ACPI: thinkpad-acpi: add development version tag
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / exec.c
blob0c3682d5c2607a5393660aeb3f1689cb80b8a875
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
69 struct core_name {
70 char *corename;
71 int used, size;
73 static atomic_t call_count = ATOMIC_INIT(1);
75 /* The maximal length of core_pattern is also specified in sysctl.c */
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
80 int __register_binfmt(struct linux_binfmt * fmt, int insert)
82 if (!fmt)
83 return -EINVAL;
84 write_lock(&binfmt_lock);
85 insert ? list_add(&fmt->lh, &formats) :
86 list_add_tail(&fmt->lh, &formats);
87 write_unlock(&binfmt_lock);
88 return 0;
91 EXPORT_SYMBOL(__register_binfmt);
93 void unregister_binfmt(struct linux_binfmt * fmt)
95 write_lock(&binfmt_lock);
96 list_del(&fmt->lh);
97 write_unlock(&binfmt_lock);
100 EXPORT_SYMBOL(unregister_binfmt);
102 static inline void put_binfmt(struct linux_binfmt * fmt)
104 module_put(fmt->module);
108 * Note that a shared library must be both readable and executable due to
109 * security reasons.
111 * Also note that we take the address to load from from the file itself.
113 SYSCALL_DEFINE1(uselib, const char __user *, library)
115 struct file *file;
116 char *tmp = getname(library);
117 int error = PTR_ERR(tmp);
118 static const struct open_flags uselib_flags = {
119 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
120 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
121 .intent = LOOKUP_OPEN
124 if (IS_ERR(tmp))
125 goto out;
127 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
128 putname(tmp);
129 error = PTR_ERR(file);
130 if (IS_ERR(file))
131 goto out;
133 error = -EINVAL;
134 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
135 goto exit;
137 error = -EACCES;
138 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
139 goto exit;
141 fsnotify_open(file);
143 error = -ENOEXEC;
144 if(file->f_op) {
145 struct linux_binfmt * fmt;
147 read_lock(&binfmt_lock);
148 list_for_each_entry(fmt, &formats, lh) {
149 if (!fmt->load_shlib)
150 continue;
151 if (!try_module_get(fmt->module))
152 continue;
153 read_unlock(&binfmt_lock);
154 error = fmt->load_shlib(file);
155 read_lock(&binfmt_lock);
156 put_binfmt(fmt);
157 if (error != -ENOEXEC)
158 break;
160 read_unlock(&binfmt_lock);
162 exit:
163 fput(file);
164 out:
165 return error;
168 #ifdef CONFIG_MMU
170 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
172 struct mm_struct *mm = current->mm;
173 long diff = (long)(pages - bprm->vma_pages);
175 if (!mm || !diff)
176 return;
178 bprm->vma_pages = pages;
180 #ifdef SPLIT_RSS_COUNTING
181 add_mm_counter(mm, MM_ANONPAGES, diff);
182 #else
183 spin_lock(&mm->page_table_lock);
184 add_mm_counter(mm, MM_ANONPAGES, diff);
185 spin_unlock(&mm->page_table_lock);
186 #endif
189 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 int write)
192 struct page *page;
193 int ret;
195 #ifdef CONFIG_STACK_GROWSUP
196 if (write) {
197 ret = expand_stack_downwards(bprm->vma, pos);
198 if (ret < 0)
199 return NULL;
201 #endif
202 ret = get_user_pages(current, bprm->mm, pos,
203 1, write, 1, &page, NULL);
204 if (ret <= 0)
205 return NULL;
207 if (write) {
208 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
209 struct rlimit *rlim;
211 acct_arg_size(bprm, size / PAGE_SIZE);
214 * We've historically supported up to 32 pages (ARG_MAX)
215 * of argument strings even with small stacks
217 if (size <= ARG_MAX)
218 return page;
221 * Limit to 1/4-th the stack size for the argv+env strings.
222 * This ensures that:
223 * - the remaining binfmt code will not run out of stack space,
224 * - the program will have a reasonable amount of stack left
225 * to work from.
227 rlim = current->signal->rlim;
228 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
229 put_page(page);
230 return NULL;
234 return page;
237 static void put_arg_page(struct page *page)
239 put_page(page);
242 static void free_arg_page(struct linux_binprm *bprm, int i)
246 static void free_arg_pages(struct linux_binprm *bprm)
250 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
251 struct page *page)
253 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
256 static int __bprm_mm_init(struct linux_binprm *bprm)
258 int err;
259 struct vm_area_struct *vma = NULL;
260 struct mm_struct *mm = bprm->mm;
262 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
263 if (!vma)
264 return -ENOMEM;
266 down_write(&mm->mmap_sem);
267 vma->vm_mm = mm;
270 * Place the stack at the largest stack address the architecture
271 * supports. Later, we'll move this to an appropriate place. We don't
272 * use STACK_TOP because that can depend on attributes which aren't
273 * configured yet.
275 BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276 vma->vm_end = STACK_TOP_MAX;
277 vma->vm_start = vma->vm_end - PAGE_SIZE;
278 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
279 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
280 INIT_LIST_HEAD(&vma->anon_vma_chain);
282 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
283 if (err)
284 goto err;
286 err = insert_vm_struct(mm, vma);
287 if (err)
288 goto err;
290 mm->stack_vm = mm->total_vm = 1;
291 up_write(&mm->mmap_sem);
292 bprm->p = vma->vm_end - sizeof(void *);
293 return 0;
294 err:
295 up_write(&mm->mmap_sem);
296 bprm->vma = NULL;
297 kmem_cache_free(vm_area_cachep, vma);
298 return err;
301 static bool valid_arg_len(struct linux_binprm *bprm, long len)
303 return len <= MAX_ARG_STRLEN;
306 #else
308 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
312 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
313 int write)
315 struct page *page;
317 page = bprm->page[pos / PAGE_SIZE];
318 if (!page && write) {
319 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
320 if (!page)
321 return NULL;
322 bprm->page[pos / PAGE_SIZE] = page;
325 return page;
328 static void put_arg_page(struct page *page)
332 static void free_arg_page(struct linux_binprm *bprm, int i)
334 if (bprm->page[i]) {
335 __free_page(bprm->page[i]);
336 bprm->page[i] = NULL;
340 static void free_arg_pages(struct linux_binprm *bprm)
342 int i;
344 for (i = 0; i < MAX_ARG_PAGES; i++)
345 free_arg_page(bprm, i);
348 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
349 struct page *page)
353 static int __bprm_mm_init(struct linux_binprm *bprm)
355 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
356 return 0;
359 static bool valid_arg_len(struct linux_binprm *bprm, long len)
361 return len <= bprm->p;
364 #endif /* CONFIG_MMU */
367 * Create a new mm_struct and populate it with a temporary stack
368 * vm_area_struct. We don't have enough context at this point to set the stack
369 * flags, permissions, and offset, so we use temporary values. We'll update
370 * them later in setup_arg_pages().
372 int bprm_mm_init(struct linux_binprm *bprm)
374 int err;
375 struct mm_struct *mm = NULL;
377 bprm->mm = mm = mm_alloc();
378 err = -ENOMEM;
379 if (!mm)
380 goto err;
382 err = init_new_context(current, mm);
383 if (err)
384 goto err;
386 err = __bprm_mm_init(bprm);
387 if (err)
388 goto err;
390 return 0;
392 err:
393 if (mm) {
394 bprm->mm = NULL;
395 mmdrop(mm);
398 return err;
402 * count() counts the number of strings in array ARGV.
404 static int count(const char __user * const __user * argv, int max)
406 int i = 0;
408 if (argv != NULL) {
409 for (;;) {
410 const char __user * p;
412 if (get_user(p, argv))
413 return -EFAULT;
414 if (!p)
415 break;
416 argv++;
417 if (i++ >= max)
418 return -E2BIG;
420 if (fatal_signal_pending(current))
421 return -ERESTARTNOHAND;
422 cond_resched();
425 return i;
429 * 'copy_strings()' copies argument/environment strings from the old
430 * processes's memory to the new process's stack. The call to get_user_pages()
431 * ensures the destination page is created and not swapped out.
433 static int copy_strings(int argc, const char __user *const __user *argv,
434 struct linux_binprm *bprm)
436 struct page *kmapped_page = NULL;
437 char *kaddr = NULL;
438 unsigned long kpos = 0;
439 int ret;
441 while (argc-- > 0) {
442 const char __user *str;
443 int len;
444 unsigned long pos;
446 if (get_user(str, argv+argc) ||
447 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
448 ret = -EFAULT;
449 goto out;
452 if (!valid_arg_len(bprm, len)) {
453 ret = -E2BIG;
454 goto out;
457 /* We're going to work our way backwords. */
458 pos = bprm->p;
459 str += len;
460 bprm->p -= len;
462 while (len > 0) {
463 int offset, bytes_to_copy;
465 if (fatal_signal_pending(current)) {
466 ret = -ERESTARTNOHAND;
467 goto out;
469 cond_resched();
471 offset = pos % PAGE_SIZE;
472 if (offset == 0)
473 offset = PAGE_SIZE;
475 bytes_to_copy = offset;
476 if (bytes_to_copy > len)
477 bytes_to_copy = len;
479 offset -= bytes_to_copy;
480 pos -= bytes_to_copy;
481 str -= bytes_to_copy;
482 len -= bytes_to_copy;
484 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
485 struct page *page;
487 page = get_arg_page(bprm, pos, 1);
488 if (!page) {
489 ret = -E2BIG;
490 goto out;
493 if (kmapped_page) {
494 flush_kernel_dcache_page(kmapped_page);
495 kunmap(kmapped_page);
496 put_arg_page(kmapped_page);
498 kmapped_page = page;
499 kaddr = kmap(kmapped_page);
500 kpos = pos & PAGE_MASK;
501 flush_arg_page(bprm, kpos, kmapped_page);
503 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
504 ret = -EFAULT;
505 goto out;
509 ret = 0;
510 out:
511 if (kmapped_page) {
512 flush_kernel_dcache_page(kmapped_page);
513 kunmap(kmapped_page);
514 put_arg_page(kmapped_page);
516 return ret;
520 * Like copy_strings, but get argv and its values from kernel memory.
522 int copy_strings_kernel(int argc, const char *const *argv,
523 struct linux_binprm *bprm)
525 int r;
526 mm_segment_t oldfs = get_fs();
527 set_fs(KERNEL_DS);
528 r = copy_strings(argc, (const char __user *const __user *)argv, bprm);
529 set_fs(oldfs);
530 return r;
532 EXPORT_SYMBOL(copy_strings_kernel);
534 #ifdef CONFIG_MMU
537 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
538 * the binfmt code determines where the new stack should reside, we shift it to
539 * its final location. The process proceeds as follows:
541 * 1) Use shift to calculate the new vma endpoints.
542 * 2) Extend vma to cover both the old and new ranges. This ensures the
543 * arguments passed to subsequent functions are consistent.
544 * 3) Move vma's page tables to the new range.
545 * 4) Free up any cleared pgd range.
546 * 5) Shrink the vma to cover only the new range.
548 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
550 struct mm_struct *mm = vma->vm_mm;
551 unsigned long old_start = vma->vm_start;
552 unsigned long old_end = vma->vm_end;
553 unsigned long length = old_end - old_start;
554 unsigned long new_start = old_start - shift;
555 unsigned long new_end = old_end - shift;
556 struct mmu_gather *tlb;
558 BUG_ON(new_start > new_end);
561 * ensure there are no vmas between where we want to go
562 * and where we are
564 if (vma != find_vma(mm, new_start))
565 return -EFAULT;
568 * cover the whole range: [new_start, old_end)
570 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
571 return -ENOMEM;
574 * move the page tables downwards, on failure we rely on
575 * process cleanup to remove whatever mess we made.
577 if (length != move_page_tables(vma, old_start,
578 vma, new_start, length))
579 return -ENOMEM;
581 lru_add_drain();
582 tlb = tlb_gather_mmu(mm, 0);
583 if (new_end > old_start) {
585 * when the old and new regions overlap clear from new_end.
587 free_pgd_range(tlb, new_end, old_end, new_end,
588 vma->vm_next ? vma->vm_next->vm_start : 0);
589 } else {
591 * otherwise, clean from old_start; this is done to not touch
592 * the address space in [new_end, old_start) some architectures
593 * have constraints on va-space that make this illegal (IA64) -
594 * for the others its just a little faster.
596 free_pgd_range(tlb, old_start, old_end, new_end,
597 vma->vm_next ? vma->vm_next->vm_start : 0);
599 tlb_finish_mmu(tlb, new_end, old_end);
602 * Shrink the vma to just the new range. Always succeeds.
604 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
606 return 0;
610 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
611 * the stack is optionally relocated, and some extra space is added.
613 int setup_arg_pages(struct linux_binprm *bprm,
614 unsigned long stack_top,
615 int executable_stack)
617 unsigned long ret;
618 unsigned long stack_shift;
619 struct mm_struct *mm = current->mm;
620 struct vm_area_struct *vma = bprm->vma;
621 struct vm_area_struct *prev = NULL;
622 unsigned long vm_flags;
623 unsigned long stack_base;
624 unsigned long stack_size;
625 unsigned long stack_expand;
626 unsigned long rlim_stack;
628 #ifdef CONFIG_STACK_GROWSUP
629 /* Limit stack size to 1GB */
630 stack_base = rlimit_max(RLIMIT_STACK);
631 if (stack_base > (1 << 30))
632 stack_base = 1 << 30;
634 /* Make sure we didn't let the argument array grow too large. */
635 if (vma->vm_end - vma->vm_start > stack_base)
636 return -ENOMEM;
638 stack_base = PAGE_ALIGN(stack_top - stack_base);
640 stack_shift = vma->vm_start - stack_base;
641 mm->arg_start = bprm->p - stack_shift;
642 bprm->p = vma->vm_end - stack_shift;
643 #else
644 stack_top = arch_align_stack(stack_top);
645 stack_top = PAGE_ALIGN(stack_top);
647 if (unlikely(stack_top < mmap_min_addr) ||
648 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
649 return -ENOMEM;
651 stack_shift = vma->vm_end - stack_top;
653 bprm->p -= stack_shift;
654 mm->arg_start = bprm->p;
655 #endif
657 if (bprm->loader)
658 bprm->loader -= stack_shift;
659 bprm->exec -= stack_shift;
661 down_write(&mm->mmap_sem);
662 vm_flags = VM_STACK_FLAGS;
665 * Adjust stack execute permissions; explicitly enable for
666 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
667 * (arch default) otherwise.
669 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
670 vm_flags |= VM_EXEC;
671 else if (executable_stack == EXSTACK_DISABLE_X)
672 vm_flags &= ~VM_EXEC;
673 vm_flags |= mm->def_flags;
674 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
676 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
677 vm_flags);
678 if (ret)
679 goto out_unlock;
680 BUG_ON(prev != vma);
682 /* Move stack pages down in memory. */
683 if (stack_shift) {
684 ret = shift_arg_pages(vma, stack_shift);
685 if (ret)
686 goto out_unlock;
689 /* mprotect_fixup is overkill to remove the temporary stack flags */
690 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
692 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
693 stack_size = vma->vm_end - vma->vm_start;
695 * Align this down to a page boundary as expand_stack
696 * will align it up.
698 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
699 #ifdef CONFIG_STACK_GROWSUP
700 if (stack_size + stack_expand > rlim_stack)
701 stack_base = vma->vm_start + rlim_stack;
702 else
703 stack_base = vma->vm_end + stack_expand;
704 #else
705 if (stack_size + stack_expand > rlim_stack)
706 stack_base = vma->vm_end - rlim_stack;
707 else
708 stack_base = vma->vm_start - stack_expand;
709 #endif
710 current->mm->start_stack = bprm->p;
711 ret = expand_stack(vma, stack_base);
712 if (ret)
713 ret = -EFAULT;
715 out_unlock:
716 up_write(&mm->mmap_sem);
717 return ret;
719 EXPORT_SYMBOL(setup_arg_pages);
721 #endif /* CONFIG_MMU */
723 struct file *open_exec(const char *name)
725 struct file *file;
726 int err;
727 static const struct open_flags open_exec_flags = {
728 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
729 .acc_mode = MAY_EXEC | MAY_OPEN,
730 .intent = LOOKUP_OPEN
733 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
734 if (IS_ERR(file))
735 goto out;
737 err = -EACCES;
738 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
739 goto exit;
741 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
742 goto exit;
744 fsnotify_open(file);
746 err = deny_write_access(file);
747 if (err)
748 goto exit;
750 out:
751 return file;
753 exit:
754 fput(file);
755 return ERR_PTR(err);
757 EXPORT_SYMBOL(open_exec);
759 int kernel_read(struct file *file, loff_t offset,
760 char *addr, unsigned long count)
762 mm_segment_t old_fs;
763 loff_t pos = offset;
764 int result;
766 old_fs = get_fs();
767 set_fs(get_ds());
768 /* The cast to a user pointer is valid due to the set_fs() */
769 result = vfs_read(file, (void __user *)addr, count, &pos);
770 set_fs(old_fs);
771 return result;
774 EXPORT_SYMBOL(kernel_read);
776 static int exec_mmap(struct mm_struct *mm)
778 struct task_struct *tsk;
779 struct mm_struct * old_mm, *active_mm;
781 /* Notify parent that we're no longer interested in the old VM */
782 tsk = current;
783 old_mm = current->mm;
784 sync_mm_rss(tsk, old_mm);
785 mm_release(tsk, old_mm);
787 if (old_mm) {
789 * Make sure that if there is a core dump in progress
790 * for the old mm, we get out and die instead of going
791 * through with the exec. We must hold mmap_sem around
792 * checking core_state and changing tsk->mm.
794 down_read(&old_mm->mmap_sem);
795 if (unlikely(old_mm->core_state)) {
796 up_read(&old_mm->mmap_sem);
797 return -EINTR;
800 task_lock(tsk);
801 active_mm = tsk->active_mm;
802 tsk->mm = mm;
803 tsk->active_mm = mm;
804 activate_mm(active_mm, mm);
805 if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
806 atomic_dec(&old_mm->oom_disable_count);
807 atomic_inc(&tsk->mm->oom_disable_count);
809 task_unlock(tsk);
810 arch_pick_mmap_layout(mm);
811 if (old_mm) {
812 up_read(&old_mm->mmap_sem);
813 BUG_ON(active_mm != old_mm);
814 mm_update_next_owner(old_mm);
815 mmput(old_mm);
816 return 0;
818 mmdrop(active_mm);
819 return 0;
823 * This function makes sure the current process has its own signal table,
824 * so that flush_signal_handlers can later reset the handlers without
825 * disturbing other processes. (Other processes might share the signal
826 * table via the CLONE_SIGHAND option to clone().)
828 static int de_thread(struct task_struct *tsk)
830 struct signal_struct *sig = tsk->signal;
831 struct sighand_struct *oldsighand = tsk->sighand;
832 spinlock_t *lock = &oldsighand->siglock;
834 if (thread_group_empty(tsk))
835 goto no_thread_group;
838 * Kill all other threads in the thread group.
840 spin_lock_irq(lock);
841 if (signal_group_exit(sig)) {
843 * Another group action in progress, just
844 * return so that the signal is processed.
846 spin_unlock_irq(lock);
847 return -EAGAIN;
850 sig->group_exit_task = tsk;
851 sig->notify_count = zap_other_threads(tsk);
852 if (!thread_group_leader(tsk))
853 sig->notify_count--;
855 while (sig->notify_count) {
856 __set_current_state(TASK_UNINTERRUPTIBLE);
857 spin_unlock_irq(lock);
858 schedule();
859 spin_lock_irq(lock);
861 spin_unlock_irq(lock);
864 * At this point all other threads have exited, all we have to
865 * do is to wait for the thread group leader to become inactive,
866 * and to assume its PID:
868 if (!thread_group_leader(tsk)) {
869 struct task_struct *leader = tsk->group_leader;
871 sig->notify_count = -1; /* for exit_notify() */
872 for (;;) {
873 write_lock_irq(&tasklist_lock);
874 if (likely(leader->exit_state))
875 break;
876 __set_current_state(TASK_UNINTERRUPTIBLE);
877 write_unlock_irq(&tasklist_lock);
878 schedule();
882 * The only record we have of the real-time age of a
883 * process, regardless of execs it's done, is start_time.
884 * All the past CPU time is accumulated in signal_struct
885 * from sister threads now dead. But in this non-leader
886 * exec, nothing survives from the original leader thread,
887 * whose birth marks the true age of this process now.
888 * When we take on its identity by switching to its PID, we
889 * also take its birthdate (always earlier than our own).
891 tsk->start_time = leader->start_time;
893 BUG_ON(!same_thread_group(leader, tsk));
894 BUG_ON(has_group_leader_pid(tsk));
896 * An exec() starts a new thread group with the
897 * TGID of the previous thread group. Rehash the
898 * two threads with a switched PID, and release
899 * the former thread group leader:
902 /* Become a process group leader with the old leader's pid.
903 * The old leader becomes a thread of the this thread group.
904 * Note: The old leader also uses this pid until release_task
905 * is called. Odd but simple and correct.
907 detach_pid(tsk, PIDTYPE_PID);
908 tsk->pid = leader->pid;
909 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
910 transfer_pid(leader, tsk, PIDTYPE_PGID);
911 transfer_pid(leader, tsk, PIDTYPE_SID);
913 list_replace_rcu(&leader->tasks, &tsk->tasks);
914 list_replace_init(&leader->sibling, &tsk->sibling);
916 tsk->group_leader = tsk;
917 leader->group_leader = tsk;
919 tsk->exit_signal = SIGCHLD;
921 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
922 leader->exit_state = EXIT_DEAD;
923 write_unlock_irq(&tasklist_lock);
925 release_task(leader);
928 sig->group_exit_task = NULL;
929 sig->notify_count = 0;
931 no_thread_group:
932 if (current->mm)
933 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
935 exit_itimers(sig);
936 flush_itimer_signals();
938 if (atomic_read(&oldsighand->count) != 1) {
939 struct sighand_struct *newsighand;
941 * This ->sighand is shared with the CLONE_SIGHAND
942 * but not CLONE_THREAD task, switch to the new one.
944 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
945 if (!newsighand)
946 return -ENOMEM;
948 atomic_set(&newsighand->count, 1);
949 memcpy(newsighand->action, oldsighand->action,
950 sizeof(newsighand->action));
952 write_lock_irq(&tasklist_lock);
953 spin_lock(&oldsighand->siglock);
954 rcu_assign_pointer(tsk->sighand, newsighand);
955 spin_unlock(&oldsighand->siglock);
956 write_unlock_irq(&tasklist_lock);
958 __cleanup_sighand(oldsighand);
961 BUG_ON(!thread_group_leader(tsk));
962 return 0;
966 * These functions flushes out all traces of the currently running executable
967 * so that a new one can be started
969 static void flush_old_files(struct files_struct * files)
971 long j = -1;
972 struct fdtable *fdt;
974 spin_lock(&files->file_lock);
975 for (;;) {
976 unsigned long set, i;
978 j++;
979 i = j * __NFDBITS;
980 fdt = files_fdtable(files);
981 if (i >= fdt->max_fds)
982 break;
983 set = fdt->close_on_exec->fds_bits[j];
984 if (!set)
985 continue;
986 fdt->close_on_exec->fds_bits[j] = 0;
987 spin_unlock(&files->file_lock);
988 for ( ; set ; i++,set >>= 1) {
989 if (set & 1) {
990 sys_close(i);
993 spin_lock(&files->file_lock);
996 spin_unlock(&files->file_lock);
999 char *get_task_comm(char *buf, struct task_struct *tsk)
1001 /* buf must be at least sizeof(tsk->comm) in size */
1002 task_lock(tsk);
1003 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1004 task_unlock(tsk);
1005 return buf;
1008 void set_task_comm(struct task_struct *tsk, char *buf)
1010 task_lock(tsk);
1013 * Threads may access current->comm without holding
1014 * the task lock, so write the string carefully.
1015 * Readers without a lock may see incomplete new
1016 * names but are safe from non-terminating string reads.
1018 memset(tsk->comm, 0, TASK_COMM_LEN);
1019 wmb();
1020 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1021 task_unlock(tsk);
1022 perf_event_comm(tsk);
1025 int flush_old_exec(struct linux_binprm * bprm)
1027 int retval;
1030 * Make sure we have a private signal table and that
1031 * we are unassociated from the previous thread group.
1033 retval = de_thread(current);
1034 if (retval)
1035 goto out;
1037 set_mm_exe_file(bprm->mm, bprm->file);
1040 * Release all of the old mmap stuff
1042 acct_arg_size(bprm, 0);
1043 retval = exec_mmap(bprm->mm);
1044 if (retval)
1045 goto out;
1047 bprm->mm = NULL; /* We're using it now */
1049 set_fs(USER_DS);
1050 current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
1051 flush_thread();
1052 current->personality &= ~bprm->per_clear;
1054 return 0;
1056 out:
1057 return retval;
1059 EXPORT_SYMBOL(flush_old_exec);
1061 void setup_new_exec(struct linux_binprm * bprm)
1063 int i, ch;
1064 const char *name;
1065 char tcomm[sizeof(current->comm)];
1067 arch_pick_mmap_layout(current->mm);
1069 /* This is the point of no return */
1070 current->sas_ss_sp = current->sas_ss_size = 0;
1072 if (current_euid() == current_uid() && current_egid() == current_gid())
1073 set_dumpable(current->mm, 1);
1074 else
1075 set_dumpable(current->mm, suid_dumpable);
1077 name = bprm->filename;
1079 /* Copies the binary name from after last slash */
1080 for (i=0; (ch = *(name++)) != '\0';) {
1081 if (ch == '/')
1082 i = 0; /* overwrite what we wrote */
1083 else
1084 if (i < (sizeof(tcomm) - 1))
1085 tcomm[i++] = ch;
1087 tcomm[i] = '\0';
1088 set_task_comm(current, tcomm);
1090 /* Set the new mm task size. We have to do that late because it may
1091 * depend on TIF_32BIT which is only updated in flush_thread() on
1092 * some architectures like powerpc
1094 current->mm->task_size = TASK_SIZE;
1096 /* install the new credentials */
1097 if (bprm->cred->uid != current_euid() ||
1098 bprm->cred->gid != current_egid()) {
1099 current->pdeath_signal = 0;
1100 } else if (file_permission(bprm->file, MAY_READ) ||
1101 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1102 set_dumpable(current->mm, suid_dumpable);
1106 * Flush performance counters when crossing a
1107 * security domain:
1109 if (!get_dumpable(current->mm))
1110 perf_event_exit_task(current);
1112 /* An exec changes our domain. We are no longer part of the thread
1113 group */
1115 current->self_exec_id++;
1117 flush_signal_handlers(current, 0);
1118 flush_old_files(current->files);
1120 EXPORT_SYMBOL(setup_new_exec);
1123 * Prepare credentials and lock ->cred_guard_mutex.
1124 * install_exec_creds() commits the new creds and drops the lock.
1125 * Or, if exec fails before, free_bprm() should release ->cred and
1126 * and unlock.
1128 int prepare_bprm_creds(struct linux_binprm *bprm)
1130 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1131 return -ERESTARTNOINTR;
1133 bprm->cred = prepare_exec_creds();
1134 if (likely(bprm->cred))
1135 return 0;
1137 mutex_unlock(&current->signal->cred_guard_mutex);
1138 return -ENOMEM;
1141 void free_bprm(struct linux_binprm *bprm)
1143 free_arg_pages(bprm);
1144 if (bprm->cred) {
1145 mutex_unlock(&current->signal->cred_guard_mutex);
1146 abort_creds(bprm->cred);
1148 kfree(bprm);
1152 * install the new credentials for this executable
1154 void install_exec_creds(struct linux_binprm *bprm)
1156 security_bprm_committing_creds(bprm);
1158 commit_creds(bprm->cred);
1159 bprm->cred = NULL;
1161 * cred_guard_mutex must be held at least to this point to prevent
1162 * ptrace_attach() from altering our determination of the task's
1163 * credentials; any time after this it may be unlocked.
1165 security_bprm_committed_creds(bprm);
1166 mutex_unlock(&current->signal->cred_guard_mutex);
1168 EXPORT_SYMBOL(install_exec_creds);
1171 * determine how safe it is to execute the proposed program
1172 * - the caller must hold ->cred_guard_mutex to protect against
1173 * PTRACE_ATTACH
1175 int check_unsafe_exec(struct linux_binprm *bprm)
1177 struct task_struct *p = current, *t;
1178 unsigned n_fs;
1179 int res = 0;
1181 bprm->unsafe = tracehook_unsafe_exec(p);
1183 n_fs = 1;
1184 spin_lock(&p->fs->lock);
1185 rcu_read_lock();
1186 for (t = next_thread(p); t != p; t = next_thread(t)) {
1187 if (t->fs == p->fs)
1188 n_fs++;
1190 rcu_read_unlock();
1192 if (p->fs->users > n_fs) {
1193 bprm->unsafe |= LSM_UNSAFE_SHARE;
1194 } else {
1195 res = -EAGAIN;
1196 if (!p->fs->in_exec) {
1197 p->fs->in_exec = 1;
1198 res = 1;
1201 spin_unlock(&p->fs->lock);
1203 return res;
1207 * Fill the binprm structure from the inode.
1208 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1210 * This may be called multiple times for binary chains (scripts for example).
1212 int prepare_binprm(struct linux_binprm *bprm)
1214 umode_t mode;
1215 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1216 int retval;
1218 mode = inode->i_mode;
1219 if (bprm->file->f_op == NULL)
1220 return -EACCES;
1222 /* clear any previous set[ug]id data from a previous binary */
1223 bprm->cred->euid = current_euid();
1224 bprm->cred->egid = current_egid();
1226 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1227 /* Set-uid? */
1228 if (mode & S_ISUID) {
1229 bprm->per_clear |= PER_CLEAR_ON_SETID;
1230 bprm->cred->euid = inode->i_uid;
1233 /* Set-gid? */
1235 * If setgid is set but no group execute bit then this
1236 * is a candidate for mandatory locking, not a setgid
1237 * executable.
1239 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1240 bprm->per_clear |= PER_CLEAR_ON_SETID;
1241 bprm->cred->egid = inode->i_gid;
1245 /* fill in binprm security blob */
1246 retval = security_bprm_set_creds(bprm);
1247 if (retval)
1248 return retval;
1249 bprm->cred_prepared = 1;
1251 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1252 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1255 EXPORT_SYMBOL(prepare_binprm);
1258 * Arguments are '\0' separated strings found at the location bprm->p
1259 * points to; chop off the first by relocating brpm->p to right after
1260 * the first '\0' encountered.
1262 int remove_arg_zero(struct linux_binprm *bprm)
1264 int ret = 0;
1265 unsigned long offset;
1266 char *kaddr;
1267 struct page *page;
1269 if (!bprm->argc)
1270 return 0;
1272 do {
1273 offset = bprm->p & ~PAGE_MASK;
1274 page = get_arg_page(bprm, bprm->p, 0);
1275 if (!page) {
1276 ret = -EFAULT;
1277 goto out;
1279 kaddr = kmap_atomic(page, KM_USER0);
1281 for (; offset < PAGE_SIZE && kaddr[offset];
1282 offset++, bprm->p++)
1285 kunmap_atomic(kaddr, KM_USER0);
1286 put_arg_page(page);
1288 if (offset == PAGE_SIZE)
1289 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1290 } while (offset == PAGE_SIZE);
1292 bprm->p++;
1293 bprm->argc--;
1294 ret = 0;
1296 out:
1297 return ret;
1299 EXPORT_SYMBOL(remove_arg_zero);
1302 * cycle the list of binary formats handler, until one recognizes the image
1304 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1306 unsigned int depth = bprm->recursion_depth;
1307 int try,retval;
1308 struct linux_binfmt *fmt;
1310 retval = security_bprm_check(bprm);
1311 if (retval)
1312 return retval;
1314 retval = audit_bprm(bprm);
1315 if (retval)
1316 return retval;
1318 retval = -ENOENT;
1319 for (try=0; try<2; try++) {
1320 read_lock(&binfmt_lock);
1321 list_for_each_entry(fmt, &formats, lh) {
1322 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1323 if (!fn)
1324 continue;
1325 if (!try_module_get(fmt->module))
1326 continue;
1327 read_unlock(&binfmt_lock);
1328 retval = fn(bprm, regs);
1330 * Restore the depth counter to its starting value
1331 * in this call, so we don't have to rely on every
1332 * load_binary function to restore it on return.
1334 bprm->recursion_depth = depth;
1335 if (retval >= 0) {
1336 if (depth == 0)
1337 tracehook_report_exec(fmt, bprm, regs);
1338 put_binfmt(fmt);
1339 allow_write_access(bprm->file);
1340 if (bprm->file)
1341 fput(bprm->file);
1342 bprm->file = NULL;
1343 current->did_exec = 1;
1344 proc_exec_connector(current);
1345 return retval;
1347 read_lock(&binfmt_lock);
1348 put_binfmt(fmt);
1349 if (retval != -ENOEXEC || bprm->mm == NULL)
1350 break;
1351 if (!bprm->file) {
1352 read_unlock(&binfmt_lock);
1353 return retval;
1356 read_unlock(&binfmt_lock);
1357 if (retval != -ENOEXEC || bprm->mm == NULL) {
1358 break;
1359 #ifdef CONFIG_MODULES
1360 } else {
1361 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1362 if (printable(bprm->buf[0]) &&
1363 printable(bprm->buf[1]) &&
1364 printable(bprm->buf[2]) &&
1365 printable(bprm->buf[3]))
1366 break; /* -ENOEXEC */
1367 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1368 #endif
1371 return retval;
1374 EXPORT_SYMBOL(search_binary_handler);
1377 * sys_execve() executes a new program.
1379 int do_execve(const char * filename,
1380 const char __user *const __user *argv,
1381 const char __user *const __user *envp,
1382 struct pt_regs * regs)
1384 struct linux_binprm *bprm;
1385 struct file *file;
1386 struct files_struct *displaced;
1387 bool clear_in_exec;
1388 int retval;
1390 retval = unshare_files(&displaced);
1391 if (retval)
1392 goto out_ret;
1394 retval = -ENOMEM;
1395 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1396 if (!bprm)
1397 goto out_files;
1399 retval = prepare_bprm_creds(bprm);
1400 if (retval)
1401 goto out_free;
1403 retval = check_unsafe_exec(bprm);
1404 if (retval < 0)
1405 goto out_free;
1406 clear_in_exec = retval;
1407 current->in_execve = 1;
1409 file = open_exec(filename);
1410 retval = PTR_ERR(file);
1411 if (IS_ERR(file))
1412 goto out_unmark;
1414 sched_exec();
1416 bprm->file = file;
1417 bprm->filename = filename;
1418 bprm->interp = filename;
1420 retval = bprm_mm_init(bprm);
1421 if (retval)
1422 goto out_file;
1424 bprm->argc = count(argv, MAX_ARG_STRINGS);
1425 if ((retval = bprm->argc) < 0)
1426 goto out;
1428 bprm->envc = count(envp, MAX_ARG_STRINGS);
1429 if ((retval = bprm->envc) < 0)
1430 goto out;
1432 retval = prepare_binprm(bprm);
1433 if (retval < 0)
1434 goto out;
1436 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1437 if (retval < 0)
1438 goto out;
1440 bprm->exec = bprm->p;
1441 retval = copy_strings(bprm->envc, envp, bprm);
1442 if (retval < 0)
1443 goto out;
1445 retval = copy_strings(bprm->argc, argv, bprm);
1446 if (retval < 0)
1447 goto out;
1449 retval = search_binary_handler(bprm,regs);
1450 if (retval < 0)
1451 goto out;
1453 /* execve succeeded */
1454 current->fs->in_exec = 0;
1455 current->in_execve = 0;
1456 acct_update_integrals(current);
1457 free_bprm(bprm);
1458 if (displaced)
1459 put_files_struct(displaced);
1460 return retval;
1462 out:
1463 if (bprm->mm) {
1464 acct_arg_size(bprm, 0);
1465 mmput(bprm->mm);
1468 out_file:
1469 if (bprm->file) {
1470 allow_write_access(bprm->file);
1471 fput(bprm->file);
1474 out_unmark:
1475 if (clear_in_exec)
1476 current->fs->in_exec = 0;
1477 current->in_execve = 0;
1479 out_free:
1480 free_bprm(bprm);
1482 out_files:
1483 if (displaced)
1484 reset_files_struct(displaced);
1485 out_ret:
1486 return retval;
1489 void set_binfmt(struct linux_binfmt *new)
1491 struct mm_struct *mm = current->mm;
1493 if (mm->binfmt)
1494 module_put(mm->binfmt->module);
1496 mm->binfmt = new;
1497 if (new)
1498 __module_get(new->module);
1501 EXPORT_SYMBOL(set_binfmt);
1503 static int expand_corename(struct core_name *cn)
1505 char *old_corename = cn->corename;
1507 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1508 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1510 if (!cn->corename) {
1511 kfree(old_corename);
1512 return -ENOMEM;
1515 return 0;
1518 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1520 char *cur;
1521 int need;
1522 int ret;
1523 va_list arg;
1525 va_start(arg, fmt);
1526 need = vsnprintf(NULL, 0, fmt, arg);
1527 va_end(arg);
1529 if (likely(need < cn->size - cn->used - 1))
1530 goto out_printf;
1532 ret = expand_corename(cn);
1533 if (ret)
1534 goto expand_fail;
1536 out_printf:
1537 cur = cn->corename + cn->used;
1538 va_start(arg, fmt);
1539 vsnprintf(cur, need + 1, fmt, arg);
1540 va_end(arg);
1541 cn->used += need;
1542 return 0;
1544 expand_fail:
1545 return ret;
1548 /* format_corename will inspect the pattern parameter, and output a
1549 * name into corename, which must have space for at least
1550 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1552 static int format_corename(struct core_name *cn, long signr)
1554 const struct cred *cred = current_cred();
1555 const char *pat_ptr = core_pattern;
1556 int ispipe = (*pat_ptr == '|');
1557 int pid_in_pattern = 0;
1558 int err = 0;
1560 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1561 cn->corename = kmalloc(cn->size, GFP_KERNEL);
1562 cn->used = 0;
1564 if (!cn->corename)
1565 return -ENOMEM;
1567 /* Repeat as long as we have more pattern to process and more output
1568 space */
1569 while (*pat_ptr) {
1570 if (*pat_ptr != '%') {
1571 if (*pat_ptr == 0)
1572 goto out;
1573 err = cn_printf(cn, "%c", *pat_ptr++);
1574 } else {
1575 switch (*++pat_ptr) {
1576 /* single % at the end, drop that */
1577 case 0:
1578 goto out;
1579 /* Double percent, output one percent */
1580 case '%':
1581 err = cn_printf(cn, "%c", '%');
1582 break;
1583 /* pid */
1584 case 'p':
1585 pid_in_pattern = 1;
1586 err = cn_printf(cn, "%d",
1587 task_tgid_vnr(current));
1588 break;
1589 /* uid */
1590 case 'u':
1591 err = cn_printf(cn, "%d", cred->uid);
1592 break;
1593 /* gid */
1594 case 'g':
1595 err = cn_printf(cn, "%d", cred->gid);
1596 break;
1597 /* signal that caused the coredump */
1598 case 's':
1599 err = cn_printf(cn, "%ld", signr);
1600 break;
1601 /* UNIX time of coredump */
1602 case 't': {
1603 struct timeval tv;
1604 do_gettimeofday(&tv);
1605 err = cn_printf(cn, "%lu", tv.tv_sec);
1606 break;
1608 /* hostname */
1609 case 'h':
1610 down_read(&uts_sem);
1611 err = cn_printf(cn, "%s",
1612 utsname()->nodename);
1613 up_read(&uts_sem);
1614 break;
1615 /* executable */
1616 case 'e':
1617 err = cn_printf(cn, "%s", current->comm);
1618 break;
1619 /* core limit size */
1620 case 'c':
1621 err = cn_printf(cn, "%lu",
1622 rlimit(RLIMIT_CORE));
1623 break;
1624 default:
1625 break;
1627 ++pat_ptr;
1630 if (err)
1631 return err;
1634 /* Backward compatibility with core_uses_pid:
1636 * If core_pattern does not include a %p (as is the default)
1637 * and core_uses_pid is set, then .%pid will be appended to
1638 * the filename. Do not do this for piped commands. */
1639 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1640 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1641 if (err)
1642 return err;
1644 out:
1645 return ispipe;
1648 static int zap_process(struct task_struct *start, int exit_code)
1650 struct task_struct *t;
1651 int nr = 0;
1653 start->signal->flags = SIGNAL_GROUP_EXIT;
1654 start->signal->group_exit_code = exit_code;
1655 start->signal->group_stop_count = 0;
1657 t = start;
1658 do {
1659 if (t != current && t->mm) {
1660 sigaddset(&t->pending.signal, SIGKILL);
1661 signal_wake_up(t, 1);
1662 nr++;
1664 } while_each_thread(start, t);
1666 return nr;
1669 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1670 struct core_state *core_state, int exit_code)
1672 struct task_struct *g, *p;
1673 unsigned long flags;
1674 int nr = -EAGAIN;
1676 spin_lock_irq(&tsk->sighand->siglock);
1677 if (!signal_group_exit(tsk->signal)) {
1678 mm->core_state = core_state;
1679 nr = zap_process(tsk, exit_code);
1681 spin_unlock_irq(&tsk->sighand->siglock);
1682 if (unlikely(nr < 0))
1683 return nr;
1685 if (atomic_read(&mm->mm_users) == nr + 1)
1686 goto done;
1688 * We should find and kill all tasks which use this mm, and we should
1689 * count them correctly into ->nr_threads. We don't take tasklist
1690 * lock, but this is safe wrt:
1692 * fork:
1693 * None of sub-threads can fork after zap_process(leader). All
1694 * processes which were created before this point should be
1695 * visible to zap_threads() because copy_process() adds the new
1696 * process to the tail of init_task.tasks list, and lock/unlock
1697 * of ->siglock provides a memory barrier.
1699 * do_exit:
1700 * The caller holds mm->mmap_sem. This means that the task which
1701 * uses this mm can't pass exit_mm(), so it can't exit or clear
1702 * its ->mm.
1704 * de_thread:
1705 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1706 * we must see either old or new leader, this does not matter.
1707 * However, it can change p->sighand, so lock_task_sighand(p)
1708 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1709 * it can't fail.
1711 * Note also that "g" can be the old leader with ->mm == NULL
1712 * and already unhashed and thus removed from ->thread_group.
1713 * This is OK, __unhash_process()->list_del_rcu() does not
1714 * clear the ->next pointer, we will find the new leader via
1715 * next_thread().
1717 rcu_read_lock();
1718 for_each_process(g) {
1719 if (g == tsk->group_leader)
1720 continue;
1721 if (g->flags & PF_KTHREAD)
1722 continue;
1723 p = g;
1724 do {
1725 if (p->mm) {
1726 if (unlikely(p->mm == mm)) {
1727 lock_task_sighand(p, &flags);
1728 nr += zap_process(p, exit_code);
1729 unlock_task_sighand(p, &flags);
1731 break;
1733 } while_each_thread(g, p);
1735 rcu_read_unlock();
1736 done:
1737 atomic_set(&core_state->nr_threads, nr);
1738 return nr;
1741 static int coredump_wait(int exit_code, struct core_state *core_state)
1743 struct task_struct *tsk = current;
1744 struct mm_struct *mm = tsk->mm;
1745 struct completion *vfork_done;
1746 int core_waiters = -EBUSY;
1748 init_completion(&core_state->startup);
1749 core_state->dumper.task = tsk;
1750 core_state->dumper.next = NULL;
1752 down_write(&mm->mmap_sem);
1753 if (!mm->core_state)
1754 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1755 up_write(&mm->mmap_sem);
1757 if (unlikely(core_waiters < 0))
1758 goto fail;
1761 * Make sure nobody is waiting for us to release the VM,
1762 * otherwise we can deadlock when we wait on each other
1764 vfork_done = tsk->vfork_done;
1765 if (vfork_done) {
1766 tsk->vfork_done = NULL;
1767 complete(vfork_done);
1770 if (core_waiters)
1771 wait_for_completion(&core_state->startup);
1772 fail:
1773 return core_waiters;
1776 static void coredump_finish(struct mm_struct *mm)
1778 struct core_thread *curr, *next;
1779 struct task_struct *task;
1781 next = mm->core_state->dumper.next;
1782 while ((curr = next) != NULL) {
1783 next = curr->next;
1784 task = curr->task;
1786 * see exit_mm(), curr->task must not see
1787 * ->task == NULL before we read ->next.
1789 smp_mb();
1790 curr->task = NULL;
1791 wake_up_process(task);
1794 mm->core_state = NULL;
1798 * set_dumpable converts traditional three-value dumpable to two flags and
1799 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1800 * these bits are not changed atomically. So get_dumpable can observe the
1801 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1802 * return either old dumpable or new one by paying attention to the order of
1803 * modifying the bits.
1805 * dumpable | mm->flags (binary)
1806 * old new | initial interim final
1807 * ---------+-----------------------
1808 * 0 1 | 00 01 01
1809 * 0 2 | 00 10(*) 11
1810 * 1 0 | 01 00 00
1811 * 1 2 | 01 11 11
1812 * 2 0 | 11 10(*) 00
1813 * 2 1 | 11 11 01
1815 * (*) get_dumpable regards interim value of 10 as 11.
1817 void set_dumpable(struct mm_struct *mm, int value)
1819 switch (value) {
1820 case 0:
1821 clear_bit(MMF_DUMPABLE, &mm->flags);
1822 smp_wmb();
1823 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1824 break;
1825 case 1:
1826 set_bit(MMF_DUMPABLE, &mm->flags);
1827 smp_wmb();
1828 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1829 break;
1830 case 2:
1831 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1832 smp_wmb();
1833 set_bit(MMF_DUMPABLE, &mm->flags);
1834 break;
1838 static int __get_dumpable(unsigned long mm_flags)
1840 int ret;
1842 ret = mm_flags & MMF_DUMPABLE_MASK;
1843 return (ret >= 2) ? 2 : ret;
1846 int get_dumpable(struct mm_struct *mm)
1848 return __get_dumpable(mm->flags);
1851 static void wait_for_dump_helpers(struct file *file)
1853 struct pipe_inode_info *pipe;
1855 pipe = file->f_path.dentry->d_inode->i_pipe;
1857 pipe_lock(pipe);
1858 pipe->readers++;
1859 pipe->writers--;
1861 while ((pipe->readers > 1) && (!signal_pending(current))) {
1862 wake_up_interruptible_sync(&pipe->wait);
1863 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1864 pipe_wait(pipe);
1867 pipe->readers--;
1868 pipe->writers++;
1869 pipe_unlock(pipe);
1875 * umh_pipe_setup
1876 * helper function to customize the process used
1877 * to collect the core in userspace. Specifically
1878 * it sets up a pipe and installs it as fd 0 (stdin)
1879 * for the process. Returns 0 on success, or
1880 * PTR_ERR on failure.
1881 * Note that it also sets the core limit to 1. This
1882 * is a special value that we use to trap recursive
1883 * core dumps
1885 static int umh_pipe_setup(struct subprocess_info *info)
1887 struct file *rp, *wp;
1888 struct fdtable *fdt;
1889 struct coredump_params *cp = (struct coredump_params *)info->data;
1890 struct files_struct *cf = current->files;
1892 wp = create_write_pipe(0);
1893 if (IS_ERR(wp))
1894 return PTR_ERR(wp);
1896 rp = create_read_pipe(wp, 0);
1897 if (IS_ERR(rp)) {
1898 free_write_pipe(wp);
1899 return PTR_ERR(rp);
1902 cp->file = wp;
1904 sys_close(0);
1905 fd_install(0, rp);
1906 spin_lock(&cf->file_lock);
1907 fdt = files_fdtable(cf);
1908 FD_SET(0, fdt->open_fds);
1909 FD_CLR(0, fdt->close_on_exec);
1910 spin_unlock(&cf->file_lock);
1912 /* and disallow core files too */
1913 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1915 return 0;
1918 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1920 struct core_state core_state;
1921 struct core_name cn;
1922 struct mm_struct *mm = current->mm;
1923 struct linux_binfmt * binfmt;
1924 const struct cred *old_cred;
1925 struct cred *cred;
1926 int retval = 0;
1927 int flag = 0;
1928 int ispipe;
1929 static atomic_t core_dump_count = ATOMIC_INIT(0);
1930 struct coredump_params cprm = {
1931 .signr = signr,
1932 .regs = regs,
1933 .limit = rlimit(RLIMIT_CORE),
1935 * We must use the same mm->flags while dumping core to avoid
1936 * inconsistency of bit flags, since this flag is not protected
1937 * by any locks.
1939 .mm_flags = mm->flags,
1942 audit_core_dumps(signr);
1944 binfmt = mm->binfmt;
1945 if (!binfmt || !binfmt->core_dump)
1946 goto fail;
1947 if (!__get_dumpable(cprm.mm_flags))
1948 goto fail;
1950 cred = prepare_creds();
1951 if (!cred)
1952 goto fail;
1954 * We cannot trust fsuid as being the "true" uid of the
1955 * process nor do we know its entire history. We only know it
1956 * was tainted so we dump it as root in mode 2.
1958 if (__get_dumpable(cprm.mm_flags) == 2) {
1959 /* Setuid core dump mode */
1960 flag = O_EXCL; /* Stop rewrite attacks */
1961 cred->fsuid = 0; /* Dump root private */
1964 retval = coredump_wait(exit_code, &core_state);
1965 if (retval < 0)
1966 goto fail_creds;
1968 old_cred = override_creds(cred);
1971 * Clear any false indication of pending signals that might
1972 * be seen by the filesystem code called to write the core file.
1974 clear_thread_flag(TIF_SIGPENDING);
1976 ispipe = format_corename(&cn, signr);
1978 if (ispipe == -ENOMEM) {
1979 printk(KERN_WARNING "format_corename failed\n");
1980 printk(KERN_WARNING "Aborting core\n");
1981 goto fail_corename;
1984 if (ispipe) {
1985 int dump_count;
1986 char **helper_argv;
1988 if (cprm.limit == 1) {
1990 * Normally core limits are irrelevant to pipes, since
1991 * we're not writing to the file system, but we use
1992 * cprm.limit of 1 here as a speacial value. Any
1993 * non-1 limit gets set to RLIM_INFINITY below, but
1994 * a limit of 0 skips the dump. This is a consistent
1995 * way to catch recursive crashes. We can still crash
1996 * if the core_pattern binary sets RLIM_CORE = !1
1997 * but it runs as root, and can do lots of stupid things
1998 * Note that we use task_tgid_vnr here to grab the pid
1999 * of the process group leader. That way we get the
2000 * right pid if a thread in a multi-threaded
2001 * core_pattern process dies.
2003 printk(KERN_WARNING
2004 "Process %d(%s) has RLIMIT_CORE set to 1\n",
2005 task_tgid_vnr(current), current->comm);
2006 printk(KERN_WARNING "Aborting core\n");
2007 goto fail_unlock;
2009 cprm.limit = RLIM_INFINITY;
2011 dump_count = atomic_inc_return(&core_dump_count);
2012 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2013 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2014 task_tgid_vnr(current), current->comm);
2015 printk(KERN_WARNING "Skipping core dump\n");
2016 goto fail_dropcount;
2019 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2020 if (!helper_argv) {
2021 printk(KERN_WARNING "%s failed to allocate memory\n",
2022 __func__);
2023 goto fail_dropcount;
2026 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2027 NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2028 NULL, &cprm);
2029 argv_free(helper_argv);
2030 if (retval) {
2031 printk(KERN_INFO "Core dump to %s pipe failed\n",
2032 cn.corename);
2033 goto close_fail;
2035 } else {
2036 struct inode *inode;
2038 if (cprm.limit < binfmt->min_coredump)
2039 goto fail_unlock;
2041 cprm.file = filp_open(cn.corename,
2042 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2043 0600);
2044 if (IS_ERR(cprm.file))
2045 goto fail_unlock;
2047 inode = cprm.file->f_path.dentry->d_inode;
2048 if (inode->i_nlink > 1)
2049 goto close_fail;
2050 if (d_unhashed(cprm.file->f_path.dentry))
2051 goto close_fail;
2053 * AK: actually i see no reason to not allow this for named
2054 * pipes etc, but keep the previous behaviour for now.
2056 if (!S_ISREG(inode->i_mode))
2057 goto close_fail;
2059 * Dont allow local users get cute and trick others to coredump
2060 * into their pre-created files.
2062 if (inode->i_uid != current_fsuid())
2063 goto close_fail;
2064 if (!cprm.file->f_op || !cprm.file->f_op->write)
2065 goto close_fail;
2066 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2067 goto close_fail;
2070 retval = binfmt->core_dump(&cprm);
2071 if (retval)
2072 current->signal->group_exit_code |= 0x80;
2074 if (ispipe && core_pipe_limit)
2075 wait_for_dump_helpers(cprm.file);
2076 close_fail:
2077 if (cprm.file)
2078 filp_close(cprm.file, NULL);
2079 fail_dropcount:
2080 if (ispipe)
2081 atomic_dec(&core_dump_count);
2082 fail_unlock:
2083 kfree(cn.corename);
2084 fail_corename:
2085 coredump_finish(mm);
2086 revert_creds(old_cred);
2087 fail_creds:
2088 put_cred(cred);
2089 fail:
2090 return;
2094 * Core dumping helper functions. These are the only things you should
2095 * do on a core-file: use only these functions to write out all the
2096 * necessary info.
2098 int dump_write(struct file *file, const void *addr, int nr)
2100 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2102 EXPORT_SYMBOL(dump_write);
2104 int dump_seek(struct file *file, loff_t off)
2106 int ret = 1;
2108 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2109 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2110 return 0;
2111 } else {
2112 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2114 if (!buf)
2115 return 0;
2116 while (off > 0) {
2117 unsigned long n = off;
2119 if (n > PAGE_SIZE)
2120 n = PAGE_SIZE;
2121 if (!dump_write(file, buf, n)) {
2122 ret = 0;
2123 break;
2125 off -= n;
2127 free_page((unsigned long)buf);
2129 return ret;
2131 EXPORT_SYMBOL(dump_seek);