ACPI: thinkpad-acpi: add development version tag
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / shmem.c
blob91dd9c3efe871107b5f64587230ac46859fa0983
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 * This file is released under the GPL.
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/percpu_counter.h>
32 #include <linux/swap.h>
34 static struct vfsmount *shm_mnt;
36 #ifdef CONFIG_SHMEM
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
86 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
89 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN VM_READ
94 #define SHMEM_TRUNCATE VM_WRITE
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT 64
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
102 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
103 enum sgp_type {
104 SGP_READ, /* don't exceed i_size, don't allocate page */
105 SGP_CACHE, /* don't exceed i_size, may allocate page */
106 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
107 SGP_WRITE, /* may exceed i_size, may allocate page */
110 #ifdef CONFIG_TMPFS
111 static unsigned long shmem_default_max_blocks(void)
113 return totalram_pages / 2;
116 static unsigned long shmem_default_max_inodes(void)
118 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
120 #endif
122 static int shmem_getpage(struct inode *inode, unsigned long idx,
123 struct page **pagep, enum sgp_type sgp, int *type);
125 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
128 * The above definition of ENTRIES_PER_PAGE, and the use of
129 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
130 * might be reconsidered if it ever diverges from PAGE_SIZE.
132 * Mobility flags are masked out as swap vectors cannot move
134 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
135 PAGE_CACHE_SHIFT-PAGE_SHIFT);
138 static inline void shmem_dir_free(struct page *page)
140 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
143 static struct page **shmem_dir_map(struct page *page)
145 return (struct page **)kmap_atomic(page, KM_USER0);
148 static inline void shmem_dir_unmap(struct page **dir)
150 kunmap_atomic(dir, KM_USER0);
153 static swp_entry_t *shmem_swp_map(struct page *page)
155 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
158 static inline void shmem_swp_balance_unmap(void)
161 * When passing a pointer to an i_direct entry, to code which
162 * also handles indirect entries and so will shmem_swp_unmap,
163 * we must arrange for the preempt count to remain in balance.
164 * What kmap_atomic of a lowmem page does depends on config
165 * and architecture, so pretend to kmap_atomic some lowmem page.
167 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
170 static inline void shmem_swp_unmap(swp_entry_t *entry)
172 kunmap_atomic(entry, KM_USER1);
175 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
177 return sb->s_fs_info;
181 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
182 * for shared memory and for shared anonymous (/dev/zero) mappings
183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
184 * consistent with the pre-accounting of private mappings ...
186 static inline int shmem_acct_size(unsigned long flags, loff_t size)
188 return (flags & VM_NORESERVE) ?
189 0 : security_vm_enough_memory_kern(VM_ACCT(size));
192 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
194 if (!(flags & VM_NORESERVE))
195 vm_unacct_memory(VM_ACCT(size));
199 * ... whereas tmpfs objects are accounted incrementally as
200 * pages are allocated, in order to allow huge sparse files.
201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
204 static inline int shmem_acct_block(unsigned long flags)
206 return (flags & VM_NORESERVE) ?
207 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
212 if (flags & VM_NORESERVE)
213 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
216 static const struct super_operations shmem_ops;
217 static const struct address_space_operations shmem_aops;
218 static const struct file_operations shmem_file_operations;
219 static const struct inode_operations shmem_inode_operations;
220 static const struct inode_operations shmem_dir_inode_operations;
221 static const struct inode_operations shmem_special_inode_operations;
222 static const struct vm_operations_struct shmem_vm_ops;
224 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
225 .ra_pages = 0, /* No readahead */
226 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
227 .unplug_io_fn = default_unplug_io_fn,
230 static LIST_HEAD(shmem_swaplist);
231 static DEFINE_MUTEX(shmem_swaplist_mutex);
233 static void shmem_free_blocks(struct inode *inode, long pages)
235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236 if (sbinfo->max_blocks) {
237 percpu_counter_add(&sbinfo->used_blocks, -pages);
238 spin_lock(&inode->i_lock);
239 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
240 spin_unlock(&inode->i_lock);
244 static int shmem_reserve_inode(struct super_block *sb)
246 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
247 if (sbinfo->max_inodes) {
248 spin_lock(&sbinfo->stat_lock);
249 if (!sbinfo->free_inodes) {
250 spin_unlock(&sbinfo->stat_lock);
251 return -ENOSPC;
253 sbinfo->free_inodes--;
254 spin_unlock(&sbinfo->stat_lock);
256 return 0;
259 static void shmem_free_inode(struct super_block *sb)
261 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
262 if (sbinfo->max_inodes) {
263 spin_lock(&sbinfo->stat_lock);
264 sbinfo->free_inodes++;
265 spin_unlock(&sbinfo->stat_lock);
270 * shmem_recalc_inode - recalculate the size of an inode
271 * @inode: inode to recalc
273 * We have to calculate the free blocks since the mm can drop
274 * undirtied hole pages behind our back.
276 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
277 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
279 * It has to be called with the spinlock held.
281 static void shmem_recalc_inode(struct inode *inode)
283 struct shmem_inode_info *info = SHMEM_I(inode);
284 long freed;
286 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
287 if (freed > 0) {
288 info->alloced -= freed;
289 shmem_unacct_blocks(info->flags, freed);
290 shmem_free_blocks(inode, freed);
295 * shmem_swp_entry - find the swap vector position in the info structure
296 * @info: info structure for the inode
297 * @index: index of the page to find
298 * @page: optional page to add to the structure. Has to be preset to
299 * all zeros
301 * If there is no space allocated yet it will return NULL when
302 * page is NULL, else it will use the page for the needed block,
303 * setting it to NULL on return to indicate that it has been used.
305 * The swap vector is organized the following way:
307 * There are SHMEM_NR_DIRECT entries directly stored in the
308 * shmem_inode_info structure. So small files do not need an addional
309 * allocation.
311 * For pages with index > SHMEM_NR_DIRECT there is the pointer
312 * i_indirect which points to a page which holds in the first half
313 * doubly indirect blocks, in the second half triple indirect blocks:
315 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
316 * following layout (for SHMEM_NR_DIRECT == 16):
318 * i_indirect -> dir --> 16-19
319 * | +-> 20-23
321 * +-->dir2 --> 24-27
322 * | +-> 28-31
323 * | +-> 32-35
324 * | +-> 36-39
326 * +-->dir3 --> 40-43
327 * +-> 44-47
328 * +-> 48-51
329 * +-> 52-55
331 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
333 unsigned long offset;
334 struct page **dir;
335 struct page *subdir;
337 if (index < SHMEM_NR_DIRECT) {
338 shmem_swp_balance_unmap();
339 return info->i_direct+index;
341 if (!info->i_indirect) {
342 if (page) {
343 info->i_indirect = *page;
344 *page = NULL;
346 return NULL; /* need another page */
349 index -= SHMEM_NR_DIRECT;
350 offset = index % ENTRIES_PER_PAGE;
351 index /= ENTRIES_PER_PAGE;
352 dir = shmem_dir_map(info->i_indirect);
354 if (index >= ENTRIES_PER_PAGE/2) {
355 index -= ENTRIES_PER_PAGE/2;
356 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
357 index %= ENTRIES_PER_PAGE;
358 subdir = *dir;
359 if (!subdir) {
360 if (page) {
361 *dir = *page;
362 *page = NULL;
364 shmem_dir_unmap(dir);
365 return NULL; /* need another page */
367 shmem_dir_unmap(dir);
368 dir = shmem_dir_map(subdir);
371 dir += index;
372 subdir = *dir;
373 if (!subdir) {
374 if (!page || !(subdir = *page)) {
375 shmem_dir_unmap(dir);
376 return NULL; /* need a page */
378 *dir = subdir;
379 *page = NULL;
381 shmem_dir_unmap(dir);
382 return shmem_swp_map(subdir) + offset;
385 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
387 long incdec = value? 1: -1;
389 entry->val = value;
390 info->swapped += incdec;
391 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
392 struct page *page = kmap_atomic_to_page(entry);
393 set_page_private(page, page_private(page) + incdec);
398 * shmem_swp_alloc - get the position of the swap entry for the page.
399 * @info: info structure for the inode
400 * @index: index of the page to find
401 * @sgp: check and recheck i_size? skip allocation?
403 * If the entry does not exist, allocate it.
405 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
407 struct inode *inode = &info->vfs_inode;
408 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
409 struct page *page = NULL;
410 swp_entry_t *entry;
412 if (sgp != SGP_WRITE &&
413 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
414 return ERR_PTR(-EINVAL);
416 while (!(entry = shmem_swp_entry(info, index, &page))) {
417 if (sgp == SGP_READ)
418 return shmem_swp_map(ZERO_PAGE(0));
420 * Test used_blocks against 1 less max_blocks, since we have 1 data
421 * page (and perhaps indirect index pages) yet to allocate:
422 * a waste to allocate index if we cannot allocate data.
424 if (sbinfo->max_blocks) {
425 if (percpu_counter_compare(&sbinfo->used_blocks,
426 sbinfo->max_blocks - 1) >= 0)
427 return ERR_PTR(-ENOSPC);
428 percpu_counter_inc(&sbinfo->used_blocks);
429 spin_lock(&inode->i_lock);
430 inode->i_blocks += BLOCKS_PER_PAGE;
431 spin_unlock(&inode->i_lock);
434 spin_unlock(&info->lock);
435 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
436 spin_lock(&info->lock);
438 if (!page) {
439 shmem_free_blocks(inode, 1);
440 return ERR_PTR(-ENOMEM);
442 if (sgp != SGP_WRITE &&
443 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
444 entry = ERR_PTR(-EINVAL);
445 break;
447 if (info->next_index <= index)
448 info->next_index = index + 1;
450 if (page) {
451 /* another task gave its page, or truncated the file */
452 shmem_free_blocks(inode, 1);
453 shmem_dir_free(page);
455 if (info->next_index <= index && !IS_ERR(entry))
456 info->next_index = index + 1;
457 return entry;
461 * shmem_free_swp - free some swap entries in a directory
462 * @dir: pointer to the directory
463 * @edir: pointer after last entry of the directory
464 * @punch_lock: pointer to spinlock when needed for the holepunch case
466 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
467 spinlock_t *punch_lock)
469 spinlock_t *punch_unlock = NULL;
470 swp_entry_t *ptr;
471 int freed = 0;
473 for (ptr = dir; ptr < edir; ptr++) {
474 if (ptr->val) {
475 if (unlikely(punch_lock)) {
476 punch_unlock = punch_lock;
477 punch_lock = NULL;
478 spin_lock(punch_unlock);
479 if (!ptr->val)
480 continue;
482 free_swap_and_cache(*ptr);
483 *ptr = (swp_entry_t){0};
484 freed++;
487 if (punch_unlock)
488 spin_unlock(punch_unlock);
489 return freed;
492 static int shmem_map_and_free_swp(struct page *subdir, int offset,
493 int limit, struct page ***dir, spinlock_t *punch_lock)
495 swp_entry_t *ptr;
496 int freed = 0;
498 ptr = shmem_swp_map(subdir);
499 for (; offset < limit; offset += LATENCY_LIMIT) {
500 int size = limit - offset;
501 if (size > LATENCY_LIMIT)
502 size = LATENCY_LIMIT;
503 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
504 punch_lock);
505 if (need_resched()) {
506 shmem_swp_unmap(ptr);
507 if (*dir) {
508 shmem_dir_unmap(*dir);
509 *dir = NULL;
511 cond_resched();
512 ptr = shmem_swp_map(subdir);
515 shmem_swp_unmap(ptr);
516 return freed;
519 static void shmem_free_pages(struct list_head *next)
521 struct page *page;
522 int freed = 0;
524 do {
525 page = container_of(next, struct page, lru);
526 next = next->next;
527 shmem_dir_free(page);
528 freed++;
529 if (freed >= LATENCY_LIMIT) {
530 cond_resched();
531 freed = 0;
533 } while (next);
536 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
538 struct shmem_inode_info *info = SHMEM_I(inode);
539 unsigned long idx;
540 unsigned long size;
541 unsigned long limit;
542 unsigned long stage;
543 unsigned long diroff;
544 struct page **dir;
545 struct page *topdir;
546 struct page *middir;
547 struct page *subdir;
548 swp_entry_t *ptr;
549 LIST_HEAD(pages_to_free);
550 long nr_pages_to_free = 0;
551 long nr_swaps_freed = 0;
552 int offset;
553 int freed;
554 int punch_hole;
555 spinlock_t *needs_lock;
556 spinlock_t *punch_lock;
557 unsigned long upper_limit;
559 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
560 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
561 if (idx >= info->next_index)
562 return;
564 spin_lock(&info->lock);
565 info->flags |= SHMEM_TRUNCATE;
566 if (likely(end == (loff_t) -1)) {
567 limit = info->next_index;
568 upper_limit = SHMEM_MAX_INDEX;
569 info->next_index = idx;
570 needs_lock = NULL;
571 punch_hole = 0;
572 } else {
573 if (end + 1 >= inode->i_size) { /* we may free a little more */
574 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
575 PAGE_CACHE_SHIFT;
576 upper_limit = SHMEM_MAX_INDEX;
577 } else {
578 limit = (end + 1) >> PAGE_CACHE_SHIFT;
579 upper_limit = limit;
581 needs_lock = &info->lock;
582 punch_hole = 1;
585 topdir = info->i_indirect;
586 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
587 info->i_indirect = NULL;
588 nr_pages_to_free++;
589 list_add(&topdir->lru, &pages_to_free);
591 spin_unlock(&info->lock);
593 if (info->swapped && idx < SHMEM_NR_DIRECT) {
594 ptr = info->i_direct;
595 size = limit;
596 if (size > SHMEM_NR_DIRECT)
597 size = SHMEM_NR_DIRECT;
598 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
602 * If there are no indirect blocks or we are punching a hole
603 * below indirect blocks, nothing to be done.
605 if (!topdir || limit <= SHMEM_NR_DIRECT)
606 goto done2;
609 * The truncation case has already dropped info->lock, and we're safe
610 * because i_size and next_index have already been lowered, preventing
611 * access beyond. But in the punch_hole case, we still need to take
612 * the lock when updating the swap directory, because there might be
613 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
614 * shmem_writepage. However, whenever we find we can remove a whole
615 * directory page (not at the misaligned start or end of the range),
616 * we first NULLify its pointer in the level above, and then have no
617 * need to take the lock when updating its contents: needs_lock and
618 * punch_lock (either pointing to info->lock or NULL) manage this.
621 upper_limit -= SHMEM_NR_DIRECT;
622 limit -= SHMEM_NR_DIRECT;
623 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
624 offset = idx % ENTRIES_PER_PAGE;
625 idx -= offset;
627 dir = shmem_dir_map(topdir);
628 stage = ENTRIES_PER_PAGEPAGE/2;
629 if (idx < ENTRIES_PER_PAGEPAGE/2) {
630 middir = topdir;
631 diroff = idx/ENTRIES_PER_PAGE;
632 } else {
633 dir += ENTRIES_PER_PAGE/2;
634 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
635 while (stage <= idx)
636 stage += ENTRIES_PER_PAGEPAGE;
637 middir = *dir;
638 if (*dir) {
639 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
640 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
641 if (!diroff && !offset && upper_limit >= stage) {
642 if (needs_lock) {
643 spin_lock(needs_lock);
644 *dir = NULL;
645 spin_unlock(needs_lock);
646 needs_lock = NULL;
647 } else
648 *dir = NULL;
649 nr_pages_to_free++;
650 list_add(&middir->lru, &pages_to_free);
652 shmem_dir_unmap(dir);
653 dir = shmem_dir_map(middir);
654 } else {
655 diroff = 0;
656 offset = 0;
657 idx = stage;
661 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
662 if (unlikely(idx == stage)) {
663 shmem_dir_unmap(dir);
664 dir = shmem_dir_map(topdir) +
665 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
666 while (!*dir) {
667 dir++;
668 idx += ENTRIES_PER_PAGEPAGE;
669 if (idx >= limit)
670 goto done1;
672 stage = idx + ENTRIES_PER_PAGEPAGE;
673 middir = *dir;
674 if (punch_hole)
675 needs_lock = &info->lock;
676 if (upper_limit >= stage) {
677 if (needs_lock) {
678 spin_lock(needs_lock);
679 *dir = NULL;
680 spin_unlock(needs_lock);
681 needs_lock = NULL;
682 } else
683 *dir = NULL;
684 nr_pages_to_free++;
685 list_add(&middir->lru, &pages_to_free);
687 shmem_dir_unmap(dir);
688 cond_resched();
689 dir = shmem_dir_map(middir);
690 diroff = 0;
692 punch_lock = needs_lock;
693 subdir = dir[diroff];
694 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
695 if (needs_lock) {
696 spin_lock(needs_lock);
697 dir[diroff] = NULL;
698 spin_unlock(needs_lock);
699 punch_lock = NULL;
700 } else
701 dir[diroff] = NULL;
702 nr_pages_to_free++;
703 list_add(&subdir->lru, &pages_to_free);
705 if (subdir && page_private(subdir) /* has swap entries */) {
706 size = limit - idx;
707 if (size > ENTRIES_PER_PAGE)
708 size = ENTRIES_PER_PAGE;
709 freed = shmem_map_and_free_swp(subdir,
710 offset, size, &dir, punch_lock);
711 if (!dir)
712 dir = shmem_dir_map(middir);
713 nr_swaps_freed += freed;
714 if (offset || punch_lock) {
715 spin_lock(&info->lock);
716 set_page_private(subdir,
717 page_private(subdir) - freed);
718 spin_unlock(&info->lock);
719 } else
720 BUG_ON(page_private(subdir) != freed);
722 offset = 0;
724 done1:
725 shmem_dir_unmap(dir);
726 done2:
727 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
729 * Call truncate_inode_pages again: racing shmem_unuse_inode
730 * may have swizzled a page in from swap since
731 * truncate_pagecache or generic_delete_inode did it, before we
732 * lowered next_index. Also, though shmem_getpage checks
733 * i_size before adding to cache, no recheck after: so fix the
734 * narrow window there too.
736 * Recalling truncate_inode_pages_range and unmap_mapping_range
737 * every time for punch_hole (which never got a chance to clear
738 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
739 * yet hardly ever necessary: try to optimize them out later.
741 truncate_inode_pages_range(inode->i_mapping, start, end);
742 if (punch_hole)
743 unmap_mapping_range(inode->i_mapping, start,
744 end - start, 1);
747 spin_lock(&info->lock);
748 info->flags &= ~SHMEM_TRUNCATE;
749 info->swapped -= nr_swaps_freed;
750 if (nr_pages_to_free)
751 shmem_free_blocks(inode, nr_pages_to_free);
752 shmem_recalc_inode(inode);
753 spin_unlock(&info->lock);
756 * Empty swap vector directory pages to be freed?
758 if (!list_empty(&pages_to_free)) {
759 pages_to_free.prev->next = NULL;
760 shmem_free_pages(pages_to_free.next);
764 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
766 struct inode *inode = dentry->d_inode;
767 loff_t newsize = attr->ia_size;
768 int error;
770 error = inode_change_ok(inode, attr);
771 if (error)
772 return error;
774 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
775 && newsize != inode->i_size) {
776 struct page *page = NULL;
778 if (newsize < inode->i_size) {
780 * If truncating down to a partial page, then
781 * if that page is already allocated, hold it
782 * in memory until the truncation is over, so
783 * truncate_partial_page cannnot miss it were
784 * it assigned to swap.
786 if (newsize & (PAGE_CACHE_SIZE-1)) {
787 (void) shmem_getpage(inode,
788 newsize >> PAGE_CACHE_SHIFT,
789 &page, SGP_READ, NULL);
790 if (page)
791 unlock_page(page);
794 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
795 * detect if any pages might have been added to cache
796 * after truncate_inode_pages. But we needn't bother
797 * if it's being fully truncated to zero-length: the
798 * nrpages check is efficient enough in that case.
800 if (newsize) {
801 struct shmem_inode_info *info = SHMEM_I(inode);
802 spin_lock(&info->lock);
803 info->flags &= ~SHMEM_PAGEIN;
804 spin_unlock(&info->lock);
808 /* XXX(truncate): truncate_setsize should be called last */
809 truncate_setsize(inode, newsize);
810 if (page)
811 page_cache_release(page);
812 shmem_truncate_range(inode, newsize, (loff_t)-1);
815 setattr_copy(inode, attr);
816 #ifdef CONFIG_TMPFS_POSIX_ACL
817 if (attr->ia_valid & ATTR_MODE)
818 error = generic_acl_chmod(inode);
819 #endif
820 return error;
823 static void shmem_evict_inode(struct inode *inode)
825 struct shmem_inode_info *info = SHMEM_I(inode);
827 if (inode->i_mapping->a_ops == &shmem_aops) {
828 truncate_inode_pages(inode->i_mapping, 0);
829 shmem_unacct_size(info->flags, inode->i_size);
830 inode->i_size = 0;
831 shmem_truncate_range(inode, 0, (loff_t)-1);
832 if (!list_empty(&info->swaplist)) {
833 mutex_lock(&shmem_swaplist_mutex);
834 list_del_init(&info->swaplist);
835 mutex_unlock(&shmem_swaplist_mutex);
838 BUG_ON(inode->i_blocks);
839 shmem_free_inode(inode->i_sb);
840 end_writeback(inode);
843 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
845 swp_entry_t *ptr;
847 for (ptr = dir; ptr < edir; ptr++) {
848 if (ptr->val == entry.val)
849 return ptr - dir;
851 return -1;
854 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
856 struct address_space *mapping;
857 unsigned long idx;
858 unsigned long size;
859 unsigned long limit;
860 unsigned long stage;
861 struct page **dir;
862 struct page *subdir;
863 swp_entry_t *ptr;
864 int offset;
865 int error;
867 idx = 0;
868 ptr = info->i_direct;
869 spin_lock(&info->lock);
870 if (!info->swapped) {
871 list_del_init(&info->swaplist);
872 goto lost2;
874 limit = info->next_index;
875 size = limit;
876 if (size > SHMEM_NR_DIRECT)
877 size = SHMEM_NR_DIRECT;
878 offset = shmem_find_swp(entry, ptr, ptr+size);
879 if (offset >= 0) {
880 shmem_swp_balance_unmap();
881 goto found;
883 if (!info->i_indirect)
884 goto lost2;
886 dir = shmem_dir_map(info->i_indirect);
887 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
889 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
890 if (unlikely(idx == stage)) {
891 shmem_dir_unmap(dir-1);
892 if (cond_resched_lock(&info->lock)) {
893 /* check it has not been truncated */
894 if (limit > info->next_index) {
895 limit = info->next_index;
896 if (idx >= limit)
897 goto lost2;
900 dir = shmem_dir_map(info->i_indirect) +
901 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
902 while (!*dir) {
903 dir++;
904 idx += ENTRIES_PER_PAGEPAGE;
905 if (idx >= limit)
906 goto lost1;
908 stage = idx + ENTRIES_PER_PAGEPAGE;
909 subdir = *dir;
910 shmem_dir_unmap(dir);
911 dir = shmem_dir_map(subdir);
913 subdir = *dir;
914 if (subdir && page_private(subdir)) {
915 ptr = shmem_swp_map(subdir);
916 size = limit - idx;
917 if (size > ENTRIES_PER_PAGE)
918 size = ENTRIES_PER_PAGE;
919 offset = shmem_find_swp(entry, ptr, ptr+size);
920 shmem_swp_unmap(ptr);
921 if (offset >= 0) {
922 shmem_dir_unmap(dir);
923 ptr = shmem_swp_map(subdir);
924 goto found;
928 lost1:
929 shmem_dir_unmap(dir-1);
930 lost2:
931 spin_unlock(&info->lock);
932 return 0;
933 found:
934 idx += offset;
935 ptr += offset;
938 * Move _head_ to start search for next from here.
939 * But be careful: shmem_evict_inode checks list_empty without taking
940 * mutex, and there's an instant in list_move_tail when info->swaplist
941 * would appear empty, if it were the only one on shmem_swaplist. We
942 * could avoid doing it if inode NULL; or use this minor optimization.
944 if (shmem_swaplist.next != &info->swaplist)
945 list_move_tail(&shmem_swaplist, &info->swaplist);
948 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
949 * but also to hold up shmem_evict_inode(): so inode cannot be freed
950 * beneath us (pagelock doesn't help until the page is in pagecache).
952 mapping = info->vfs_inode.i_mapping;
953 error = add_to_page_cache_locked(page, mapping, idx, GFP_NOWAIT);
954 /* which does mem_cgroup_uncharge_cache_page on error */
956 if (error == -EEXIST) {
957 struct page *filepage = find_get_page(mapping, idx);
958 error = 1;
959 if (filepage) {
961 * There might be a more uptodate page coming down
962 * from a stacked writepage: forget our swappage if so.
964 if (PageUptodate(filepage))
965 error = 0;
966 page_cache_release(filepage);
969 if (!error) {
970 delete_from_swap_cache(page);
971 set_page_dirty(page);
972 info->flags |= SHMEM_PAGEIN;
973 shmem_swp_set(info, ptr, 0);
974 swap_free(entry);
975 error = 1; /* not an error, but entry was found */
977 shmem_swp_unmap(ptr);
978 spin_unlock(&info->lock);
979 return error;
983 * shmem_unuse() search for an eventually swapped out shmem page.
985 int shmem_unuse(swp_entry_t entry, struct page *page)
987 struct list_head *p, *next;
988 struct shmem_inode_info *info;
989 int found = 0;
990 int error;
993 * Charge page using GFP_KERNEL while we can wait, before taking
994 * the shmem_swaplist_mutex which might hold up shmem_writepage().
995 * Charged back to the user (not to caller) when swap account is used.
996 * add_to_page_cache() will be called with GFP_NOWAIT.
998 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
999 if (error)
1000 goto out;
1002 * Try to preload while we can wait, to not make a habit of
1003 * draining atomic reserves; but don't latch on to this cpu,
1004 * it's okay if sometimes we get rescheduled after this.
1006 error = radix_tree_preload(GFP_KERNEL);
1007 if (error)
1008 goto uncharge;
1009 radix_tree_preload_end();
1011 mutex_lock(&shmem_swaplist_mutex);
1012 list_for_each_safe(p, next, &shmem_swaplist) {
1013 info = list_entry(p, struct shmem_inode_info, swaplist);
1014 found = shmem_unuse_inode(info, entry, page);
1015 cond_resched();
1016 if (found)
1017 break;
1019 mutex_unlock(&shmem_swaplist_mutex);
1021 uncharge:
1022 if (!found)
1023 mem_cgroup_uncharge_cache_page(page);
1024 if (found < 0)
1025 error = found;
1026 out:
1027 unlock_page(page);
1028 page_cache_release(page);
1029 return error;
1033 * Move the page from the page cache to the swap cache.
1035 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1037 struct shmem_inode_info *info;
1038 swp_entry_t *entry, swap;
1039 struct address_space *mapping;
1040 unsigned long index;
1041 struct inode *inode;
1043 BUG_ON(!PageLocked(page));
1044 mapping = page->mapping;
1045 index = page->index;
1046 inode = mapping->host;
1047 info = SHMEM_I(inode);
1048 if (info->flags & VM_LOCKED)
1049 goto redirty;
1050 if (!total_swap_pages)
1051 goto redirty;
1054 * shmem_backing_dev_info's capabilities prevent regular writeback or
1055 * sync from ever calling shmem_writepage; but a stacking filesystem
1056 * may use the ->writepage of its underlying filesystem, in which case
1057 * tmpfs should write out to swap only in response to memory pressure,
1058 * and not for the writeback threads or sync. However, in those cases,
1059 * we do still want to check if there's a redundant swappage to be
1060 * discarded.
1062 if (wbc->for_reclaim)
1063 swap = get_swap_page();
1064 else
1065 swap.val = 0;
1068 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1069 * if it's not already there. Do it now because we cannot take
1070 * mutex while holding spinlock, and must do so before the page
1071 * is moved to swap cache, when its pagelock no longer protects
1072 * the inode from eviction. But don't unlock the mutex until
1073 * we've taken the spinlock, because shmem_unuse_inode() will
1074 * prune a !swapped inode from the swaplist under both locks.
1076 if (swap.val) {
1077 mutex_lock(&shmem_swaplist_mutex);
1078 if (list_empty(&info->swaplist))
1079 list_add_tail(&info->swaplist, &shmem_swaplist);
1082 spin_lock(&info->lock);
1083 if (swap.val)
1084 mutex_unlock(&shmem_swaplist_mutex);
1086 if (index >= info->next_index) {
1087 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1088 goto unlock;
1090 entry = shmem_swp_entry(info, index, NULL);
1091 if (entry->val) {
1093 * The more uptodate page coming down from a stacked
1094 * writepage should replace our old swappage.
1096 free_swap_and_cache(*entry);
1097 shmem_swp_set(info, entry, 0);
1099 shmem_recalc_inode(inode);
1101 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1102 remove_from_page_cache(page);
1103 shmem_swp_set(info, entry, swap.val);
1104 shmem_swp_unmap(entry);
1105 swap_shmem_alloc(swap);
1106 spin_unlock(&info->lock);
1107 BUG_ON(page_mapped(page));
1108 page_cache_release(page); /* pagecache ref */
1109 swap_writepage(page, wbc);
1110 return 0;
1113 shmem_swp_unmap(entry);
1114 unlock:
1115 spin_unlock(&info->lock);
1117 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1118 * clear SWAP_HAS_CACHE flag.
1120 swapcache_free(swap, NULL);
1121 redirty:
1122 set_page_dirty(page);
1123 if (wbc->for_reclaim)
1124 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1125 unlock_page(page);
1126 return 0;
1129 #ifdef CONFIG_NUMA
1130 #ifdef CONFIG_TMPFS
1131 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1133 char buffer[64];
1135 if (!mpol || mpol->mode == MPOL_DEFAULT)
1136 return; /* show nothing */
1138 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1140 seq_printf(seq, ",mpol=%s", buffer);
1143 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1145 struct mempolicy *mpol = NULL;
1146 if (sbinfo->mpol) {
1147 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1148 mpol = sbinfo->mpol;
1149 mpol_get(mpol);
1150 spin_unlock(&sbinfo->stat_lock);
1152 return mpol;
1154 #endif /* CONFIG_TMPFS */
1156 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1157 struct shmem_inode_info *info, unsigned long idx)
1159 struct mempolicy mpol, *spol;
1160 struct vm_area_struct pvma;
1161 struct page *page;
1163 spol = mpol_cond_copy(&mpol,
1164 mpol_shared_policy_lookup(&info->policy, idx));
1166 /* Create a pseudo vma that just contains the policy */
1167 pvma.vm_start = 0;
1168 pvma.vm_pgoff = idx;
1169 pvma.vm_ops = NULL;
1170 pvma.vm_policy = spol;
1171 page = swapin_readahead(entry, gfp, &pvma, 0);
1172 return page;
1175 static struct page *shmem_alloc_page(gfp_t gfp,
1176 struct shmem_inode_info *info, unsigned long idx)
1178 struct vm_area_struct pvma;
1180 /* Create a pseudo vma that just contains the policy */
1181 pvma.vm_start = 0;
1182 pvma.vm_pgoff = idx;
1183 pvma.vm_ops = NULL;
1184 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1187 * alloc_page_vma() will drop the shared policy reference
1189 return alloc_page_vma(gfp, &pvma, 0);
1191 #else /* !CONFIG_NUMA */
1192 #ifdef CONFIG_TMPFS
1193 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1196 #endif /* CONFIG_TMPFS */
1198 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1199 struct shmem_inode_info *info, unsigned long idx)
1201 return swapin_readahead(entry, gfp, NULL, 0);
1204 static inline struct page *shmem_alloc_page(gfp_t gfp,
1205 struct shmem_inode_info *info, unsigned long idx)
1207 return alloc_page(gfp);
1209 #endif /* CONFIG_NUMA */
1211 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1212 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1214 return NULL;
1216 #endif
1219 * shmem_getpage - either get the page from swap or allocate a new one
1221 * If we allocate a new one we do not mark it dirty. That's up to the
1222 * vm. If we swap it in we mark it dirty since we also free the swap
1223 * entry since a page cannot live in both the swap and page cache
1225 static int shmem_getpage(struct inode *inode, unsigned long idx,
1226 struct page **pagep, enum sgp_type sgp, int *type)
1228 struct address_space *mapping = inode->i_mapping;
1229 struct shmem_inode_info *info = SHMEM_I(inode);
1230 struct shmem_sb_info *sbinfo;
1231 struct page *filepage = *pagep;
1232 struct page *swappage;
1233 struct page *prealloc_page = NULL;
1234 swp_entry_t *entry;
1235 swp_entry_t swap;
1236 gfp_t gfp;
1237 int error;
1239 if (idx >= SHMEM_MAX_INDEX)
1240 return -EFBIG;
1242 if (type)
1243 *type = 0;
1246 * Normally, filepage is NULL on entry, and either found
1247 * uptodate immediately, or allocated and zeroed, or read
1248 * in under swappage, which is then assigned to filepage.
1249 * But shmem_readpage (required for splice) passes in a locked
1250 * filepage, which may be found not uptodate by other callers
1251 * too, and may need to be copied from the swappage read in.
1253 repeat:
1254 if (!filepage)
1255 filepage = find_lock_page(mapping, idx);
1256 if (filepage && PageUptodate(filepage))
1257 goto done;
1258 gfp = mapping_gfp_mask(mapping);
1259 if (!filepage) {
1261 * Try to preload while we can wait, to not make a habit of
1262 * draining atomic reserves; but don't latch on to this cpu.
1264 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1265 if (error)
1266 goto failed;
1267 radix_tree_preload_end();
1268 if (sgp != SGP_READ && !prealloc_page) {
1269 /* We don't care if this fails */
1270 prealloc_page = shmem_alloc_page(gfp, info, idx);
1271 if (prealloc_page) {
1272 if (mem_cgroup_cache_charge(prealloc_page,
1273 current->mm, GFP_KERNEL)) {
1274 page_cache_release(prealloc_page);
1275 prealloc_page = NULL;
1280 error = 0;
1282 spin_lock(&info->lock);
1283 shmem_recalc_inode(inode);
1284 entry = shmem_swp_alloc(info, idx, sgp);
1285 if (IS_ERR(entry)) {
1286 spin_unlock(&info->lock);
1287 error = PTR_ERR(entry);
1288 goto failed;
1290 swap = *entry;
1292 if (swap.val) {
1293 /* Look it up and read it in.. */
1294 swappage = lookup_swap_cache(swap);
1295 if (!swappage) {
1296 shmem_swp_unmap(entry);
1297 /* here we actually do the io */
1298 if (type && !(*type & VM_FAULT_MAJOR)) {
1299 __count_vm_event(PGMAJFAULT);
1300 *type |= VM_FAULT_MAJOR;
1302 spin_unlock(&info->lock);
1303 swappage = shmem_swapin(swap, gfp, info, idx);
1304 if (!swappage) {
1305 spin_lock(&info->lock);
1306 entry = shmem_swp_alloc(info, idx, sgp);
1307 if (IS_ERR(entry))
1308 error = PTR_ERR(entry);
1309 else {
1310 if (entry->val == swap.val)
1311 error = -ENOMEM;
1312 shmem_swp_unmap(entry);
1314 spin_unlock(&info->lock);
1315 if (error)
1316 goto failed;
1317 goto repeat;
1319 wait_on_page_locked(swappage);
1320 page_cache_release(swappage);
1321 goto repeat;
1324 /* We have to do this with page locked to prevent races */
1325 if (!trylock_page(swappage)) {
1326 shmem_swp_unmap(entry);
1327 spin_unlock(&info->lock);
1328 wait_on_page_locked(swappage);
1329 page_cache_release(swappage);
1330 goto repeat;
1332 if (PageWriteback(swappage)) {
1333 shmem_swp_unmap(entry);
1334 spin_unlock(&info->lock);
1335 wait_on_page_writeback(swappage);
1336 unlock_page(swappage);
1337 page_cache_release(swappage);
1338 goto repeat;
1340 if (!PageUptodate(swappage)) {
1341 shmem_swp_unmap(entry);
1342 spin_unlock(&info->lock);
1343 unlock_page(swappage);
1344 page_cache_release(swappage);
1345 error = -EIO;
1346 goto failed;
1349 if (filepage) {
1350 shmem_swp_set(info, entry, 0);
1351 shmem_swp_unmap(entry);
1352 delete_from_swap_cache(swappage);
1353 spin_unlock(&info->lock);
1354 copy_highpage(filepage, swappage);
1355 unlock_page(swappage);
1356 page_cache_release(swappage);
1357 flush_dcache_page(filepage);
1358 SetPageUptodate(filepage);
1359 set_page_dirty(filepage);
1360 swap_free(swap);
1361 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1362 idx, GFP_NOWAIT))) {
1363 info->flags |= SHMEM_PAGEIN;
1364 shmem_swp_set(info, entry, 0);
1365 shmem_swp_unmap(entry);
1366 delete_from_swap_cache(swappage);
1367 spin_unlock(&info->lock);
1368 filepage = swappage;
1369 set_page_dirty(filepage);
1370 swap_free(swap);
1371 } else {
1372 shmem_swp_unmap(entry);
1373 spin_unlock(&info->lock);
1374 if (error == -ENOMEM) {
1376 * reclaim from proper memory cgroup and
1377 * call memcg's OOM if needed.
1379 error = mem_cgroup_shmem_charge_fallback(
1380 swappage,
1381 current->mm,
1382 gfp);
1383 if (error) {
1384 unlock_page(swappage);
1385 page_cache_release(swappage);
1386 goto failed;
1389 unlock_page(swappage);
1390 page_cache_release(swappage);
1391 goto repeat;
1393 } else if (sgp == SGP_READ && !filepage) {
1394 shmem_swp_unmap(entry);
1395 filepage = find_get_page(mapping, idx);
1396 if (filepage &&
1397 (!PageUptodate(filepage) || !trylock_page(filepage))) {
1398 spin_unlock(&info->lock);
1399 wait_on_page_locked(filepage);
1400 page_cache_release(filepage);
1401 filepage = NULL;
1402 goto repeat;
1404 spin_unlock(&info->lock);
1405 } else {
1406 shmem_swp_unmap(entry);
1407 sbinfo = SHMEM_SB(inode->i_sb);
1408 if (sbinfo->max_blocks) {
1409 if (percpu_counter_compare(&sbinfo->used_blocks,
1410 sbinfo->max_blocks) >= 0 ||
1411 shmem_acct_block(info->flags))
1412 goto nospace;
1413 percpu_counter_inc(&sbinfo->used_blocks);
1414 spin_lock(&inode->i_lock);
1415 inode->i_blocks += BLOCKS_PER_PAGE;
1416 spin_unlock(&inode->i_lock);
1417 } else if (shmem_acct_block(info->flags))
1418 goto nospace;
1420 if (!filepage) {
1421 int ret;
1423 if (!prealloc_page) {
1424 spin_unlock(&info->lock);
1425 filepage = shmem_alloc_page(gfp, info, idx);
1426 if (!filepage) {
1427 shmem_unacct_blocks(info->flags, 1);
1428 shmem_free_blocks(inode, 1);
1429 error = -ENOMEM;
1430 goto failed;
1432 SetPageSwapBacked(filepage);
1435 * Precharge page while we can wait, compensate
1436 * after
1438 error = mem_cgroup_cache_charge(filepage,
1439 current->mm, GFP_KERNEL);
1440 if (error) {
1441 page_cache_release(filepage);
1442 shmem_unacct_blocks(info->flags, 1);
1443 shmem_free_blocks(inode, 1);
1444 filepage = NULL;
1445 goto failed;
1448 spin_lock(&info->lock);
1449 } else {
1450 filepage = prealloc_page;
1451 prealloc_page = NULL;
1452 SetPageSwapBacked(filepage);
1455 entry = shmem_swp_alloc(info, idx, sgp);
1456 if (IS_ERR(entry))
1457 error = PTR_ERR(entry);
1458 else {
1459 swap = *entry;
1460 shmem_swp_unmap(entry);
1462 ret = error || swap.val;
1463 if (ret)
1464 mem_cgroup_uncharge_cache_page(filepage);
1465 else
1466 ret = add_to_page_cache_lru(filepage, mapping,
1467 idx, GFP_NOWAIT);
1469 * At add_to_page_cache_lru() failure, uncharge will
1470 * be done automatically.
1472 if (ret) {
1473 spin_unlock(&info->lock);
1474 page_cache_release(filepage);
1475 shmem_unacct_blocks(info->flags, 1);
1476 shmem_free_blocks(inode, 1);
1477 filepage = NULL;
1478 if (error)
1479 goto failed;
1480 goto repeat;
1482 info->flags |= SHMEM_PAGEIN;
1485 info->alloced++;
1486 spin_unlock(&info->lock);
1487 clear_highpage(filepage);
1488 flush_dcache_page(filepage);
1489 SetPageUptodate(filepage);
1490 if (sgp == SGP_DIRTY)
1491 set_page_dirty(filepage);
1493 done:
1494 *pagep = filepage;
1495 error = 0;
1496 goto out;
1498 nospace:
1500 * Perhaps the page was brought in from swap between find_lock_page
1501 * and taking info->lock? We allow for that at add_to_page_cache_lru,
1502 * but must also avoid reporting a spurious ENOSPC while working on a
1503 * full tmpfs. (When filepage has been passed in to shmem_getpage, it
1504 * is already in page cache, which prevents this race from occurring.)
1506 if (!filepage) {
1507 struct page *page = find_get_page(mapping, idx);
1508 if (page) {
1509 spin_unlock(&info->lock);
1510 page_cache_release(page);
1511 goto repeat;
1514 spin_unlock(&info->lock);
1515 error = -ENOSPC;
1516 failed:
1517 if (*pagep != filepage) {
1518 unlock_page(filepage);
1519 page_cache_release(filepage);
1521 out:
1522 if (prealloc_page) {
1523 mem_cgroup_uncharge_cache_page(prealloc_page);
1524 page_cache_release(prealloc_page);
1526 return error;
1529 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1531 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1532 int error;
1533 int ret;
1535 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1536 return VM_FAULT_SIGBUS;
1538 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1539 if (error)
1540 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1542 return ret | VM_FAULT_LOCKED;
1545 #ifdef CONFIG_NUMA
1546 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1548 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1549 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1552 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1553 unsigned long addr)
1555 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1556 unsigned long idx;
1558 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1559 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1561 #endif
1563 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1565 struct inode *inode = file->f_path.dentry->d_inode;
1566 struct shmem_inode_info *info = SHMEM_I(inode);
1567 int retval = -ENOMEM;
1569 spin_lock(&info->lock);
1570 if (lock && !(info->flags & VM_LOCKED)) {
1571 if (!user_shm_lock(inode->i_size, user))
1572 goto out_nomem;
1573 info->flags |= VM_LOCKED;
1574 mapping_set_unevictable(file->f_mapping);
1576 if (!lock && (info->flags & VM_LOCKED) && user) {
1577 user_shm_unlock(inode->i_size, user);
1578 info->flags &= ~VM_LOCKED;
1579 mapping_clear_unevictable(file->f_mapping);
1580 scan_mapping_unevictable_pages(file->f_mapping);
1582 retval = 0;
1584 out_nomem:
1585 spin_unlock(&info->lock);
1586 return retval;
1589 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1591 file_accessed(file);
1592 vma->vm_ops = &shmem_vm_ops;
1593 vma->vm_flags |= VM_CAN_NONLINEAR;
1594 return 0;
1597 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1598 int mode, dev_t dev, unsigned long flags)
1600 struct inode *inode;
1601 struct shmem_inode_info *info;
1602 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1604 if (shmem_reserve_inode(sb))
1605 return NULL;
1607 inode = new_inode(sb);
1608 if (inode) {
1609 inode->i_ino = get_next_ino();
1610 inode_init_owner(inode, dir, mode);
1611 inode->i_blocks = 0;
1612 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1613 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1614 inode->i_generation = get_seconds();
1615 info = SHMEM_I(inode);
1616 memset(info, 0, (char *)inode - (char *)info);
1617 spin_lock_init(&info->lock);
1618 info->flags = flags & VM_NORESERVE;
1619 INIT_LIST_HEAD(&info->swaplist);
1620 cache_no_acl(inode);
1622 switch (mode & S_IFMT) {
1623 default:
1624 inode->i_op = &shmem_special_inode_operations;
1625 init_special_inode(inode, mode, dev);
1626 break;
1627 case S_IFREG:
1628 inode->i_mapping->a_ops = &shmem_aops;
1629 inode->i_op = &shmem_inode_operations;
1630 inode->i_fop = &shmem_file_operations;
1631 mpol_shared_policy_init(&info->policy,
1632 shmem_get_sbmpol(sbinfo));
1633 break;
1634 case S_IFDIR:
1635 inc_nlink(inode);
1636 /* Some things misbehave if size == 0 on a directory */
1637 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1638 inode->i_op = &shmem_dir_inode_operations;
1639 inode->i_fop = &simple_dir_operations;
1640 break;
1641 case S_IFLNK:
1643 * Must not load anything in the rbtree,
1644 * mpol_free_shared_policy will not be called.
1646 mpol_shared_policy_init(&info->policy, NULL);
1647 break;
1649 } else
1650 shmem_free_inode(sb);
1651 return inode;
1654 #ifdef CONFIG_TMPFS
1655 static const struct inode_operations shmem_symlink_inode_operations;
1656 static const struct inode_operations shmem_symlink_inline_operations;
1659 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1660 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1661 * below the loop driver, in the generic fashion that many filesystems support.
1663 static int shmem_readpage(struct file *file, struct page *page)
1665 struct inode *inode = page->mapping->host;
1666 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1667 unlock_page(page);
1668 return error;
1671 static int
1672 shmem_write_begin(struct file *file, struct address_space *mapping,
1673 loff_t pos, unsigned len, unsigned flags,
1674 struct page **pagep, void **fsdata)
1676 struct inode *inode = mapping->host;
1677 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1678 *pagep = NULL;
1679 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1682 static int
1683 shmem_write_end(struct file *file, struct address_space *mapping,
1684 loff_t pos, unsigned len, unsigned copied,
1685 struct page *page, void *fsdata)
1687 struct inode *inode = mapping->host;
1689 if (pos + copied > inode->i_size)
1690 i_size_write(inode, pos + copied);
1692 set_page_dirty(page);
1693 unlock_page(page);
1694 page_cache_release(page);
1696 return copied;
1699 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1701 struct inode *inode = filp->f_path.dentry->d_inode;
1702 struct address_space *mapping = inode->i_mapping;
1703 unsigned long index, offset;
1704 enum sgp_type sgp = SGP_READ;
1707 * Might this read be for a stacking filesystem? Then when reading
1708 * holes of a sparse file, we actually need to allocate those pages,
1709 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1711 if (segment_eq(get_fs(), KERNEL_DS))
1712 sgp = SGP_DIRTY;
1714 index = *ppos >> PAGE_CACHE_SHIFT;
1715 offset = *ppos & ~PAGE_CACHE_MASK;
1717 for (;;) {
1718 struct page *page = NULL;
1719 unsigned long end_index, nr, ret;
1720 loff_t i_size = i_size_read(inode);
1722 end_index = i_size >> PAGE_CACHE_SHIFT;
1723 if (index > end_index)
1724 break;
1725 if (index == end_index) {
1726 nr = i_size & ~PAGE_CACHE_MASK;
1727 if (nr <= offset)
1728 break;
1731 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1732 if (desc->error) {
1733 if (desc->error == -EINVAL)
1734 desc->error = 0;
1735 break;
1737 if (page)
1738 unlock_page(page);
1741 * We must evaluate after, since reads (unlike writes)
1742 * are called without i_mutex protection against truncate
1744 nr = PAGE_CACHE_SIZE;
1745 i_size = i_size_read(inode);
1746 end_index = i_size >> PAGE_CACHE_SHIFT;
1747 if (index == end_index) {
1748 nr = i_size & ~PAGE_CACHE_MASK;
1749 if (nr <= offset) {
1750 if (page)
1751 page_cache_release(page);
1752 break;
1755 nr -= offset;
1757 if (page) {
1759 * If users can be writing to this page using arbitrary
1760 * virtual addresses, take care about potential aliasing
1761 * before reading the page on the kernel side.
1763 if (mapping_writably_mapped(mapping))
1764 flush_dcache_page(page);
1766 * Mark the page accessed if we read the beginning.
1768 if (!offset)
1769 mark_page_accessed(page);
1770 } else {
1771 page = ZERO_PAGE(0);
1772 page_cache_get(page);
1776 * Ok, we have the page, and it's up-to-date, so
1777 * now we can copy it to user space...
1779 * The actor routine returns how many bytes were actually used..
1780 * NOTE! This may not be the same as how much of a user buffer
1781 * we filled up (we may be padding etc), so we can only update
1782 * "pos" here (the actor routine has to update the user buffer
1783 * pointers and the remaining count).
1785 ret = actor(desc, page, offset, nr);
1786 offset += ret;
1787 index += offset >> PAGE_CACHE_SHIFT;
1788 offset &= ~PAGE_CACHE_MASK;
1790 page_cache_release(page);
1791 if (ret != nr || !desc->count)
1792 break;
1794 cond_resched();
1797 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1798 file_accessed(filp);
1801 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1802 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1804 struct file *filp = iocb->ki_filp;
1805 ssize_t retval;
1806 unsigned long seg;
1807 size_t count;
1808 loff_t *ppos = &iocb->ki_pos;
1810 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1811 if (retval)
1812 return retval;
1814 for (seg = 0; seg < nr_segs; seg++) {
1815 read_descriptor_t desc;
1817 desc.written = 0;
1818 desc.arg.buf = iov[seg].iov_base;
1819 desc.count = iov[seg].iov_len;
1820 if (desc.count == 0)
1821 continue;
1822 desc.error = 0;
1823 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1824 retval += desc.written;
1825 if (desc.error) {
1826 retval = retval ?: desc.error;
1827 break;
1829 if (desc.count > 0)
1830 break;
1832 return retval;
1835 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1837 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1839 buf->f_type = TMPFS_MAGIC;
1840 buf->f_bsize = PAGE_CACHE_SIZE;
1841 buf->f_namelen = NAME_MAX;
1842 if (sbinfo->max_blocks) {
1843 buf->f_blocks = sbinfo->max_blocks;
1844 buf->f_bavail = buf->f_bfree =
1845 sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1847 if (sbinfo->max_inodes) {
1848 buf->f_files = sbinfo->max_inodes;
1849 buf->f_ffree = sbinfo->free_inodes;
1851 /* else leave those fields 0 like simple_statfs */
1852 return 0;
1856 * File creation. Allocate an inode, and we're done..
1858 static int
1859 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1861 struct inode *inode;
1862 int error = -ENOSPC;
1864 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1865 if (inode) {
1866 error = security_inode_init_security(inode, dir, NULL, NULL,
1867 NULL);
1868 if (error) {
1869 if (error != -EOPNOTSUPP) {
1870 iput(inode);
1871 return error;
1874 #ifdef CONFIG_TMPFS_POSIX_ACL
1875 error = generic_acl_init(inode, dir);
1876 if (error) {
1877 iput(inode);
1878 return error;
1880 #else
1881 error = 0;
1882 #endif
1883 dir->i_size += BOGO_DIRENT_SIZE;
1884 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1885 d_instantiate(dentry, inode);
1886 dget(dentry); /* Extra count - pin the dentry in core */
1888 return error;
1891 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1893 int error;
1895 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1896 return error;
1897 inc_nlink(dir);
1898 return 0;
1901 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1902 struct nameidata *nd)
1904 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1908 * Link a file..
1910 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1912 struct inode *inode = old_dentry->d_inode;
1913 int ret;
1916 * No ordinary (disk based) filesystem counts links as inodes;
1917 * but each new link needs a new dentry, pinning lowmem, and
1918 * tmpfs dentries cannot be pruned until they are unlinked.
1920 ret = shmem_reserve_inode(inode->i_sb);
1921 if (ret)
1922 goto out;
1924 dir->i_size += BOGO_DIRENT_SIZE;
1925 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1926 inc_nlink(inode);
1927 ihold(inode); /* New dentry reference */
1928 dget(dentry); /* Extra pinning count for the created dentry */
1929 d_instantiate(dentry, inode);
1930 out:
1931 return ret;
1934 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1936 struct inode *inode = dentry->d_inode;
1938 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1939 shmem_free_inode(inode->i_sb);
1941 dir->i_size -= BOGO_DIRENT_SIZE;
1942 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1943 drop_nlink(inode);
1944 dput(dentry); /* Undo the count from "create" - this does all the work */
1945 return 0;
1948 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1950 if (!simple_empty(dentry))
1951 return -ENOTEMPTY;
1953 drop_nlink(dentry->d_inode);
1954 drop_nlink(dir);
1955 return shmem_unlink(dir, dentry);
1959 * The VFS layer already does all the dentry stuff for rename,
1960 * we just have to decrement the usage count for the target if
1961 * it exists so that the VFS layer correctly free's it when it
1962 * gets overwritten.
1964 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1966 struct inode *inode = old_dentry->d_inode;
1967 int they_are_dirs = S_ISDIR(inode->i_mode);
1969 if (!simple_empty(new_dentry))
1970 return -ENOTEMPTY;
1972 if (new_dentry->d_inode) {
1973 (void) shmem_unlink(new_dir, new_dentry);
1974 if (they_are_dirs)
1975 drop_nlink(old_dir);
1976 } else if (they_are_dirs) {
1977 drop_nlink(old_dir);
1978 inc_nlink(new_dir);
1981 old_dir->i_size -= BOGO_DIRENT_SIZE;
1982 new_dir->i_size += BOGO_DIRENT_SIZE;
1983 old_dir->i_ctime = old_dir->i_mtime =
1984 new_dir->i_ctime = new_dir->i_mtime =
1985 inode->i_ctime = CURRENT_TIME;
1986 return 0;
1989 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1991 int error;
1992 int len;
1993 struct inode *inode;
1994 struct page *page = NULL;
1995 char *kaddr;
1996 struct shmem_inode_info *info;
1998 len = strlen(symname) + 1;
1999 if (len > PAGE_CACHE_SIZE)
2000 return -ENAMETOOLONG;
2002 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2003 if (!inode)
2004 return -ENOSPC;
2006 error = security_inode_init_security(inode, dir, NULL, NULL,
2007 NULL);
2008 if (error) {
2009 if (error != -EOPNOTSUPP) {
2010 iput(inode);
2011 return error;
2013 error = 0;
2016 info = SHMEM_I(inode);
2017 inode->i_size = len-1;
2018 if (len <= (char *)inode - (char *)info) {
2019 /* do it inline */
2020 memcpy(info, symname, len);
2021 inode->i_op = &shmem_symlink_inline_operations;
2022 } else {
2023 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2024 if (error) {
2025 iput(inode);
2026 return error;
2028 inode->i_mapping->a_ops = &shmem_aops;
2029 inode->i_op = &shmem_symlink_inode_operations;
2030 kaddr = kmap_atomic(page, KM_USER0);
2031 memcpy(kaddr, symname, len);
2032 kunmap_atomic(kaddr, KM_USER0);
2033 set_page_dirty(page);
2034 unlock_page(page);
2035 page_cache_release(page);
2037 dir->i_size += BOGO_DIRENT_SIZE;
2038 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2039 d_instantiate(dentry, inode);
2040 dget(dentry);
2041 return 0;
2044 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2046 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
2047 return NULL;
2050 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2052 struct page *page = NULL;
2053 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2054 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2055 if (page)
2056 unlock_page(page);
2057 return page;
2060 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2062 if (!IS_ERR(nd_get_link(nd))) {
2063 struct page *page = cookie;
2064 kunmap(page);
2065 mark_page_accessed(page);
2066 page_cache_release(page);
2070 static const struct inode_operations shmem_symlink_inline_operations = {
2071 .readlink = generic_readlink,
2072 .follow_link = shmem_follow_link_inline,
2075 static const struct inode_operations shmem_symlink_inode_operations = {
2076 .readlink = generic_readlink,
2077 .follow_link = shmem_follow_link,
2078 .put_link = shmem_put_link,
2081 #ifdef CONFIG_TMPFS_POSIX_ACL
2083 * Superblocks without xattr inode operations will get security.* xattr
2084 * support from the VFS "for free". As soon as we have any other xattrs
2085 * like ACLs, we also need to implement the security.* handlers at
2086 * filesystem level, though.
2089 static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
2090 size_t list_len, const char *name,
2091 size_t name_len, int handler_flags)
2093 return security_inode_listsecurity(dentry->d_inode, list, list_len);
2096 static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2097 void *buffer, size_t size, int handler_flags)
2099 if (strcmp(name, "") == 0)
2100 return -EINVAL;
2101 return xattr_getsecurity(dentry->d_inode, name, buffer, size);
2104 static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2105 const void *value, size_t size, int flags, int handler_flags)
2107 if (strcmp(name, "") == 0)
2108 return -EINVAL;
2109 return security_inode_setsecurity(dentry->d_inode, name, value,
2110 size, flags);
2113 static const struct xattr_handler shmem_xattr_security_handler = {
2114 .prefix = XATTR_SECURITY_PREFIX,
2115 .list = shmem_xattr_security_list,
2116 .get = shmem_xattr_security_get,
2117 .set = shmem_xattr_security_set,
2120 static const struct xattr_handler *shmem_xattr_handlers[] = {
2121 &generic_acl_access_handler,
2122 &generic_acl_default_handler,
2123 &shmem_xattr_security_handler,
2124 NULL
2126 #endif
2128 static struct dentry *shmem_get_parent(struct dentry *child)
2130 return ERR_PTR(-ESTALE);
2133 static int shmem_match(struct inode *ino, void *vfh)
2135 __u32 *fh = vfh;
2136 __u64 inum = fh[2];
2137 inum = (inum << 32) | fh[1];
2138 return ino->i_ino == inum && fh[0] == ino->i_generation;
2141 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2142 struct fid *fid, int fh_len, int fh_type)
2144 struct inode *inode;
2145 struct dentry *dentry = NULL;
2146 u64 inum = fid->raw[2];
2147 inum = (inum << 32) | fid->raw[1];
2149 if (fh_len < 3)
2150 return NULL;
2152 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2153 shmem_match, fid->raw);
2154 if (inode) {
2155 dentry = d_find_alias(inode);
2156 iput(inode);
2159 return dentry;
2162 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2163 int connectable)
2165 struct inode *inode = dentry->d_inode;
2167 if (*len < 3)
2168 return 255;
2170 if (inode_unhashed(inode)) {
2171 /* Unfortunately insert_inode_hash is not idempotent,
2172 * so as we hash inodes here rather than at creation
2173 * time, we need a lock to ensure we only try
2174 * to do it once
2176 static DEFINE_SPINLOCK(lock);
2177 spin_lock(&lock);
2178 if (inode_unhashed(inode))
2179 __insert_inode_hash(inode,
2180 inode->i_ino + inode->i_generation);
2181 spin_unlock(&lock);
2184 fh[0] = inode->i_generation;
2185 fh[1] = inode->i_ino;
2186 fh[2] = ((__u64)inode->i_ino) >> 32;
2188 *len = 3;
2189 return 1;
2192 static const struct export_operations shmem_export_ops = {
2193 .get_parent = shmem_get_parent,
2194 .encode_fh = shmem_encode_fh,
2195 .fh_to_dentry = shmem_fh_to_dentry,
2198 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2199 bool remount)
2201 char *this_char, *value, *rest;
2203 while (options != NULL) {
2204 this_char = options;
2205 for (;;) {
2207 * NUL-terminate this option: unfortunately,
2208 * mount options form a comma-separated list,
2209 * but mpol's nodelist may also contain commas.
2211 options = strchr(options, ',');
2212 if (options == NULL)
2213 break;
2214 options++;
2215 if (!isdigit(*options)) {
2216 options[-1] = '\0';
2217 break;
2220 if (!*this_char)
2221 continue;
2222 if ((value = strchr(this_char,'=')) != NULL) {
2223 *value++ = 0;
2224 } else {
2225 printk(KERN_ERR
2226 "tmpfs: No value for mount option '%s'\n",
2227 this_char);
2228 return 1;
2231 if (!strcmp(this_char,"size")) {
2232 unsigned long long size;
2233 size = memparse(value,&rest);
2234 if (*rest == '%') {
2235 size <<= PAGE_SHIFT;
2236 size *= totalram_pages;
2237 do_div(size, 100);
2238 rest++;
2240 if (*rest)
2241 goto bad_val;
2242 sbinfo->max_blocks =
2243 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2244 } else if (!strcmp(this_char,"nr_blocks")) {
2245 sbinfo->max_blocks = memparse(value, &rest);
2246 if (*rest)
2247 goto bad_val;
2248 } else if (!strcmp(this_char,"nr_inodes")) {
2249 sbinfo->max_inodes = memparse(value, &rest);
2250 if (*rest)
2251 goto bad_val;
2252 } else if (!strcmp(this_char,"mode")) {
2253 if (remount)
2254 continue;
2255 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2256 if (*rest)
2257 goto bad_val;
2258 } else if (!strcmp(this_char,"uid")) {
2259 if (remount)
2260 continue;
2261 sbinfo->uid = simple_strtoul(value, &rest, 0);
2262 if (*rest)
2263 goto bad_val;
2264 } else if (!strcmp(this_char,"gid")) {
2265 if (remount)
2266 continue;
2267 sbinfo->gid = simple_strtoul(value, &rest, 0);
2268 if (*rest)
2269 goto bad_val;
2270 } else if (!strcmp(this_char,"mpol")) {
2271 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2272 goto bad_val;
2273 } else {
2274 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2275 this_char);
2276 return 1;
2279 return 0;
2281 bad_val:
2282 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2283 value, this_char);
2284 return 1;
2288 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2290 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2291 struct shmem_sb_info config = *sbinfo;
2292 unsigned long inodes;
2293 int error = -EINVAL;
2295 if (shmem_parse_options(data, &config, true))
2296 return error;
2298 spin_lock(&sbinfo->stat_lock);
2299 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2300 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2301 goto out;
2302 if (config.max_inodes < inodes)
2303 goto out;
2305 * Those tests also disallow limited->unlimited while any are in
2306 * use, so i_blocks will always be zero when max_blocks is zero;
2307 * but we must separately disallow unlimited->limited, because
2308 * in that case we have no record of how much is already in use.
2310 if (config.max_blocks && !sbinfo->max_blocks)
2311 goto out;
2312 if (config.max_inodes && !sbinfo->max_inodes)
2313 goto out;
2315 error = 0;
2316 sbinfo->max_blocks = config.max_blocks;
2317 sbinfo->max_inodes = config.max_inodes;
2318 sbinfo->free_inodes = config.max_inodes - inodes;
2320 mpol_put(sbinfo->mpol);
2321 sbinfo->mpol = config.mpol; /* transfers initial ref */
2322 out:
2323 spin_unlock(&sbinfo->stat_lock);
2324 return error;
2327 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2329 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2331 if (sbinfo->max_blocks != shmem_default_max_blocks())
2332 seq_printf(seq, ",size=%luk",
2333 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2334 if (sbinfo->max_inodes != shmem_default_max_inodes())
2335 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2336 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2337 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2338 if (sbinfo->uid != 0)
2339 seq_printf(seq, ",uid=%u", sbinfo->uid);
2340 if (sbinfo->gid != 0)
2341 seq_printf(seq, ",gid=%u", sbinfo->gid);
2342 shmem_show_mpol(seq, sbinfo->mpol);
2343 return 0;
2345 #endif /* CONFIG_TMPFS */
2347 static void shmem_put_super(struct super_block *sb)
2349 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2351 percpu_counter_destroy(&sbinfo->used_blocks);
2352 kfree(sbinfo);
2353 sb->s_fs_info = NULL;
2356 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2358 struct inode *inode;
2359 struct dentry *root;
2360 struct shmem_sb_info *sbinfo;
2361 int err = -ENOMEM;
2363 /* Round up to L1_CACHE_BYTES to resist false sharing */
2364 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2365 L1_CACHE_BYTES), GFP_KERNEL);
2366 if (!sbinfo)
2367 return -ENOMEM;
2369 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2370 sbinfo->uid = current_fsuid();
2371 sbinfo->gid = current_fsgid();
2372 sb->s_fs_info = sbinfo;
2374 #ifdef CONFIG_TMPFS
2376 * Per default we only allow half of the physical ram per
2377 * tmpfs instance, limiting inodes to one per page of lowmem;
2378 * but the internal instance is left unlimited.
2380 if (!(sb->s_flags & MS_NOUSER)) {
2381 sbinfo->max_blocks = shmem_default_max_blocks();
2382 sbinfo->max_inodes = shmem_default_max_inodes();
2383 if (shmem_parse_options(data, sbinfo, false)) {
2384 err = -EINVAL;
2385 goto failed;
2388 sb->s_export_op = &shmem_export_ops;
2389 #else
2390 sb->s_flags |= MS_NOUSER;
2391 #endif
2393 spin_lock_init(&sbinfo->stat_lock);
2394 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2395 goto failed;
2396 sbinfo->free_inodes = sbinfo->max_inodes;
2398 sb->s_maxbytes = SHMEM_MAX_BYTES;
2399 sb->s_blocksize = PAGE_CACHE_SIZE;
2400 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2401 sb->s_magic = TMPFS_MAGIC;
2402 sb->s_op = &shmem_ops;
2403 sb->s_time_gran = 1;
2404 #ifdef CONFIG_TMPFS_POSIX_ACL
2405 sb->s_xattr = shmem_xattr_handlers;
2406 sb->s_flags |= MS_POSIXACL;
2407 #endif
2409 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2410 if (!inode)
2411 goto failed;
2412 inode->i_uid = sbinfo->uid;
2413 inode->i_gid = sbinfo->gid;
2414 root = d_alloc_root(inode);
2415 if (!root)
2416 goto failed_iput;
2417 sb->s_root = root;
2418 return 0;
2420 failed_iput:
2421 iput(inode);
2422 failed:
2423 shmem_put_super(sb);
2424 return err;
2427 static struct kmem_cache *shmem_inode_cachep;
2429 static struct inode *shmem_alloc_inode(struct super_block *sb)
2431 struct shmem_inode_info *p;
2432 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2433 if (!p)
2434 return NULL;
2435 return &p->vfs_inode;
2438 static void shmem_i_callback(struct rcu_head *head)
2440 struct inode *inode = container_of(head, struct inode, i_rcu);
2441 INIT_LIST_HEAD(&inode->i_dentry);
2442 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2445 static void shmem_destroy_inode(struct inode *inode)
2447 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2448 /* only struct inode is valid if it's an inline symlink */
2449 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2451 call_rcu(&inode->i_rcu, shmem_i_callback);
2454 static void init_once(void *foo)
2456 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2458 inode_init_once(&p->vfs_inode);
2461 static int init_inodecache(void)
2463 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2464 sizeof(struct shmem_inode_info),
2465 0, SLAB_PANIC, init_once);
2466 return 0;
2469 static void destroy_inodecache(void)
2471 kmem_cache_destroy(shmem_inode_cachep);
2474 static const struct address_space_operations shmem_aops = {
2475 .writepage = shmem_writepage,
2476 .set_page_dirty = __set_page_dirty_no_writeback,
2477 #ifdef CONFIG_TMPFS
2478 .readpage = shmem_readpage,
2479 .write_begin = shmem_write_begin,
2480 .write_end = shmem_write_end,
2481 #endif
2482 .migratepage = migrate_page,
2483 .error_remove_page = generic_error_remove_page,
2486 static const struct file_operations shmem_file_operations = {
2487 .mmap = shmem_mmap,
2488 #ifdef CONFIG_TMPFS
2489 .llseek = generic_file_llseek,
2490 .read = do_sync_read,
2491 .write = do_sync_write,
2492 .aio_read = shmem_file_aio_read,
2493 .aio_write = generic_file_aio_write,
2494 .fsync = noop_fsync,
2495 .splice_read = generic_file_splice_read,
2496 .splice_write = generic_file_splice_write,
2497 #endif
2500 static const struct inode_operations shmem_inode_operations = {
2501 .setattr = shmem_notify_change,
2502 .truncate_range = shmem_truncate_range,
2503 #ifdef CONFIG_TMPFS_POSIX_ACL
2504 .setxattr = generic_setxattr,
2505 .getxattr = generic_getxattr,
2506 .listxattr = generic_listxattr,
2507 .removexattr = generic_removexattr,
2508 .check_acl = generic_check_acl,
2509 #endif
2513 static const struct inode_operations shmem_dir_inode_operations = {
2514 #ifdef CONFIG_TMPFS
2515 .create = shmem_create,
2516 .lookup = simple_lookup,
2517 .link = shmem_link,
2518 .unlink = shmem_unlink,
2519 .symlink = shmem_symlink,
2520 .mkdir = shmem_mkdir,
2521 .rmdir = shmem_rmdir,
2522 .mknod = shmem_mknod,
2523 .rename = shmem_rename,
2524 #endif
2525 #ifdef CONFIG_TMPFS_POSIX_ACL
2526 .setattr = shmem_notify_change,
2527 .setxattr = generic_setxattr,
2528 .getxattr = generic_getxattr,
2529 .listxattr = generic_listxattr,
2530 .removexattr = generic_removexattr,
2531 .check_acl = generic_check_acl,
2532 #endif
2535 static const struct inode_operations shmem_special_inode_operations = {
2536 #ifdef CONFIG_TMPFS_POSIX_ACL
2537 .setattr = shmem_notify_change,
2538 .setxattr = generic_setxattr,
2539 .getxattr = generic_getxattr,
2540 .listxattr = generic_listxattr,
2541 .removexattr = generic_removexattr,
2542 .check_acl = generic_check_acl,
2543 #endif
2546 static const struct super_operations shmem_ops = {
2547 .alloc_inode = shmem_alloc_inode,
2548 .destroy_inode = shmem_destroy_inode,
2549 #ifdef CONFIG_TMPFS
2550 .statfs = shmem_statfs,
2551 .remount_fs = shmem_remount_fs,
2552 .show_options = shmem_show_options,
2553 #endif
2554 .evict_inode = shmem_evict_inode,
2555 .drop_inode = generic_delete_inode,
2556 .put_super = shmem_put_super,
2559 static const struct vm_operations_struct shmem_vm_ops = {
2560 .fault = shmem_fault,
2561 #ifdef CONFIG_NUMA
2562 .set_policy = shmem_set_policy,
2563 .get_policy = shmem_get_policy,
2564 #endif
2568 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2569 int flags, const char *dev_name, void *data)
2571 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2574 static struct file_system_type tmpfs_fs_type = {
2575 .owner = THIS_MODULE,
2576 .name = "tmpfs",
2577 .mount = shmem_mount,
2578 .kill_sb = kill_litter_super,
2581 int __init init_tmpfs(void)
2583 int error;
2585 error = bdi_init(&shmem_backing_dev_info);
2586 if (error)
2587 goto out4;
2589 error = init_inodecache();
2590 if (error)
2591 goto out3;
2593 error = register_filesystem(&tmpfs_fs_type);
2594 if (error) {
2595 printk(KERN_ERR "Could not register tmpfs\n");
2596 goto out2;
2599 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2600 tmpfs_fs_type.name, NULL);
2601 if (IS_ERR(shm_mnt)) {
2602 error = PTR_ERR(shm_mnt);
2603 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2604 goto out1;
2606 return 0;
2608 out1:
2609 unregister_filesystem(&tmpfs_fs_type);
2610 out2:
2611 destroy_inodecache();
2612 out3:
2613 bdi_destroy(&shmem_backing_dev_info);
2614 out4:
2615 shm_mnt = ERR_PTR(error);
2616 return error;
2619 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2621 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2622 * @inode: the inode to be searched
2623 * @pgoff: the offset to be searched
2624 * @pagep: the pointer for the found page to be stored
2625 * @ent: the pointer for the found swap entry to be stored
2627 * If a page is found, refcount of it is incremented. Callers should handle
2628 * these refcount.
2630 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2631 struct page **pagep, swp_entry_t *ent)
2633 swp_entry_t entry = { .val = 0 }, *ptr;
2634 struct page *page = NULL;
2635 struct shmem_inode_info *info = SHMEM_I(inode);
2637 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2638 goto out;
2640 spin_lock(&info->lock);
2641 ptr = shmem_swp_entry(info, pgoff, NULL);
2642 #ifdef CONFIG_SWAP
2643 if (ptr && ptr->val) {
2644 entry.val = ptr->val;
2645 page = find_get_page(&swapper_space, entry.val);
2646 } else
2647 #endif
2648 page = find_get_page(inode->i_mapping, pgoff);
2649 if (ptr)
2650 shmem_swp_unmap(ptr);
2651 spin_unlock(&info->lock);
2652 out:
2653 *pagep = page;
2654 *ent = entry;
2656 #endif
2658 #else /* !CONFIG_SHMEM */
2661 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2663 * This is intended for small system where the benefits of the full
2664 * shmem code (swap-backed and resource-limited) are outweighed by
2665 * their complexity. On systems without swap this code should be
2666 * effectively equivalent, but much lighter weight.
2669 #include <linux/ramfs.h>
2671 static struct file_system_type tmpfs_fs_type = {
2672 .name = "tmpfs",
2673 .mount = ramfs_mount,
2674 .kill_sb = kill_litter_super,
2677 int __init init_tmpfs(void)
2679 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2681 shm_mnt = kern_mount(&tmpfs_fs_type);
2682 BUG_ON(IS_ERR(shm_mnt));
2684 return 0;
2687 int shmem_unuse(swp_entry_t entry, struct page *page)
2689 return 0;
2692 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2694 return 0;
2697 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2699 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2700 * @inode: the inode to be searched
2701 * @pgoff: the offset to be searched
2702 * @pagep: the pointer for the found page to be stored
2703 * @ent: the pointer for the found swap entry to be stored
2705 * If a page is found, refcount of it is incremented. Callers should handle
2706 * these refcount.
2708 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2709 struct page **pagep, swp_entry_t *ent)
2711 struct page *page = NULL;
2713 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2714 goto out;
2715 page = find_get_page(inode->i_mapping, pgoff);
2716 out:
2717 *pagep = page;
2718 *ent = (swp_entry_t){ .val = 0 };
2720 #endif
2722 #define shmem_vm_ops generic_file_vm_ops
2723 #define shmem_file_operations ramfs_file_operations
2724 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2725 #define shmem_acct_size(flags, size) 0
2726 #define shmem_unacct_size(flags, size) do {} while (0)
2727 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
2729 #endif /* CONFIG_SHMEM */
2731 /* common code */
2734 * shmem_file_setup - get an unlinked file living in tmpfs
2735 * @name: name for dentry (to be seen in /proc/<pid>/maps
2736 * @size: size to be set for the file
2737 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2739 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2741 int error;
2742 struct file *file;
2743 struct inode *inode;
2744 struct path path;
2745 struct dentry *root;
2746 struct qstr this;
2748 if (IS_ERR(shm_mnt))
2749 return (void *)shm_mnt;
2751 if (size < 0 || size > SHMEM_MAX_BYTES)
2752 return ERR_PTR(-EINVAL);
2754 if (shmem_acct_size(flags, size))
2755 return ERR_PTR(-ENOMEM);
2757 error = -ENOMEM;
2758 this.name = name;
2759 this.len = strlen(name);
2760 this.hash = 0; /* will go */
2761 root = shm_mnt->mnt_root;
2762 path.dentry = d_alloc(root, &this);
2763 if (!path.dentry)
2764 goto put_memory;
2765 path.mnt = mntget(shm_mnt);
2767 error = -ENOSPC;
2768 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2769 if (!inode)
2770 goto put_dentry;
2772 d_instantiate(path.dentry, inode);
2773 inode->i_size = size;
2774 inode->i_nlink = 0; /* It is unlinked */
2775 #ifndef CONFIG_MMU
2776 error = ramfs_nommu_expand_for_mapping(inode, size);
2777 if (error)
2778 goto put_dentry;
2779 #endif
2781 error = -ENFILE;
2782 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2783 &shmem_file_operations);
2784 if (!file)
2785 goto put_dentry;
2787 return file;
2789 put_dentry:
2790 path_put(&path);
2791 put_memory:
2792 shmem_unacct_size(flags, size);
2793 return ERR_PTR(error);
2795 EXPORT_SYMBOL_GPL(shmem_file_setup);
2798 * shmem_zero_setup - setup a shared anonymous mapping
2799 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2801 int shmem_zero_setup(struct vm_area_struct *vma)
2803 struct file *file;
2804 loff_t size = vma->vm_end - vma->vm_start;
2806 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2807 if (IS_ERR(file))
2808 return PTR_ERR(file);
2810 if (vma->vm_file)
2811 fput(vma->vm_file);
2812 vma->vm_file = file;
2813 vma->vm_ops = &shmem_vm_ops;
2814 vma->vm_flags |= VM_CAN_NONLINEAR;
2815 return 0;