082 /*****************************************************************************/
1085 * Send a command to the slave and wait for the response. This must
1086 * have user context (it sleeps). This routine is generic in that it
1087 * can send any type of command. Its purpose is to wait for that command
1088 * to complete (as opposed to initiating the command then returning).
1091 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1093 wait_event_interruptible(portp->raw_wait,
1094 !test_bit(ST_CMDING, &portp->state));
1095 if (signal_pending(current))
1096 return -ERESTARTSYS;
1098 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1100 wait_event_interruptible(portp->raw_wait,
1101 !test_bit(ST_CMDING, &portp->state));
1102 if (signal_pending(current))
1103 return -ERESTARTSYS;
1105 if (portp->rc != 0)
1106 return -EIO;
1107 return 0;
1110 /*****************************************************************************/
1113 * Send the termios settings for this port to the slave. This sleeps
1114 * waiting for the command to complete - so must have user context.
1117 static int stli_setport(struct tty_struct *tty)
1119 struct stliport *portp = tty->driver_data;
1120 struct stlibrd *brdp;
1121 asyport_t aport;
1123 if (portp == NULL)
1124 return -ENODEV;
1125 if (portp->brdnr >= stli_nrbrds)
1126 return -ENODEV;
1127 brdp = stli_brds[portp->brdnr];
1128 if (brdp == NULL)
1129 return -ENODEV;
1131 stli_mkasyport(tty, portp, &aport, tty->termios);
1132 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1135 /*****************************************************************************/
1137 static int stli_carrier_raised(struct tty_port *port)
1139 struct stliport *portp = container_of(port, struct stliport, port);
1140 return (portp->sigs & TIOCM_CD) ? 1 : 0;
1143 static void stli_raise_dtr_rts(struct tty_port *port)
1145 struct stliport *portp = container_of(port, struct stliport, port);
1146 struct stlibrd *brdp = stli_brds[portp->brdnr];
1147 stli_mkasysigs(&portp->asig, 1, 1);
1148 if (stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1149 sizeof(asysigs_t), 0) < 0)
1150 printk(KERN_WARNING "istallion: dtr raise failed.\n");
1154 /*****************************************************************************/
1157 * Write routine. Take the data and put it in the shared memory ring
1158 * queue. If port is not already sending chars then need to mark the
1159 * service bits for this port.
1162 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1164 cdkasy_t __iomem *ap;
1165 cdkhdr_t __iomem *hdrp;
1166 unsigned char __iomem *bits;
1167 unsigned char __iomem *shbuf;
1168 unsigned char *chbuf;
1169 struct stliport *portp;
1170 struct stlibrd *brdp;
1171 unsigned int len, stlen, head, tail, size;
1172 unsigned long flags;
1174 if (tty == stli_txcooktty)
1175 stli_flushchars(tty);
1176 portp = tty->driver_data;
1177 if (portp == NULL)
1178 return 0;
1179 if (portp->brdnr >= stli_nrbrds)
1180 return 0;
1181 brdp = stli_brds[portp->brdnr];
1182 if (brdp == NULL)
1183 return 0;
1184 chbuf = (unsigned char *) buf;
1187 * All data is now local, shove as much as possible into shared memory.
1189 spin_lock_irqsave(&brd_lock, flags);
1190 EBRDENABLE(brdp);
1191 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1192 head = (unsigned int) readw(&ap->txq.head);
1193 tail = (unsigned int) readw(&ap->txq.tail);
1194 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1195 tail = (unsigned int) readw(&ap->txq.tail);
1196 size = portp->txsize;
1197 if (head >= tail) {
1198 len = size - (head - tail) - 1;
1199 stlen = size - head;
1200 } else {
1201 len = tail - head - 1;
1202 stlen = len;
1205 len = min(len, (unsigned int)count);
1206 count = 0;
1207 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->txoffset);
1209 while (len > 0) {
1210 stlen = min(len, stlen);
1211 memcpy_toio(shbuf + head, chbuf, stlen);
1212 chbuf += stlen;
1213 len -= stlen;
1214 count += stlen;
1215 head += stlen;
1216 if (head >= size) {
1217 head = 0;
1218 stlen = tail;
1222 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1223 writew(head, &ap->txq.head);
1224 if (test_bit(ST_TXBUSY, &portp->state)) {
1225 if (readl(&ap->changed.data) & DT_TXEMPTY)
1226 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1228 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1229 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1230 portp->portidx;
1231 writeb(readb(bits) | portp->portbit, bits);
1232 set_bit(ST_TXBUSY, &portp->state);
1233 EBRDDISABLE(brdp);
1234 spin_unlock_irqrestore(&brd_lock, flags);
1236 return(count);
1239 /*****************************************************************************/
1242 * Output a single character. We put it into a temporary local buffer
1243 * (for speed) then write out that buffer when the flushchars routine
1244 * is called. There is a safety catch here so that if some other port
1245 * writes chars before the current buffer has been, then we write them
1246 * first them do the new ports.
1249 static int stli_putchar(struct tty_struct *tty, unsigned char ch)
1251 if (tty != stli_txcooktty) {
1252 if (stli_txcooktty != NULL)
1253 stli_flushchars(stli_txcooktty);
1254 stli_txcooktty = tty;
1257 stli_txcookbuf[stli_txcooksize++] = ch;
1258 return 0;
1261 /*****************************************************************************/
1264 * Transfer characters from the local TX cooking buffer to the board.
1265 * We sort of ignore the tty that gets passed in here. We rely on the
1266 * info stored with the TX cook buffer to tell us which port to flush
1267 * the data on. In any case we clean out the TX cook buffer, for re-use
1268 * by someone else.
1271 static void stli_flushchars(struct tty_struct *tty)
1273 cdkhdr_t __iomem *hdrp;
1274 unsigned char __iomem *bits;
1275 cdkasy_t __iomem *ap;
1276 struct tty_struct *cooktty;
1277 struct stliport *portp;
1278 struct stlibrd *brdp;
1279 unsigned int len, stlen, head, tail, size, count, cooksize;
1280 unsigned char *buf;
1281 unsigned char __iomem *shbuf;
1282 unsigned long flags;
1284 cooksize = stli_txcooksize;
1285 cooktty = stli_txcooktty;
1286 stli_txcooksize = 0;
1287 stli_txcookrealsize = 0;
1288 stli_txcooktty = NULL;
1290 if (cooktty == NULL)
1291 return;
1292 if (tty != cooktty)
1293 tty = cooktty;
1294 if (cooksize == 0)
1295 return;
1297 portp = tty->driver_data;
1298 if (portp == NULL)
1299 return;
1300 if (portp->brdnr >= stli_nrbrds)
1301 return;
1302 brdp = stli_brds[portp->brdnr];
1303 if (brdp == NULL)
1304 return;
1306 spin_lock_irqsave(&brd_lock, flags);
1307 EBRDENABLE(brdp);
1309 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1310 head = (unsigned int) readw(&ap->txq.head);
1311 tail = (unsigned int) readw(&ap->txq.tail);
1312 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1313 tail = (unsigned int) readw(&ap->txq.tail);
1314 size = portp->txsize;
1315 if (head >= tail) {
1316 len = size - (head - tail) - 1;
1317 stlen = size - head;
1318 } else {
1319 len = tail - head - 1;
1320 stlen = len;
1323 len = min(len, cooksize);
1324 count = 0;
1325 shbuf = EBRDGETMEMPTR(brdp, portp->txoffset);
1326 buf = stli_txcookbuf;
1328 while (len > 0) {
1329 stlen = min(len, stlen);
1330 memcpy_toio(shbuf + head, buf, stlen);
1331 buf += stlen;
1332 len -= stlen;
1333 count += stlen;
1334 head += stlen;
1335 if (head >= size) {
1336 head = 0;
1337 stlen = tail;
1341 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1342 writew(head, &ap->txq.head);
1344 if (test_bit(ST_TXBUSY, &portp->state)) {
1345 if (readl(&ap->changed.data) & DT_TXEMPTY)
1346 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1348 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1349 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1350 portp->portidx;
1351 writeb(readb(bits) | portp->portbit, bits);
1352 set_bit(ST_TXBUSY, &portp->state);
1354 EBRDDISABLE(brdp);
1355 spin_unlock_irqrestore(&brd_lock, flags);
1358 /*****************************************************************************/
1360 static int stli_writeroom(struct tty_struct *tty)
1362 cdkasyrq_t __iomem *rp;
1363 struct stliport *portp;
1364 struct stlibrd *brdp;
1365 unsigned int head, tail, len;
1366 unsigned long flags;
1368 if (tty == stli_txcooktty) {
1369 if (stli_txcookrealsize != 0) {
1370 len = stli_txcookrealsize - stli_txcooksize;
1371 return len;
1375 portp = tty->driver_data;
1376 if (portp == NULL)
1377 return 0;
1378 if (portp->brdnr >= stli_nrbrds)
1379 return 0;
1380 brdp = stli_brds[portp->brdnr];
1381 if (brdp == NULL)
1382 return 0;
1384 spin_lock_irqsave(&brd_lock, flags);
1385 EBRDENABLE(brdp);
1386 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1387 head = (unsigned int) readw(&rp->head);
1388 tail = (unsigned int) readw(&rp->tail);
1389 if (tail != ((unsigned int) readw(&rp->tail)))
1390 tail = (unsigned int) readw(&rp->tail);
1391 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1392 len--;
1393 EBRDDISABLE(brdp);
1394 spin_unlock_irqrestore(&brd_lock, flags);
1396 if (tty == stli_txcooktty) {
1397 stli_txcookrealsize = len;
1398 len -= stli_txcooksize;
1400 return len;
1403 /*****************************************************************************/
1406 * Return the number of characters in the transmit buffer. Normally we
1407 * will return the number of chars in the shared memory ring queue.
1408 * We need to kludge around the case where the shared memory buffer is
1409 * empty but not all characters have drained yet, for this case just
1410 * return that there is 1 character in the buffer!
1413 static int stli_charsinbuffer(struct tty_struct *tty)
1415 cdkasyrq_t __iomem *rp;
1416 struct stliport *portp;
1417 struct stlibrd *brdp;
1418 unsigned int head, tail, len;
1419 unsigned long flags;
1421 if (tty == stli_txcooktty)
1422 stli_flushchars(tty);
1423 portp = tty->driver_data;
1424 if (portp == NULL)
1425 return 0;
1426 if (portp->brdnr >= stli_nrbrds)
1427 return 0;
1428 brdp = stli_brds[portp->brdnr];
1429 if (brdp == NULL)
1430 return 0;
1432 spin_lock_irqsave(&brd_lock, flags);
1433 EBRDENABLE(brdp);
1434 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1435 head = (unsigned int) readw(&rp->head);
1436 tail = (unsigned int) readw(&rp->tail);
1437 if (tail != ((unsigned int) readw(&rp->tail)))
1438 tail = (unsigned int) readw(&rp->tail);
1439 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1440 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1441 len = 1;
1442 EBRDDISABLE(brdp);
1443 spin_unlock_irqrestore(&brd_lock, flags);
1445 return len;
1448 /*****************************************************************************/
1451 * Generate the serial struct info.
1454 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp)
1456 struct serial_struct sio;
1457 struct stlibrd *brdp;
1459 memset(&sio, 0, sizeof(struct serial_struct));
1460 sio.type = PORT_UNKNOWN;
1461 sio.line = portp->portnr;
1462 sio.irq = 0;
1463 sio.flags = portp->port.flags;
1464 sio.baud_base = portp->baud_base;
1465 sio.close_delay = portp->port.close_delay;
1466 sio.closing_wait = portp->closing_wait;
1467 sio.custom_divisor = portp->custom_divisor;
1468 sio.xmit_fifo_size = 0;
1469 sio.hub6 = 0;
1471 brdp = stli_brds[portp->brdnr];
1472 if (brdp != NULL)
1473 sio.port = brdp->iobase;
1475 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1476 -EFAULT : 0;
1479 /*****************************************************************************/
1482 * Set port according to the serial struct info.
1483 * At this point we do not do any auto-configure stuff, so we will
1484 * just quietly ignore any requests to change irq, etc.
1487 static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp)
1489 struct serial_struct sio;
1490 int rc;
1491 struct stliport *portp = tty->driver_data;
1493 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1494 return -EFAULT;
1495 if (!capable(CAP_SYS_ADMIN)) {
1496 if ((sio.baud_base != portp->baud_base) ||
1497 (sio.close_delay != portp->port.close_delay) ||
1498 ((sio.flags & ~ASYNC_USR_MASK) !=
1499 (portp->port.flags & ~ASYNC_USR_MASK)))
1500 return -EPERM;
1503 portp->port.flags = (portp->port.flags & ~ASYNC_USR_MASK) |
1504 (sio.flags & ASYNC_USR_MASK);
1505 portp->baud_base = sio.baud_base;
1506 portp->port.close_delay = sio.close_delay;
1507 portp->closing_wait = sio.closing_wait;
1508 portp->custom_divisor = sio.custom_divisor;
1510 if ((rc = stli_setport(tty)) < 0)
1511 return rc;
1512 return 0;
1515 /*****************************************************************************/
1517 static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1519 struct stliport *portp = tty->driver_data;
1520 struct stlibrd *brdp;
1521 int rc;
1523 if (portp == NULL)
1524 return -ENODEV;
1525 if (portp->brdnr >= stli_nrbrds)
1526 return 0;
1527 brdp = stli_brds[portp->brdnr];
1528 if (brdp == NULL)
1529 return 0;
1530 if (tty->flags & (1 << TTY_IO_ERROR))
1531 return -EIO;
1533 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1534 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1535 return rc;
1537 return stli_mktiocm(portp->asig.sigvalue);
1540 static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1541 unsigned int set, unsigned int clear)
1543 struct stliport *portp = tty->driver_data;
1544 struct stlibrd *brdp;
1545 int rts = -1, dtr = -1;
1547 if (portp == NULL)
1548 return -ENODEV;
1549 if (portp->brdnr >= stli_nrbrds)
1550 return 0;
1551 brdp = stli_brds[portp->brdnr];
1552 if (brdp == NULL)
1553 return 0;
1554 if (tty->flags & (1 << TTY_IO_ERROR))
1555 return -EIO;
1557 if (set & TIOCM_RTS)
1558 rts = 1;
1559 if (set & TIOCM_DTR)
1560 dtr = 1;
1561 if (clear & TIOCM_RTS)
1562 rts = 0;
1563 if (clear & TIOCM_DTR)
1564 dtr = 0;
1566 stli_mkasysigs(&portp->asig, dtr, rts);
1568 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1569 sizeof(asysigs_t), 0);
1572 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1574 struct stliport *portp;
1575 struct stlibrd *brdp;
1576 int rc;
1577 void __user *argp = (void __user *)arg;
1579 portp = tty->driver_data;
1580 if (portp == NULL)
1581 return -ENODEV;
1582 if (portp->brdnr >= stli_nrbrds)
1583 return 0;
1584 brdp = stli_brds[portp->brdnr];
1585 if (brdp == NULL)
1586 return 0;
1588 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1589 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1590 if (tty->flags & (1 << TTY_IO_ERROR))
1591 return -EIO;
1594 rc = 0;
1596 switch (cmd) {
1597 case TIOCGSERIAL:
1598 rc = stli_getserial(portp, argp);
1599 break;
1600 case TIOCSSERIAL:
1601 rc = stli_setserial(tty, argp);
1602 break;
1603 case STL_GETPFLAG:
1604 rc = put_user(portp->pflag, (unsigned __user *)argp);
1605 break;
1606 case STL_SETPFLAG:
1607 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
1608 stli_setport(tty);
1609 break;
1610 case COM_GETPORTSTATS:
1611 rc = stli_getportstats(tty, portp, argp);
1612 break;
1613 case COM_CLRPORTSTATS:
1614 rc = stli_clrportstats(portp, argp);
1615 break;
1616 case TIOCSERCONFIG:
1617 case TIOCSERGWILD:
1618 case TIOCSERSWILD:
1619 case TIOCSERGETLSR:
1620 case TIOCSERGSTRUCT:
1621 case TIOCSERGETMULTI:
1622 case TIOCSERSETMULTI:
1623 default:
1624 rc = -ENOIOCTLCMD;
1625 break;
1628 return rc;
1631 /*****************************************************************************/
1634 * This routine assumes that we have user context and can sleep.
1635 * Looks like it is true for the current ttys implementation..!!
1638 static void stli_settermios(struct tty_struct *tty, struct ktermios *old)
1640 struct stliport *portp;
1641 struct stlibrd *brdp;
1642 struct ktermios *tiosp;
1643 asyport_t aport;
1645 portp = tty->driver_data;
1646 if (portp == NULL)
1647 return;
1648 if (portp->brdnr >= stli_nrbrds)
1649 return;
1650 brdp = stli_brds[portp->brdnr];
1651 if (brdp == NULL)
1652 return;
1654 tiosp = tty->termios;
1656 stli_mkasyport(tty, portp, &aport, tiosp);
1657 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
1658 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
1659 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1660 sizeof(asysigs_t), 0);
1661 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
1662 tty->hw_stopped = 0;
1663 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1664 wake_up_interruptible(&portp->port.open_wait);
1667 /*****************************************************************************/
1670 * Attempt to flow control who ever is sending us data. We won't really
1671 * do any flow control action here. We can't directly, and even if we
1672 * wanted to we would have to send a command to the slave. The slave
1673 * knows how to flow control, and will do so when its buffers reach its
1674 * internal high water marks. So what we will do is set a local state
1675 * bit that will stop us sending any RX data up from the poll routine
1676 * (which is the place where RX data from the slave is handled).
1679 static void stli_throttle(struct tty_struct *tty)
1681 struct stliport *portp = tty->driver_data;
1682 if (portp == NULL)
1683 return;
1684 set_bit(ST_RXSTOP, &portp->state);
1687 /*****************************************************************************/
1690 * Unflow control the device sending us data... That means that all
1691 * we have to do is clear the RXSTOP state bit. The next poll call
1692 * will then be able to pass the RX data back up.
1695 static void stli_unthrottle(struct tty_struct *tty)
1697 struct stliport *portp = tty->driver_data;
1698 if (portp == NULL)
1699 return;
1700 clear_bit(ST_RXSTOP, &portp->state);
1703 /*****************************************************************************/
1706 * Stop the transmitter.
1709 static void stli_stop(struct tty_struct *tty)
1713 /*****************************************************************************/
1716 * Start the transmitter again.
1719 static void stli_start(struct tty_struct *tty)
1723 /*****************************************************************************/
1726 * Hangup this port. This is pretty much like closing the port, only
1727 * a little more brutal. No waiting for data to drain. Shutdown the
1728 * port and maybe drop signals. This is rather tricky really. We want
1729 * to close the port as well.
1732 static void stli_hangup(struct tty_struct *tty)
1734 struct stliport *portp;
1735 struct stlibrd *brdp;
1736 struct tty_port *port;
1737 unsigned long flags;
1739 portp = tty->driver_data;
1740 if (portp == NULL)
1741 return;
1742 if (portp->brdnr >= stli_nrbrds)
1743 return;
1744 brdp = stli_brds[portp->brdnr];
1745 if (brdp == NULL)
1746 return;
1747 port = &portp->port;
1749 spin_lock_irqsave(&port->lock, flags);
1750 port->flags &= ~ASYNC_INITIALIZED;
1751 spin_unlock_irqrestore(&port->lock, flags);
1753 if (!test_bit(ST_CLOSING, &portp->state))
1754 stli_rawclose(brdp, portp, 0, 0);
1756 spin_lock_irqsave(&stli_lock, flags);
1757 if (tty->termios->c_cflag & HUPCL) {
1758 stli_mkasysigs(&portp->asig, 0, 0);
1759 if (test_bit(ST_CMDING, &portp->state)) {
1760 set_bit(ST_DOSIGS, &portp->state);
1761 set_bit(ST_DOFLUSHTX, &portp->state);
1762 set_bit(ST_DOFLUSHRX, &portp->state);
1763 } else {
1764 stli_sendcmd(brdp, portp, A_SETSIGNALSF,
1765 &portp->asig, sizeof(asysigs_t), 0);
1769 clear_bit(ST_TXBUSY, &portp->state);
1770 clear_bit(ST_RXSTOP, &portp->state);
1771 set_bit(TTY_IO_ERROR, &tty->flags);
1772 spin_unlock_irqrestore(&stli_lock, flags);
1774 tty_port_hangup(port);
1777 /*****************************************************************************/
1780 * Flush characters from the lower buffer. We may not have user context
1781 * so we cannot sleep waiting for it to complete. Also we need to check
1782 * if there is chars for this port in the TX cook buffer, and flush them
1783 * as well.
1786 static void stli_flushbuffer(struct tty_struct *tty)
1788 struct stliport *portp;
1789 struct stlibrd *brdp;
1790 unsigned long ftype, flags;
1792 portp = tty->driver_data;
1793 if (portp == NULL)
1794 return;
1795 if (portp->brdnr >= stli_nrbrds)
1796 return;
1797 brdp = stli_brds[portp->brdnr];
1798 if (brdp == NULL)
1799 return;
1801 spin_lock_irqsave(&brd_lock, flags);
1802 if (tty == stli_txcooktty) {
1803 stli_txcooktty = NULL;
1804 stli_txcooksize = 0;
1805 stli_txcookrealsize = 0;
1807 if (test_bit(ST_CMDING, &portp->state)) {
1808 set_bit(ST_DOFLUSHTX, &portp->state);
1809 } else {
1810 ftype = FLUSHTX;
1811 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
1812 ftype |= FLUSHRX;
1813 clear_bit(ST_DOFLUSHRX, &portp->state);
1815 __stli_sendcmd(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
1817 spin_unlock_irqrestore(&brd_lock, flags);
1818 tty_wakeup(tty);
1821 /*****************************************************************************/
1823 static int stli_breakctl(struct tty_struct *tty, int state)
1825 struct stlibrd *brdp;
1826 struct stliport *portp;
1827 long arg;
1829 portp = tty->driver_data;
1830 if (portp == NULL)
1831 return -EINVAL;
1832 if (portp->brdnr >= stli_nrbrds)
1833 return -EINVAL;
1834 brdp = stli_brds[portp->brdnr];
1835 if (brdp == NULL)
1836 return -EINVAL;
1838 arg = (state == -1) ? BREAKON : BREAKOFF;
1839 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
1840 return 0;
1843 /*****************************************************************************/
1845 static void stli_waituntilsent(struct tty_struct *tty, int timeout)
1847 struct stliport *portp;
1848 unsigned long tend;
1850 portp = tty->driver_data;
1851 if (portp == NULL)
1852 return;
1854 if (timeout == 0)
1855 timeout = HZ;
1856 tend = jiffies + timeout;
1858 while (test_bit(ST_TXBUSY, &portp->state)) {
1859 if (signal_pending(current))
1860 break;
1861 msleep_interruptible(20);
1862 if (time_after_eq(jiffies, tend))
1863 break;
1867 /*****************************************************************************/
1869 static void stli_sendxchar(struct tty_struct *tty, char ch)
1871 struct stlibrd *brdp;
1872 struct stliport *portp;
1873 asyctrl_t actrl;
1875 portp = tty->driver_data;
1876 if (portp == NULL)
1877 return;
1878 if (portp->brdnr >= stli_nrbrds)
1879 return;
1880 brdp = stli_brds[portp->brdnr];
1881 if (brdp == NULL)
1882 return;
1884 memset(&actrl, 0, sizeof(asyctrl_t));
1885 if (ch == STOP_CHAR(tty)) {
1886 actrl.rxctrl = CT_STOPFLOW;
1887 } else if (ch == START_CHAR(tty)) {
1888 actrl.rxctrl = CT_STARTFLOW;
1889 } else {
1890 actrl.txctrl = CT_SENDCHR;
1891 actrl.tximdch = ch;
1893 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
1896 static void stli_portinfo(struct seq_file *m, struct stlibrd *brdp, struct stliport *portp, int portnr)
1898 char *uart;
1899 int rc;
1901 rc = stli_portcmdstats(NULL, portp);
1903 uart = "UNKNOWN";
1904 if (brdp->state & BST_STARTED) {
1905 switch (stli_comstats.hwid) {
1906 case 0: uart = "2681"; break;
1907 case 1: uart = "SC26198"; break;
1908 default:uart = "CD1400"; break;
1911 seq_printf(m, "%d: uart:%s ", portnr, uart);
1913 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
1914 char sep;
1916 seq_printf(m, "tx:%d rx:%d", (int) stli_comstats.txtotal,
1917 (int) stli_comstats.rxtotal);
1919 if (stli_comstats.rxframing)
1920 seq_printf(m, " fe:%d",
1921 (int) stli_comstats.rxframing);
1922 if (stli_comstats.rxparity)
1923 seq_printf(m, " pe:%d",
1924 (int) stli_comstats.rxparity);
1925 if (stli_comstats.rxbreaks)
1926 seq_printf(m, " brk:%d",
1927 (int) stli_comstats.rxbreaks);
1928 if (stli_comstats.rxoverrun)
1929 seq_printf(m, " oe:%d",
1930 (int) stli_comstats.rxoverrun);
1932 sep = ' ';
1933 if (stli_comstats.signals & TIOCM_RTS) {
1934 seq_printf(m, "%c%s", sep, "RTS");
1935 sep = '|';
1937 if (stli_comstats.signals & TIOCM_CTS) {
1938 seq_printf(m, "%c%s", sep, "CTS");
1939 sep = '|';
1941 if (stli_comstats.signals & TIOCM_DTR) {
1942 seq_printf(m, "%c%s", sep, "DTR");
1943 sep = '|';
1945 if (stli_comstats.signals & TIOCM_CD) {
1946 seq_printf(m, "%c%s", sep, "DCD");
1947 sep = '|';
1949 if (stli_comstats.signals & TIOCM_DSR) {
1950 seq_printf(m, "%c%s", sep, "DSR");
1951 sep = '|';
1954 seq_putc(m, '\n');
1957 /*****************************************************************************/
1960 * Port info, read from the /proc file system.
1963 static int stli_proc_show(struct seq_file *m, void *v)
1965 struct stlibrd *brdp;
1966 struct stliport *portp;
1967 unsigned int brdnr, portnr, totalport;
1969 totalport = 0;
1971 seq_printf(m, "%s: version %s\n", stli_drvtitle, stli_drvversion);
1974 * We scan through for each board, panel and port. The offset is
1975 * calculated on the fly, and irrelevant ports are skipped.
1977 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
1978 brdp = stli_brds[brdnr];
1979 if (brdp == NULL)
1980 continue;
1981 if (brdp->state == 0)
1982 continue;
1984 totalport = brdnr * STL_MAXPORTS;
1985 for (portnr = 0; (portnr < brdp->nrports); portnr++,
1986 totalport++) {
1987 portp = brdp->ports[portnr];
1988 if (portp == NULL)
1989 continue;
1990 stli_portinfo(m, brdp, portp, totalport);
1993 return 0;
1996 static int stli_proc_open(struct inode *inode, struct file *file)
1998 return single_open(file, stli_proc_show, NULL);
2001 static const struct file_operations stli_proc_fops = {
2002 .owner = THIS_MODULE,
2003 .open = stli_proc_open,
2004 .read = seq_read,
2005 .llseek = seq_lseek,
2006 .release = single_release,
2009 /*****************************************************************************/
2012 * Generic send command routine. This will send a message to the slave,
2013 * of the specified type with the specified argument. Must be very
2014 * careful of data that will be copied out from shared memory -
2015 * containing command results. The command completion is all done from
2016 * a poll routine that does not have user context. Therefore you cannot
2017 * copy back directly into user space, or to the kernel stack of a
2018 * process. This routine does not sleep, so can be called from anywhere.
2020 * The caller must hold the brd_lock (see also stli_sendcmd the usual
2021 * entry point)
2024 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2026 cdkhdr_t __iomem *hdrp;
2027 cdkctrl_t __iomem *cp;
2028 unsigned char __iomem *bits;
2030 if (test_bit(ST_CMDING, &portp->state)) {
2031 printk(KERN_ERR "istallion: command already busy, cmd=%x!\n",
2032 (int) cmd);
2033 return;
2036 EBRDENABLE(brdp);
2037 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2038 if (size > 0) {
2039 memcpy_toio((void __iomem *) &(cp->args[0]), arg, size);
2040 if (copyback) {
2041 portp->argp = arg;
2042 portp->argsize = size;
2045 writel(0, &cp->status);
2046 writel(cmd, &cp->cmd);
2047 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2048 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
2049 portp->portidx;
2050 writeb(readb(bits) | portp->portbit, bits);
2051 set_bit(ST_CMDING, &portp->state);
2052 EBRDDISABLE(brdp);
2055 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2057 unsigned long flags;
2059 spin_lock_irqsave(&brd_lock, flags);
2060 __stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
2061 spin_unlock_irqrestore(&brd_lock, flags);
2064 /*****************************************************************************/
2067 * Read data from shared memory. This assumes that the shared memory
2068 * is enabled and that interrupts are off. Basically we just empty out
2069 * the shared memory buffer into the tty buffer. Must be careful to
2070 * handle the case where we fill up the tty buffer, but still have
2071 * more chars to unload.
2074 static void stli_read(struct stlibrd *brdp, struct stliport *portp)
2076 cdkasyrq_t __iomem *rp;
2077 char __iomem *shbuf;
2078 struct tty_struct *tty;
2079 unsigned int head, tail, size;
2080 unsigned int len, stlen;
2082 if (test_bit(ST_RXSTOP, &portp->state))
2083 return;
2084 tty = tty_port_tty_get(&portp->port);
2085 if (tty == NULL)
2086 return;
2088 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2089 head = (unsigned int) readw(&rp->head);
2090 if (head != ((unsigned int) readw(&rp->head)))
2091 head = (unsigned int) readw(&rp->head);
2092 tail = (unsigned int) readw(&rp->tail);
2093 size = portp->rxsize;
2094 if (head >= tail) {
2095 len = head - tail;
2096 stlen = len;
2097 } else {
2098 len = size - (tail - head);
2099 stlen = size - tail;
2102 len = tty_buffer_request_room(tty, len);
2104 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2106 while (len > 0) {
2107 unsigned char *cptr;
2109 stlen = min(len, stlen);
2110 tty_prepare_flip_string(tty, &cptr, stlen);
2111 memcpy_fromio(cptr, shbuf + tail, stlen);
2112 len -= stlen;
2113 tail += stlen;
2114 if (tail >= size) {
2115 tail = 0;
2116 stlen = head;
2119 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2120 writew(tail, &rp->tail);
2122 if (head != tail)
2123 set_bit(ST_RXING, &portp->state);
2125 tty_schedule_flip(tty);
2126 tty_kref_put(tty);
2129 /*****************************************************************************/
2132 * Set up and carry out any delayed commands. There is only a small set
2133 * of slave commands that can be done "off-level". So it is not too
2134 * difficult to deal with them here.
2137 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp)
2139 int cmd;
2141 if (test_bit(ST_DOSIGS, &portp->state)) {
2142 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2143 test_bit(ST_DOFLUSHRX, &portp->state))
2144 cmd = A_SETSIGNALSF;
2145 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2146 cmd = A_SETSIGNALSFTX;
2147 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2148 cmd = A_SETSIGNALSFRX;
2149 else
2150 cmd = A_SETSIGNALS;
2151 clear_bit(ST_DOFLUSHTX, &portp->state);
2152 clear_bit(ST_DOFLUSHRX, &portp->state);
2153 clear_bit(ST_DOSIGS, &portp->state);
2154 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &portp->asig,
2155 sizeof(asysigs_t));
2156 writel(0, &cp->status);
2157 writel(cmd, &cp->cmd);
2158 set_bit(ST_CMDING, &portp->state);
2159 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2160 test_bit(ST_DOFLUSHRX, &portp->state)) {
2161 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2162 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2163 clear_bit(ST_DOFLUSHTX, &portp->state);
2164 clear_bit(ST_DOFLUSHRX, &portp->state);
2165 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2166 writel(0, &cp->status);
2167 writel(A_FLUSH, &cp->cmd);
2168 set_bit(ST_CMDING, &portp->state);
2172 /*****************************************************************************/
2175 * Host command service checking. This handles commands or messages
2176 * coming from the slave to the host. Must have board shared memory
2177 * enabled and interrupts off when called. Notice that by servicing the
2178 * read data last we don't need to change the shared memory pointer
2179 * during processing (which is a slow IO operation).
2180 * Return value indicates if this port is still awaiting actions from
2181 * the slave (like open, command, or even TX data being sent). If 0
2182 * then port is still busy, otherwise no longer busy.
2185 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp)
2187 cdkasy_t __iomem *ap;
2188 cdkctrl_t __iomem *cp;
2189 struct tty_struct *tty;
2190 asynotify_t nt;
2191 unsigned long oldsigs;
2192 int rc, donerx;
2194 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
2195 cp = &ap->ctrl;
2198 * Check if we are waiting for an open completion message.
2200 if (test_bit(ST_OPENING, &portp->state)) {
2201 rc = readl(&cp->openarg);
2202 if (readb(&cp->open) == 0 && rc != 0) {
2203 if (rc > 0)
2204 rc--;
2205 writel(0, &cp->openarg);
2206 portp->rc = rc;
2207 clear_bit(ST_OPENING, &portp->state);
2208 wake_up_interruptible(&portp->raw_wait);
2213 * Check if we are waiting for a close completion message.
2215 if (test_bit(ST_CLOSING, &portp->state)) {
2216 rc = (int) readl(&cp->closearg);
2217 if (readb(&cp->close) == 0 && rc != 0) {
2218 if (rc > 0)
2219 rc--;
2220 writel(0, &cp->closearg);
2221 portp->rc = rc;
2222 clear_bit(ST_CLOSING, &portp->state);
2223 wake_up_interruptible(&portp->raw_wait);
2228 * Check if we are waiting for a command completion message. We may
2229 * need to copy out the command results associated with this command.
2231 if (test_bit(ST_CMDING, &portp->state)) {
2232 rc = readl(&cp->status);
2233 if (readl(&cp->cmd) == 0 && rc != 0) {
2234 if (rc > 0)
2235 rc--;
2236 if (portp->argp != NULL) {
2237 memcpy_fromio(portp->argp, (void __iomem *) &(cp->args[0]),
2238 portp->argsize);
2239 portp->argp = NULL;
2241 writel(0, &cp->status);
2242 portp->rc = rc;
2243 clear_bit(ST_CMDING, &portp->state);
2244 stli_dodelaycmd(portp, cp);
2245 wake_up_interruptible(&portp->raw_wait);
2250 * Check for any notification messages ready. This includes lots of
2251 * different types of events - RX chars ready, RX break received,
2252 * TX data low or empty in the slave, modem signals changed state.
2254 donerx = 0;
2256 if (ap->notify) {
2257 nt = ap->changed;
2258 ap->notify = 0;
2259 tty = tty_port_tty_get(&portp->port);
2261 if (nt.signal & SG_DCD) {
2262 oldsigs = portp->sigs;
2263 portp->sigs = stli_mktiocm(nt.sigvalue);
2264 clear_bit(ST_GETSIGS, &portp->state);
2265 if ((portp->sigs & TIOCM_CD) &&
2266 ((oldsigs & TIOCM_CD) == 0))
2267 wake_up_interruptible(&portp->port.open_wait);
2268 if ((oldsigs & TIOCM_CD) &&
2269 ((portp->sigs & TIOCM_CD) == 0)) {
2270 if (portp->port.flags & ASYNC_CHECK_CD) {
2271 if (tty)
2272 tty_hangup(tty);
2277 if (nt.data & DT_TXEMPTY)
2278 clear_bit(ST_TXBUSY, &portp->state);
2279 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2280 if (tty != NULL) {
2281 tty_wakeup(tty);
2282 EBRDENABLE(brdp);
2286 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2287 if (tty != NULL) {
2288 tty_insert_flip_char(tty, 0, TTY_BREAK);
2289 if (portp->port.flags & ASYNC_SAK) {
2290 do_SAK(tty);
2291 EBRDENABLE(brdp);
2293 tty_schedule_flip(tty);
2296 tty_kref_put(tty);
2298 if (nt.data & DT_RXBUSY) {
2299 donerx++;
2300 stli_read(brdp, portp);
2305 * It might seem odd that we are checking for more RX chars here.
2306 * But, we need to handle the case where the tty buffer was previously
2307 * filled, but we had more characters to pass up. The slave will not
2308 * send any more RX notify messages until the RX buffer has been emptied.
2309 * But it will leave the service bits on (since the buffer is not empty).
2310 * So from here we can try to process more RX chars.
2312 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2313 clear_bit(ST_RXING, &portp->state);
2314 stli_read(brdp, portp);
2317 return((test_bit(ST_OPENING, &portp->state) ||
2318 test_bit(ST_CLOSING, &portp->state) ||
2319 test_bit(ST_CMDING, &portp->state) ||
2320 test_bit(ST_TXBUSY, &portp->state) ||
2321 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2324 /*****************************************************************************/
2327 * Service all ports on a particular board. Assumes that the boards
2328 * shared memory is enabled, and that the page pointer is pointed
2329 * at the cdk header structure.
2332 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp)
2334 struct stliport *portp;
2335 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2336 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2337 unsigned char __iomem *slavep;
2338 int bitpos, bitat, bitsize;
2339 int channr, nrdevs, slavebitchange;
2341 bitsize = brdp->bitsize;
2342 nrdevs = brdp->nrdevs;
2345 * Check if slave wants any service. Basically we try to do as
2346 * little work as possible here. There are 2 levels of service
2347 * bits. So if there is nothing to do we bail early. We check
2348 * 8 service bits at a time in the inner loop, so we can bypass
2349 * the lot if none of them want service.
2351 memcpy_fromio(&hostbits[0], (((unsigned char __iomem *) hdrp) + brdp->hostoffset),
2352 bitsize);
2354 memset(&slavebits[0], 0, bitsize);
2355 slavebitchange = 0;
2357 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2358 if (hostbits[bitpos] == 0)
2359 continue;
2360 channr = bitpos * 8;
2361 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2362 if (hostbits[bitpos] & bitat) {
2363 portp = brdp->ports[(channr - 1)];
2364 if (stli_hostcmd(brdp, portp)) {
2365 slavebitchange++;
2366 slavebits[bitpos] |= bitat;
2373 * If any of the ports are no longer busy then update them in the
2374 * slave request bits. We need to do this after, since a host port
2375 * service may initiate more slave requests.
2377 if (slavebitchange) {
2378 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2379 slavep = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset;
2380 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2381 if (readb(slavebits + bitpos))
2382 writeb(readb(slavep + bitpos) & ~slavebits[bitpos], slavebits + bitpos);
2387 /*****************************************************************************/
2390 * Driver poll routine. This routine polls the boards in use and passes
2391 * messages back up to host when necessary. This is actually very
2392 * CPU efficient, since we will always have the kernel poll clock, it
2393 * adds only a few cycles when idle (since board service can be
2394 * determined very easily), but when loaded generates no interrupts
2395 * (with their expensive associated context change).
2398 static void stli_poll(unsigned long arg)
2400 cdkhdr_t __iomem *hdrp;
2401 struct stlibrd *brdp;
2402 unsigned int brdnr;
2404 mod_timer(&stli_timerlist, STLI_TIMEOUT);
2407 * Check each board and do any servicing required.
2409 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2410 brdp = stli_brds[brdnr];
2411 if (brdp == NULL)
2412 continue;
2413 if ((brdp->state & BST_STARTED) == 0)
2414 continue;
2416 spin_lock(&brd_lock);
2417 EBRDENABLE(brdp);
2418 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2419 if (readb(&hdrp->hostreq))
2420 stli_brdpoll(brdp, hdrp);
2421 EBRDDISABLE(brdp);
2422 spin_unlock(&brd_lock);
2426 /*****************************************************************************/
2429 * Translate the termios settings into the port setting structure of
2430 * the slave.
2433 static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp,
2434 asyport_t *pp, struct ktermios *tiosp)
2436 memset(pp, 0, sizeof(asyport_t));
2439 * Start of by setting the baud, char size, parity and stop bit info.
2441 pp->baudout = tty_get_baud_rate(tty);
2442 if ((tiosp->c_cflag & CBAUD) == B38400) {
2443 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2444 pp->baudout = 57600;
2445 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2446 pp->baudout = 115200;
2447 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2448 pp->baudout = 230400;
2449 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2450 pp->baudout = 460800;
2451 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2452 pp->baudout = (portp->baud_base / portp->custom_divisor);
2454 if (pp->baudout > STL_MAXBAUD)
2455 pp->baudout = STL_MAXBAUD;
2456 pp->baudin = pp->baudout;
2458 switch (tiosp->c_cflag & CSIZE) {
2459 case CS5:
2460 pp->csize = 5;
2461 break;
2462 case CS6:
2463 pp->csize = 6;
2464 break;
2465 case CS7:
2466 pp->csize = 7;
2467 break;
2468 default:
2469 pp->csize = 8;
2470 break;
2473 if (tiosp->c_cflag & CSTOPB)
2474 pp->stopbs = PT_STOP2;
2475 else
2476 pp->stopbs = PT_STOP1;
2478 if (tiosp->c_cflag & PARENB) {
2479 if (tiosp->c_cflag & PARODD)
2480 pp->parity = PT_ODDPARITY;
2481 else
2482 pp->parity = PT_EVENPARITY;
2483 } else {
2484 pp->parity = PT_NOPARITY;
2488 * Set up any flow control options enabled.
2490 if (tiosp->c_iflag & IXON) {
2491 pp->flow |= F_IXON;
2492 if (tiosp->c_iflag & IXANY)
2493 pp->flow |= F_IXANY;
2495 if (tiosp->c_cflag & CRTSCTS)
2496 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
2498 pp->startin = tiosp->c_cc[VSTART];
2499 pp->stopin = tiosp->c_cc[VSTOP];
2500 pp->startout = tiosp->c_cc[VSTART];
2501 pp->stopout = tiosp->c_cc[VSTOP];
2504 * Set up the RX char marking mask with those RX error types we must
2505 * catch. We can get the slave to help us out a little here, it will
2506 * ignore parity errors and breaks for us, and mark parity errors in
2507 * the data stream.
2509 if (tiosp->c_iflag & IGNPAR)
2510 pp->iflag |= FI_IGNRXERRS;
2511 if (tiosp->c_iflag & IGNBRK)
2512 pp->iflag |= FI_IGNBREAK;
2514 portp->rxmarkmsk = 0;
2515 if (tiosp->c_iflag & (INPCK | PARMRK))
2516 pp->iflag |= FI_1MARKRXERRS;
2517 if (tiosp->c_iflag & BRKINT)
2518 portp->rxmarkmsk |= BRKINT;
2521 * Set up clocal processing as required.
2523 if (tiosp->c_cflag & CLOCAL)
2524 portp->port.flags &= ~ASYNC_CHECK_CD;
2525 else
2526 portp->port.flags |= ASYNC_CHECK_CD;
2529 * Transfer any persistent flags into the asyport structure.
2531 pp->pflag = (portp->pflag & 0xffff);
2532 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
2533 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
2534 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
2537 /*****************************************************************************/
2540 * Construct a slave signals structure for setting the DTR and RTS
2541 * signals as specified.
2544 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
2546 memset(sp, 0, sizeof(asysigs_t));
2547 if (dtr >= 0) {
2548 sp->signal |= SG_DTR;
2549 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
2551 if (rts >= 0) {
2552 sp->signal |= SG_RTS;
2553 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
2557 /*****************************************************************************/
2560 * Convert the signals returned from the slave into a local TIOCM type
2561 * signals value. We keep them locally in TIOCM format.
2564 static long stli_mktiocm(unsigned long sigvalue)
2566 long tiocm = 0;
2567 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
2568 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
2569 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
2570 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
2571 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
2572 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
2573 return(tiocm);
2576 /*****************************************************************************/
2579 * All panels and ports actually attached have been worked out. All
2580 * we need to do here is set up the appropriate per port data structures.
2583 static int stli_initports(struct stlibrd *brdp)
2585 struct stliport *portp;
2586 unsigned int i, panelnr, panelport;
2588 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
2589 portp = kzalloc(sizeof(struct stliport), GFP_KERNEL);
2590 if (!portp) {
2591 printk(KERN_WARNING "istallion: failed to allocate port structure\n");
2592 continue;
2594 tty_port_init(&portp->port);
2595 portp->port.ops = &stli_port_ops;
2596 portp->magic = STLI_PORTMAGIC;
2597 portp->portnr = i;
2598 portp->brdnr = brdp->brdnr;
2599 portp->panelnr = panelnr;
2600 portp->baud_base = STL_BAUDBASE;
2601 portp->port.close_delay = STL_CLOSEDELAY;
2602 portp->closing_wait = 30 * HZ;
2603 init_waitqueue_head(&portp->port.open_wait);
2604 init_waitqueue_head(&portp->port.close_wait);
2605 init_waitqueue_head(&portp->raw_wait);
2606 panelport++;
2607 if (panelport >= brdp->panels[panelnr]) {
2608 panelport = 0;
2609 panelnr++;
2611 brdp->ports[i] = portp;
2614 return 0;
2617 /*****************************************************************************/
2620 * All the following routines are board specific hardware operations.
2623 static void stli_ecpinit(struct stlibrd *brdp)
2625 unsigned long memconf;
2627 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2628 udelay(10);
2629 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2630 udelay(100);
2632 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
2633 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
2636 /*****************************************************************************/
2638 static void stli_ecpenable(struct stlibrd *brdp)
2640 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
2643 /*****************************************************************************/
2645 static void stli_ecpdisable(struct stlibrd *brdp)
2647 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2650 /*****************************************************************************/
2652 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2654 void __iomem *ptr;
2655 unsigned char val;
2657 if (offset > brdp->memsize) {
2658 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2659 "range at line=%d(%d), brd=%d\n",
2660 (int) offset, line, __LINE__, brdp->brdnr);
2661 ptr = NULL;
2662 val = 0;
2663 } else {
2664 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
2665 val = (unsigned char) (offset / ECP_ATPAGESIZE);
2667 outb(val, (brdp->iobase + ECP_ATMEMPR));
2668 return(ptr);
2671 /*****************************************************************************/
2673 static void stli_ecpreset(struct stlibrd *brdp)
2675 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2676 udelay(10);
2677 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2678 udelay(500);
2681 /*****************************************************************************/
2683 static void stli_ecpintr(struct stlibrd *brdp)
2685 outb(0x1, brdp->iobase);
2688 /*****************************************************************************/
2691 * The following set of functions act on ECP EISA boards.
2694 static void stli_ecpeiinit(struct stlibrd *brdp)
2696 unsigned long memconf;
2698 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
2699 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2700 udelay(10);
2701 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2702 udelay(500);
2704 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
2705 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
2706 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
2707 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
2710 /*****************************************************************************/
2712 static void stli_ecpeienable(struct stlibrd *brdp)
2714 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
2717 /*****************************************************************************/
2719 static void stli_ecpeidisable(struct stlibrd *brdp)
2721 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2724 /*****************************************************************************/
2726 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2728 void __iomem *ptr;
2729 unsigned char val;
2731 if (offset > brdp->memsize) {
2732 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2733 "range at line=%d(%d), brd=%d\n",
2734 (int) offset, line, __LINE__, brdp->brdnr);
2735 ptr = NULL;
2736 val = 0;
2737 } else {
2738 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
2739 if (offset < ECP_EIPAGESIZE)
2740 val = ECP_EIENABLE;
2741 else
2742 val = ECP_EIENABLE | 0x40;
2744 outb(val, (brdp->iobase + ECP_EICONFR));
2745 return(ptr);
2748 /*****************************************************************************/
2750 static void stli_ecpeireset(struct stlibrd *brdp)
2752 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2753 udelay(10);
2754 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2755 udelay(500);
2758 /*****************************************************************************/
2761 * The following set of functions act on ECP MCA boards.
2764 static void stli_ecpmcenable(struct stlibrd *brdp)
2766 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
2769 /*****************************************************************************/
2771 static void stli_ecpmcdisable(struct stlibrd *brdp)
2773 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2776 /*****************************************************************************/
2778 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2780 void __iomem *ptr;
2781 unsigned char val;
2783 if (offset > brdp->memsize) {
2784 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2785 "range at line=%d(%d), brd=%d\n",
2786 (int) offset, line, __LINE__, brdp->brdnr);
2787 ptr = NULL;
2788 val = 0;
2789 } else {
2790 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
2791 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
2793 outb(val, (brdp->iobase + ECP_MCCONFR));
2794 return(ptr);
2797 /*****************************************************************************/
2799 static void stli_ecpmcreset(struct stlibrd *brdp)
2801 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
2802 udelay(10);
2803 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2804 udelay(500);
2807 /*****************************************************************************/
2810 * The following set of functions act on ECP PCI boards.
2813 static void stli_ecppciinit(struct stlibrd *brdp)
2815 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2816 udelay(10);
2817 outb(0, (brdp->iobase + ECP_PCICONFR));
2818 udelay(500);
2821 /*****************************************************************************/
2823 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2825 void __iomem *ptr;
2826 unsigned char val;
2828 if (offset > brdp->memsize) {
2829 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2830 "range at line=%d(%d), board=%d\n",
2831 (int) offset, line, __LINE__, brdp->brdnr);
2832 ptr = NULL;
2833 val = 0;
2834 } else {
2835 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
2836 val = (offset / ECP_PCIPAGESIZE) << 1;
2838 outb(val, (brdp->iobase + ECP_PCICONFR));
2839 return(ptr);
2842 /*****************************************************************************/
2844 static void stli_ecppcireset(struct stlibrd *brdp)
2846 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2847 udelay(10);
2848 outb(0, (brdp->iobase + ECP_PCICONFR));
2849 udelay(500);
2852 /*****************************************************************************/
2855 * The following routines act on ONboards.
2858 static void stli_onbinit(struct stlibrd *brdp)
2860 unsigned long memconf;
2862 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2863 udelay(10);
2864 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2865 mdelay(1000);
2867 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
2868 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
2869 outb(0x1, brdp->iobase);
2870 mdelay(1);
2873 /*****************************************************************************/
2875 static void stli_onbenable(struct stlibrd *brdp)
2877 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
2880 /*****************************************************************************/
2882 static void stli_onbdisable(struct stlibrd *brdp)
2884 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
2887 /*****************************************************************************/
2889 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2891 void __iomem *ptr;
2893 if (offset > brdp->memsize) {
2894 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2895 "range at line=%d(%d), brd=%d\n",
2896 (int) offset, line, __LINE__, brdp->brdnr);
2897 ptr = NULL;
2898 } else {
2899 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
2901 return(ptr);
2904 /*****************************************************************************/
2906 static void stli_onbreset(struct stlibrd *brdp)
2908 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2909 udelay(10);
2910 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2911 mdelay(1000);
2914 /*****************************************************************************/
2917 * The following routines act on ONboard EISA.
2920 static void stli_onbeinit(struct stlibrd *brdp)
2922 unsigned long memconf;
2924 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
2925 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2926 udelay(10);
2927 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2928 mdelay(1000);
2930 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
2931 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
2932 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
2933 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
2934 outb(0x1, brdp->iobase);
2935 mdelay(1);
2938 /*****************************************************************************/
2940 static void stli_onbeenable(struct stlibrd *brdp)
2942 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
2945 /*****************************************************************************/
2947 static void stli_onbedisable(struct stlibrd *brdp)
2949 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2952 /*****************************************************************************/
2954 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2956 void __iomem *ptr;
2957 unsigned char val;
2959 if (offset > brdp->memsize) {
2960 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2961 "range at line=%d(%d), brd=%d\n",
2962 (int) offset, line, __LINE__, brdp->brdnr);
2963 ptr = NULL;
2964 val = 0;
2965 } else {
2966 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
2967 if (offset < ONB_EIPAGESIZE)
2968 val = ONB_EIENABLE;
2969 else
2970 val = ONB_EIENABLE | 0x40;
2972 outb(val, (brdp->iobase + ONB_EICONFR));
2973 return(ptr);
2976 /*****************************************************************************/
2978 static void stli_onbereset(struct stlibrd *brdp)
2980 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2981 udelay(10);
2982 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2983 mdelay(1000);
2986 /*****************************************************************************/
2989 * The following routines act on Brumby boards.
2992 static void stli_bbyinit(struct stlibrd *brdp)
2994 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
2995 udelay(10);
2996 outb(0, (brdp->iobase + BBY_ATCONFR));
2997 mdelay(1000);
2998 outb(0x1, brdp->iobase);
2999 mdelay(1);
3002 /*****************************************************************************/
3004 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3006 void __iomem *ptr;
3007 unsigned char val;
3009 BUG_ON(offset > brdp->memsize);
3011 ptr = brdp->membase + (offset % BBY_PAGESIZE);
3012 val = (unsigned char) (offset / BBY_PAGESIZE);
3013 outb(val, (brdp->iobase + BBY_ATCONFR));
3014 return(ptr);
3017 /*****************************************************************************/
3019 static void stli_bbyreset(struct stlibrd *brdp)
3021 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3022 udelay(10);
3023 outb(0, (brdp->iobase + BBY_ATCONFR));
3024 mdelay(1000);
3027 /*****************************************************************************/
3030 * The following routines act on original old Stallion boards.
3033 static void stli_stalinit(struct stlibrd *brdp)
3035 outb(0x1, brdp->iobase);
3036 mdelay(1000);
3039 /*****************************************************************************/
3041 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3043 BUG_ON(offset > brdp->memsize);
3044 return brdp->membase + (offset % STAL_PAGESIZE);
3047 /*****************************************************************************/
3049 static void stli_stalreset(struct stlibrd *brdp)
3051 u32 __iomem *vecp;
3053 vecp = (u32 __iomem *) (brdp->membase + 0x30);
3054 writel(0xffff0000, vecp);
3055 outb(0, brdp->iobase);
3056 mdelay(1000);
3059 /*****************************************************************************/
3062 * Try to find an ECP board and initialize it. This handles only ECP
3063 * board types.
3066 static int stli_initecp(struct stlibrd *brdp)
3068 cdkecpsig_t sig;
3069 cdkecpsig_t __iomem *sigsp;
3070 unsigned int status, nxtid;
3071 char *name;
3072 int retval, panelnr, nrports;
3074 if ((brdp->iobase == 0) || (brdp->memaddr == 0)) {
3075 retval = -ENODEV;
3076 goto err;
3079 brdp->iosize = ECP_IOSIZE;
3081 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3082 retval = -EIO;
3083 goto err;
3087 * Based on the specific board type setup the common vars to access
3088 * and enable shared memory. Set all board specific information now
3089 * as well.
3091 switch (brdp->brdtype) {
3092 case BRD_ECP:
3093 brdp->memsize = ECP_MEMSIZE;
3094 brdp->pagesize = ECP_ATPAGESIZE;
3095 brdp->init = stli_ecpinit;
3096 brdp->enable = stli_ecpenable;
3097 brdp->reenable = stli_ecpenable;
3098 brdp->disable = stli_ecpdisable;
3099 brdp->getmemptr = stli_ecpgetmemptr;
3100 brdp->intr = stli_ecpintr;
3101 brdp->reset = stli_ecpreset;
3102 name = "serial(EC8/64)";
3103 break;
3105 case BRD_ECPE:
3106 brdp->memsize = ECP_MEMSIZE;
3107 brdp->pagesize = ECP_EIPAGESIZE;
3108 brdp->init = stli_ecpeiinit;
3109 brdp->enable = stli_ecpeienable;
3110 brdp->reenable = stli_ecpeienable;
3111 brdp->disable = stli_ecpeidisable;
3112 brdp->getmemptr = stli_ecpeigetmemptr;
3113 brdp->intr = stli_ecpintr;
3114 brdp->reset = stli_ecpeireset;
3115 name = "serial(EC8/64-EI)";
3116 break;
3118 case BRD_ECPMC:
3119 brdp->memsize = ECP_MEMSIZE;
3120 brdp->pagesize = ECP_MCPAGESIZE;
3121 brdp->init = NULL;
3122 brdp->enable = stli_ecpmcenable;
3123 brdp->reenable = stli_ecpmcenable;
3124 brdp->disable = stli_ecpmcdisable;
3125 brdp->getmemptr = stli_ecpmcgetmemptr;
3126 brdp->intr = stli_ecpintr;
3127 brdp->reset = stli_ecpmcreset;
3128 name = "serial(EC8/64-MCA)";
3129 break;
3131 case BRD_ECPPCI:
3132 brdp->memsize = ECP_PCIMEMSIZE;
3133 brdp->pagesize = ECP_PCIPAGESIZE;
3134 brdp->init = stli_ecppciinit;
3135 brdp->enable = NULL;
3136 brdp->reenable = NULL;
3137 brdp->disable = NULL;
3138 brdp->getmemptr = stli_ecppcigetmemptr;
3139 brdp->intr = stli_ecpintr;
3140 brdp->reset = stli_ecppcireset;
3141 name = "serial(EC/RA-PCI)";
3142 break;
3144 default:
3145 retval = -EINVAL;
3146 goto err_reg;
3150 * The per-board operations structure is all set up, so now let's go
3151 * and get the board operational. Firstly initialize board configuration
3152 * registers. Set the memory mapping info so we can get at the boards
3153 * shared memory.
3155 EBRDINIT(brdp);
3157 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3158 if (brdp->membase == NULL) {
3159 retval = -ENOMEM;
3160 goto err_reg;
3164 * Now that all specific code is set up, enable the shared memory and
3165 * look for the a signature area that will tell us exactly what board
3166 * this is, and what it is connected to it.
3168 EBRDENABLE(brdp);
3169 sigsp = (cdkecpsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3170 memcpy_fromio(&sig, sigsp, sizeof(cdkecpsig_t));
3171 EBRDDISABLE(brdp);
3173 if (sig.magic != cpu_to_le32(ECP_MAGIC)) {
3174 retval = -ENODEV;
3175 goto err_unmap;
3179 * Scan through the signature looking at the panels connected to the
3180 * board. Calculate the total number of ports as we go.
3182 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3183 status = sig.panelid[nxtid];
3184 if ((status & ECH_PNLIDMASK) != nxtid)
3185 break;
3187 brdp->panelids[panelnr] = status;
3188 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3189 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3190 nxtid++;
3191 brdp->panels[panelnr] = nrports;
3192 brdp->nrports += nrports;
3193 nxtid++;
3194 brdp->nrpanels++;
3198 brdp->state |= BST_FOUND;
3199 return 0;
3200 err_unmap:
3201 iounmap(brdp->membase);
3202 brdp->membase = NULL;
3203 err_reg:
3204 release_region(brdp->iobase, brdp->iosize);
3205 err:
3206 return retval;
3209 /*****************************************************************************/
3212 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3213 * This handles only these board types.
3216 static int stli_initonb(struct stlibrd *brdp)
3218 cdkonbsig_t sig;
3219 cdkonbsig_t __iomem *sigsp;
3220 char *name;
3221 int i, retval;
3224 * Do a basic sanity check on the IO and memory addresses.
3226 if (brdp->iobase == 0 || brdp->memaddr == 0) {
3227 retval = -ENODEV;
3228 goto err;
3231 brdp->iosize = ONB_IOSIZE;
3233 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3234 retval = -EIO;
3235 goto err;
3239 * Based on the specific board type setup the common vars to access
3240 * and enable shared memory. Set all board specific information now
3241 * as well.
3243 switch (brdp->brdtype) {
3244 case BRD_ONBOARD:
3245 case BRD_ONBOARD2:
3246 brdp->memsize = ONB_MEMSIZE;
3247 brdp->pagesize = ONB_ATPAGESIZE;
3248 brdp->init = stli_onbinit;
3249 brdp->enable = stli_onbenable;
3250 brdp->reenable = stli_onbenable;
3251 brdp->disable = stli_onbdisable;
3252 brdp->getmemptr = stli_onbgetmemptr;
3253 brdp->intr = stli_ecpintr;
3254 brdp->reset = stli_onbreset;
3255 if (brdp->memaddr > 0x100000)
3256 brdp->enabval = ONB_MEMENABHI;
3257 else
3258 brdp->enabval = ONB_MEMENABLO;
3259 name = "serial(ONBoard)";
3260 break;
3262 case BRD_ONBOARDE:
3263 brdp->memsize = ONB_EIMEMSIZE;
3264 brdp->pagesize = ONB_EIPAGESIZE;
3265 brdp->init = stli_onbeinit;
3266 brdp->enable = stli_onbeenable;
3267 brdp->reenable = stli_onbeenable;
3268 brdp->disable = stli_onbedisable;
3269 brdp->getmemptr = stli_onbegetmemptr;
3270 brdp->intr = stli_ecpintr;
3271 brdp->reset = stli_onbereset;
3272 name = "serial(ONBoard/E)";
3273 break;
3275 case BRD_BRUMBY4:
3276 brdp->memsize = BBY_MEMSIZE;
3277 brdp->pagesize = BBY_PAGESIZE;
3278 brdp->init = stli_bbyinit;
3279 brdp->enable = NULL;
3280 brdp->reenable = NULL;
3281 brdp->disable = NULL;
3282 brdp->getmemptr = stli_bbygetmemptr;
3283 brdp->intr = stli_ecpintr;
3284 brdp->reset = stli_bbyreset;
3285 name = "serial(Brumby)";
3286 break;
3288 case BRD_STALLION:
3289 brdp->memsize = STAL_MEMSIZE;
3290 brdp->pagesize = STAL_PAGESIZE;
3291 brdp->init = stli_stalinit;
3292 brdp->enable = NULL;
3293 brdp->reenable = NULL;
3294 brdp->disable = NULL;
3295 brdp->getmemptr = stli_stalgetmemptr;
3296 brdp->intr = stli_ecpintr;
3297 brdp->reset = stli_stalreset;
3298 name = "serial(Stallion)";
3299 break;
3301 default:
3302 retval = -EINVAL;
3303 goto err_reg;
3307 * The per-board operations structure is all set up, so now let's go
3308 * and get the board operational. Firstly initialize board configuration
3309 * registers. Set the memory mapping info so we can get at the boards
3310 * shared memory.
3312 EBRDINIT(brdp);
3314 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3315 if (brdp->membase == NULL) {
3316 retval = -ENOMEM;
3317 goto err_reg;
3321 * Now that all specific code is set up, enable the shared memory and
3322 * look for the a signature area that will tell us exactly what board
3323 * this is, and how many ports.
3325 EBRDENABLE(brdp);
3326 sigsp = (cdkonbsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3327 memcpy_fromio(&sig, sigsp, sizeof(cdkonbsig_t));
3328 EBRDDISABLE(brdp);
3330 if (sig.magic0 != cpu_to_le16(ONB_MAGIC0) ||
3331 sig.magic1 != cpu_to_le16(ONB_MAGIC1) ||
3332 sig.magic2 != cpu_to_le16(ONB_MAGIC2) ||
3333 sig.magic3 != cpu_to_le16(ONB_MAGIC3)) {
3334 retval = -ENODEV;
3335 goto err_unmap;
3339 * Scan through the signature alive mask and calculate how many ports
3340 * there are on this board.
3342 brdp->nrpanels = 1;
3343 if (sig.amask1) {
3344 brdp->nrports = 32;
3345 } else {
3346 for (i = 0; (i < 16); i++) {
3347 if (((sig.amask0 << i) & 0x8000) == 0)
3348 break;
3350 brdp->nrports = i;
3352 brdp->panels[0] = brdp->nrports;
3355 brdp->state |= BST_FOUND;
3356 return 0;
3357 err_unmap:
3358 iounmap(brdp->membase);
3359 brdp->membase = NULL;
3360 err_reg:
3361 release_region(brdp->iobase, brdp->iosize);
3362 err:
3363 return retval;
3366 /*****************************************************************************/
3369 * Start up a running board. This routine is only called after the
3370 * code has been down loaded to the board and is operational. It will
3371 * read in the memory map, and get the show on the road...
3374 static int stli_startbrd(struct stlibrd *brdp)
3376 cdkhdr_t __iomem *hdrp;
3377 cdkmem_t __iomem *memp;
3378 cdkasy_t __iomem *ap;
3379 unsigned long flags;
3380 unsigned int portnr, nrdevs, i;
3381 struct stliport *portp;
3382 int rc = 0;
3383 u32 memoff;
3385 spin_lock_irqsave(&brd_lock, flags);
3386 EBRDENABLE(brdp);
3387 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3388 nrdevs = hdrp->nrdevs;
3390 #if 0
3391 printk("%s(%d): CDK version %d.%d.%d --> "
3392 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
3393 __FILE__, __LINE__, readb(&hdrp->ver_release), readb(&hdrp->ver_modification),
3394 readb(&hdrp->ver_fix), nrdevs, (int) readl(&hdrp->memp), readl(&hdrp->hostp),
3395 readl(&hdrp->slavep));
3396 #endif
3398 if (nrdevs < (brdp->nrports + 1)) {
3399 printk(KERN_ERR "istallion: slave failed to allocate memory for "
3400 "all devices, devices=%d\n", nrdevs);
3401 brdp->nrports = nrdevs - 1;
3403 brdp->nrdevs = nrdevs;
3404 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
3405 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
3406 brdp->bitsize = (nrdevs + 7) / 8;
3407 memoff = readl(&hdrp->memp);
3408 if (memoff > brdp->memsize) {
3409 printk(KERN_ERR "istallion: corrupted shared memory region?\n");
3410 rc = -EIO;
3411 goto stli_donestartup;
3413 memp = (cdkmem_t __iomem *) EBRDGETMEMPTR(brdp, memoff);
3414 if (readw(&memp->dtype) != TYP_ASYNCTRL) {
3415 printk(KERN_ERR "istallion: no slave control device found\n");
3416 goto stli_donestartup;
3418 memp++;
3421 * Cycle through memory allocation of each port. We are guaranteed to
3422 * have all ports inside the first page of slave window, so no need to
3423 * change pages while reading memory map.
3425 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
3426 if (readw(&memp->dtype) != TYP_ASYNC)
3427 break;
3428 portp = brdp->ports[portnr];
3429 if (portp == NULL)
3430 break;
3431 portp->devnr = i;
3432 portp->addr = readl(&memp->offset);
3433 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
3434 portp->portidx = (unsigned char) (i / 8);
3435 portp->portbit = (unsigned char) (0x1 << (i % 8));
3438 writeb(0xff, &hdrp->slavereq);
3441 * For each port setup a local copy of the RX and TX buffer offsets
3442 * and sizes. We do this separate from the above, because we need to
3443 * move the shared memory page...
3445 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
3446 portp = brdp->ports[portnr];
3447 if (portp == NULL)
3448 break;
3449 if (portp->addr == 0)
3450 break;
3451 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
3452 if (ap != NULL) {
3453 portp->rxsize = readw(&ap->rxq.size);
3454 portp->txsize = readw(&ap->txq.size);
3455 portp->rxoffset = readl(&ap->rxq.offset);
3456 portp->txoffset = readl(&ap->txq.offset);
3460 stli_donestartup:
3461 EBRDDISABLE(brdp);
3462 spin_unlock_irqrestore(&brd_lock, flags);
3464 if (rc == 0)
3465 brdp->state |= BST_STARTED;
3467 if (! stli_timeron) {
3468 stli_timeron++;
3469 mod_timer(&stli_timerlist, STLI_TIMEOUT);
3472 return rc;
3475 /*****************************************************************************/
3478 * Probe and initialize the specified board.
3481 static int __devinit stli_brdinit(struct stlibrd *brdp)
3483 int retval;
3485 switch (brdp->brdtype) {
3486 case BRD_ECP:
3487 case BRD_ECPE:
3488 case BRD_ECPMC:
3489 case BRD_ECPPCI:
3490 retval = stli_initecp(brdp);
3491 break;
3492 case BRD_ONBOARD:
3493 case BRD_ONBOARDE:
3494 case BRD_ONBOARD2:
3495 case BRD_BRUMBY4:
3496 case BRD_STALLION:
3497 retval = stli_initonb(brdp);
3498 break;
3499 default:
3500 printk(KERN_ERR "istallion: board=%d is unknown board "
3501 "type=%d\n", brdp->brdnr, brdp->brdtype);
3502 retval = -ENODEV;
3505 if (retval)
3506 return retval;
3508 stli_initports(brdp);
3509 printk(KERN_INFO "istallion: %s found, board=%d io=%x mem=%x "
3510 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
3511 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
3512 brdp->nrpanels, brdp->nrports);
3513 return 0;
3516 #if STLI_EISAPROBE != 0
3517 /*****************************************************************************/
3520 * Probe around trying to find where the EISA boards shared memory
3521 * might be. This is a bit if hack, but it is the best we can do.
3524 static int stli_eisamemprobe(struct stlibrd *brdp)
3526 cdkecpsig_t ecpsig, __iomem *ecpsigp;
3527 cdkonbsig_t onbsig, __iomem *onbsigp;
3528 int i, foundit;
3531 * First up we reset the board, to get it into a known state. There
3532 * is only 2 board types here we need to worry about. Don;t use the
3533 * standard board init routine here, it programs up the shared
3534 * memory address, and we don't know it yet...
3536 if (brdp->brdtype == BRD_ECPE) {
3537 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3538 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3539 udelay(10);
3540 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3541 udelay(500);
3542 stli_ecpeienable(brdp);
3543 } else if (brdp->brdtype == BRD_ONBOARDE) {
3544 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3545 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3546 udelay(10);
3547 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3548 mdelay(100);
3549 outb(0x1, brdp->iobase);
3550 mdelay(1);
3551 stli_onbeenable(brdp);
3552 } else {
3553 return -ENODEV;
3556 foundit = 0;
3557 brdp->memsize = ECP_MEMSIZE;
3560 * Board shared memory is enabled, so now we have a poke around and
3561 * see if we can find it.
3563 for (i = 0; (i < stli_eisamempsize); i++) {
3564 brdp->memaddr = stli_eisamemprobeaddrs[i];
3565 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3566 if (brdp->membase == NULL)
3567 continue;
3569 if (brdp->brdtype == BRD_ECPE) {
3570 ecpsigp = stli_ecpeigetmemptr(brdp,
3571 CDK_SIGADDR, __LINE__);
3572 memcpy_fromio(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
3573 if (ecpsig.magic == cpu_to_le32(ECP_MAGIC))
3574 foundit = 1;
3575 } else {
3576 onbsigp = (cdkonbsig_t __iomem *) stli_onbegetmemptr(brdp,
3577 CDK_SIGADDR, __LINE__);
3578 memcpy_fromio(&onbsig, onbsigp, sizeof(cdkonbsig_t));
3579 if ((onbsig.magic0 == cpu_to_le16(ONB_MAGIC0)) &&
3580 (onbsig.magic1 == cpu_to_le16(ONB_MAGIC1)) &&
3581 (onbsig.magic2 == cpu_to_le16(ONB_MAGIC2)) &&
3582 (onbsig.magic3 == cpu_to_le16(ONB_MAGIC3)))
3583 foundit = 1;
3586 iounmap(brdp->membase);
3587 if (foundit)
3588 break;
3592 * Regardless of whether we found the shared memory or not we must
3593 * disable the region. After that return success or failure.
3595 if (brdp->brdtype == BRD_ECPE)
3596 stli_ecpeidisable(brdp);
3597 else
3598 stli_onbedisable(brdp);
3600 if (! foundit) {
3601 brdp->memaddr = 0;
3602 brdp->membase = NULL;
3603 printk(KERN_ERR "istallion: failed to probe shared memory "
3604 "region for %s in EISA slot=%d\n",
3605 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
3606 return -ENODEV;
3608 return 0;
3610 #endif
3612 static int stli_getbrdnr(void)
3614 unsigned int i;
3616 for (i = 0; i < STL_MAXBRDS; i++) {
3617 if (!stli_brds[i]) {
3618 if (i >= stli_nrbrds)
3619 stli_nrbrds = i + 1;
3620 return i;
3623 return -1;
3626 #if STLI_EISAPROBE != 0
3627 /*****************************************************************************/
3630 * Probe around and try to find any EISA boards in system. The biggest
3631 * problem here is finding out what memory address is associated with
3632 * an EISA board after it is found. The registers of the ECPE and
3633 * ONboardE are not readable - so we can't read them from there. We
3634 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
3635 * actually have any way to find out the real value. The best we can
3636 * do is go probing around in the usual places hoping we can find it.
3639 static int __init stli_findeisabrds(void)
3641 struct stlibrd *brdp;
3642 unsigned int iobase, eid, i;
3643 int brdnr, found = 0;
3646 * Firstly check if this is an EISA system. If this is not an EISA system then
3647 * don't bother going any further!
3649 if (EISA_bus)
3650 return 0;
3653 * Looks like an EISA system, so go searching for EISA boards.
3655 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
3656 outb(0xff, (iobase + 0xc80));
3657 eid = inb(iobase + 0xc80);
3658 eid |= inb(iobase + 0xc81) << 8;
3659 if (eid != STL_EISAID)
3660 continue;
3663 * We have found a board. Need to check if this board was
3664 * statically configured already (just in case!).
3666 for (i = 0; (i < STL_MAXBRDS); i++) {
3667 brdp = stli_brds[i];
3668 if (brdp == NULL)
3669 continue;
3670 if (brdp->iobase == iobase)
3671 break;
3673 if (i < STL_MAXBRDS)
3674 continue;
3677 * We have found a Stallion board and it is not configured already.
3678 * Allocate a board structure and initialize it.
3680 if ((brdp = stli_allocbrd()) == NULL)
3681 return found ? : -ENOMEM;
3682 brdnr = stli_getbrdnr();
3683 if (brdnr < 0)
3684 return found ? : -ENOMEM;
3685 brdp->brdnr = (unsigned int)brdnr;
3686 eid = inb(iobase + 0xc82);
3687 if (eid == ECP_EISAID)
3688 brdp->brdtype = BRD_ECPE;
3689 else if (eid == ONB_EISAID)
3690 brdp->brdtype = BRD_ONBOARDE;
3691 else
3692 brdp->brdtype = BRD_UNKNOWN;
3693 brdp->iobase = iobase;
3694 outb(0x1, (iobase + 0xc84));
3695 if (stli_eisamemprobe(brdp))
3696 outb(0, (iobase + 0xc84));
3697 if (stli_brdinit(brdp) < 0) {
3698 kfree(brdp);
3699 continue;
3702 stli_brds[brdp->brdnr] = brdp;
3703 found++;
3705 for (i = 0; i < brdp->nrports; i++)
3706 tty_register_device(stli_serial,
3707 brdp->brdnr * STL_MAXPORTS + i, NULL);
3710 return found;
3712 #else
3713 static inline int stli_findeisabrds(void) { return 0; }
3714 #endif
3716 /*****************************************************************************/
3719 * Find the next available board number that is free.
3722 /*****************************************************************************/
3725 * We have a Stallion board. Allocate a board structure and
3726 * initialize it. Read its IO and MEMORY resources from PCI
3727 * configuration space.
3730 static int __devinit stli_pciprobe(struct pci_dev *pdev,
3731 const struct pci_device_id *ent)
3733 struct stlibrd *brdp;
3734 unsigned int i;
3735 int brdnr, retval = -EIO;
3737 retval = pci_enable_device(pdev);
3738 if (retval)
3739 goto err;
3740 brdp = stli_allocbrd();
3741 if (brdp == NULL) {
3742 retval = -ENOMEM;
3743 goto err;
3745 mutex_lock(&stli_brdslock);
3746 brdnr = stli_getbrdnr();
3747 if (brdnr < 0) {
3748 printk(KERN_INFO "istallion: too many boards found, "
3749 "maximum supported %d\n", STL_MAXBRDS);
3750 mutex_unlock(&stli_brdslock);
3751 retval = -EIO;
3752 goto err_fr;
3754 brdp->brdnr = (unsigned int)brdnr;
3755 stli_brds[brdp->brdnr] = brdp;
3756 mutex_unlock(&stli_brdslock);
3757 brdp->brdtype = BRD_ECPPCI;
3759 * We have all resources from the board, so lets setup the actual
3760 * board structure now.
3762 brdp->iobase = pci_resource_start(pdev, 3);
3763 brdp->memaddr = pci_resource_start(pdev, 2);
3764 retval = stli_brdinit(brdp);
3765 if (retval)
3766 goto err_null;
3768 brdp->state |= BST_PROBED;
3769 pci_set_drvdata(pdev, brdp);
3771 EBRDENABLE(brdp);
3772 brdp->enable = NULL;
3773 brdp->disable = NULL;
3775 for (i = 0; i < brdp->nrports; i++)
3776 tty_register_device(stli_serial, brdp->brdnr * STL_MAXPORTS + i,
3777 &pdev->dev);
3779 return 0;
3780 err_null:
3781 stli_brds[brdp->brdnr] = NULL;
3782 err_fr:
3783 kfree(brdp);
3784 err:
3785 return retval;
3788 static void stli_pciremove(struct pci_dev *pdev)
3790 struct stlibrd *brdp = pci_get_drvdata(pdev);
3792 stli_cleanup_ports(brdp);
3794 iounmap(brdp->membase);
3795 if (brdp->iosize > 0)
3796 release_region(brdp->iobase, brdp->iosize);
3798 stli_brds[brdp->brdnr] = NULL;
3799 kfree(brdp);
3802 static struct pci_driver stli_pcidriver = {
3803 .name = "istallion",
3804 .id_table = istallion_pci_tbl,
3805 .probe = stli_pciprobe,
3806 .remove = __devexit_p(stli_pciremove)
3808 /*****************************************************************************/
3811 * Allocate a new board structure. Fill out the basic info in it.
3814 static struct stlibrd *stli_allocbrd(void)
3816 struct stlibrd *brdp;
3818 brdp = kzalloc(sizeof(struct stlibrd), GFP_KERNEL);
3819 if (!brdp) {
3820 printk(KERN_ERR "istallion: failed to allocate memory "
3821 "(size=%Zd)\n", sizeof(struct stlibrd));
3822 return NULL;
3824 brdp->magic = STLI_BOARDMAGIC;
3825 return brdp;
3828 /*****************************************************************************/
3831 * Scan through all the boards in the configuration and see what we
3832 * can find.
3835 static int __init stli_initbrds(void)
3837 struct stlibrd *brdp, *nxtbrdp;
3838 struct stlconf conf;
3839 unsigned int i, j, found = 0;
3840 int retval;
3842 for (stli_nrbrds = 0; stli_nrbrds < ARRAY_SIZE(stli_brdsp);
3843 stli_nrbrds++) {
3844 memset(&conf, 0, sizeof(conf));
3845 if (stli_parsebrd(&conf, stli_brdsp[stli_nrbrds]) == 0)
3846 continue;
3847 if ((brdp = stli_allocbrd()) == NULL)
3848 continue;
3849 brdp->brdnr = stli_nrbrds;
3850 brdp->brdtype = conf.brdtype;
3851 brdp->iobase = conf.ioaddr1;
3852 brdp->memaddr = conf.memaddr;
3853 if (stli_brdinit(brdp) < 0) {
3854 kfree(brdp);
3855 continue;
3857 stli_brds[brdp->brdnr] = brdp;
3858 found++;
3860 for (i = 0; i < brdp->nrports; i++)
3861 tty_register_device(stli_serial,
3862 brdp->brdnr * STL_MAXPORTS + i, NULL);
3865 retval = stli_findeisabrds();
3866 if (retval > 0)
3867 found += retval;
3870 * All found boards are initialized. Now for a little optimization, if
3871 * no boards are sharing the "shared memory" regions then we can just
3872 * leave them all enabled. This is in fact the usual case.
3874 stli_shared = 0;
3875 if (stli_nrbrds > 1) {
3876 for (i = 0; (i < stli_nrbrds); i++) {
3877 brdp = stli_brds[i];
3878 if (brdp == NULL)
3879 continue;
3880 for (j = i + 1; (j < stli_nrbrds); j++) {
3881 nxtbrdp = stli_brds[j];
3882 if (nxtbrdp == NULL)
3883 continue;
3884 if ((brdp->membase >= nxtbrdp->membase) &&
3885 (brdp->membase <= (nxtbrdp->membase +
3886 nxtbrdp->memsize - 1))) {
3887 stli_shared++;
3888 break;
3894 if (stli_shared == 0) {
3895 for (i = 0; (i < stli_nrbrds); i++) {
3896 brdp = stli_brds[i];
3897 if (brdp == NULL)
3898 continue;
3899 if (brdp->state & BST_FOUND) {
3900 EBRDENABLE(brdp);
3901 brdp->enable = NULL;
3902 brdp->disable = NULL;
3907 retval = pci_register_driver(&stli_pcidriver);
3908 if (retval && found == 0) {
3909 printk(KERN_ERR "Neither isa nor eisa cards found nor pci "
3910 "driver can be registered!\n");
3911 goto err;
3914 return 0;
3915 err:
3916 return retval;
3919 /*****************************************************************************/
3922 * Code to handle an "staliomem" read operation. This device is the
3923 * contents of the board shared memory. It is used for down loading
3924 * the slave image (and debugging :-)
3927 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
3929 unsigned long flags;
3930 void __iomem *memptr;
3931 struct stlibrd *brdp;
3932 unsigned int brdnr;
3933 int size, n;
3934 void *p;
3935 loff_t off = *offp;
3937 brdnr = iminor(fp->f_path.dentry->d_inode);
3938 if (brdnr >= stli_nrbrds)
3939 return -ENODEV;
3940 brdp = stli_brds[brdnr];
3941 if (brdp == NULL)
3942 return -ENODEV;
3943 if (brdp->state == 0)
3944 return -ENODEV;
3945 if (off >= brdp->memsize || off + count < off)
3946 return 0;
3948 size = min(count, (size_t)(brdp->memsize - off));
3951 * Copy the data a page at a time
3954 p = (void *)__get_free_page(GFP_KERNEL);
3955 if(p == NULL)
3956 return -ENOMEM;
3958 while (size > 0) {
3959 spin_lock_irqsave(&brd_lock, flags);
3960 EBRDENABLE(brdp);
3961 memptr = EBRDGETMEMPTR(brdp, off);
3962 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
3963 n = min(n, (int)PAGE_SIZE);
3964 memcpy_fromio(p, memptr, n);
3965 EBRDDISABLE(brdp);
3966 spin_unlock_irqrestore(&brd_lock, flags);
3967 if (copy_to_user(buf, p, n)) {
3968 count = -EFAULT;
3969 goto out;
3971 off += n;
3972 buf += n;
3973 size -= n;
3975 out:
3976 *offp = off;
3977 free_page((unsigned long)p);
3978 return count;
3981 /*****************************************************************************/
3984 * Code to handle an "staliomem" write operation. This device is the
3985 * contents of the board shared memory. It is used for down loading
3986 * the slave image (and debugging :-)
3988 * FIXME: copy under lock
3991 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
3993 unsigned long flags;
3994 void __iomem *memptr;
3995 struct stlibrd *brdp;
3996 char __user *chbuf;
3997 unsigned int brdnr;
3998 int size, n;
3999 void *p;
4000 loff_t off = *offp;
4002 brdnr = iminor(fp->f_path.dentry->d_inode);
4004 if (brdnr >= stli_nrbrds)
4005 return -ENODEV;
4006 brdp = stli_brds[brdnr];
4007 if (brdp == NULL)
4008 return -ENODEV;
4009 if (brdp->state == 0)
4010 return -ENODEV;
4011 if (off >= brdp->memsize || off + count < off)
4012 return 0;
4014 chbuf = (char __user *) buf;
4015 size = min(count, (size_t)(brdp->memsize - off));
4018 * Copy the data a page at a time
4021 p = (void *)__get_free_page(GFP_KERNEL);
4022 if(p == NULL)
4023 return -ENOMEM;
4025 while (size > 0) {
4026 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4027 n = min(n, (int)PAGE_SIZE);
4028 if (copy_from_user(p, chbuf, n)) {
4029 if (count == 0)
4030 count = -EFAULT;
4031 goto out;
4033 spin_lock_irqsave(&brd_lock, flags);
4034 EBRDENABLE(brdp);
4035 memptr = EBRDGETMEMPTR(brdp, off);
4036 memcpy_toio(memptr, p, n);
4037 EBRDDISABLE(brdp);
4038 spin_unlock_irqrestore(&brd_lock, flags);
4039 off += n;
4040 chbuf += n;
4041 size -= n;
4043 out:
4044 free_page((unsigned long) p);
4045 *offp = off;
4046 return count;
4049 /*****************************************************************************/
4052 * Return the board stats structure to user app.
4055 static int stli_getbrdstats(combrd_t __user *bp)
4057 struct stlibrd *brdp;
4058 unsigned int i;
4060 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4061 return -EFAULT;
4062 if (stli_brdstats.brd >= STL_MAXBRDS)
4063 return -ENODEV;
4064 brdp = stli_brds[stli_brdstats.brd];
4065 if (brdp == NULL)
4066 return -ENODEV;
4068 memset(&stli_brdstats, 0, sizeof(combrd_t));
4069 stli_brdstats.brd = brdp->brdnr;
4070 stli_brdstats.type = brdp->brdtype;
4071 stli_brdstats.hwid = 0;
4072 stli_brdstats.state = brdp->state;
4073 stli_brdstats.ioaddr = brdp->iobase;
4074 stli_brdstats.memaddr = brdp->memaddr;
4075 stli_brdstats.nrpanels = brdp->nrpanels;
4076 stli_brdstats.nrports = brdp->nrports;
4077 for (i = 0; (i < brdp->nrpanels); i++) {
4078 stli_brdstats.panels[i].panel = i;
4079 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4080 stli_brdstats.panels[i].nrports = brdp->panels[i];
4083 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4084 return -EFAULT;
4085 return 0;
4088 /*****************************************************************************/
4091 * Resolve the referenced port number into a port struct pointer.
4094 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr,
4095 unsigned int portnr)
4097 struct stlibrd *brdp;
4098 unsigned int i;
4100 if (brdnr >= STL_MAXBRDS)
4101 return NULL;
4102 brdp = stli_brds[brdnr];
4103 if (brdp == NULL)
4104 return NULL;
4105 for (i = 0; (i < panelnr); i++)
4106 portnr += brdp->panels[i];
4107 if (portnr >= brdp->nrports)
4108 return NULL;
4109 return brdp->ports[portnr];
4112 /*****************************************************************************/
4115 * Return the port stats structure to user app. A NULL port struct
4116 * pointer passed in means that we need to find out from the app
4117 * what port to get stats for (used through board control device).
4120 static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp)
4122 unsigned long flags;
4123 struct stlibrd *brdp;
4124 int rc;
4126 memset(&stli_comstats, 0, sizeof(comstats_t));
4128 if (portp == NULL)
4129 return -ENODEV;
4130 brdp = stli_brds[portp->brdnr];
4131 if (brdp == NULL)
4132 return -ENODEV;
4134 if (brdp->state & BST_STARTED) {
4135 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4136 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4137 return rc;
4138 } else {
4139 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4142 stli_comstats.brd = portp->brdnr;
4143 stli_comstats.panel = portp->panelnr;
4144 stli_comstats.port = portp->portnr;
4145 stli_comstats.state = portp->state;
4146 stli_comstats.flags = portp->port.flags;
4148 spin_lock_irqsave(&brd_lock, flags);
4149 if (tty != NULL) {
4150 if (portp->port.tty == tty) {
4151 stli_comstats.ttystate = tty->flags;
4152 stli_comstats.rxbuffered = -1;
4153 if (tty->termios != NULL) {
4154 stli_comstats.cflags = tty->termios->c_cflag;
4155 stli_comstats.iflags = tty->termios->c_iflag;
4156 stli_comstats.oflags = tty->termios->c_oflag;
4157 stli_comstats.lflags = tty->termios->c_lflag;
4161 spin_unlock_irqrestore(&brd_lock, flags);
4163 stli_comstats.txtotal = stli_cdkstats.txchars;
4164 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4165 stli_comstats.txbuffered = stli_cdkstats.txringq;
4166 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4167 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4168 stli_comstats.rxparity = stli_cdkstats.parity;
4169 stli_comstats.rxframing = stli_cdkstats.framing;
4170 stli_comstats.rxlost = stli_cdkstats.ringover;
4171 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4172 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4173 stli_comstats.txxon = stli_cdkstats.txstart;
4174 stli_comstats.txxoff = stli_cdkstats.txstop;
4175 stli_comstats.rxxon = stli_cdkstats.rxstart;
4176 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4177 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4178 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4179 stli_comstats.modem = stli_cdkstats.dcdcnt;
4180 stli_comstats.hwid = stli_cdkstats.hwid;
4181 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4183 return 0;
4186 /*****************************************************************************/
4189 * Return the port stats structure to user app. A NULL port struct
4190 * pointer passed in means that we need to find out from the app
4191 * what port to get stats for (used through board control device).
4194 static int stli_getportstats(struct tty_struct *tty, struct stliport *portp,
4195 comstats_t __user *cp)
4197 struct stlibrd *brdp;
4198 int rc;
4200 if (!portp) {
4201 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4202 return -EFAULT;
4203 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4204 stli_comstats.port);
4205 if (!portp)
4206 return -ENODEV;
4209 brdp = stli_brds[portp->brdnr];
4210 if (!brdp)
4211 return -ENODEV;
4213 if ((rc = stli_portcmdstats(tty, portp)) < 0)
4214 return rc;
4216 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4217 -EFAULT : 0;
4220 /*****************************************************************************/
4223 * Clear the port stats structure. We also return it zeroed out...
4226 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp)
4228 struct stlibrd *brdp;
4229 int rc;
4231 if (!portp) {
4232 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4233 return -EFAULT;
4234 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4235 stli_comstats.port);
4236 if (!portp)
4237 return -ENODEV;
4240 brdp = stli_brds[portp->brdnr];
4241 if (!brdp)
4242 return -ENODEV;
4244 if (brdp->state & BST_STARTED) {
4245 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
4246 return rc;
4249 memset(&stli_comstats, 0, sizeof(comstats_t));
4250 stli_comstats.brd = portp->brdnr;
4251 stli_comstats.panel = portp->panelnr;
4252 stli_comstats.port = portp->portnr;
4254 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
4255 return -EFAULT;
4256 return 0;
4259 /*****************************************************************************/
4262 * Return the entire driver ports structure to a user app.
4265 static int stli_getportstruct(struct stliport __user *arg)
4267 struct stliport stli_dummyport;
4268 struct stliport *portp;
4270 if (copy_from_user(&stli_dummyport, arg, sizeof(struct stliport)))
4271 return -EFAULT;
4272 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
4273 stli_dummyport.portnr);
4274 if (!portp)
4275 return -ENODEV;
4276 if (copy_to_user(arg, portp, sizeof(struct stliport)))
4277 return -EFAULT;
4278 return 0;
4281 /*****************************************************************************/
4284 * Return the entire driver board structure to a user app.
4287 static int stli_getbrdstruct(struct stlibrd __user *arg)
4289 struct stlibrd stli_dummybrd;
4290 struct stlibrd *brdp;
4292 if (copy_from_user(&stli_dummybrd, arg, sizeof(struct stlibrd)))
4293 return -EFAULT;
4294 if (stli_dummybrd.brdnr >= STL_MAXBRDS)
4295 return -ENODEV;
4296 brdp = stli_brds[stli_dummybrd.brdnr];
4297 if (!brdp)
4298 return -ENODEV;
4299 if (copy_to_user(arg, brdp, sizeof(struct stlibrd)))
4300 return -EFAULT;
4301 return 0;
4304 /*****************************************************************************/
4307 * The "staliomem" device is also required to do some special operations on
4308 * the board. We need to be able to send an interrupt to the board,
4309 * reset it, and start/stop it.
4312 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
4314 struct stlibrd *brdp;
4315 int brdnr, rc, done;
4316 void __user *argp = (void __user *)arg;
4319 * First up handle the board independent ioctls.
4321 done = 0;
4322 rc = 0;
4324 lock_kernel();
4326 switch (cmd) {
4327 case COM_GETPORTSTATS:
4328 rc = stli_getportstats(NULL, NULL, argp);
4329 done++;
4330 break;
4331 case COM_CLRPORTSTATS:
4332 rc = stli_clrportstats(NULL, argp);
4333 done++;
4334 break;
4335 case COM_GETBRDSTATS:
4336 rc = stli_getbrdstats(argp);
4337 done++;
4338 break;
4339 case COM_READPORT:
4340 rc = stli_getportstruct(argp);
4341 done++;
4342 break;
4343 case COM_READBOARD:
4344 rc = stli_getbrdstruct(argp);
4345 done++;
4346 break;
4348 unlock_kernel();
4350 if (done)
4351 return rc;
4354 * Now handle the board specific ioctls. These all depend on the
4355 * minor number of the device they were called from.
4357 brdnr = iminor(ip);
4358 if (brdnr >= STL_MAXBRDS)
4359 return -ENODEV;
4360 brdp = stli_brds[brdnr];
4361 if (!brdp)
4362 return -ENODEV;
4363 if (brdp->state == 0)
4364 return -ENODEV;
4366 lock_kernel();
4368 switch (cmd) {
4369 case STL_BINTR:
4370 EBRDINTR(brdp);
4371 break;
4372 case STL_BSTART:
4373 rc = stli_startbrd(brdp);
4374 break;
4375 case STL_BSTOP:
4376 brdp->state &= ~BST_STARTED;
4377 break;
4378 case STL_BRESET:
4379 brdp->state &= ~BST_STARTED;
4380 EBRDRESET(brdp);
4381 if (stli_shared == 0) {
4382 if (brdp->reenable != NULL)
4383 (* brdp->reenable)(brdp);
4385 break;
4386 default:
4387 rc = -ENOIOCTLCMD;
4388 break;
4390 unlock_kernel();
4391 return rc;
4394 static const struct tty_operations stli_ops = {
4395 .open = stli_open,
4396 .close = stli_close,
4397 .write = stli_write,
4398 .put_char = stli_putchar,
4399 .flush_chars = stli_flushchars,
4400 .write_room = stli_writeroom,
4401 .chars_in_buffer = stli_charsinbuffer,
4402 .ioctl = stli_ioctl,
4403 .set_termios = stli_settermios,
4404 .throttle = stli_throttle,
4405 .unthrottle = stli_unthrottle,
4406 .stop = stli_stop,
4407 .start = stli_start,
4408 .hangup = stli_hangup,
4409 .flush_buffer = stli_flushbuffer,
4410 .break_ctl = stli_breakctl,
4411 .wait_until_sent = stli_waituntilsent,
4412 .send_xchar = stli_sendxchar,
4413 .tiocmget = stli_tiocmget,
4414 .tiocmset = stli_tiocmset,
4415 .proc_fops = &stli_proc_fops,
4418 static const struct tty_port_operations stli_port_ops = {
4419 .carrier_raised = stli_carrier_raised,
4420 .raise_dtr_rts = stli_raise_dtr_rts,
4423 /*****************************************************************************/
4425 * Loadable module initialization stuff.
4428 static void istallion_cleanup_isa(void)
4430 struct stlibrd *brdp;
4431 unsigned int j;
4433 for (j = 0; (j < stli_nrbrds); j++) {
4434 if ((brdp = stli_brds[j]) == NULL || (brdp->state & BST_PROBED))
4435 continue;
4437 stli_cleanup_ports(brdp);
4439 iounmap(brdp->membase);
4440 if (brdp->iosize > 0)
4441 release_region(brdp->iobase, brdp->iosize);
4442 kfree(brdp);
4443 stli_brds[j] = NULL;
4447 static int __init istallion_module_init(void)
4449 unsigned int i;
4450 int retval;
4452 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
4454 spin_lock_init(&stli_lock);
4455 spin_lock_init(&brd_lock);
4457 stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
4458 if (!stli_txcookbuf) {
4459 printk(KERN_ERR "istallion: failed to allocate memory "
4460 "(size=%d)\n", STLI_TXBUFSIZE);
4461 retval = -ENOMEM;
4462 goto err;
4465 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4466 if (!stli_serial) {
4467 retval = -ENOMEM;
4468 goto err_free;
4471 stli_serial->owner = THIS_MODULE;
4472 stli_serial->driver_name = stli_drvname;
4473 stli_serial->name = stli_serialname;
4474 stli_serial->major = STL_SERIALMAJOR;
4475 stli_serial->minor_start = 0;
4476 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
4477 stli_serial->subtype = SERIAL_TYPE_NORMAL;
4478 stli_serial->init_termios = stli_deftermios;
4479 stli_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4480 tty_set_operations(stli_serial, &stli_ops);
4482 retval = tty_register_driver(stli_serial);
4483 if (retval) {
4484 printk(KERN_ERR "istallion: failed to register serial driver\n");
4485 goto err_ttyput;
4488 retval = stli_initbrds();
4489 if (retval)
4490 goto err_ttyunr;
4493 * Set up a character driver for the shared memory region. We need this
4494 * to down load the slave code image. Also it is a useful debugging tool.
4496 retval = register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem);
4497 if (retval) {
4498 printk(KERN_ERR "istallion: failed to register serial memory "
4499 "device\n");
4500 goto err_deinit;
4503 istallion_class = class_create(THIS_MODULE, "staliomem");
4504 for (i = 0; i < 4; i++)
4505 device_create(istallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4506 NULL, "staliomem%d", i);
4508 return 0;
4509 err_deinit:
4510 pci_unregister_driver(&stli_pcidriver);
4511 istallion_cleanup_isa();
4512 err_ttyunr:
4513 tty_unregister_driver(stli_serial);
4514 err_ttyput:
4515 put_tty_driver(stli_serial);
4516 err_free:
4517 kfree(stli_txcookbuf);
4518 err:
4519 return retval;
4522 /*****************************************************************************/
4524 static void __exit istallion_module_exit(void)
4526 unsigned int j;
4528 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
4529 stli_drvversion);
4531 if (stli_timeron) {
4532 stli_timeron = 0;
4533 del_timer_sync(&stli_timerlist);
4536 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4538 for (j = 0; j < 4; j++)
4539 device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, j));
4540 class_destroy(istallion_class);
4542 pci_unregister_driver(&stli_pcidriver);
4543 istallion_cleanup_isa();
4545 tty_unregister_driver(stli_serial);
4546 put_tty_driver(stli_serial);
4548 kfree(stli_txcookbuf);
4551 module_init(istallion_module_init);
4552 module_exit(istallion_module_exit);