Linux 3.0.35
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / security / commoncap.c
blob44f096920cd14d0d5e4aea98546113518ea614e1
1 /* Common capabilities, needed by capability.o.
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
8 */
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
31 #include <linux/personality.h>
34 * If a non-root user executes a setuid-root binary in
35 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
36 * However if fE is also set, then the intent is for only
37 * the file capabilities to be applied, and the setuid-root
38 * bit is left on either to change the uid (plausible) or
39 * to get full privilege on a kernel without file capabilities
40 * support. So in that case we do not raise capabilities.
42 * Warn if that happens, once per boot.
44 static void warn_setuid_and_fcaps_mixed(const char *fname)
46 static int warned;
47 if (!warned) {
48 printk(KERN_INFO "warning: `%s' has both setuid-root and"
49 " effective capabilities. Therefore not raising all"
50 " capabilities.\n", fname);
51 warned = 1;
55 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
57 return 0;
60 int cap_netlink_recv(struct sk_buff *skb, int cap)
62 if (!cap_raised(current_cap(), cap))
63 return -EPERM;
64 return 0;
66 EXPORT_SYMBOL(cap_netlink_recv);
68 /**
69 * cap_capable - Determine whether a task has a particular effective capability
70 * @tsk: The task to query
71 * @cred: The credentials to use
72 * @ns: The user namespace in which we need the capability
73 * @cap: The capability to check for
74 * @audit: Whether to write an audit message or not
76 * Determine whether the nominated task has the specified capability amongst
77 * its effective set, returning 0 if it does, -ve if it does not.
79 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
80 * and has_capability() functions. That is, it has the reverse semantics:
81 * cap_has_capability() returns 0 when a task has a capability, but the
82 * kernel's capable() and has_capability() returns 1 for this case.
84 int cap_capable(struct task_struct *tsk, const struct cred *cred,
85 struct user_namespace *targ_ns, int cap, int audit)
87 for (;;) {
88 /* The creator of the user namespace has all caps. */
89 if (targ_ns != &init_user_ns && targ_ns->creator == cred->user)
90 return 0;
92 /* Do we have the necessary capabilities? */
93 if (targ_ns == cred->user->user_ns)
94 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
96 /* Have we tried all of the parent namespaces? */
97 if (targ_ns == &init_user_ns)
98 return -EPERM;
101 *If you have a capability in a parent user ns, then you have
102 * it over all children user namespaces as well.
104 targ_ns = targ_ns->creator->user_ns;
107 /* We never get here */
111 * cap_settime - Determine whether the current process may set the system clock
112 * @ts: The time to set
113 * @tz: The timezone to set
115 * Determine whether the current process may set the system clock and timezone
116 * information, returning 0 if permission granted, -ve if denied.
118 int cap_settime(const struct timespec *ts, const struct timezone *tz)
120 if (!capable(CAP_SYS_TIME))
121 return -EPERM;
122 return 0;
126 * cap_ptrace_access_check - Determine whether the current process may access
127 * another
128 * @child: The process to be accessed
129 * @mode: The mode of attachment.
131 * If we are in the same or an ancestor user_ns and have all the target
132 * task's capabilities, then ptrace access is allowed.
133 * If we have the ptrace capability to the target user_ns, then ptrace
134 * access is allowed.
135 * Else denied.
137 * Determine whether a process may access another, returning 0 if permission
138 * granted, -ve if denied.
140 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
142 int ret = 0;
143 const struct cred *cred, *child_cred;
145 rcu_read_lock();
146 cred = current_cred();
147 child_cred = __task_cred(child);
148 if (cred->user->user_ns == child_cred->user->user_ns &&
149 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
150 goto out;
151 if (ns_capable(child_cred->user->user_ns, CAP_SYS_PTRACE))
152 goto out;
153 ret = -EPERM;
154 out:
155 rcu_read_unlock();
156 return ret;
160 * cap_ptrace_traceme - Determine whether another process may trace the current
161 * @parent: The task proposed to be the tracer
163 * If parent is in the same or an ancestor user_ns and has all current's
164 * capabilities, then ptrace access is allowed.
165 * If parent has the ptrace capability to current's user_ns, then ptrace
166 * access is allowed.
167 * Else denied.
169 * Determine whether the nominated task is permitted to trace the current
170 * process, returning 0 if permission is granted, -ve if denied.
172 int cap_ptrace_traceme(struct task_struct *parent)
174 int ret = 0;
175 const struct cred *cred, *child_cred;
177 rcu_read_lock();
178 cred = __task_cred(parent);
179 child_cred = current_cred();
180 if (cred->user->user_ns == child_cred->user->user_ns &&
181 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
182 goto out;
183 if (has_ns_capability(parent, child_cred->user->user_ns, CAP_SYS_PTRACE))
184 goto out;
185 ret = -EPERM;
186 out:
187 rcu_read_unlock();
188 return ret;
192 * cap_capget - Retrieve a task's capability sets
193 * @target: The task from which to retrieve the capability sets
194 * @effective: The place to record the effective set
195 * @inheritable: The place to record the inheritable set
196 * @permitted: The place to record the permitted set
198 * This function retrieves the capabilities of the nominated task and returns
199 * them to the caller.
201 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
202 kernel_cap_t *inheritable, kernel_cap_t *permitted)
204 const struct cred *cred;
206 /* Derived from kernel/capability.c:sys_capget. */
207 rcu_read_lock();
208 cred = __task_cred(target);
209 *effective = cred->cap_effective;
210 *inheritable = cred->cap_inheritable;
211 *permitted = cred->cap_permitted;
212 rcu_read_unlock();
213 return 0;
217 * Determine whether the inheritable capabilities are limited to the old
218 * permitted set. Returns 1 if they are limited, 0 if they are not.
220 static inline int cap_inh_is_capped(void)
223 /* they are so limited unless the current task has the CAP_SETPCAP
224 * capability
226 if (cap_capable(current, current_cred(),
227 current_cred()->user->user_ns, CAP_SETPCAP,
228 SECURITY_CAP_AUDIT) == 0)
229 return 0;
230 return 1;
234 * cap_capset - Validate and apply proposed changes to current's capabilities
235 * @new: The proposed new credentials; alterations should be made here
236 * @old: The current task's current credentials
237 * @effective: A pointer to the proposed new effective capabilities set
238 * @inheritable: A pointer to the proposed new inheritable capabilities set
239 * @permitted: A pointer to the proposed new permitted capabilities set
241 * This function validates and applies a proposed mass change to the current
242 * process's capability sets. The changes are made to the proposed new
243 * credentials, and assuming no error, will be committed by the caller of LSM.
245 int cap_capset(struct cred *new,
246 const struct cred *old,
247 const kernel_cap_t *effective,
248 const kernel_cap_t *inheritable,
249 const kernel_cap_t *permitted)
251 if (cap_inh_is_capped() &&
252 !cap_issubset(*inheritable,
253 cap_combine(old->cap_inheritable,
254 old->cap_permitted)))
255 /* incapable of using this inheritable set */
256 return -EPERM;
258 if (!cap_issubset(*inheritable,
259 cap_combine(old->cap_inheritable,
260 old->cap_bset)))
261 /* no new pI capabilities outside bounding set */
262 return -EPERM;
264 /* verify restrictions on target's new Permitted set */
265 if (!cap_issubset(*permitted, old->cap_permitted))
266 return -EPERM;
268 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
269 if (!cap_issubset(*effective, *permitted))
270 return -EPERM;
272 new->cap_effective = *effective;
273 new->cap_inheritable = *inheritable;
274 new->cap_permitted = *permitted;
275 return 0;
279 * Clear proposed capability sets for execve().
281 static inline void bprm_clear_caps(struct linux_binprm *bprm)
283 cap_clear(bprm->cred->cap_permitted);
284 bprm->cap_effective = false;
288 * cap_inode_need_killpriv - Determine if inode change affects privileges
289 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
291 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
292 * affects the security markings on that inode, and if it is, should
293 * inode_killpriv() be invoked or the change rejected?
295 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
296 * -ve to deny the change.
298 int cap_inode_need_killpriv(struct dentry *dentry)
300 struct inode *inode = dentry->d_inode;
301 int error;
303 if (!inode->i_op->getxattr)
304 return 0;
306 error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
307 if (error <= 0)
308 return 0;
309 return 1;
313 * cap_inode_killpriv - Erase the security markings on an inode
314 * @dentry: The inode/dentry to alter
316 * Erase the privilege-enhancing security markings on an inode.
318 * Returns 0 if successful, -ve on error.
320 int cap_inode_killpriv(struct dentry *dentry)
322 struct inode *inode = dentry->d_inode;
324 if (!inode->i_op->removexattr)
325 return 0;
327 return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
331 * Calculate the new process capability sets from the capability sets attached
332 * to a file.
334 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
335 struct linux_binprm *bprm,
336 bool *effective)
338 struct cred *new = bprm->cred;
339 unsigned i;
340 int ret = 0;
342 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
343 *effective = true;
345 CAP_FOR_EACH_U32(i) {
346 __u32 permitted = caps->permitted.cap[i];
347 __u32 inheritable = caps->inheritable.cap[i];
350 * pP' = (X & fP) | (pI & fI)
352 new->cap_permitted.cap[i] =
353 (new->cap_bset.cap[i] & permitted) |
354 (new->cap_inheritable.cap[i] & inheritable);
356 if (permitted & ~new->cap_permitted.cap[i])
357 /* insufficient to execute correctly */
358 ret = -EPERM;
362 * For legacy apps, with no internal support for recognizing they
363 * do not have enough capabilities, we return an error if they are
364 * missing some "forced" (aka file-permitted) capabilities.
366 return *effective ? ret : 0;
370 * Extract the on-exec-apply capability sets for an executable file.
372 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
374 struct inode *inode = dentry->d_inode;
375 __u32 magic_etc;
376 unsigned tocopy, i;
377 int size;
378 struct vfs_cap_data caps;
380 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
382 if (!inode || !inode->i_op->getxattr)
383 return -ENODATA;
385 size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
386 XATTR_CAPS_SZ);
387 if (size == -ENODATA || size == -EOPNOTSUPP)
388 /* no data, that's ok */
389 return -ENODATA;
390 if (size < 0)
391 return size;
393 if (size < sizeof(magic_etc))
394 return -EINVAL;
396 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
398 switch (magic_etc & VFS_CAP_REVISION_MASK) {
399 case VFS_CAP_REVISION_1:
400 if (size != XATTR_CAPS_SZ_1)
401 return -EINVAL;
402 tocopy = VFS_CAP_U32_1;
403 break;
404 case VFS_CAP_REVISION_2:
405 if (size != XATTR_CAPS_SZ_2)
406 return -EINVAL;
407 tocopy = VFS_CAP_U32_2;
408 break;
409 default:
410 return -EINVAL;
413 CAP_FOR_EACH_U32(i) {
414 if (i >= tocopy)
415 break;
416 cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
417 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
420 return 0;
424 * Attempt to get the on-exec apply capability sets for an executable file from
425 * its xattrs and, if present, apply them to the proposed credentials being
426 * constructed by execve().
428 static int get_file_caps(struct linux_binprm *bprm, bool *effective)
430 struct dentry *dentry;
431 int rc = 0;
432 struct cpu_vfs_cap_data vcaps;
434 bprm_clear_caps(bprm);
436 if (!file_caps_enabled)
437 return 0;
439 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
440 return 0;
442 dentry = dget(bprm->file->f_dentry);
444 rc = get_vfs_caps_from_disk(dentry, &vcaps);
445 if (rc < 0) {
446 if (rc == -EINVAL)
447 printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
448 __func__, rc, bprm->filename);
449 else if (rc == -ENODATA)
450 rc = 0;
451 goto out;
454 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective);
455 if (rc == -EINVAL)
456 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
457 __func__, rc, bprm->filename);
459 out:
460 dput(dentry);
461 if (rc)
462 bprm_clear_caps(bprm);
464 return rc;
468 * cap_bprm_set_creds - Set up the proposed credentials for execve().
469 * @bprm: The execution parameters, including the proposed creds
471 * Set up the proposed credentials for a new execution context being
472 * constructed by execve(). The proposed creds in @bprm->cred is altered,
473 * which won't take effect immediately. Returns 0 if successful, -ve on error.
475 int cap_bprm_set_creds(struct linux_binprm *bprm)
477 const struct cred *old = current_cred();
478 struct cred *new = bprm->cred;
479 bool effective;
480 int ret;
482 effective = false;
483 ret = get_file_caps(bprm, &effective);
484 if (ret < 0)
485 return ret;
487 if (!issecure(SECURE_NOROOT)) {
489 * If the legacy file capability is set, then don't set privs
490 * for a setuid root binary run by a non-root user. Do set it
491 * for a root user just to cause least surprise to an admin.
493 if (effective && new->uid != 0 && new->euid == 0) {
494 warn_setuid_and_fcaps_mixed(bprm->filename);
495 goto skip;
498 * To support inheritance of root-permissions and suid-root
499 * executables under compatibility mode, we override the
500 * capability sets for the file.
502 * If only the real uid is 0, we do not set the effective bit.
504 if (new->euid == 0 || new->uid == 0) {
505 /* pP' = (cap_bset & ~0) | (pI & ~0) */
506 new->cap_permitted = cap_combine(old->cap_bset,
507 old->cap_inheritable);
509 if (new->euid == 0)
510 effective = true;
512 skip:
514 /* if we have fs caps, clear dangerous personality flags */
515 if (!cap_issubset(new->cap_permitted, old->cap_permitted))
516 bprm->per_clear |= PER_CLEAR_ON_SETID;
519 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
520 * credentials unless they have the appropriate permit
522 if ((new->euid != old->uid ||
523 new->egid != old->gid ||
524 !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
525 bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
526 /* downgrade; they get no more than they had, and maybe less */
527 if (!capable(CAP_SETUID)) {
528 new->euid = new->uid;
529 new->egid = new->gid;
531 new->cap_permitted = cap_intersect(new->cap_permitted,
532 old->cap_permitted);
535 new->suid = new->fsuid = new->euid;
536 new->sgid = new->fsgid = new->egid;
538 if (effective)
539 new->cap_effective = new->cap_permitted;
540 else
541 cap_clear(new->cap_effective);
542 bprm->cap_effective = effective;
545 * Audit candidate if current->cap_effective is set
547 * We do not bother to audit if 3 things are true:
548 * 1) cap_effective has all caps
549 * 2) we are root
550 * 3) root is supposed to have all caps (SECURE_NOROOT)
551 * Since this is just a normal root execing a process.
553 * Number 1 above might fail if you don't have a full bset, but I think
554 * that is interesting information to audit.
556 if (!cap_isclear(new->cap_effective)) {
557 if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
558 new->euid != 0 || new->uid != 0 ||
559 issecure(SECURE_NOROOT)) {
560 ret = audit_log_bprm_fcaps(bprm, new, old);
561 if (ret < 0)
562 return ret;
566 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
567 return 0;
571 * cap_bprm_secureexec - Determine whether a secure execution is required
572 * @bprm: The execution parameters
574 * Determine whether a secure execution is required, return 1 if it is, and 0
575 * if it is not.
577 * The credentials have been committed by this point, and so are no longer
578 * available through @bprm->cred.
580 int cap_bprm_secureexec(struct linux_binprm *bprm)
582 const struct cred *cred = current_cred();
584 if (cred->uid != 0) {
585 if (bprm->cap_effective)
586 return 1;
587 if (!cap_isclear(cred->cap_permitted))
588 return 1;
591 return (cred->euid != cred->uid ||
592 cred->egid != cred->gid);
596 * cap_inode_setxattr - Determine whether an xattr may be altered
597 * @dentry: The inode/dentry being altered
598 * @name: The name of the xattr to be changed
599 * @value: The value that the xattr will be changed to
600 * @size: The size of value
601 * @flags: The replacement flag
603 * Determine whether an xattr may be altered or set on an inode, returning 0 if
604 * permission is granted, -ve if denied.
606 * This is used to make sure security xattrs don't get updated or set by those
607 * who aren't privileged to do so.
609 int cap_inode_setxattr(struct dentry *dentry, const char *name,
610 const void *value, size_t size, int flags)
612 if (!strcmp(name, XATTR_NAME_CAPS)) {
613 if (!capable(CAP_SETFCAP))
614 return -EPERM;
615 return 0;
618 if (!strncmp(name, XATTR_SECURITY_PREFIX,
619 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
620 !capable(CAP_SYS_ADMIN))
621 return -EPERM;
622 return 0;
626 * cap_inode_removexattr - Determine whether an xattr may be removed
627 * @dentry: The inode/dentry being altered
628 * @name: The name of the xattr to be changed
630 * Determine whether an xattr may be removed from an inode, returning 0 if
631 * permission is granted, -ve if denied.
633 * This is used to make sure security xattrs don't get removed by those who
634 * aren't privileged to remove them.
636 int cap_inode_removexattr(struct dentry *dentry, const char *name)
638 if (!strcmp(name, XATTR_NAME_CAPS)) {
639 if (!capable(CAP_SETFCAP))
640 return -EPERM;
641 return 0;
644 if (!strncmp(name, XATTR_SECURITY_PREFIX,
645 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
646 !capable(CAP_SYS_ADMIN))
647 return -EPERM;
648 return 0;
652 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
653 * a process after a call to setuid, setreuid, or setresuid.
655 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
656 * {r,e,s}uid != 0, the permitted and effective capabilities are
657 * cleared.
659 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
660 * capabilities of the process are cleared.
662 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
663 * capabilities are set to the permitted capabilities.
665 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
666 * never happen.
668 * -astor
670 * cevans - New behaviour, Oct '99
671 * A process may, via prctl(), elect to keep its capabilities when it
672 * calls setuid() and switches away from uid==0. Both permitted and
673 * effective sets will be retained.
674 * Without this change, it was impossible for a daemon to drop only some
675 * of its privilege. The call to setuid(!=0) would drop all privileges!
676 * Keeping uid 0 is not an option because uid 0 owns too many vital
677 * files..
678 * Thanks to Olaf Kirch and Peter Benie for spotting this.
680 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
682 if ((old->uid == 0 || old->euid == 0 || old->suid == 0) &&
683 (new->uid != 0 && new->euid != 0 && new->suid != 0) &&
684 !issecure(SECURE_KEEP_CAPS)) {
685 cap_clear(new->cap_permitted);
686 cap_clear(new->cap_effective);
688 if (old->euid == 0 && new->euid != 0)
689 cap_clear(new->cap_effective);
690 if (old->euid != 0 && new->euid == 0)
691 new->cap_effective = new->cap_permitted;
695 * cap_task_fix_setuid - Fix up the results of setuid() call
696 * @new: The proposed credentials
697 * @old: The current task's current credentials
698 * @flags: Indications of what has changed
700 * Fix up the results of setuid() call before the credential changes are
701 * actually applied, returning 0 to grant the changes, -ve to deny them.
703 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
705 switch (flags) {
706 case LSM_SETID_RE:
707 case LSM_SETID_ID:
708 case LSM_SETID_RES:
709 /* juggle the capabilities to follow [RES]UID changes unless
710 * otherwise suppressed */
711 if (!issecure(SECURE_NO_SETUID_FIXUP))
712 cap_emulate_setxuid(new, old);
713 break;
715 case LSM_SETID_FS:
716 /* juggle the capabilties to follow FSUID changes, unless
717 * otherwise suppressed
719 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
720 * if not, we might be a bit too harsh here.
722 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
723 if (old->fsuid == 0 && new->fsuid != 0)
724 new->cap_effective =
725 cap_drop_fs_set(new->cap_effective);
727 if (old->fsuid != 0 && new->fsuid == 0)
728 new->cap_effective =
729 cap_raise_fs_set(new->cap_effective,
730 new->cap_permitted);
732 break;
734 default:
735 return -EINVAL;
738 return 0;
742 * Rationale: code calling task_setscheduler, task_setioprio, and
743 * task_setnice, assumes that
744 * . if capable(cap_sys_nice), then those actions should be allowed
745 * . if not capable(cap_sys_nice), but acting on your own processes,
746 * then those actions should be allowed
747 * This is insufficient now since you can call code without suid, but
748 * yet with increased caps.
749 * So we check for increased caps on the target process.
751 static int cap_safe_nice(struct task_struct *p)
753 int is_subset;
755 rcu_read_lock();
756 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
757 current_cred()->cap_permitted);
758 rcu_read_unlock();
760 if (!is_subset && !capable(CAP_SYS_NICE))
761 return -EPERM;
762 return 0;
766 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
767 * @p: The task to affect
769 * Detemine if the requested scheduler policy change is permitted for the
770 * specified task, returning 0 if permission is granted, -ve if denied.
772 int cap_task_setscheduler(struct task_struct *p)
774 return cap_safe_nice(p);
778 * cap_task_ioprio - Detemine if I/O priority change is permitted
779 * @p: The task to affect
780 * @ioprio: The I/O priority to set
782 * Detemine if the requested I/O priority change is permitted for the specified
783 * task, returning 0 if permission is granted, -ve if denied.
785 int cap_task_setioprio(struct task_struct *p, int ioprio)
787 return cap_safe_nice(p);
791 * cap_task_ioprio - Detemine if task priority change is permitted
792 * @p: The task to affect
793 * @nice: The nice value to set
795 * Detemine if the requested task priority change is permitted for the
796 * specified task, returning 0 if permission is granted, -ve if denied.
798 int cap_task_setnice(struct task_struct *p, int nice)
800 return cap_safe_nice(p);
804 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
805 * the current task's bounding set. Returns 0 on success, -ve on error.
807 static long cap_prctl_drop(struct cred *new, unsigned long cap)
809 if (!capable(CAP_SETPCAP))
810 return -EPERM;
811 if (!cap_valid(cap))
812 return -EINVAL;
814 cap_lower(new->cap_bset, cap);
815 return 0;
819 * cap_task_prctl - Implement process control functions for this security module
820 * @option: The process control function requested
821 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
823 * Allow process control functions (sys_prctl()) to alter capabilities; may
824 * also deny access to other functions not otherwise implemented here.
826 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
827 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
828 * modules will consider performing the function.
830 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
831 unsigned long arg4, unsigned long arg5)
833 struct cred *new;
834 long error = 0;
836 new = prepare_creds();
837 if (!new)
838 return -ENOMEM;
840 switch (option) {
841 case PR_CAPBSET_READ:
842 error = -EINVAL;
843 if (!cap_valid(arg2))
844 goto error;
845 error = !!cap_raised(new->cap_bset, arg2);
846 goto no_change;
848 case PR_CAPBSET_DROP:
849 error = cap_prctl_drop(new, arg2);
850 if (error < 0)
851 goto error;
852 goto changed;
855 * The next four prctl's remain to assist with transitioning a
856 * system from legacy UID=0 based privilege (when filesystem
857 * capabilities are not in use) to a system using filesystem
858 * capabilities only - as the POSIX.1e draft intended.
860 * Note:
862 * PR_SET_SECUREBITS =
863 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
864 * | issecure_mask(SECURE_NOROOT)
865 * | issecure_mask(SECURE_NOROOT_LOCKED)
866 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
867 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
869 * will ensure that the current process and all of its
870 * children will be locked into a pure
871 * capability-based-privilege environment.
873 case PR_SET_SECUREBITS:
874 error = -EPERM;
875 if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
876 & (new->securebits ^ arg2)) /*[1]*/
877 || ((new->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
878 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
879 || (cap_capable(current, current_cred(),
880 current_cred()->user->user_ns, CAP_SETPCAP,
881 SECURITY_CAP_AUDIT) != 0) /*[4]*/
883 * [1] no changing of bits that are locked
884 * [2] no unlocking of locks
885 * [3] no setting of unsupported bits
886 * [4] doing anything requires privilege (go read about
887 * the "sendmail capabilities bug")
890 /* cannot change a locked bit */
891 goto error;
892 new->securebits = arg2;
893 goto changed;
895 case PR_GET_SECUREBITS:
896 error = new->securebits;
897 goto no_change;
899 case PR_GET_KEEPCAPS:
900 if (issecure(SECURE_KEEP_CAPS))
901 error = 1;
902 goto no_change;
904 case PR_SET_KEEPCAPS:
905 error = -EINVAL;
906 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
907 goto error;
908 error = -EPERM;
909 if (issecure(SECURE_KEEP_CAPS_LOCKED))
910 goto error;
911 if (arg2)
912 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
913 else
914 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
915 goto changed;
917 default:
918 /* No functionality available - continue with default */
919 error = -ENOSYS;
920 goto error;
923 /* Functionality provided */
924 changed:
925 return commit_creds(new);
927 no_change:
928 error:
929 abort_creds(new);
930 return error;
934 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
935 * @mm: The VM space in which the new mapping is to be made
936 * @pages: The size of the mapping
938 * Determine whether the allocation of a new virtual mapping by the current
939 * task is permitted, returning 0 if permission is granted, -ve if not.
941 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
943 int cap_sys_admin = 0;
945 if (cap_capable(current, current_cred(), &init_user_ns, CAP_SYS_ADMIN,
946 SECURITY_CAP_NOAUDIT) == 0)
947 cap_sys_admin = 1;
948 return __vm_enough_memory(mm, pages, cap_sys_admin);
952 * cap_file_mmap - check if able to map given addr
953 * @file: unused
954 * @reqprot: unused
955 * @prot: unused
956 * @flags: unused
957 * @addr: address attempting to be mapped
958 * @addr_only: unused
960 * If the process is attempting to map memory below dac_mmap_min_addr they need
961 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
962 * capability security module. Returns 0 if this mapping should be allowed
963 * -EPERM if not.
965 int cap_file_mmap(struct file *file, unsigned long reqprot,
966 unsigned long prot, unsigned long flags,
967 unsigned long addr, unsigned long addr_only)
969 int ret = 0;
971 if (addr < dac_mmap_min_addr) {
972 ret = cap_capable(current, current_cred(), &init_user_ns, CAP_SYS_RAWIO,
973 SECURITY_CAP_AUDIT);
974 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
975 if (ret == 0)
976 current->flags |= PF_SUPERPRIV;
978 return ret;