Linux 3.1.1
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / namei.c
blob3d150720c37182ae188eb0a3ed7bb39de76cf823
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
38 #include "internal.h"
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existent name.
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
88 * [10-Sep-98 Alan Modra] Another symlink change.
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
118 static int do_getname(const char __user *filename, char *page)
120 int retval;
121 unsigned long len = PATH_MAX;
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
140 static char *getname_flags(const char __user *filename, int flags, int *empty)
142 char *tmp, *result;
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
149 result = tmp;
150 if (retval < 0) {
151 if (retval == -ENOENT && empty)
152 *empty = 1;
153 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
154 __putname(tmp);
155 result = ERR_PTR(retval);
159 audit_getname(result);
160 return result;
163 char *getname(const char __user * filename)
165 return getname_flags(filename, 0, 0);
168 #ifdef CONFIG_AUDITSYSCALL
169 void putname(const char *name)
171 if (unlikely(!audit_dummy_context()))
172 audit_putname(name);
173 else
174 __putname(name);
176 EXPORT_SYMBOL(putname);
177 #endif
179 static int check_acl(struct inode *inode, int mask)
181 #ifdef CONFIG_FS_POSIX_ACL
182 struct posix_acl *acl;
184 if (mask & MAY_NOT_BLOCK) {
185 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
186 if (!acl)
187 return -EAGAIN;
188 /* no ->get_acl() calls in RCU mode... */
189 if (acl == ACL_NOT_CACHED)
190 return -ECHILD;
191 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
194 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
197 * A filesystem can force a ACL callback by just never filling the
198 * ACL cache. But normally you'd fill the cache either at inode
199 * instantiation time, or on the first ->get_acl call.
201 * If the filesystem doesn't have a get_acl() function at all, we'll
202 * just create the negative cache entry.
204 if (acl == ACL_NOT_CACHED) {
205 if (inode->i_op->get_acl) {
206 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
207 if (IS_ERR(acl))
208 return PTR_ERR(acl);
209 } else {
210 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
211 return -EAGAIN;
215 if (acl) {
216 int error = posix_acl_permission(inode, acl, mask);
217 posix_acl_release(acl);
218 return error;
220 #endif
222 return -EAGAIN;
226 * This does basic POSIX ACL permission checking
228 static int acl_permission_check(struct inode *inode, int mask)
230 unsigned int mode = inode->i_mode;
232 mask &= MAY_READ | MAY_WRITE | MAY_EXEC | MAY_NOT_BLOCK;
234 if (current_user_ns() != inode_userns(inode))
235 goto other_perms;
237 if (likely(current_fsuid() == inode->i_uid))
238 mode >>= 6;
239 else {
240 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
241 int error = check_acl(inode, mask);
242 if (error != -EAGAIN)
243 return error;
246 if (in_group_p(inode->i_gid))
247 mode >>= 3;
250 other_perms:
252 * If the DACs are ok we don't need any capability check.
254 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
255 return 0;
256 return -EACCES;
260 * generic_permission - check for access rights on a Posix-like filesystem
261 * @inode: inode to check access rights for
262 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
264 * Used to check for read/write/execute permissions on a file.
265 * We use "fsuid" for this, letting us set arbitrary permissions
266 * for filesystem access without changing the "normal" uids which
267 * are used for other things.
269 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
270 * request cannot be satisfied (eg. requires blocking or too much complexity).
271 * It would then be called again in ref-walk mode.
273 int generic_permission(struct inode *inode, int mask)
275 int ret;
278 * Do the basic POSIX ACL permission checks.
280 ret = acl_permission_check(inode, mask);
281 if (ret != -EACCES)
282 return ret;
284 if (S_ISDIR(inode->i_mode)) {
285 /* DACs are overridable for directories */
286 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
287 return 0;
288 if (!(mask & MAY_WRITE))
289 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
290 return 0;
291 return -EACCES;
294 * Read/write DACs are always overridable.
295 * Executable DACs are overridable when there is
296 * at least one exec bit set.
298 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
299 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
300 return 0;
303 * Searching includes executable on directories, else just read.
305 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
306 if (mask == MAY_READ)
307 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
308 return 0;
310 return -EACCES;
314 * We _really_ want to just do "generic_permission()" without
315 * even looking at the inode->i_op values. So we keep a cache
316 * flag in inode->i_opflags, that says "this has not special
317 * permission function, use the fast case".
319 static inline int do_inode_permission(struct inode *inode, int mask)
321 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
322 if (likely(inode->i_op->permission))
323 return inode->i_op->permission(inode, mask);
325 /* This gets set once for the inode lifetime */
326 spin_lock(&inode->i_lock);
327 inode->i_opflags |= IOP_FASTPERM;
328 spin_unlock(&inode->i_lock);
330 return generic_permission(inode, mask);
334 * inode_permission - check for access rights to a given inode
335 * @inode: inode to check permission on
336 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
338 * Used to check for read/write/execute permissions on an inode.
339 * We use "fsuid" for this, letting us set arbitrary permissions
340 * for filesystem access without changing the "normal" uids which
341 * are used for other things.
343 int inode_permission(struct inode *inode, int mask)
345 int retval;
347 if (unlikely(mask & MAY_WRITE)) {
348 umode_t mode = inode->i_mode;
351 * Nobody gets write access to a read-only fs.
353 if (IS_RDONLY(inode) &&
354 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
355 return -EROFS;
358 * Nobody gets write access to an immutable file.
360 if (IS_IMMUTABLE(inode))
361 return -EACCES;
364 retval = do_inode_permission(inode, mask);
365 if (retval)
366 return retval;
368 retval = devcgroup_inode_permission(inode, mask);
369 if (retval)
370 return retval;
372 return security_inode_permission(inode, mask);
376 * path_get - get a reference to a path
377 * @path: path to get the reference to
379 * Given a path increment the reference count to the dentry and the vfsmount.
381 void path_get(struct path *path)
383 mntget(path->mnt);
384 dget(path->dentry);
386 EXPORT_SYMBOL(path_get);
389 * path_put - put a reference to a path
390 * @path: path to put the reference to
392 * Given a path decrement the reference count to the dentry and the vfsmount.
394 void path_put(struct path *path)
396 dput(path->dentry);
397 mntput(path->mnt);
399 EXPORT_SYMBOL(path_put);
402 * Path walking has 2 modes, rcu-walk and ref-walk (see
403 * Documentation/filesystems/path-lookup.txt). In situations when we can't
404 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
405 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
406 * mode. Refcounts are grabbed at the last known good point before rcu-walk
407 * got stuck, so ref-walk may continue from there. If this is not successful
408 * (eg. a seqcount has changed), then failure is returned and it's up to caller
409 * to restart the path walk from the beginning in ref-walk mode.
413 * unlazy_walk - try to switch to ref-walk mode.
414 * @nd: nameidata pathwalk data
415 * @dentry: child of nd->path.dentry or NULL
416 * Returns: 0 on success, -ECHILD on failure
418 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
419 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
420 * @nd or NULL. Must be called from rcu-walk context.
422 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
424 struct fs_struct *fs = current->fs;
425 struct dentry *parent = nd->path.dentry;
426 int want_root = 0;
428 BUG_ON(!(nd->flags & LOOKUP_RCU));
429 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
430 want_root = 1;
431 spin_lock(&fs->lock);
432 if (nd->root.mnt != fs->root.mnt ||
433 nd->root.dentry != fs->root.dentry)
434 goto err_root;
436 spin_lock(&parent->d_lock);
437 if (!dentry) {
438 if (!__d_rcu_to_refcount(parent, nd->seq))
439 goto err_parent;
440 BUG_ON(nd->inode != parent->d_inode);
441 } else {
442 if (dentry->d_parent != parent)
443 goto err_parent;
444 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
445 if (!__d_rcu_to_refcount(dentry, nd->seq))
446 goto err_child;
448 * If the sequence check on the child dentry passed, then
449 * the child has not been removed from its parent. This
450 * means the parent dentry must be valid and able to take
451 * a reference at this point.
453 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
454 BUG_ON(!parent->d_count);
455 parent->d_count++;
456 spin_unlock(&dentry->d_lock);
458 spin_unlock(&parent->d_lock);
459 if (want_root) {
460 path_get(&nd->root);
461 spin_unlock(&fs->lock);
463 mntget(nd->path.mnt);
465 rcu_read_unlock();
466 br_read_unlock(vfsmount_lock);
467 nd->flags &= ~LOOKUP_RCU;
468 return 0;
470 err_child:
471 spin_unlock(&dentry->d_lock);
472 err_parent:
473 spin_unlock(&parent->d_lock);
474 err_root:
475 if (want_root)
476 spin_unlock(&fs->lock);
477 return -ECHILD;
481 * release_open_intent - free up open intent resources
482 * @nd: pointer to nameidata
484 void release_open_intent(struct nameidata *nd)
486 struct file *file = nd->intent.open.file;
488 if (file && !IS_ERR(file)) {
489 if (file->f_path.dentry == NULL)
490 put_filp(file);
491 else
492 fput(file);
496 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
498 return dentry->d_op->d_revalidate(dentry, nd);
502 * complete_walk - successful completion of path walk
503 * @nd: pointer nameidata
505 * If we had been in RCU mode, drop out of it and legitimize nd->path.
506 * Revalidate the final result, unless we'd already done that during
507 * the path walk or the filesystem doesn't ask for it. Return 0 on
508 * success, -error on failure. In case of failure caller does not
509 * need to drop nd->path.
511 static int complete_walk(struct nameidata *nd)
513 struct dentry *dentry = nd->path.dentry;
514 int status;
516 if (nd->flags & LOOKUP_RCU) {
517 nd->flags &= ~LOOKUP_RCU;
518 if (!(nd->flags & LOOKUP_ROOT))
519 nd->root.mnt = NULL;
520 spin_lock(&dentry->d_lock);
521 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
522 spin_unlock(&dentry->d_lock);
523 rcu_read_unlock();
524 br_read_unlock(vfsmount_lock);
525 return -ECHILD;
527 BUG_ON(nd->inode != dentry->d_inode);
528 spin_unlock(&dentry->d_lock);
529 mntget(nd->path.mnt);
530 rcu_read_unlock();
531 br_read_unlock(vfsmount_lock);
534 if (likely(!(nd->flags & LOOKUP_JUMPED)))
535 return 0;
537 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
538 return 0;
540 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
541 return 0;
543 /* Note: we do not d_invalidate() */
544 status = d_revalidate(dentry, nd);
545 if (status > 0)
546 return 0;
548 if (!status)
549 status = -ESTALE;
551 path_put(&nd->path);
552 return status;
555 static __always_inline void set_root(struct nameidata *nd)
557 if (!nd->root.mnt)
558 get_fs_root(current->fs, &nd->root);
561 static int link_path_walk(const char *, struct nameidata *);
563 static __always_inline void set_root_rcu(struct nameidata *nd)
565 if (!nd->root.mnt) {
566 struct fs_struct *fs = current->fs;
567 unsigned seq;
569 do {
570 seq = read_seqcount_begin(&fs->seq);
571 nd->root = fs->root;
572 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
573 } while (read_seqcount_retry(&fs->seq, seq));
577 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
579 int ret;
581 if (IS_ERR(link))
582 goto fail;
584 if (*link == '/') {
585 set_root(nd);
586 path_put(&nd->path);
587 nd->path = nd->root;
588 path_get(&nd->root);
589 nd->flags |= LOOKUP_JUMPED;
591 nd->inode = nd->path.dentry->d_inode;
593 ret = link_path_walk(link, nd);
594 return ret;
595 fail:
596 path_put(&nd->path);
597 return PTR_ERR(link);
600 static void path_put_conditional(struct path *path, struct nameidata *nd)
602 dput(path->dentry);
603 if (path->mnt != nd->path.mnt)
604 mntput(path->mnt);
607 static inline void path_to_nameidata(const struct path *path,
608 struct nameidata *nd)
610 if (!(nd->flags & LOOKUP_RCU)) {
611 dput(nd->path.dentry);
612 if (nd->path.mnt != path->mnt)
613 mntput(nd->path.mnt);
615 nd->path.mnt = path->mnt;
616 nd->path.dentry = path->dentry;
619 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
621 struct inode *inode = link->dentry->d_inode;
622 if (!IS_ERR(cookie) && inode->i_op->put_link)
623 inode->i_op->put_link(link->dentry, nd, cookie);
624 path_put(link);
627 static __always_inline int
628 follow_link(struct path *link, struct nameidata *nd, void **p)
630 int error;
631 struct dentry *dentry = link->dentry;
633 BUG_ON(nd->flags & LOOKUP_RCU);
635 if (link->mnt == nd->path.mnt)
636 mntget(link->mnt);
638 if (unlikely(current->total_link_count >= 40)) {
639 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
640 path_put(&nd->path);
641 return -ELOOP;
643 cond_resched();
644 current->total_link_count++;
646 touch_atime(link->mnt, dentry);
647 nd_set_link(nd, NULL);
649 error = security_inode_follow_link(link->dentry, nd);
650 if (error) {
651 *p = ERR_PTR(error); /* no ->put_link(), please */
652 path_put(&nd->path);
653 return error;
656 nd->last_type = LAST_BIND;
657 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
658 error = PTR_ERR(*p);
659 if (!IS_ERR(*p)) {
660 char *s = nd_get_link(nd);
661 error = 0;
662 if (s)
663 error = __vfs_follow_link(nd, s);
664 else if (nd->last_type == LAST_BIND) {
665 nd->flags |= LOOKUP_JUMPED;
666 nd->inode = nd->path.dentry->d_inode;
667 if (nd->inode->i_op->follow_link) {
668 /* stepped on a _really_ weird one */
669 path_put(&nd->path);
670 error = -ELOOP;
674 return error;
677 static int follow_up_rcu(struct path *path)
679 struct vfsmount *parent;
680 struct dentry *mountpoint;
682 parent = path->mnt->mnt_parent;
683 if (parent == path->mnt)
684 return 0;
685 mountpoint = path->mnt->mnt_mountpoint;
686 path->dentry = mountpoint;
687 path->mnt = parent;
688 return 1;
691 int follow_up(struct path *path)
693 struct vfsmount *parent;
694 struct dentry *mountpoint;
696 br_read_lock(vfsmount_lock);
697 parent = path->mnt->mnt_parent;
698 if (parent == path->mnt) {
699 br_read_unlock(vfsmount_lock);
700 return 0;
702 mntget(parent);
703 mountpoint = dget(path->mnt->mnt_mountpoint);
704 br_read_unlock(vfsmount_lock);
705 dput(path->dentry);
706 path->dentry = mountpoint;
707 mntput(path->mnt);
708 path->mnt = parent;
709 return 1;
713 * Perform an automount
714 * - return -EISDIR to tell follow_managed() to stop and return the path we
715 * were called with.
717 static int follow_automount(struct path *path, unsigned flags,
718 bool *need_mntput)
720 struct vfsmount *mnt;
721 int err;
723 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
724 return -EREMOTE;
726 /* We don't want to mount if someone's just doing a stat -
727 * unless they're stat'ing a directory and appended a '/' to
728 * the name.
730 * We do, however, want to mount if someone wants to open or
731 * create a file of any type under the mountpoint, wants to
732 * traverse through the mountpoint or wants to open the
733 * mounted directory. Also, autofs may mark negative dentries
734 * as being automount points. These will need the attentions
735 * of the daemon to instantiate them before they can be used.
737 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
738 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
739 path->dentry->d_inode)
740 return -EISDIR;
742 current->total_link_count++;
743 if (current->total_link_count >= 40)
744 return -ELOOP;
746 mnt = path->dentry->d_op->d_automount(path);
747 if (IS_ERR(mnt)) {
749 * The filesystem is allowed to return -EISDIR here to indicate
750 * it doesn't want to automount. For instance, autofs would do
751 * this so that its userspace daemon can mount on this dentry.
753 * However, we can only permit this if it's a terminal point in
754 * the path being looked up; if it wasn't then the remainder of
755 * the path is inaccessible and we should say so.
757 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
758 return -EREMOTE;
759 return PTR_ERR(mnt);
762 if (!mnt) /* mount collision */
763 return 0;
765 if (!*need_mntput) {
766 /* lock_mount() may release path->mnt on error */
767 mntget(path->mnt);
768 *need_mntput = true;
770 err = finish_automount(mnt, path);
772 switch (err) {
773 case -EBUSY:
774 /* Someone else made a mount here whilst we were busy */
775 return 0;
776 case 0:
777 path_put(path);
778 path->mnt = mnt;
779 path->dentry = dget(mnt->mnt_root);
780 return 0;
781 default:
782 return err;
788 * Handle a dentry that is managed in some way.
789 * - Flagged for transit management (autofs)
790 * - Flagged as mountpoint
791 * - Flagged as automount point
793 * This may only be called in refwalk mode.
795 * Serialization is taken care of in namespace.c
797 static int follow_managed(struct path *path, unsigned flags)
799 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
800 unsigned managed;
801 bool need_mntput = false;
802 int ret = 0;
804 /* Given that we're not holding a lock here, we retain the value in a
805 * local variable for each dentry as we look at it so that we don't see
806 * the components of that value change under us */
807 while (managed = ACCESS_ONCE(path->dentry->d_flags),
808 managed &= DCACHE_MANAGED_DENTRY,
809 unlikely(managed != 0)) {
810 /* Allow the filesystem to manage the transit without i_mutex
811 * being held. */
812 if (managed & DCACHE_MANAGE_TRANSIT) {
813 BUG_ON(!path->dentry->d_op);
814 BUG_ON(!path->dentry->d_op->d_manage);
815 ret = path->dentry->d_op->d_manage(path->dentry, false);
816 if (ret < 0)
817 break;
820 /* Transit to a mounted filesystem. */
821 if (managed & DCACHE_MOUNTED) {
822 struct vfsmount *mounted = lookup_mnt(path);
823 if (mounted) {
824 dput(path->dentry);
825 if (need_mntput)
826 mntput(path->mnt);
827 path->mnt = mounted;
828 path->dentry = dget(mounted->mnt_root);
829 need_mntput = true;
830 continue;
833 /* Something is mounted on this dentry in another
834 * namespace and/or whatever was mounted there in this
835 * namespace got unmounted before we managed to get the
836 * vfsmount_lock */
839 /* Handle an automount point */
840 if (managed & DCACHE_NEED_AUTOMOUNT) {
841 ret = follow_automount(path, flags, &need_mntput);
842 if (ret < 0)
843 break;
844 continue;
847 /* We didn't change the current path point */
848 break;
851 if (need_mntput && path->mnt == mnt)
852 mntput(path->mnt);
853 if (ret == -EISDIR)
854 ret = 0;
855 return ret < 0 ? ret : need_mntput;
858 int follow_down_one(struct path *path)
860 struct vfsmount *mounted;
862 mounted = lookup_mnt(path);
863 if (mounted) {
864 dput(path->dentry);
865 mntput(path->mnt);
866 path->mnt = mounted;
867 path->dentry = dget(mounted->mnt_root);
868 return 1;
870 return 0;
873 static inline bool managed_dentry_might_block(struct dentry *dentry)
875 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
876 dentry->d_op->d_manage(dentry, true) < 0);
880 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
881 * we meet a managed dentry that would need blocking.
883 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
884 struct inode **inode)
886 for (;;) {
887 struct vfsmount *mounted;
889 * Don't forget we might have a non-mountpoint managed dentry
890 * that wants to block transit.
892 if (unlikely(managed_dentry_might_block(path->dentry)))
893 return false;
895 if (!d_mountpoint(path->dentry))
896 break;
898 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
899 if (!mounted)
900 break;
901 path->mnt = mounted;
902 path->dentry = mounted->mnt_root;
903 nd->flags |= LOOKUP_JUMPED;
904 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
906 * Update the inode too. We don't need to re-check the
907 * dentry sequence number here after this d_inode read,
908 * because a mount-point is always pinned.
910 *inode = path->dentry->d_inode;
912 return true;
915 static void follow_mount_rcu(struct nameidata *nd)
917 while (d_mountpoint(nd->path.dentry)) {
918 struct vfsmount *mounted;
919 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
920 if (!mounted)
921 break;
922 nd->path.mnt = mounted;
923 nd->path.dentry = mounted->mnt_root;
924 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
928 static int follow_dotdot_rcu(struct nameidata *nd)
930 set_root_rcu(nd);
932 while (1) {
933 if (nd->path.dentry == nd->root.dentry &&
934 nd->path.mnt == nd->root.mnt) {
935 break;
937 if (nd->path.dentry != nd->path.mnt->mnt_root) {
938 struct dentry *old = nd->path.dentry;
939 struct dentry *parent = old->d_parent;
940 unsigned seq;
942 seq = read_seqcount_begin(&parent->d_seq);
943 if (read_seqcount_retry(&old->d_seq, nd->seq))
944 goto failed;
945 nd->path.dentry = parent;
946 nd->seq = seq;
947 break;
949 if (!follow_up_rcu(&nd->path))
950 break;
951 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
953 follow_mount_rcu(nd);
954 nd->inode = nd->path.dentry->d_inode;
955 return 0;
957 failed:
958 nd->flags &= ~LOOKUP_RCU;
959 if (!(nd->flags & LOOKUP_ROOT))
960 nd->root.mnt = NULL;
961 rcu_read_unlock();
962 br_read_unlock(vfsmount_lock);
963 return -ECHILD;
967 * Follow down to the covering mount currently visible to userspace. At each
968 * point, the filesystem owning that dentry may be queried as to whether the
969 * caller is permitted to proceed or not.
971 int follow_down(struct path *path)
973 unsigned managed;
974 int ret;
976 while (managed = ACCESS_ONCE(path->dentry->d_flags),
977 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
978 /* Allow the filesystem to manage the transit without i_mutex
979 * being held.
981 * We indicate to the filesystem if someone is trying to mount
982 * something here. This gives autofs the chance to deny anyone
983 * other than its daemon the right to mount on its
984 * superstructure.
986 * The filesystem may sleep at this point.
988 if (managed & DCACHE_MANAGE_TRANSIT) {
989 BUG_ON(!path->dentry->d_op);
990 BUG_ON(!path->dentry->d_op->d_manage);
991 ret = path->dentry->d_op->d_manage(
992 path->dentry, false);
993 if (ret < 0)
994 return ret == -EISDIR ? 0 : ret;
997 /* Transit to a mounted filesystem. */
998 if (managed & DCACHE_MOUNTED) {
999 struct vfsmount *mounted = lookup_mnt(path);
1000 if (!mounted)
1001 break;
1002 dput(path->dentry);
1003 mntput(path->mnt);
1004 path->mnt = mounted;
1005 path->dentry = dget(mounted->mnt_root);
1006 continue;
1009 /* Don't handle automount points here */
1010 break;
1012 return 0;
1016 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1018 static void follow_mount(struct path *path)
1020 while (d_mountpoint(path->dentry)) {
1021 struct vfsmount *mounted = lookup_mnt(path);
1022 if (!mounted)
1023 break;
1024 dput(path->dentry);
1025 mntput(path->mnt);
1026 path->mnt = mounted;
1027 path->dentry = dget(mounted->mnt_root);
1031 static void follow_dotdot(struct nameidata *nd)
1033 set_root(nd);
1035 while(1) {
1036 struct dentry *old = nd->path.dentry;
1038 if (nd->path.dentry == nd->root.dentry &&
1039 nd->path.mnt == nd->root.mnt) {
1040 break;
1042 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1043 /* rare case of legitimate dget_parent()... */
1044 nd->path.dentry = dget_parent(nd->path.dentry);
1045 dput(old);
1046 break;
1048 if (!follow_up(&nd->path))
1049 break;
1051 follow_mount(&nd->path);
1052 nd->inode = nd->path.dentry->d_inode;
1056 * Allocate a dentry with name and parent, and perform a parent
1057 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1058 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1059 * have verified that no child exists while under i_mutex.
1061 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1062 struct qstr *name, struct nameidata *nd)
1064 struct inode *inode = parent->d_inode;
1065 struct dentry *dentry;
1066 struct dentry *old;
1068 /* Don't create child dentry for a dead directory. */
1069 if (unlikely(IS_DEADDIR(inode)))
1070 return ERR_PTR(-ENOENT);
1072 dentry = d_alloc(parent, name);
1073 if (unlikely(!dentry))
1074 return ERR_PTR(-ENOMEM);
1076 old = inode->i_op->lookup(inode, dentry, nd);
1077 if (unlikely(old)) {
1078 dput(dentry);
1079 dentry = old;
1081 return dentry;
1085 * We already have a dentry, but require a lookup to be performed on the parent
1086 * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1087 * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1088 * child exists while under i_mutex.
1090 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1091 struct nameidata *nd)
1093 struct inode *inode = parent->d_inode;
1094 struct dentry *old;
1096 /* Don't create child dentry for a dead directory. */
1097 if (unlikely(IS_DEADDIR(inode)))
1098 return ERR_PTR(-ENOENT);
1100 old = inode->i_op->lookup(inode, dentry, nd);
1101 if (unlikely(old)) {
1102 dput(dentry);
1103 dentry = old;
1105 return dentry;
1109 * It's more convoluted than I'd like it to be, but... it's still fairly
1110 * small and for now I'd prefer to have fast path as straight as possible.
1111 * It _is_ time-critical.
1113 static int do_lookup(struct nameidata *nd, struct qstr *name,
1114 struct path *path, struct inode **inode)
1116 struct vfsmount *mnt = nd->path.mnt;
1117 struct dentry *dentry, *parent = nd->path.dentry;
1118 int need_reval = 1;
1119 int status = 1;
1120 int err;
1123 * Rename seqlock is not required here because in the off chance
1124 * of a false negative due to a concurrent rename, we're going to
1125 * do the non-racy lookup, below.
1127 if (nd->flags & LOOKUP_RCU) {
1128 unsigned seq;
1129 *inode = nd->inode;
1130 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1131 if (!dentry)
1132 goto unlazy;
1134 /* Memory barrier in read_seqcount_begin of child is enough */
1135 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1136 return -ECHILD;
1137 nd->seq = seq;
1139 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1140 status = d_revalidate(dentry, nd);
1141 if (unlikely(status <= 0)) {
1142 if (status != -ECHILD)
1143 need_reval = 0;
1144 goto unlazy;
1147 if (unlikely(d_need_lookup(dentry)))
1148 goto unlazy;
1149 path->mnt = mnt;
1150 path->dentry = dentry;
1151 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1152 goto unlazy;
1153 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1154 goto unlazy;
1155 return 0;
1156 unlazy:
1157 if (unlazy_walk(nd, dentry))
1158 return -ECHILD;
1159 } else {
1160 dentry = __d_lookup(parent, name);
1163 if (dentry && unlikely(d_need_lookup(dentry))) {
1164 dput(dentry);
1165 dentry = NULL;
1167 retry:
1168 if (unlikely(!dentry)) {
1169 struct inode *dir = parent->d_inode;
1170 BUG_ON(nd->inode != dir);
1172 mutex_lock(&dir->i_mutex);
1173 dentry = d_lookup(parent, name);
1174 if (likely(!dentry)) {
1175 dentry = d_alloc_and_lookup(parent, name, nd);
1176 if (IS_ERR(dentry)) {
1177 mutex_unlock(&dir->i_mutex);
1178 return PTR_ERR(dentry);
1180 /* known good */
1181 need_reval = 0;
1182 status = 1;
1183 } else if (unlikely(d_need_lookup(dentry))) {
1184 dentry = d_inode_lookup(parent, dentry, nd);
1185 if (IS_ERR(dentry)) {
1186 mutex_unlock(&dir->i_mutex);
1187 return PTR_ERR(dentry);
1189 /* known good */
1190 need_reval = 0;
1191 status = 1;
1193 mutex_unlock(&dir->i_mutex);
1195 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1196 status = d_revalidate(dentry, nd);
1197 if (unlikely(status <= 0)) {
1198 if (status < 0) {
1199 dput(dentry);
1200 return status;
1202 if (!d_invalidate(dentry)) {
1203 dput(dentry);
1204 dentry = NULL;
1205 need_reval = 1;
1206 goto retry;
1210 path->mnt = mnt;
1211 path->dentry = dentry;
1212 err = follow_managed(path, nd->flags);
1213 if (unlikely(err < 0)) {
1214 path_put_conditional(path, nd);
1215 return err;
1217 if (err)
1218 nd->flags |= LOOKUP_JUMPED;
1219 *inode = path->dentry->d_inode;
1220 return 0;
1223 static inline int may_lookup(struct nameidata *nd)
1225 if (nd->flags & LOOKUP_RCU) {
1226 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1227 if (err != -ECHILD)
1228 return err;
1229 if (unlazy_walk(nd, NULL))
1230 return -ECHILD;
1232 return inode_permission(nd->inode, MAY_EXEC);
1235 static inline int handle_dots(struct nameidata *nd, int type)
1237 if (type == LAST_DOTDOT) {
1238 if (nd->flags & LOOKUP_RCU) {
1239 if (follow_dotdot_rcu(nd))
1240 return -ECHILD;
1241 } else
1242 follow_dotdot(nd);
1244 return 0;
1247 static void terminate_walk(struct nameidata *nd)
1249 if (!(nd->flags & LOOKUP_RCU)) {
1250 path_put(&nd->path);
1251 } else {
1252 nd->flags &= ~LOOKUP_RCU;
1253 if (!(nd->flags & LOOKUP_ROOT))
1254 nd->root.mnt = NULL;
1255 rcu_read_unlock();
1256 br_read_unlock(vfsmount_lock);
1261 * Do we need to follow links? We _really_ want to be able
1262 * to do this check without having to look at inode->i_op,
1263 * so we keep a cache of "no, this doesn't need follow_link"
1264 * for the common case.
1266 static inline int should_follow_link(struct inode *inode, int follow)
1268 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1269 if (likely(inode->i_op->follow_link))
1270 return follow;
1272 /* This gets set once for the inode lifetime */
1273 spin_lock(&inode->i_lock);
1274 inode->i_opflags |= IOP_NOFOLLOW;
1275 spin_unlock(&inode->i_lock);
1277 return 0;
1280 static inline int walk_component(struct nameidata *nd, struct path *path,
1281 struct qstr *name, int type, int follow)
1283 struct inode *inode;
1284 int err;
1286 * "." and ".." are special - ".." especially so because it has
1287 * to be able to know about the current root directory and
1288 * parent relationships.
1290 if (unlikely(type != LAST_NORM))
1291 return handle_dots(nd, type);
1292 err = do_lookup(nd, name, path, &inode);
1293 if (unlikely(err)) {
1294 terminate_walk(nd);
1295 return err;
1297 if (!inode) {
1298 path_to_nameidata(path, nd);
1299 terminate_walk(nd);
1300 return -ENOENT;
1302 if (should_follow_link(inode, follow)) {
1303 if (nd->flags & LOOKUP_RCU) {
1304 if (unlikely(unlazy_walk(nd, path->dentry))) {
1305 terminate_walk(nd);
1306 return -ECHILD;
1309 BUG_ON(inode != path->dentry->d_inode);
1310 return 1;
1312 path_to_nameidata(path, nd);
1313 nd->inode = inode;
1314 return 0;
1318 * This limits recursive symlink follows to 8, while
1319 * limiting consecutive symlinks to 40.
1321 * Without that kind of total limit, nasty chains of consecutive
1322 * symlinks can cause almost arbitrarily long lookups.
1324 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1326 int res;
1328 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1329 path_put_conditional(path, nd);
1330 path_put(&nd->path);
1331 return -ELOOP;
1333 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1335 nd->depth++;
1336 current->link_count++;
1338 do {
1339 struct path link = *path;
1340 void *cookie;
1342 res = follow_link(&link, nd, &cookie);
1343 if (!res)
1344 res = walk_component(nd, path, &nd->last,
1345 nd->last_type, LOOKUP_FOLLOW);
1346 put_link(nd, &link, cookie);
1347 } while (res > 0);
1349 current->link_count--;
1350 nd->depth--;
1351 return res;
1355 * We really don't want to look at inode->i_op->lookup
1356 * when we don't have to. So we keep a cache bit in
1357 * the inode ->i_opflags field that says "yes, we can
1358 * do lookup on this inode".
1360 static inline int can_lookup(struct inode *inode)
1362 if (likely(inode->i_opflags & IOP_LOOKUP))
1363 return 1;
1364 if (likely(!inode->i_op->lookup))
1365 return 0;
1367 /* We do this once for the lifetime of the inode */
1368 spin_lock(&inode->i_lock);
1369 inode->i_opflags |= IOP_LOOKUP;
1370 spin_unlock(&inode->i_lock);
1371 return 1;
1375 * Name resolution.
1376 * This is the basic name resolution function, turning a pathname into
1377 * the final dentry. We expect 'base' to be positive and a directory.
1379 * Returns 0 and nd will have valid dentry and mnt on success.
1380 * Returns error and drops reference to input namei data on failure.
1382 static int link_path_walk(const char *name, struct nameidata *nd)
1384 struct path next;
1385 int err;
1387 while (*name=='/')
1388 name++;
1389 if (!*name)
1390 return 0;
1392 /* At this point we know we have a real path component. */
1393 for(;;) {
1394 unsigned long hash;
1395 struct qstr this;
1396 unsigned int c;
1397 int type;
1399 err = may_lookup(nd);
1400 if (err)
1401 break;
1403 this.name = name;
1404 c = *(const unsigned char *)name;
1406 hash = init_name_hash();
1407 do {
1408 name++;
1409 hash = partial_name_hash(c, hash);
1410 c = *(const unsigned char *)name;
1411 } while (c && (c != '/'));
1412 this.len = name - (const char *) this.name;
1413 this.hash = end_name_hash(hash);
1415 type = LAST_NORM;
1416 if (this.name[0] == '.') switch (this.len) {
1417 case 2:
1418 if (this.name[1] == '.') {
1419 type = LAST_DOTDOT;
1420 nd->flags |= LOOKUP_JUMPED;
1422 break;
1423 case 1:
1424 type = LAST_DOT;
1426 if (likely(type == LAST_NORM)) {
1427 struct dentry *parent = nd->path.dentry;
1428 nd->flags &= ~LOOKUP_JUMPED;
1429 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1430 err = parent->d_op->d_hash(parent, nd->inode,
1431 &this);
1432 if (err < 0)
1433 break;
1437 /* remove trailing slashes? */
1438 if (!c)
1439 goto last_component;
1440 while (*++name == '/');
1441 if (!*name)
1442 goto last_component;
1444 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1445 if (err < 0)
1446 return err;
1448 if (err) {
1449 err = nested_symlink(&next, nd);
1450 if (err)
1451 return err;
1453 if (can_lookup(nd->inode))
1454 continue;
1455 err = -ENOTDIR;
1456 break;
1457 /* here ends the main loop */
1459 last_component:
1460 nd->last = this;
1461 nd->last_type = type;
1462 return 0;
1464 terminate_walk(nd);
1465 return err;
1468 static int path_init(int dfd, const char *name, unsigned int flags,
1469 struct nameidata *nd, struct file **fp)
1471 int retval = 0;
1472 int fput_needed;
1473 struct file *file;
1475 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1476 nd->flags = flags | LOOKUP_JUMPED;
1477 nd->depth = 0;
1478 if (flags & LOOKUP_ROOT) {
1479 struct inode *inode = nd->root.dentry->d_inode;
1480 if (*name) {
1481 if (!inode->i_op->lookup)
1482 return -ENOTDIR;
1483 retval = inode_permission(inode, MAY_EXEC);
1484 if (retval)
1485 return retval;
1487 nd->path = nd->root;
1488 nd->inode = inode;
1489 if (flags & LOOKUP_RCU) {
1490 br_read_lock(vfsmount_lock);
1491 rcu_read_lock();
1492 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1493 } else {
1494 path_get(&nd->path);
1496 return 0;
1499 nd->root.mnt = NULL;
1501 if (*name=='/') {
1502 if (flags & LOOKUP_RCU) {
1503 br_read_lock(vfsmount_lock);
1504 rcu_read_lock();
1505 set_root_rcu(nd);
1506 } else {
1507 set_root(nd);
1508 path_get(&nd->root);
1510 nd->path = nd->root;
1511 } else if (dfd == AT_FDCWD) {
1512 if (flags & LOOKUP_RCU) {
1513 struct fs_struct *fs = current->fs;
1514 unsigned seq;
1516 br_read_lock(vfsmount_lock);
1517 rcu_read_lock();
1519 do {
1520 seq = read_seqcount_begin(&fs->seq);
1521 nd->path = fs->pwd;
1522 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1523 } while (read_seqcount_retry(&fs->seq, seq));
1524 } else {
1525 get_fs_pwd(current->fs, &nd->path);
1527 } else {
1528 struct dentry *dentry;
1530 file = fget_raw_light(dfd, &fput_needed);
1531 retval = -EBADF;
1532 if (!file)
1533 goto out_fail;
1535 dentry = file->f_path.dentry;
1537 if (*name) {
1538 retval = -ENOTDIR;
1539 if (!S_ISDIR(dentry->d_inode->i_mode))
1540 goto fput_fail;
1542 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1543 if (retval)
1544 goto fput_fail;
1547 nd->path = file->f_path;
1548 if (flags & LOOKUP_RCU) {
1549 if (fput_needed)
1550 *fp = file;
1551 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1552 br_read_lock(vfsmount_lock);
1553 rcu_read_lock();
1554 } else {
1555 path_get(&file->f_path);
1556 fput_light(file, fput_needed);
1560 nd->inode = nd->path.dentry->d_inode;
1561 return 0;
1563 fput_fail:
1564 fput_light(file, fput_needed);
1565 out_fail:
1566 return retval;
1569 static inline int lookup_last(struct nameidata *nd, struct path *path)
1571 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1572 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1574 nd->flags &= ~LOOKUP_PARENT;
1575 return walk_component(nd, path, &nd->last, nd->last_type,
1576 nd->flags & LOOKUP_FOLLOW);
1579 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1580 static int path_lookupat(int dfd, const char *name,
1581 unsigned int flags, struct nameidata *nd)
1583 struct file *base = NULL;
1584 struct path path;
1585 int err;
1588 * Path walking is largely split up into 2 different synchronisation
1589 * schemes, rcu-walk and ref-walk (explained in
1590 * Documentation/filesystems/path-lookup.txt). These share much of the
1591 * path walk code, but some things particularly setup, cleanup, and
1592 * following mounts are sufficiently divergent that functions are
1593 * duplicated. Typically there is a function foo(), and its RCU
1594 * analogue, foo_rcu().
1596 * -ECHILD is the error number of choice (just to avoid clashes) that
1597 * is returned if some aspect of an rcu-walk fails. Such an error must
1598 * be handled by restarting a traditional ref-walk (which will always
1599 * be able to complete).
1601 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1603 if (unlikely(err))
1604 return err;
1606 current->total_link_count = 0;
1607 err = link_path_walk(name, nd);
1609 if (!err && !(flags & LOOKUP_PARENT)) {
1610 err = lookup_last(nd, &path);
1611 while (err > 0) {
1612 void *cookie;
1613 struct path link = path;
1614 nd->flags |= LOOKUP_PARENT;
1615 err = follow_link(&link, nd, &cookie);
1616 if (!err)
1617 err = lookup_last(nd, &path);
1618 put_link(nd, &link, cookie);
1622 if (!err)
1623 err = complete_walk(nd);
1625 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1626 if (!nd->inode->i_op->lookup) {
1627 path_put(&nd->path);
1628 err = -ENOTDIR;
1632 if (base)
1633 fput(base);
1635 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1636 path_put(&nd->root);
1637 nd->root.mnt = NULL;
1639 return err;
1642 static int do_path_lookup(int dfd, const char *name,
1643 unsigned int flags, struct nameidata *nd)
1645 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1646 if (unlikely(retval == -ECHILD))
1647 retval = path_lookupat(dfd, name, flags, nd);
1648 if (unlikely(retval == -ESTALE))
1649 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1651 if (likely(!retval)) {
1652 if (unlikely(!audit_dummy_context())) {
1653 if (nd->path.dentry && nd->inode)
1654 audit_inode(name, nd->path.dentry);
1657 return retval;
1660 int kern_path_parent(const char *name, struct nameidata *nd)
1662 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1665 int kern_path(const char *name, unsigned int flags, struct path *path)
1667 struct nameidata nd;
1668 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1669 if (!res)
1670 *path = nd.path;
1671 return res;
1675 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1676 * @dentry: pointer to dentry of the base directory
1677 * @mnt: pointer to vfs mount of the base directory
1678 * @name: pointer to file name
1679 * @flags: lookup flags
1680 * @path: pointer to struct path to fill
1682 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1683 const char *name, unsigned int flags,
1684 struct path *path)
1686 struct nameidata nd;
1687 int err;
1688 nd.root.dentry = dentry;
1689 nd.root.mnt = mnt;
1690 BUG_ON(flags & LOOKUP_PARENT);
1691 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1692 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1693 if (!err)
1694 *path = nd.path;
1695 return err;
1698 static struct dentry *__lookup_hash(struct qstr *name,
1699 struct dentry *base, struct nameidata *nd)
1701 struct inode *inode = base->d_inode;
1702 struct dentry *dentry;
1703 int err;
1705 err = inode_permission(inode, MAY_EXEC);
1706 if (err)
1707 return ERR_PTR(err);
1710 * Don't bother with __d_lookup: callers are for creat as
1711 * well as unlink, so a lot of the time it would cost
1712 * a double lookup.
1714 dentry = d_lookup(base, name);
1716 if (dentry && d_need_lookup(dentry)) {
1718 * __lookup_hash is called with the parent dir's i_mutex already
1719 * held, so we are good to go here.
1721 dentry = d_inode_lookup(base, dentry, nd);
1722 if (IS_ERR(dentry))
1723 return dentry;
1726 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1727 int status = d_revalidate(dentry, nd);
1728 if (unlikely(status <= 0)) {
1730 * The dentry failed validation.
1731 * If d_revalidate returned 0 attempt to invalidate
1732 * the dentry otherwise d_revalidate is asking us
1733 * to return a fail status.
1735 if (status < 0) {
1736 dput(dentry);
1737 return ERR_PTR(status);
1738 } else if (!d_invalidate(dentry)) {
1739 dput(dentry);
1740 dentry = NULL;
1745 if (!dentry)
1746 dentry = d_alloc_and_lookup(base, name, nd);
1748 return dentry;
1752 * Restricted form of lookup. Doesn't follow links, single-component only,
1753 * needs parent already locked. Doesn't follow mounts.
1754 * SMP-safe.
1756 static struct dentry *lookup_hash(struct nameidata *nd)
1758 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1762 * lookup_one_len - filesystem helper to lookup single pathname component
1763 * @name: pathname component to lookup
1764 * @base: base directory to lookup from
1765 * @len: maximum length @len should be interpreted to
1767 * Note that this routine is purely a helper for filesystem usage and should
1768 * not be called by generic code. Also note that by using this function the
1769 * nameidata argument is passed to the filesystem methods and a filesystem
1770 * using this helper needs to be prepared for that.
1772 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1774 struct qstr this;
1775 unsigned long hash;
1776 unsigned int c;
1778 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1780 this.name = name;
1781 this.len = len;
1782 if (!len)
1783 return ERR_PTR(-EACCES);
1785 hash = init_name_hash();
1786 while (len--) {
1787 c = *(const unsigned char *)name++;
1788 if (c == '/' || c == '\0')
1789 return ERR_PTR(-EACCES);
1790 hash = partial_name_hash(c, hash);
1792 this.hash = end_name_hash(hash);
1794 * See if the low-level filesystem might want
1795 * to use its own hash..
1797 if (base->d_flags & DCACHE_OP_HASH) {
1798 int err = base->d_op->d_hash(base, base->d_inode, &this);
1799 if (err < 0)
1800 return ERR_PTR(err);
1803 return __lookup_hash(&this, base, NULL);
1806 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1807 struct path *path, int *empty)
1809 struct nameidata nd;
1810 char *tmp = getname_flags(name, flags, empty);
1811 int err = PTR_ERR(tmp);
1812 if (!IS_ERR(tmp)) {
1814 BUG_ON(flags & LOOKUP_PARENT);
1816 err = do_path_lookup(dfd, tmp, flags, &nd);
1817 putname(tmp);
1818 if (!err)
1819 *path = nd.path;
1821 return err;
1824 int user_path_at(int dfd, const char __user *name, unsigned flags,
1825 struct path *path)
1827 return user_path_at_empty(dfd, name, flags, path, 0);
1830 static int user_path_parent(int dfd, const char __user *path,
1831 struct nameidata *nd, char **name)
1833 char *s = getname(path);
1834 int error;
1836 if (IS_ERR(s))
1837 return PTR_ERR(s);
1839 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1840 if (error)
1841 putname(s);
1842 else
1843 *name = s;
1845 return error;
1849 * It's inline, so penalty for filesystems that don't use sticky bit is
1850 * minimal.
1852 static inline int check_sticky(struct inode *dir, struct inode *inode)
1854 uid_t fsuid = current_fsuid();
1856 if (!(dir->i_mode & S_ISVTX))
1857 return 0;
1858 if (current_user_ns() != inode_userns(inode))
1859 goto other_userns;
1860 if (inode->i_uid == fsuid)
1861 return 0;
1862 if (dir->i_uid == fsuid)
1863 return 0;
1865 other_userns:
1866 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1870 * Check whether we can remove a link victim from directory dir, check
1871 * whether the type of victim is right.
1872 * 1. We can't do it if dir is read-only (done in permission())
1873 * 2. We should have write and exec permissions on dir
1874 * 3. We can't remove anything from append-only dir
1875 * 4. We can't do anything with immutable dir (done in permission())
1876 * 5. If the sticky bit on dir is set we should either
1877 * a. be owner of dir, or
1878 * b. be owner of victim, or
1879 * c. have CAP_FOWNER capability
1880 * 6. If the victim is append-only or immutable we can't do antyhing with
1881 * links pointing to it.
1882 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1883 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1884 * 9. We can't remove a root or mountpoint.
1885 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1886 * nfs_async_unlink().
1888 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1890 int error;
1892 if (!victim->d_inode)
1893 return -ENOENT;
1895 BUG_ON(victim->d_parent->d_inode != dir);
1896 audit_inode_child(victim, dir);
1898 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1899 if (error)
1900 return error;
1901 if (IS_APPEND(dir))
1902 return -EPERM;
1903 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1904 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1905 return -EPERM;
1906 if (isdir) {
1907 if (!S_ISDIR(victim->d_inode->i_mode))
1908 return -ENOTDIR;
1909 if (IS_ROOT(victim))
1910 return -EBUSY;
1911 } else if (S_ISDIR(victim->d_inode->i_mode))
1912 return -EISDIR;
1913 if (IS_DEADDIR(dir))
1914 return -ENOENT;
1915 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1916 return -EBUSY;
1917 return 0;
1920 /* Check whether we can create an object with dentry child in directory
1921 * dir.
1922 * 1. We can't do it if child already exists (open has special treatment for
1923 * this case, but since we are inlined it's OK)
1924 * 2. We can't do it if dir is read-only (done in permission())
1925 * 3. We should have write and exec permissions on dir
1926 * 4. We can't do it if dir is immutable (done in permission())
1928 static inline int may_create(struct inode *dir, struct dentry *child)
1930 if (child->d_inode)
1931 return -EEXIST;
1932 if (IS_DEADDIR(dir))
1933 return -ENOENT;
1934 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1938 * p1 and p2 should be directories on the same fs.
1940 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1942 struct dentry *p;
1944 if (p1 == p2) {
1945 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1946 return NULL;
1949 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1951 p = d_ancestor(p2, p1);
1952 if (p) {
1953 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1954 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1955 return p;
1958 p = d_ancestor(p1, p2);
1959 if (p) {
1960 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1961 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1962 return p;
1965 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1966 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1967 return NULL;
1970 void unlock_rename(struct dentry *p1, struct dentry *p2)
1972 mutex_unlock(&p1->d_inode->i_mutex);
1973 if (p1 != p2) {
1974 mutex_unlock(&p2->d_inode->i_mutex);
1975 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1979 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1980 struct nameidata *nd)
1982 int error = may_create(dir, dentry);
1984 if (error)
1985 return error;
1987 if (!dir->i_op->create)
1988 return -EACCES; /* shouldn't it be ENOSYS? */
1989 mode &= S_IALLUGO;
1990 mode |= S_IFREG;
1991 error = security_inode_create(dir, dentry, mode);
1992 if (error)
1993 return error;
1994 error = dir->i_op->create(dir, dentry, mode, nd);
1995 if (!error)
1996 fsnotify_create(dir, dentry);
1997 return error;
2000 static int may_open(struct path *path, int acc_mode, int flag)
2002 struct dentry *dentry = path->dentry;
2003 struct inode *inode = dentry->d_inode;
2004 int error;
2006 /* O_PATH? */
2007 if (!acc_mode)
2008 return 0;
2010 if (!inode)
2011 return -ENOENT;
2013 switch (inode->i_mode & S_IFMT) {
2014 case S_IFLNK:
2015 return -ELOOP;
2016 case S_IFDIR:
2017 if (acc_mode & MAY_WRITE)
2018 return -EISDIR;
2019 break;
2020 case S_IFBLK:
2021 case S_IFCHR:
2022 if (path->mnt->mnt_flags & MNT_NODEV)
2023 return -EACCES;
2024 /*FALLTHRU*/
2025 case S_IFIFO:
2026 case S_IFSOCK:
2027 flag &= ~O_TRUNC;
2028 break;
2031 error = inode_permission(inode, acc_mode);
2032 if (error)
2033 return error;
2036 * An append-only file must be opened in append mode for writing.
2038 if (IS_APPEND(inode)) {
2039 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2040 return -EPERM;
2041 if (flag & O_TRUNC)
2042 return -EPERM;
2045 /* O_NOATIME can only be set by the owner or superuser */
2046 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2047 return -EPERM;
2050 * Ensure there are no outstanding leases on the file.
2052 return break_lease(inode, flag);
2055 static int handle_truncate(struct file *filp)
2057 struct path *path = &filp->f_path;
2058 struct inode *inode = path->dentry->d_inode;
2059 int error = get_write_access(inode);
2060 if (error)
2061 return error;
2063 * Refuse to truncate files with mandatory locks held on them.
2065 error = locks_verify_locked(inode);
2066 if (!error)
2067 error = security_path_truncate(path);
2068 if (!error) {
2069 error = do_truncate(path->dentry, 0,
2070 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2071 filp);
2073 put_write_access(inode);
2074 return error;
2077 static inline int open_to_namei_flags(int flag)
2079 if ((flag & O_ACCMODE) == 3)
2080 flag--;
2081 return flag;
2085 * Handle the last step of open()
2087 static struct file *do_last(struct nameidata *nd, struct path *path,
2088 const struct open_flags *op, const char *pathname)
2090 struct dentry *dir = nd->path.dentry;
2091 struct dentry *dentry;
2092 int open_flag = op->open_flag;
2093 int will_truncate = open_flag & O_TRUNC;
2094 int want_write = 0;
2095 int acc_mode = op->acc_mode;
2096 struct file *filp;
2097 int error;
2099 nd->flags &= ~LOOKUP_PARENT;
2100 nd->flags |= op->intent;
2102 switch (nd->last_type) {
2103 case LAST_DOTDOT:
2104 case LAST_DOT:
2105 error = handle_dots(nd, nd->last_type);
2106 if (error)
2107 return ERR_PTR(error);
2108 /* fallthrough */
2109 case LAST_ROOT:
2110 error = complete_walk(nd);
2111 if (error)
2112 return ERR_PTR(error);
2113 audit_inode(pathname, nd->path.dentry);
2114 if (open_flag & O_CREAT) {
2115 error = -EISDIR;
2116 goto exit;
2118 goto ok;
2119 case LAST_BIND:
2120 error = complete_walk(nd);
2121 if (error)
2122 return ERR_PTR(error);
2123 audit_inode(pathname, dir);
2124 goto ok;
2127 if (!(open_flag & O_CREAT)) {
2128 int symlink_ok = 0;
2129 if (nd->last.name[nd->last.len])
2130 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2131 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2132 symlink_ok = 1;
2133 /* we _can_ be in RCU mode here */
2134 error = walk_component(nd, path, &nd->last, LAST_NORM,
2135 !symlink_ok);
2136 if (error < 0)
2137 return ERR_PTR(error);
2138 if (error) /* symlink */
2139 return NULL;
2140 /* sayonara */
2141 error = complete_walk(nd);
2142 if (error)
2143 return ERR_PTR(-ECHILD);
2145 error = -ENOTDIR;
2146 if (nd->flags & LOOKUP_DIRECTORY) {
2147 if (!nd->inode->i_op->lookup)
2148 goto exit;
2150 audit_inode(pathname, nd->path.dentry);
2151 goto ok;
2154 /* create side of things */
2156 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2157 * cleared when we got to the last component we are about to look up
2159 error = complete_walk(nd);
2160 if (error)
2161 return ERR_PTR(error);
2163 audit_inode(pathname, dir);
2164 error = -EISDIR;
2165 /* trailing slashes? */
2166 if (nd->last.name[nd->last.len])
2167 goto exit;
2169 mutex_lock(&dir->d_inode->i_mutex);
2171 dentry = lookup_hash(nd);
2172 error = PTR_ERR(dentry);
2173 if (IS_ERR(dentry)) {
2174 mutex_unlock(&dir->d_inode->i_mutex);
2175 goto exit;
2178 path->dentry = dentry;
2179 path->mnt = nd->path.mnt;
2181 /* Negative dentry, just create the file */
2182 if (!dentry->d_inode) {
2183 int mode = op->mode;
2184 if (!IS_POSIXACL(dir->d_inode))
2185 mode &= ~current_umask();
2187 * This write is needed to ensure that a
2188 * rw->ro transition does not occur between
2189 * the time when the file is created and when
2190 * a permanent write count is taken through
2191 * the 'struct file' in nameidata_to_filp().
2193 error = mnt_want_write(nd->path.mnt);
2194 if (error)
2195 goto exit_mutex_unlock;
2196 want_write = 1;
2197 /* Don't check for write permission, don't truncate */
2198 open_flag &= ~O_TRUNC;
2199 will_truncate = 0;
2200 acc_mode = MAY_OPEN;
2201 error = security_path_mknod(&nd->path, dentry, mode, 0);
2202 if (error)
2203 goto exit_mutex_unlock;
2204 error = vfs_create(dir->d_inode, dentry, mode, nd);
2205 if (error)
2206 goto exit_mutex_unlock;
2207 mutex_unlock(&dir->d_inode->i_mutex);
2208 dput(nd->path.dentry);
2209 nd->path.dentry = dentry;
2210 goto common;
2214 * It already exists.
2216 mutex_unlock(&dir->d_inode->i_mutex);
2217 audit_inode(pathname, path->dentry);
2219 error = -EEXIST;
2220 if (open_flag & O_EXCL)
2221 goto exit_dput;
2223 error = follow_managed(path, nd->flags);
2224 if (error < 0)
2225 goto exit_dput;
2227 if (error)
2228 nd->flags |= LOOKUP_JUMPED;
2230 error = -ENOENT;
2231 if (!path->dentry->d_inode)
2232 goto exit_dput;
2234 if (path->dentry->d_inode->i_op->follow_link)
2235 return NULL;
2237 path_to_nameidata(path, nd);
2238 nd->inode = path->dentry->d_inode;
2239 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2240 error = complete_walk(nd);
2241 if (error)
2242 goto exit;
2243 error = -EISDIR;
2244 if (S_ISDIR(nd->inode->i_mode))
2245 goto exit;
2247 if (!S_ISREG(nd->inode->i_mode))
2248 will_truncate = 0;
2250 if (will_truncate) {
2251 error = mnt_want_write(nd->path.mnt);
2252 if (error)
2253 goto exit;
2254 want_write = 1;
2256 common:
2257 error = may_open(&nd->path, acc_mode, open_flag);
2258 if (error)
2259 goto exit;
2260 filp = nameidata_to_filp(nd);
2261 if (!IS_ERR(filp)) {
2262 error = ima_file_check(filp, op->acc_mode);
2263 if (error) {
2264 fput(filp);
2265 filp = ERR_PTR(error);
2268 if (!IS_ERR(filp)) {
2269 if (will_truncate) {
2270 error = handle_truncate(filp);
2271 if (error) {
2272 fput(filp);
2273 filp = ERR_PTR(error);
2277 out:
2278 if (want_write)
2279 mnt_drop_write(nd->path.mnt);
2280 path_put(&nd->path);
2281 return filp;
2283 exit_mutex_unlock:
2284 mutex_unlock(&dir->d_inode->i_mutex);
2285 exit_dput:
2286 path_put_conditional(path, nd);
2287 exit:
2288 filp = ERR_PTR(error);
2289 goto out;
2292 static struct file *path_openat(int dfd, const char *pathname,
2293 struct nameidata *nd, const struct open_flags *op, int flags)
2295 struct file *base = NULL;
2296 struct file *filp;
2297 struct path path;
2298 int error;
2300 filp = get_empty_filp();
2301 if (!filp)
2302 return ERR_PTR(-ENFILE);
2304 filp->f_flags = op->open_flag;
2305 nd->intent.open.file = filp;
2306 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2307 nd->intent.open.create_mode = op->mode;
2309 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2310 if (unlikely(error))
2311 goto out_filp;
2313 current->total_link_count = 0;
2314 error = link_path_walk(pathname, nd);
2315 if (unlikely(error))
2316 goto out_filp;
2318 filp = do_last(nd, &path, op, pathname);
2319 while (unlikely(!filp)) { /* trailing symlink */
2320 struct path link = path;
2321 void *cookie;
2322 if (!(nd->flags & LOOKUP_FOLLOW)) {
2323 path_put_conditional(&path, nd);
2324 path_put(&nd->path);
2325 filp = ERR_PTR(-ELOOP);
2326 break;
2328 nd->flags |= LOOKUP_PARENT;
2329 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2330 error = follow_link(&link, nd, &cookie);
2331 if (unlikely(error))
2332 filp = ERR_PTR(error);
2333 else
2334 filp = do_last(nd, &path, op, pathname);
2335 put_link(nd, &link, cookie);
2337 out:
2338 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2339 path_put(&nd->root);
2340 if (base)
2341 fput(base);
2342 release_open_intent(nd);
2343 return filp;
2345 out_filp:
2346 filp = ERR_PTR(error);
2347 goto out;
2350 struct file *do_filp_open(int dfd, const char *pathname,
2351 const struct open_flags *op, int flags)
2353 struct nameidata nd;
2354 struct file *filp;
2356 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2357 if (unlikely(filp == ERR_PTR(-ECHILD)))
2358 filp = path_openat(dfd, pathname, &nd, op, flags);
2359 if (unlikely(filp == ERR_PTR(-ESTALE)))
2360 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2361 return filp;
2364 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2365 const char *name, const struct open_flags *op, int flags)
2367 struct nameidata nd;
2368 struct file *file;
2370 nd.root.mnt = mnt;
2371 nd.root.dentry = dentry;
2373 flags |= LOOKUP_ROOT;
2375 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2376 return ERR_PTR(-ELOOP);
2378 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2379 if (unlikely(file == ERR_PTR(-ECHILD)))
2380 file = path_openat(-1, name, &nd, op, flags);
2381 if (unlikely(file == ERR_PTR(-ESTALE)))
2382 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2383 return file;
2386 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2388 struct dentry *dentry = ERR_PTR(-EEXIST);
2389 struct nameidata nd;
2390 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2391 if (error)
2392 return ERR_PTR(error);
2395 * Yucky last component or no last component at all?
2396 * (foo/., foo/.., /////)
2398 if (nd.last_type != LAST_NORM)
2399 goto out;
2400 nd.flags &= ~LOOKUP_PARENT;
2401 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2402 nd.intent.open.flags = O_EXCL;
2405 * Do the final lookup.
2407 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2408 dentry = lookup_hash(&nd);
2409 if (IS_ERR(dentry))
2410 goto fail;
2412 if (dentry->d_inode)
2413 goto eexist;
2415 * Special case - lookup gave negative, but... we had foo/bar/
2416 * From the vfs_mknod() POV we just have a negative dentry -
2417 * all is fine. Let's be bastards - you had / on the end, you've
2418 * been asking for (non-existent) directory. -ENOENT for you.
2420 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2421 dput(dentry);
2422 dentry = ERR_PTR(-ENOENT);
2423 goto fail;
2425 *path = nd.path;
2426 return dentry;
2427 eexist:
2428 dput(dentry);
2429 dentry = ERR_PTR(-EEXIST);
2430 fail:
2431 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2432 out:
2433 path_put(&nd.path);
2434 return dentry;
2436 EXPORT_SYMBOL(kern_path_create);
2438 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2440 char *tmp = getname(pathname);
2441 struct dentry *res;
2442 if (IS_ERR(tmp))
2443 return ERR_CAST(tmp);
2444 res = kern_path_create(dfd, tmp, path, is_dir);
2445 putname(tmp);
2446 return res;
2448 EXPORT_SYMBOL(user_path_create);
2450 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2452 int error = may_create(dir, dentry);
2454 if (error)
2455 return error;
2457 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2458 !ns_capable(inode_userns(dir), CAP_MKNOD))
2459 return -EPERM;
2461 if (!dir->i_op->mknod)
2462 return -EPERM;
2464 error = devcgroup_inode_mknod(mode, dev);
2465 if (error)
2466 return error;
2468 error = security_inode_mknod(dir, dentry, mode, dev);
2469 if (error)
2470 return error;
2472 error = dir->i_op->mknod(dir, dentry, mode, dev);
2473 if (!error)
2474 fsnotify_create(dir, dentry);
2475 return error;
2478 static int may_mknod(mode_t mode)
2480 switch (mode & S_IFMT) {
2481 case S_IFREG:
2482 case S_IFCHR:
2483 case S_IFBLK:
2484 case S_IFIFO:
2485 case S_IFSOCK:
2486 case 0: /* zero mode translates to S_IFREG */
2487 return 0;
2488 case S_IFDIR:
2489 return -EPERM;
2490 default:
2491 return -EINVAL;
2495 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2496 unsigned, dev)
2498 struct dentry *dentry;
2499 struct path path;
2500 int error;
2502 if (S_ISDIR(mode))
2503 return -EPERM;
2505 dentry = user_path_create(dfd, filename, &path, 0);
2506 if (IS_ERR(dentry))
2507 return PTR_ERR(dentry);
2509 if (!IS_POSIXACL(path.dentry->d_inode))
2510 mode &= ~current_umask();
2511 error = may_mknod(mode);
2512 if (error)
2513 goto out_dput;
2514 error = mnt_want_write(path.mnt);
2515 if (error)
2516 goto out_dput;
2517 error = security_path_mknod(&path, dentry, mode, dev);
2518 if (error)
2519 goto out_drop_write;
2520 switch (mode & S_IFMT) {
2521 case 0: case S_IFREG:
2522 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2523 break;
2524 case S_IFCHR: case S_IFBLK:
2525 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2526 new_decode_dev(dev));
2527 break;
2528 case S_IFIFO: case S_IFSOCK:
2529 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2530 break;
2532 out_drop_write:
2533 mnt_drop_write(path.mnt);
2534 out_dput:
2535 dput(dentry);
2536 mutex_unlock(&path.dentry->d_inode->i_mutex);
2537 path_put(&path);
2539 return error;
2542 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2544 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2547 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2549 int error = may_create(dir, dentry);
2551 if (error)
2552 return error;
2554 if (!dir->i_op->mkdir)
2555 return -EPERM;
2557 mode &= (S_IRWXUGO|S_ISVTX);
2558 error = security_inode_mkdir(dir, dentry, mode);
2559 if (error)
2560 return error;
2562 error = dir->i_op->mkdir(dir, dentry, mode);
2563 if (!error)
2564 fsnotify_mkdir(dir, dentry);
2565 return error;
2568 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2570 struct dentry *dentry;
2571 struct path path;
2572 int error;
2574 dentry = user_path_create(dfd, pathname, &path, 1);
2575 if (IS_ERR(dentry))
2576 return PTR_ERR(dentry);
2578 if (!IS_POSIXACL(path.dentry->d_inode))
2579 mode &= ~current_umask();
2580 error = mnt_want_write(path.mnt);
2581 if (error)
2582 goto out_dput;
2583 error = security_path_mkdir(&path, dentry, mode);
2584 if (error)
2585 goto out_drop_write;
2586 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2587 out_drop_write:
2588 mnt_drop_write(path.mnt);
2589 out_dput:
2590 dput(dentry);
2591 mutex_unlock(&path.dentry->d_inode->i_mutex);
2592 path_put(&path);
2593 return error;
2596 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2598 return sys_mkdirat(AT_FDCWD, pathname, mode);
2602 * The dentry_unhash() helper will try to drop the dentry early: we
2603 * should have a usage count of 2 if we're the only user of this
2604 * dentry, and if that is true (possibly after pruning the dcache),
2605 * then we drop the dentry now.
2607 * A low-level filesystem can, if it choses, legally
2608 * do a
2610 * if (!d_unhashed(dentry))
2611 * return -EBUSY;
2613 * if it cannot handle the case of removing a directory
2614 * that is still in use by something else..
2616 void dentry_unhash(struct dentry *dentry)
2618 shrink_dcache_parent(dentry);
2619 spin_lock(&dentry->d_lock);
2620 if (dentry->d_count == 1)
2621 __d_drop(dentry);
2622 spin_unlock(&dentry->d_lock);
2625 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2627 int error = may_delete(dir, dentry, 1);
2629 if (error)
2630 return error;
2632 if (!dir->i_op->rmdir)
2633 return -EPERM;
2635 dget(dentry);
2636 mutex_lock(&dentry->d_inode->i_mutex);
2638 error = -EBUSY;
2639 if (d_mountpoint(dentry))
2640 goto out;
2642 error = security_inode_rmdir(dir, dentry);
2643 if (error)
2644 goto out;
2646 shrink_dcache_parent(dentry);
2647 error = dir->i_op->rmdir(dir, dentry);
2648 if (error)
2649 goto out;
2651 dentry->d_inode->i_flags |= S_DEAD;
2652 dont_mount(dentry);
2654 out:
2655 mutex_unlock(&dentry->d_inode->i_mutex);
2656 dput(dentry);
2657 if (!error)
2658 d_delete(dentry);
2659 return error;
2662 static long do_rmdir(int dfd, const char __user *pathname)
2664 int error = 0;
2665 char * name;
2666 struct dentry *dentry;
2667 struct nameidata nd;
2669 error = user_path_parent(dfd, pathname, &nd, &name);
2670 if (error)
2671 return error;
2673 switch(nd.last_type) {
2674 case LAST_DOTDOT:
2675 error = -ENOTEMPTY;
2676 goto exit1;
2677 case LAST_DOT:
2678 error = -EINVAL;
2679 goto exit1;
2680 case LAST_ROOT:
2681 error = -EBUSY;
2682 goto exit1;
2685 nd.flags &= ~LOOKUP_PARENT;
2687 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2688 dentry = lookup_hash(&nd);
2689 error = PTR_ERR(dentry);
2690 if (IS_ERR(dentry))
2691 goto exit2;
2692 if (!dentry->d_inode) {
2693 error = -ENOENT;
2694 goto exit3;
2696 error = mnt_want_write(nd.path.mnt);
2697 if (error)
2698 goto exit3;
2699 error = security_path_rmdir(&nd.path, dentry);
2700 if (error)
2701 goto exit4;
2702 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2703 exit4:
2704 mnt_drop_write(nd.path.mnt);
2705 exit3:
2706 dput(dentry);
2707 exit2:
2708 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2709 exit1:
2710 path_put(&nd.path);
2711 putname(name);
2712 return error;
2715 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2717 return do_rmdir(AT_FDCWD, pathname);
2720 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2722 int error = may_delete(dir, dentry, 0);
2724 if (error)
2725 return error;
2727 if (!dir->i_op->unlink)
2728 return -EPERM;
2730 mutex_lock(&dentry->d_inode->i_mutex);
2731 if (d_mountpoint(dentry))
2732 error = -EBUSY;
2733 else {
2734 error = security_inode_unlink(dir, dentry);
2735 if (!error) {
2736 error = dir->i_op->unlink(dir, dentry);
2737 if (!error)
2738 dont_mount(dentry);
2741 mutex_unlock(&dentry->d_inode->i_mutex);
2743 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2744 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2745 fsnotify_link_count(dentry->d_inode);
2746 d_delete(dentry);
2749 return error;
2753 * Make sure that the actual truncation of the file will occur outside its
2754 * directory's i_mutex. Truncate can take a long time if there is a lot of
2755 * writeout happening, and we don't want to prevent access to the directory
2756 * while waiting on the I/O.
2758 static long do_unlinkat(int dfd, const char __user *pathname)
2760 int error;
2761 char *name;
2762 struct dentry *dentry;
2763 struct nameidata nd;
2764 struct inode *inode = NULL;
2766 error = user_path_parent(dfd, pathname, &nd, &name);
2767 if (error)
2768 return error;
2770 error = -EISDIR;
2771 if (nd.last_type != LAST_NORM)
2772 goto exit1;
2774 nd.flags &= ~LOOKUP_PARENT;
2776 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2777 dentry = lookup_hash(&nd);
2778 error = PTR_ERR(dentry);
2779 if (!IS_ERR(dentry)) {
2780 /* Why not before? Because we want correct error value */
2781 if (nd.last.name[nd.last.len])
2782 goto slashes;
2783 inode = dentry->d_inode;
2784 if (!inode)
2785 goto slashes;
2786 ihold(inode);
2787 error = mnt_want_write(nd.path.mnt);
2788 if (error)
2789 goto exit2;
2790 error = security_path_unlink(&nd.path, dentry);
2791 if (error)
2792 goto exit3;
2793 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2794 exit3:
2795 mnt_drop_write(nd.path.mnt);
2796 exit2:
2797 dput(dentry);
2799 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2800 if (inode)
2801 iput(inode); /* truncate the inode here */
2802 exit1:
2803 path_put(&nd.path);
2804 putname(name);
2805 return error;
2807 slashes:
2808 error = !dentry->d_inode ? -ENOENT :
2809 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2810 goto exit2;
2813 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2815 if ((flag & ~AT_REMOVEDIR) != 0)
2816 return -EINVAL;
2818 if (flag & AT_REMOVEDIR)
2819 return do_rmdir(dfd, pathname);
2821 return do_unlinkat(dfd, pathname);
2824 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2826 return do_unlinkat(AT_FDCWD, pathname);
2829 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2831 int error = may_create(dir, dentry);
2833 if (error)
2834 return error;
2836 if (!dir->i_op->symlink)
2837 return -EPERM;
2839 error = security_inode_symlink(dir, dentry, oldname);
2840 if (error)
2841 return error;
2843 error = dir->i_op->symlink(dir, dentry, oldname);
2844 if (!error)
2845 fsnotify_create(dir, dentry);
2846 return error;
2849 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2850 int, newdfd, const char __user *, newname)
2852 int error;
2853 char *from;
2854 struct dentry *dentry;
2855 struct path path;
2857 from = getname(oldname);
2858 if (IS_ERR(from))
2859 return PTR_ERR(from);
2861 dentry = user_path_create(newdfd, newname, &path, 0);
2862 error = PTR_ERR(dentry);
2863 if (IS_ERR(dentry))
2864 goto out_putname;
2866 error = mnt_want_write(path.mnt);
2867 if (error)
2868 goto out_dput;
2869 error = security_path_symlink(&path, dentry, from);
2870 if (error)
2871 goto out_drop_write;
2872 error = vfs_symlink(path.dentry->d_inode, dentry, from);
2873 out_drop_write:
2874 mnt_drop_write(path.mnt);
2875 out_dput:
2876 dput(dentry);
2877 mutex_unlock(&path.dentry->d_inode->i_mutex);
2878 path_put(&path);
2879 out_putname:
2880 putname(from);
2881 return error;
2884 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2886 return sys_symlinkat(oldname, AT_FDCWD, newname);
2889 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2891 struct inode *inode = old_dentry->d_inode;
2892 int error;
2894 if (!inode)
2895 return -ENOENT;
2897 error = may_create(dir, new_dentry);
2898 if (error)
2899 return error;
2901 if (dir->i_sb != inode->i_sb)
2902 return -EXDEV;
2905 * A link to an append-only or immutable file cannot be created.
2907 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2908 return -EPERM;
2909 if (!dir->i_op->link)
2910 return -EPERM;
2911 if (S_ISDIR(inode->i_mode))
2912 return -EPERM;
2914 error = security_inode_link(old_dentry, dir, new_dentry);
2915 if (error)
2916 return error;
2918 mutex_lock(&inode->i_mutex);
2919 /* Make sure we don't allow creating hardlink to an unlinked file */
2920 if (inode->i_nlink == 0)
2921 error = -ENOENT;
2922 else
2923 error = dir->i_op->link(old_dentry, dir, new_dentry);
2924 mutex_unlock(&inode->i_mutex);
2925 if (!error)
2926 fsnotify_link(dir, inode, new_dentry);
2927 return error;
2931 * Hardlinks are often used in delicate situations. We avoid
2932 * security-related surprises by not following symlinks on the
2933 * newname. --KAB
2935 * We don't follow them on the oldname either to be compatible
2936 * with linux 2.0, and to avoid hard-linking to directories
2937 * and other special files. --ADM
2939 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2940 int, newdfd, const char __user *, newname, int, flags)
2942 struct dentry *new_dentry;
2943 struct path old_path, new_path;
2944 int how = 0;
2945 int error;
2947 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2948 return -EINVAL;
2950 * To use null names we require CAP_DAC_READ_SEARCH
2951 * This ensures that not everyone will be able to create
2952 * handlink using the passed filedescriptor.
2954 if (flags & AT_EMPTY_PATH) {
2955 if (!capable(CAP_DAC_READ_SEARCH))
2956 return -ENOENT;
2957 how = LOOKUP_EMPTY;
2960 if (flags & AT_SYMLINK_FOLLOW)
2961 how |= LOOKUP_FOLLOW;
2963 error = user_path_at(olddfd, oldname, how, &old_path);
2964 if (error)
2965 return error;
2967 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
2968 error = PTR_ERR(new_dentry);
2969 if (IS_ERR(new_dentry))
2970 goto out;
2972 error = -EXDEV;
2973 if (old_path.mnt != new_path.mnt)
2974 goto out_dput;
2975 error = mnt_want_write(new_path.mnt);
2976 if (error)
2977 goto out_dput;
2978 error = security_path_link(old_path.dentry, &new_path, new_dentry);
2979 if (error)
2980 goto out_drop_write;
2981 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
2982 out_drop_write:
2983 mnt_drop_write(new_path.mnt);
2984 out_dput:
2985 dput(new_dentry);
2986 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
2987 path_put(&new_path);
2988 out:
2989 path_put(&old_path);
2991 return error;
2994 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2996 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3000 * The worst of all namespace operations - renaming directory. "Perverted"
3001 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3002 * Problems:
3003 * a) we can get into loop creation. Check is done in is_subdir().
3004 * b) race potential - two innocent renames can create a loop together.
3005 * That's where 4.4 screws up. Current fix: serialization on
3006 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3007 * story.
3008 * c) we have to lock _three_ objects - parents and victim (if it exists).
3009 * And that - after we got ->i_mutex on parents (until then we don't know
3010 * whether the target exists). Solution: try to be smart with locking
3011 * order for inodes. We rely on the fact that tree topology may change
3012 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3013 * move will be locked. Thus we can rank directories by the tree
3014 * (ancestors first) and rank all non-directories after them.
3015 * That works since everybody except rename does "lock parent, lookup,
3016 * lock child" and rename is under ->s_vfs_rename_mutex.
3017 * HOWEVER, it relies on the assumption that any object with ->lookup()
3018 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3019 * we'd better make sure that there's no link(2) for them.
3020 * d) conversion from fhandle to dentry may come in the wrong moment - when
3021 * we are removing the target. Solution: we will have to grab ->i_mutex
3022 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3023 * ->i_mutex on parents, which works but leads to some truly excessive
3024 * locking].
3026 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3027 struct inode *new_dir, struct dentry *new_dentry)
3029 int error = 0;
3030 struct inode *target = new_dentry->d_inode;
3033 * If we are going to change the parent - check write permissions,
3034 * we'll need to flip '..'.
3036 if (new_dir != old_dir) {
3037 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3038 if (error)
3039 return error;
3042 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3043 if (error)
3044 return error;
3046 dget(new_dentry);
3047 if (target)
3048 mutex_lock(&target->i_mutex);
3050 error = -EBUSY;
3051 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3052 goto out;
3054 if (target)
3055 shrink_dcache_parent(new_dentry);
3056 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3057 if (error)
3058 goto out;
3060 if (target) {
3061 target->i_flags |= S_DEAD;
3062 dont_mount(new_dentry);
3064 out:
3065 if (target)
3066 mutex_unlock(&target->i_mutex);
3067 dput(new_dentry);
3068 if (!error)
3069 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3070 d_move(old_dentry,new_dentry);
3071 return error;
3074 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3075 struct inode *new_dir, struct dentry *new_dentry)
3077 struct inode *target = new_dentry->d_inode;
3078 int error;
3080 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3081 if (error)
3082 return error;
3084 dget(new_dentry);
3085 if (target)
3086 mutex_lock(&target->i_mutex);
3088 error = -EBUSY;
3089 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3090 goto out;
3092 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3093 if (error)
3094 goto out;
3096 if (target)
3097 dont_mount(new_dentry);
3098 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3099 d_move(old_dentry, new_dentry);
3100 out:
3101 if (target)
3102 mutex_unlock(&target->i_mutex);
3103 dput(new_dentry);
3104 return error;
3107 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3108 struct inode *new_dir, struct dentry *new_dentry)
3110 int error;
3111 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3112 const unsigned char *old_name;
3114 if (old_dentry->d_inode == new_dentry->d_inode)
3115 return 0;
3117 error = may_delete(old_dir, old_dentry, is_dir);
3118 if (error)
3119 return error;
3121 if (!new_dentry->d_inode)
3122 error = may_create(new_dir, new_dentry);
3123 else
3124 error = may_delete(new_dir, new_dentry, is_dir);
3125 if (error)
3126 return error;
3128 if (!old_dir->i_op->rename)
3129 return -EPERM;
3131 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3133 if (is_dir)
3134 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3135 else
3136 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3137 if (!error)
3138 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3139 new_dentry->d_inode, old_dentry);
3140 fsnotify_oldname_free(old_name);
3142 return error;
3145 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3146 int, newdfd, const char __user *, newname)
3148 struct dentry *old_dir, *new_dir;
3149 struct dentry *old_dentry, *new_dentry;
3150 struct dentry *trap;
3151 struct nameidata oldnd, newnd;
3152 char *from;
3153 char *to;
3154 int error;
3156 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3157 if (error)
3158 goto exit;
3160 error = user_path_parent(newdfd, newname, &newnd, &to);
3161 if (error)
3162 goto exit1;
3164 error = -EXDEV;
3165 if (oldnd.path.mnt != newnd.path.mnt)
3166 goto exit2;
3168 old_dir = oldnd.path.dentry;
3169 error = -EBUSY;
3170 if (oldnd.last_type != LAST_NORM)
3171 goto exit2;
3173 new_dir = newnd.path.dentry;
3174 if (newnd.last_type != LAST_NORM)
3175 goto exit2;
3177 oldnd.flags &= ~LOOKUP_PARENT;
3178 newnd.flags &= ~LOOKUP_PARENT;
3179 newnd.flags |= LOOKUP_RENAME_TARGET;
3181 trap = lock_rename(new_dir, old_dir);
3183 old_dentry = lookup_hash(&oldnd);
3184 error = PTR_ERR(old_dentry);
3185 if (IS_ERR(old_dentry))
3186 goto exit3;
3187 /* source must exist */
3188 error = -ENOENT;
3189 if (!old_dentry->d_inode)
3190 goto exit4;
3191 /* unless the source is a directory trailing slashes give -ENOTDIR */
3192 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3193 error = -ENOTDIR;
3194 if (oldnd.last.name[oldnd.last.len])
3195 goto exit4;
3196 if (newnd.last.name[newnd.last.len])
3197 goto exit4;
3199 /* source should not be ancestor of target */
3200 error = -EINVAL;
3201 if (old_dentry == trap)
3202 goto exit4;
3203 new_dentry = lookup_hash(&newnd);
3204 error = PTR_ERR(new_dentry);
3205 if (IS_ERR(new_dentry))
3206 goto exit4;
3207 /* target should not be an ancestor of source */
3208 error = -ENOTEMPTY;
3209 if (new_dentry == trap)
3210 goto exit5;
3212 error = mnt_want_write(oldnd.path.mnt);
3213 if (error)
3214 goto exit5;
3215 error = security_path_rename(&oldnd.path, old_dentry,
3216 &newnd.path, new_dentry);
3217 if (error)
3218 goto exit6;
3219 error = vfs_rename(old_dir->d_inode, old_dentry,
3220 new_dir->d_inode, new_dentry);
3221 exit6:
3222 mnt_drop_write(oldnd.path.mnt);
3223 exit5:
3224 dput(new_dentry);
3225 exit4:
3226 dput(old_dentry);
3227 exit3:
3228 unlock_rename(new_dir, old_dir);
3229 exit2:
3230 path_put(&newnd.path);
3231 putname(to);
3232 exit1:
3233 path_put(&oldnd.path);
3234 putname(from);
3235 exit:
3236 return error;
3239 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3241 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3244 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3246 int len;
3248 len = PTR_ERR(link);
3249 if (IS_ERR(link))
3250 goto out;
3252 len = strlen(link);
3253 if (len > (unsigned) buflen)
3254 len = buflen;
3255 if (copy_to_user(buffer, link, len))
3256 len = -EFAULT;
3257 out:
3258 return len;
3262 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3263 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3264 * using) it for any given inode is up to filesystem.
3266 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3268 struct nameidata nd;
3269 void *cookie;
3270 int res;
3272 nd.depth = 0;
3273 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3274 if (IS_ERR(cookie))
3275 return PTR_ERR(cookie);
3277 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3278 if (dentry->d_inode->i_op->put_link)
3279 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3280 return res;
3283 int vfs_follow_link(struct nameidata *nd, const char *link)
3285 return __vfs_follow_link(nd, link);
3288 /* get the link contents into pagecache */
3289 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3291 char *kaddr;
3292 struct page *page;
3293 struct address_space *mapping = dentry->d_inode->i_mapping;
3294 page = read_mapping_page(mapping, 0, NULL);
3295 if (IS_ERR(page))
3296 return (char*)page;
3297 *ppage = page;
3298 kaddr = kmap(page);
3299 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3300 return kaddr;
3303 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3305 struct page *page = NULL;
3306 char *s = page_getlink(dentry, &page);
3307 int res = vfs_readlink(dentry,buffer,buflen,s);
3308 if (page) {
3309 kunmap(page);
3310 page_cache_release(page);
3312 return res;
3315 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3317 struct page *page = NULL;
3318 nd_set_link(nd, page_getlink(dentry, &page));
3319 return page;
3322 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3324 struct page *page = cookie;
3326 if (page) {
3327 kunmap(page);
3328 page_cache_release(page);
3333 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3335 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3337 struct address_space *mapping = inode->i_mapping;
3338 struct page *page;
3339 void *fsdata;
3340 int err;
3341 char *kaddr;
3342 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3343 if (nofs)
3344 flags |= AOP_FLAG_NOFS;
3346 retry:
3347 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3348 flags, &page, &fsdata);
3349 if (err)
3350 goto fail;
3352 kaddr = kmap_atomic(page, KM_USER0);
3353 memcpy(kaddr, symname, len-1);
3354 kunmap_atomic(kaddr, KM_USER0);
3356 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3357 page, fsdata);
3358 if (err < 0)
3359 goto fail;
3360 if (err < len-1)
3361 goto retry;
3363 mark_inode_dirty(inode);
3364 return 0;
3365 fail:
3366 return err;
3369 int page_symlink(struct inode *inode, const char *symname, int len)
3371 return __page_symlink(inode, symname, len,
3372 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3375 const struct inode_operations page_symlink_inode_operations = {
3376 .readlink = generic_readlink,
3377 .follow_link = page_follow_link_light,
3378 .put_link = page_put_link,
3381 EXPORT_SYMBOL(user_path_at);
3382 EXPORT_SYMBOL(follow_down_one);
3383 EXPORT_SYMBOL(follow_down);
3384 EXPORT_SYMBOL(follow_up);
3385 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3386 EXPORT_SYMBOL(getname);
3387 EXPORT_SYMBOL(lock_rename);
3388 EXPORT_SYMBOL(lookup_one_len);
3389 EXPORT_SYMBOL(page_follow_link_light);
3390 EXPORT_SYMBOL(page_put_link);
3391 EXPORT_SYMBOL(page_readlink);
3392 EXPORT_SYMBOL(__page_symlink);
3393 EXPORT_SYMBOL(page_symlink);
3394 EXPORT_SYMBOL(page_symlink_inode_operations);
3395 EXPORT_SYMBOL(kern_path);
3396 EXPORT_SYMBOL(vfs_path_lookup);
3397 EXPORT_SYMBOL(inode_permission);
3398 EXPORT_SYMBOL(unlock_rename);
3399 EXPORT_SYMBOL(vfs_create);
3400 EXPORT_SYMBOL(vfs_follow_link);
3401 EXPORT_SYMBOL(vfs_link);
3402 EXPORT_SYMBOL(vfs_mkdir);
3403 EXPORT_SYMBOL(vfs_mknod);
3404 EXPORT_SYMBOL(generic_permission);
3405 EXPORT_SYMBOL(vfs_readlink);
3406 EXPORT_SYMBOL(vfs_rename);
3407 EXPORT_SYMBOL(vfs_rmdir);
3408 EXPORT_SYMBOL(vfs_symlink);
3409 EXPORT_SYMBOL(vfs_unlink);
3410 EXPORT_SYMBOL(dentry_unhash);
3411 EXPORT_SYMBOL(generic_readlink);