ACPI: thinkpad-acpi: add development version tag
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / vmstat.c
blob0c3b5048773e6d486f43343a859ebf785161036e
1 /*
2 * linux/mm/vmstat.c
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states);
27 static void sum_vm_events(unsigned long *ret)
29 int cpu;
30 int i;
32 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
34 for_each_online_cpu(cpu) {
35 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
37 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38 ret[i] += this->event[i];
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
47 void all_vm_events(unsigned long *ret)
49 get_online_cpus();
50 sum_vm_events(ret);
51 put_online_cpus();
53 EXPORT_SYMBOL_GPL(all_vm_events);
55 #ifdef CONFIG_HOTPLUG
57 * Fold the foreign cpu events into our own.
59 * This is adding to the events on one processor
60 * but keeps the global counts constant.
62 void vm_events_fold_cpu(int cpu)
64 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
65 int i;
67 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
68 count_vm_events(i, fold_state->event[i]);
69 fold_state->event[i] = 0;
72 #endif /* CONFIG_HOTPLUG */
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
77 * Manage combined zone based / global counters
79 * vm_stat contains the global counters
81 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
82 EXPORT_SYMBOL(vm_stat);
84 #ifdef CONFIG_SMP
86 int calculate_pressure_threshold(struct zone *zone)
88 int threshold;
89 int watermark_distance;
92 * As vmstats are not up to date, there is drift between the estimated
93 * and real values. For high thresholds and a high number of CPUs, it
94 * is possible for the min watermark to be breached while the estimated
95 * value looks fine. The pressure threshold is a reduced value such
96 * that even the maximum amount of drift will not accidentally breach
97 * the min watermark
99 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
100 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
103 * Maximum threshold is 125
105 threshold = min(125, threshold);
107 return threshold;
110 int calculate_normal_threshold(struct zone *zone)
112 int threshold;
113 int mem; /* memory in 128 MB units */
116 * The threshold scales with the number of processors and the amount
117 * of memory per zone. More memory means that we can defer updates for
118 * longer, more processors could lead to more contention.
119 * fls() is used to have a cheap way of logarithmic scaling.
121 * Some sample thresholds:
123 * Threshold Processors (fls) Zonesize fls(mem+1)
124 * ------------------------------------------------------------------
125 * 8 1 1 0.9-1 GB 4
126 * 16 2 2 0.9-1 GB 4
127 * 20 2 2 1-2 GB 5
128 * 24 2 2 2-4 GB 6
129 * 28 2 2 4-8 GB 7
130 * 32 2 2 8-16 GB 8
131 * 4 2 2 <128M 1
132 * 30 4 3 2-4 GB 5
133 * 48 4 3 8-16 GB 8
134 * 32 8 4 1-2 GB 4
135 * 32 8 4 0.9-1GB 4
136 * 10 16 5 <128M 1
137 * 40 16 5 900M 4
138 * 70 64 7 2-4 GB 5
139 * 84 64 7 4-8 GB 6
140 * 108 512 9 4-8 GB 6
141 * 125 1024 10 8-16 GB 8
142 * 125 1024 10 16-32 GB 9
145 mem = zone->present_pages >> (27 - PAGE_SHIFT);
147 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
150 * Maximum threshold is 125
152 threshold = min(125, threshold);
154 return threshold;
158 * Refresh the thresholds for each zone.
160 static void refresh_zone_stat_thresholds(void)
162 struct zone *zone;
163 int cpu;
164 int threshold;
166 for_each_populated_zone(zone) {
167 unsigned long max_drift, tolerate_drift;
169 threshold = calculate_normal_threshold(zone);
171 for_each_online_cpu(cpu)
172 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
173 = threshold;
176 * Only set percpu_drift_mark if there is a danger that
177 * NR_FREE_PAGES reports the low watermark is ok when in fact
178 * the min watermark could be breached by an allocation
180 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
181 max_drift = num_online_cpus() * threshold;
182 if (max_drift > tolerate_drift)
183 zone->percpu_drift_mark = high_wmark_pages(zone) +
184 max_drift;
188 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
189 int (*calculate_pressure)(struct zone *))
191 struct zone *zone;
192 int cpu;
193 int threshold;
194 int i;
196 for (i = 0; i < pgdat->nr_zones; i++) {
197 zone = &pgdat->node_zones[i];
198 if (!zone->percpu_drift_mark)
199 continue;
201 threshold = (*calculate_pressure)(zone);
202 for_each_possible_cpu(cpu)
203 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
204 = threshold;
209 * For use when we know that interrupts are disabled.
211 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
212 int delta)
214 struct per_cpu_pageset __percpu *pcp = zone->pageset;
215 s8 __percpu *p = pcp->vm_stat_diff + item;
216 long x;
217 long t;
219 x = delta + __this_cpu_read(*p);
221 t = __this_cpu_read(pcp->stat_threshold);
223 if (unlikely(x > t || x < -t)) {
224 zone_page_state_add(x, zone, item);
225 x = 0;
227 __this_cpu_write(*p, x);
229 EXPORT_SYMBOL(__mod_zone_page_state);
232 * Optimized increment and decrement functions.
234 * These are only for a single page and therefore can take a struct page *
235 * argument instead of struct zone *. This allows the inclusion of the code
236 * generated for page_zone(page) into the optimized functions.
238 * No overflow check is necessary and therefore the differential can be
239 * incremented or decremented in place which may allow the compilers to
240 * generate better code.
241 * The increment or decrement is known and therefore one boundary check can
242 * be omitted.
244 * NOTE: These functions are very performance sensitive. Change only
245 * with care.
247 * Some processors have inc/dec instructions that are atomic vs an interrupt.
248 * However, the code must first determine the differential location in a zone
249 * based on the processor number and then inc/dec the counter. There is no
250 * guarantee without disabling preemption that the processor will not change
251 * in between and therefore the atomicity vs. interrupt cannot be exploited
252 * in a useful way here.
254 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
256 struct per_cpu_pageset __percpu *pcp = zone->pageset;
257 s8 __percpu *p = pcp->vm_stat_diff + item;
258 s8 v, t;
260 v = __this_cpu_inc_return(*p);
261 t = __this_cpu_read(pcp->stat_threshold);
262 if (unlikely(v > t)) {
263 s8 overstep = t >> 1;
265 zone_page_state_add(v + overstep, zone, item);
266 __this_cpu_write(*p, -overstep);
270 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
272 __inc_zone_state(page_zone(page), item);
274 EXPORT_SYMBOL(__inc_zone_page_state);
276 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
278 struct per_cpu_pageset __percpu *pcp = zone->pageset;
279 s8 __percpu *p = pcp->vm_stat_diff + item;
280 s8 v, t;
282 v = __this_cpu_dec_return(*p);
283 t = __this_cpu_read(pcp->stat_threshold);
284 if (unlikely(v < - t)) {
285 s8 overstep = t >> 1;
287 zone_page_state_add(v - overstep, zone, item);
288 __this_cpu_write(*p, overstep);
292 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
294 __dec_zone_state(page_zone(page), item);
296 EXPORT_SYMBOL(__dec_zone_page_state);
298 #ifdef CONFIG_CMPXCHG_LOCAL
300 * If we have cmpxchg_local support then we do not need to incur the overhead
301 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
303 * mod_state() modifies the zone counter state through atomic per cpu
304 * operations.
306 * Overstep mode specifies how overstep should handled:
307 * 0 No overstepping
308 * 1 Overstepping half of threshold
309 * -1 Overstepping minus half of threshold
311 static inline void mod_state(struct zone *zone,
312 enum zone_stat_item item, int delta, int overstep_mode)
314 struct per_cpu_pageset __percpu *pcp = zone->pageset;
315 s8 __percpu *p = pcp->vm_stat_diff + item;
316 long o, n, t, z;
318 do {
319 z = 0; /* overflow to zone counters */
322 * The fetching of the stat_threshold is racy. We may apply
323 * a counter threshold to the wrong the cpu if we get
324 * rescheduled while executing here. However, the following
325 * will apply the threshold again and therefore bring the
326 * counter under the threshold.
328 t = this_cpu_read(pcp->stat_threshold);
330 o = this_cpu_read(*p);
331 n = delta + o;
333 if (n > t || n < -t) {
334 int os = overstep_mode * (t >> 1) ;
336 /* Overflow must be added to zone counters */
337 z = n + os;
338 n = -os;
340 } while (this_cpu_cmpxchg(*p, o, n) != o);
342 if (z)
343 zone_page_state_add(z, zone, item);
346 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
347 int delta)
349 mod_state(zone, item, delta, 0);
351 EXPORT_SYMBOL(mod_zone_page_state);
353 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
355 mod_state(zone, item, 1, 1);
358 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
360 mod_state(page_zone(page), item, 1, 1);
362 EXPORT_SYMBOL(inc_zone_page_state);
364 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
366 mod_state(page_zone(page), item, -1, -1);
368 EXPORT_SYMBOL(dec_zone_page_state);
369 #else
371 * Use interrupt disable to serialize counter updates
373 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
374 int delta)
376 unsigned long flags;
378 local_irq_save(flags);
379 __mod_zone_page_state(zone, item, delta);
380 local_irq_restore(flags);
382 EXPORT_SYMBOL(mod_zone_page_state);
384 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
386 unsigned long flags;
388 local_irq_save(flags);
389 __inc_zone_state(zone, item);
390 local_irq_restore(flags);
393 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
395 unsigned long flags;
396 struct zone *zone;
398 zone = page_zone(page);
399 local_irq_save(flags);
400 __inc_zone_state(zone, item);
401 local_irq_restore(flags);
403 EXPORT_SYMBOL(inc_zone_page_state);
405 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
407 unsigned long flags;
409 local_irq_save(flags);
410 __dec_zone_page_state(page, item);
411 local_irq_restore(flags);
413 EXPORT_SYMBOL(dec_zone_page_state);
414 #endif
417 * Update the zone counters for one cpu.
419 * The cpu specified must be either the current cpu or a processor that
420 * is not online. If it is the current cpu then the execution thread must
421 * be pinned to the current cpu.
423 * Note that refresh_cpu_vm_stats strives to only access
424 * node local memory. The per cpu pagesets on remote zones are placed
425 * in the memory local to the processor using that pageset. So the
426 * loop over all zones will access a series of cachelines local to
427 * the processor.
429 * The call to zone_page_state_add updates the cachelines with the
430 * statistics in the remote zone struct as well as the global cachelines
431 * with the global counters. These could cause remote node cache line
432 * bouncing and will have to be only done when necessary.
434 void refresh_cpu_vm_stats(int cpu)
436 struct zone *zone;
437 int i;
438 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
440 for_each_populated_zone(zone) {
441 struct per_cpu_pageset *p;
443 p = per_cpu_ptr(zone->pageset, cpu);
445 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
446 if (p->vm_stat_diff[i]) {
447 unsigned long flags;
448 int v;
450 local_irq_save(flags);
451 v = p->vm_stat_diff[i];
452 p->vm_stat_diff[i] = 0;
453 local_irq_restore(flags);
454 atomic_long_add(v, &zone->vm_stat[i]);
455 global_diff[i] += v;
456 #ifdef CONFIG_NUMA
457 /* 3 seconds idle till flush */
458 p->expire = 3;
459 #endif
461 cond_resched();
462 #ifdef CONFIG_NUMA
464 * Deal with draining the remote pageset of this
465 * processor
467 * Check if there are pages remaining in this pageset
468 * if not then there is nothing to expire.
470 if (!p->expire || !p->pcp.count)
471 continue;
474 * We never drain zones local to this processor.
476 if (zone_to_nid(zone) == numa_node_id()) {
477 p->expire = 0;
478 continue;
481 p->expire--;
482 if (p->expire)
483 continue;
485 if (p->pcp.count)
486 drain_zone_pages(zone, &p->pcp);
487 #endif
490 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
491 if (global_diff[i])
492 atomic_long_add(global_diff[i], &vm_stat[i]);
495 #endif
497 #ifdef CONFIG_NUMA
499 * zonelist = the list of zones passed to the allocator
500 * z = the zone from which the allocation occurred.
502 * Must be called with interrupts disabled.
504 void zone_statistics(struct zone *preferred_zone, struct zone *z)
506 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
507 __inc_zone_state(z, NUMA_HIT);
508 } else {
509 __inc_zone_state(z, NUMA_MISS);
510 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
512 if (z->node == numa_node_id())
513 __inc_zone_state(z, NUMA_LOCAL);
514 else
515 __inc_zone_state(z, NUMA_OTHER);
517 #endif
519 #ifdef CONFIG_COMPACTION
521 struct contig_page_info {
522 unsigned long free_pages;
523 unsigned long free_blocks_total;
524 unsigned long free_blocks_suitable;
528 * Calculate the number of free pages in a zone, how many contiguous
529 * pages are free and how many are large enough to satisfy an allocation of
530 * the target size. Note that this function makes no attempt to estimate
531 * how many suitable free blocks there *might* be if MOVABLE pages were
532 * migrated. Calculating that is possible, but expensive and can be
533 * figured out from userspace
535 static void fill_contig_page_info(struct zone *zone,
536 unsigned int suitable_order,
537 struct contig_page_info *info)
539 unsigned int order;
541 info->free_pages = 0;
542 info->free_blocks_total = 0;
543 info->free_blocks_suitable = 0;
545 for (order = 0; order < MAX_ORDER; order++) {
546 unsigned long blocks;
548 /* Count number of free blocks */
549 blocks = zone->free_area[order].nr_free;
550 info->free_blocks_total += blocks;
552 /* Count free base pages */
553 info->free_pages += blocks << order;
555 /* Count the suitable free blocks */
556 if (order >= suitable_order)
557 info->free_blocks_suitable += blocks <<
558 (order - suitable_order);
563 * A fragmentation index only makes sense if an allocation of a requested
564 * size would fail. If that is true, the fragmentation index indicates
565 * whether external fragmentation or a lack of memory was the problem.
566 * The value can be used to determine if page reclaim or compaction
567 * should be used
569 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
571 unsigned long requested = 1UL << order;
573 if (!info->free_blocks_total)
574 return 0;
576 /* Fragmentation index only makes sense when a request would fail */
577 if (info->free_blocks_suitable)
578 return -1000;
581 * Index is between 0 and 1 so return within 3 decimal places
583 * 0 => allocation would fail due to lack of memory
584 * 1 => allocation would fail due to fragmentation
586 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
589 /* Same as __fragmentation index but allocs contig_page_info on stack */
590 int fragmentation_index(struct zone *zone, unsigned int order)
592 struct contig_page_info info;
594 fill_contig_page_info(zone, order, &info);
595 return __fragmentation_index(order, &info);
597 #endif
599 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
600 #include <linux/proc_fs.h>
601 #include <linux/seq_file.h>
603 static char * const migratetype_names[MIGRATE_TYPES] = {
604 "Unmovable",
605 "Reclaimable",
606 "Movable",
607 "Reserve",
608 "Isolate",
611 static void *frag_start(struct seq_file *m, loff_t *pos)
613 pg_data_t *pgdat;
614 loff_t node = *pos;
615 for (pgdat = first_online_pgdat();
616 pgdat && node;
617 pgdat = next_online_pgdat(pgdat))
618 --node;
620 return pgdat;
623 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
625 pg_data_t *pgdat = (pg_data_t *)arg;
627 (*pos)++;
628 return next_online_pgdat(pgdat);
631 static void frag_stop(struct seq_file *m, void *arg)
635 /* Walk all the zones in a node and print using a callback */
636 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
637 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
639 struct zone *zone;
640 struct zone *node_zones = pgdat->node_zones;
641 unsigned long flags;
643 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
644 if (!populated_zone(zone))
645 continue;
647 spin_lock_irqsave(&zone->lock, flags);
648 print(m, pgdat, zone);
649 spin_unlock_irqrestore(&zone->lock, flags);
652 #endif
654 #ifdef CONFIG_PROC_FS
655 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
656 struct zone *zone)
658 int order;
660 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
661 for (order = 0; order < MAX_ORDER; ++order)
662 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
663 seq_putc(m, '\n');
667 * This walks the free areas for each zone.
669 static int frag_show(struct seq_file *m, void *arg)
671 pg_data_t *pgdat = (pg_data_t *)arg;
672 walk_zones_in_node(m, pgdat, frag_show_print);
673 return 0;
676 static void pagetypeinfo_showfree_print(struct seq_file *m,
677 pg_data_t *pgdat, struct zone *zone)
679 int order, mtype;
681 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
682 seq_printf(m, "Node %4d, zone %8s, type %12s ",
683 pgdat->node_id,
684 zone->name,
685 migratetype_names[mtype]);
686 for (order = 0; order < MAX_ORDER; ++order) {
687 unsigned long freecount = 0;
688 struct free_area *area;
689 struct list_head *curr;
691 area = &(zone->free_area[order]);
693 list_for_each(curr, &area->free_list[mtype])
694 freecount++;
695 seq_printf(m, "%6lu ", freecount);
697 seq_putc(m, '\n');
701 /* Print out the free pages at each order for each migatetype */
702 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
704 int order;
705 pg_data_t *pgdat = (pg_data_t *)arg;
707 /* Print header */
708 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
709 for (order = 0; order < MAX_ORDER; ++order)
710 seq_printf(m, "%6d ", order);
711 seq_putc(m, '\n');
713 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
715 return 0;
718 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
719 pg_data_t *pgdat, struct zone *zone)
721 int mtype;
722 unsigned long pfn;
723 unsigned long start_pfn = zone->zone_start_pfn;
724 unsigned long end_pfn = start_pfn + zone->spanned_pages;
725 unsigned long count[MIGRATE_TYPES] = { 0, };
727 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
728 struct page *page;
730 if (!pfn_valid(pfn))
731 continue;
733 page = pfn_to_page(pfn);
735 /* Watch for unexpected holes punched in the memmap */
736 if (!memmap_valid_within(pfn, page, zone))
737 continue;
739 mtype = get_pageblock_migratetype(page);
741 if (mtype < MIGRATE_TYPES)
742 count[mtype]++;
745 /* Print counts */
746 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
747 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
748 seq_printf(m, "%12lu ", count[mtype]);
749 seq_putc(m, '\n');
752 /* Print out the free pages at each order for each migratetype */
753 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
755 int mtype;
756 pg_data_t *pgdat = (pg_data_t *)arg;
758 seq_printf(m, "\n%-23s", "Number of blocks type ");
759 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
760 seq_printf(m, "%12s ", migratetype_names[mtype]);
761 seq_putc(m, '\n');
762 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
764 return 0;
768 * This prints out statistics in relation to grouping pages by mobility.
769 * It is expensive to collect so do not constantly read the file.
771 static int pagetypeinfo_show(struct seq_file *m, void *arg)
773 pg_data_t *pgdat = (pg_data_t *)arg;
775 /* check memoryless node */
776 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
777 return 0;
779 seq_printf(m, "Page block order: %d\n", pageblock_order);
780 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
781 seq_putc(m, '\n');
782 pagetypeinfo_showfree(m, pgdat);
783 pagetypeinfo_showblockcount(m, pgdat);
785 return 0;
788 static const struct seq_operations fragmentation_op = {
789 .start = frag_start,
790 .next = frag_next,
791 .stop = frag_stop,
792 .show = frag_show,
795 static int fragmentation_open(struct inode *inode, struct file *file)
797 return seq_open(file, &fragmentation_op);
800 static const struct file_operations fragmentation_file_operations = {
801 .open = fragmentation_open,
802 .read = seq_read,
803 .llseek = seq_lseek,
804 .release = seq_release,
807 static const struct seq_operations pagetypeinfo_op = {
808 .start = frag_start,
809 .next = frag_next,
810 .stop = frag_stop,
811 .show = pagetypeinfo_show,
814 static int pagetypeinfo_open(struct inode *inode, struct file *file)
816 return seq_open(file, &pagetypeinfo_op);
819 static const struct file_operations pagetypeinfo_file_ops = {
820 .open = pagetypeinfo_open,
821 .read = seq_read,
822 .llseek = seq_lseek,
823 .release = seq_release,
826 #ifdef CONFIG_ZONE_DMA
827 #define TEXT_FOR_DMA(xx) xx "_dma",
828 #else
829 #define TEXT_FOR_DMA(xx)
830 #endif
832 #ifdef CONFIG_ZONE_DMA32
833 #define TEXT_FOR_DMA32(xx) xx "_dma32",
834 #else
835 #define TEXT_FOR_DMA32(xx)
836 #endif
838 #ifdef CONFIG_HIGHMEM
839 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
840 #else
841 #define TEXT_FOR_HIGHMEM(xx)
842 #endif
844 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
845 TEXT_FOR_HIGHMEM(xx) xx "_movable",
847 static const char * const vmstat_text[] = {
848 /* Zoned VM counters */
849 "nr_free_pages",
850 "nr_inactive_anon",
851 "nr_active_anon",
852 "nr_inactive_file",
853 "nr_active_file",
854 "nr_unevictable",
855 "nr_mlock",
856 "nr_anon_pages",
857 "nr_mapped",
858 "nr_file_pages",
859 "nr_dirty",
860 "nr_writeback",
861 "nr_slab_reclaimable",
862 "nr_slab_unreclaimable",
863 "nr_page_table_pages",
864 "nr_kernel_stack",
865 "nr_unstable",
866 "nr_bounce",
867 "nr_vmscan_write",
868 "nr_writeback_temp",
869 "nr_isolated_anon",
870 "nr_isolated_file",
871 "nr_shmem",
872 "nr_dirtied",
873 "nr_written",
875 #ifdef CONFIG_NUMA
876 "numa_hit",
877 "numa_miss",
878 "numa_foreign",
879 "numa_interleave",
880 "numa_local",
881 "numa_other",
882 #endif
883 "nr_anon_transparent_hugepages",
884 "nr_dirty_threshold",
885 "nr_dirty_background_threshold",
887 #ifdef CONFIG_VM_EVENT_COUNTERS
888 "pgpgin",
889 "pgpgout",
890 "pswpin",
891 "pswpout",
893 TEXTS_FOR_ZONES("pgalloc")
895 "pgfree",
896 "pgactivate",
897 "pgdeactivate",
899 "pgfault",
900 "pgmajfault",
902 TEXTS_FOR_ZONES("pgrefill")
903 TEXTS_FOR_ZONES("pgsteal")
904 TEXTS_FOR_ZONES("pgscan_kswapd")
905 TEXTS_FOR_ZONES("pgscan_direct")
907 #ifdef CONFIG_NUMA
908 "zone_reclaim_failed",
909 #endif
910 "pginodesteal",
911 "slabs_scanned",
912 "kswapd_steal",
913 "kswapd_inodesteal",
914 "kswapd_low_wmark_hit_quickly",
915 "kswapd_high_wmark_hit_quickly",
916 "kswapd_skip_congestion_wait",
917 "pageoutrun",
918 "allocstall",
920 "pgrotated",
922 #ifdef CONFIG_COMPACTION
923 "compact_blocks_moved",
924 "compact_pages_moved",
925 "compact_pagemigrate_failed",
926 "compact_stall",
927 "compact_fail",
928 "compact_success",
929 #endif
931 #ifdef CONFIG_HUGETLB_PAGE
932 "htlb_buddy_alloc_success",
933 "htlb_buddy_alloc_fail",
934 #endif
935 "unevictable_pgs_culled",
936 "unevictable_pgs_scanned",
937 "unevictable_pgs_rescued",
938 "unevictable_pgs_mlocked",
939 "unevictable_pgs_munlocked",
940 "unevictable_pgs_cleared",
941 "unevictable_pgs_stranded",
942 "unevictable_pgs_mlockfreed",
943 #endif
946 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
947 struct zone *zone)
949 int i;
950 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
951 seq_printf(m,
952 "\n pages free %lu"
953 "\n min %lu"
954 "\n low %lu"
955 "\n high %lu"
956 "\n scanned %lu"
957 "\n spanned %lu"
958 "\n present %lu",
959 zone_page_state(zone, NR_FREE_PAGES),
960 min_wmark_pages(zone),
961 low_wmark_pages(zone),
962 high_wmark_pages(zone),
963 zone->pages_scanned,
964 zone->spanned_pages,
965 zone->present_pages);
967 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
968 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
969 zone_page_state(zone, i));
971 seq_printf(m,
972 "\n protection: (%lu",
973 zone->lowmem_reserve[0]);
974 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
975 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
976 seq_printf(m,
978 "\n pagesets");
979 for_each_online_cpu(i) {
980 struct per_cpu_pageset *pageset;
982 pageset = per_cpu_ptr(zone->pageset, i);
983 seq_printf(m,
984 "\n cpu: %i"
985 "\n count: %i"
986 "\n high: %i"
987 "\n batch: %i",
989 pageset->pcp.count,
990 pageset->pcp.high,
991 pageset->pcp.batch);
992 #ifdef CONFIG_SMP
993 seq_printf(m, "\n vm stats threshold: %d",
994 pageset->stat_threshold);
995 #endif
997 seq_printf(m,
998 "\n all_unreclaimable: %u"
999 "\n start_pfn: %lu"
1000 "\n inactive_ratio: %u",
1001 zone->all_unreclaimable,
1002 zone->zone_start_pfn,
1003 zone->inactive_ratio);
1004 seq_putc(m, '\n');
1008 * Output information about zones in @pgdat.
1010 static int zoneinfo_show(struct seq_file *m, void *arg)
1012 pg_data_t *pgdat = (pg_data_t *)arg;
1013 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1014 return 0;
1017 static const struct seq_operations zoneinfo_op = {
1018 .start = frag_start, /* iterate over all zones. The same as in
1019 * fragmentation. */
1020 .next = frag_next,
1021 .stop = frag_stop,
1022 .show = zoneinfo_show,
1025 static int zoneinfo_open(struct inode *inode, struct file *file)
1027 return seq_open(file, &zoneinfo_op);
1030 static const struct file_operations proc_zoneinfo_file_operations = {
1031 .open = zoneinfo_open,
1032 .read = seq_read,
1033 .llseek = seq_lseek,
1034 .release = seq_release,
1037 enum writeback_stat_item {
1038 NR_DIRTY_THRESHOLD,
1039 NR_DIRTY_BG_THRESHOLD,
1040 NR_VM_WRITEBACK_STAT_ITEMS,
1043 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1045 unsigned long *v;
1046 int i, stat_items_size;
1048 if (*pos >= ARRAY_SIZE(vmstat_text))
1049 return NULL;
1050 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1051 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1053 #ifdef CONFIG_VM_EVENT_COUNTERS
1054 stat_items_size += sizeof(struct vm_event_state);
1055 #endif
1057 v = kmalloc(stat_items_size, GFP_KERNEL);
1058 m->private = v;
1059 if (!v)
1060 return ERR_PTR(-ENOMEM);
1061 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1062 v[i] = global_page_state(i);
1063 v += NR_VM_ZONE_STAT_ITEMS;
1065 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1066 v + NR_DIRTY_THRESHOLD);
1067 v += NR_VM_WRITEBACK_STAT_ITEMS;
1069 #ifdef CONFIG_VM_EVENT_COUNTERS
1070 all_vm_events(v);
1071 v[PGPGIN] /= 2; /* sectors -> kbytes */
1072 v[PGPGOUT] /= 2;
1073 #endif
1074 return (unsigned long *)m->private + *pos;
1077 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1079 (*pos)++;
1080 if (*pos >= ARRAY_SIZE(vmstat_text))
1081 return NULL;
1082 return (unsigned long *)m->private + *pos;
1085 static int vmstat_show(struct seq_file *m, void *arg)
1087 unsigned long *l = arg;
1088 unsigned long off = l - (unsigned long *)m->private;
1090 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1091 return 0;
1094 static void vmstat_stop(struct seq_file *m, void *arg)
1096 kfree(m->private);
1097 m->private = NULL;
1100 static const struct seq_operations vmstat_op = {
1101 .start = vmstat_start,
1102 .next = vmstat_next,
1103 .stop = vmstat_stop,
1104 .show = vmstat_show,
1107 static int vmstat_open(struct inode *inode, struct file *file)
1109 return seq_open(file, &vmstat_op);
1112 static const struct file_operations proc_vmstat_file_operations = {
1113 .open = vmstat_open,
1114 .read = seq_read,
1115 .llseek = seq_lseek,
1116 .release = seq_release,
1118 #endif /* CONFIG_PROC_FS */
1120 #ifdef CONFIG_SMP
1121 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1122 int sysctl_stat_interval __read_mostly = HZ;
1124 static void vmstat_update(struct work_struct *w)
1126 refresh_cpu_vm_stats(smp_processor_id());
1127 schedule_delayed_work(&__get_cpu_var(vmstat_work),
1128 round_jiffies_relative(sysctl_stat_interval));
1131 static void __cpuinit start_cpu_timer(int cpu)
1133 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1135 INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
1136 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1140 * Use the cpu notifier to insure that the thresholds are recalculated
1141 * when necessary.
1143 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1144 unsigned long action,
1145 void *hcpu)
1147 long cpu = (long)hcpu;
1149 switch (action) {
1150 case CPU_ONLINE:
1151 case CPU_ONLINE_FROZEN:
1152 refresh_zone_stat_thresholds();
1153 start_cpu_timer(cpu);
1154 node_set_state(cpu_to_node(cpu), N_CPU);
1155 break;
1156 case CPU_DOWN_PREPARE:
1157 case CPU_DOWN_PREPARE_FROZEN:
1158 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1159 per_cpu(vmstat_work, cpu).work.func = NULL;
1160 break;
1161 case CPU_DOWN_FAILED:
1162 case CPU_DOWN_FAILED_FROZEN:
1163 start_cpu_timer(cpu);
1164 break;
1165 case CPU_DEAD:
1166 case CPU_DEAD_FROZEN:
1167 refresh_zone_stat_thresholds();
1168 break;
1169 default:
1170 break;
1172 return NOTIFY_OK;
1175 static struct notifier_block __cpuinitdata vmstat_notifier =
1176 { &vmstat_cpuup_callback, NULL, 0 };
1177 #endif
1179 static int __init setup_vmstat(void)
1181 #ifdef CONFIG_SMP
1182 int cpu;
1184 refresh_zone_stat_thresholds();
1185 register_cpu_notifier(&vmstat_notifier);
1187 for_each_online_cpu(cpu)
1188 start_cpu_timer(cpu);
1189 #endif
1190 #ifdef CONFIG_PROC_FS
1191 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1192 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1193 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1194 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1195 #endif
1196 return 0;
1198 module_init(setup_vmstat)
1200 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1201 #include <linux/debugfs.h>
1203 static struct dentry *extfrag_debug_root;
1206 * Return an index indicating how much of the available free memory is
1207 * unusable for an allocation of the requested size.
1209 static int unusable_free_index(unsigned int order,
1210 struct contig_page_info *info)
1212 /* No free memory is interpreted as all free memory is unusable */
1213 if (info->free_pages == 0)
1214 return 1000;
1217 * Index should be a value between 0 and 1. Return a value to 3
1218 * decimal places.
1220 * 0 => no fragmentation
1221 * 1 => high fragmentation
1223 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1227 static void unusable_show_print(struct seq_file *m,
1228 pg_data_t *pgdat, struct zone *zone)
1230 unsigned int order;
1231 int index;
1232 struct contig_page_info info;
1234 seq_printf(m, "Node %d, zone %8s ",
1235 pgdat->node_id,
1236 zone->name);
1237 for (order = 0; order < MAX_ORDER; ++order) {
1238 fill_contig_page_info(zone, order, &info);
1239 index = unusable_free_index(order, &info);
1240 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1243 seq_putc(m, '\n');
1247 * Display unusable free space index
1249 * The unusable free space index measures how much of the available free
1250 * memory cannot be used to satisfy an allocation of a given size and is a
1251 * value between 0 and 1. The higher the value, the more of free memory is
1252 * unusable and by implication, the worse the external fragmentation is. This
1253 * can be expressed as a percentage by multiplying by 100.
1255 static int unusable_show(struct seq_file *m, void *arg)
1257 pg_data_t *pgdat = (pg_data_t *)arg;
1259 /* check memoryless node */
1260 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1261 return 0;
1263 walk_zones_in_node(m, pgdat, unusable_show_print);
1265 return 0;
1268 static const struct seq_operations unusable_op = {
1269 .start = frag_start,
1270 .next = frag_next,
1271 .stop = frag_stop,
1272 .show = unusable_show,
1275 static int unusable_open(struct inode *inode, struct file *file)
1277 return seq_open(file, &unusable_op);
1280 static const struct file_operations unusable_file_ops = {
1281 .open = unusable_open,
1282 .read = seq_read,
1283 .llseek = seq_lseek,
1284 .release = seq_release,
1287 static void extfrag_show_print(struct seq_file *m,
1288 pg_data_t *pgdat, struct zone *zone)
1290 unsigned int order;
1291 int index;
1293 /* Alloc on stack as interrupts are disabled for zone walk */
1294 struct contig_page_info info;
1296 seq_printf(m, "Node %d, zone %8s ",
1297 pgdat->node_id,
1298 zone->name);
1299 for (order = 0; order < MAX_ORDER; ++order) {
1300 fill_contig_page_info(zone, order, &info);
1301 index = __fragmentation_index(order, &info);
1302 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1305 seq_putc(m, '\n');
1309 * Display fragmentation index for orders that allocations would fail for
1311 static int extfrag_show(struct seq_file *m, void *arg)
1313 pg_data_t *pgdat = (pg_data_t *)arg;
1315 walk_zones_in_node(m, pgdat, extfrag_show_print);
1317 return 0;
1320 static const struct seq_operations extfrag_op = {
1321 .start = frag_start,
1322 .next = frag_next,
1323 .stop = frag_stop,
1324 .show = extfrag_show,
1327 static int extfrag_open(struct inode *inode, struct file *file)
1329 return seq_open(file, &extfrag_op);
1332 static const struct file_operations extfrag_file_ops = {
1333 .open = extfrag_open,
1334 .read = seq_read,
1335 .llseek = seq_lseek,
1336 .release = seq_release,
1339 static int __init extfrag_debug_init(void)
1341 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1342 if (!extfrag_debug_root)
1343 return -ENOMEM;
1345 if (!debugfs_create_file("unusable_index", 0444,
1346 extfrag_debug_root, NULL, &unusable_file_ops))
1347 return -ENOMEM;
1349 if (!debugfs_create_file("extfrag_index", 0444,
1350 extfrag_debug_root, NULL, &extfrag_file_ops))
1351 return -ENOMEM;
1353 return 0;
1356 module_init(extfrag_debug_init);
1357 #endif