ACPI: thinkpad-acpi: add development version tag
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched_fair.c
blob8fe7ee81c55270dc5893a9e2df94a1dbc7450dd6
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 unsigned int sysctl_sched_latency = 5000000ULL;
39 unsigned int normalized_sysctl_sched_latency = 5000000ULL;
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 unsigned int sysctl_sched_min_granularity = 1000000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 static unsigned int sched_nr_latency = 5;
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
69 unsigned int sysctl_sched_child_runs_first __read_mostly;
72 * sys_sched_yield() compat mode
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
77 unsigned int __read_mostly sysctl_sched_compat_yield;
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
92 static const struct sched_class fair_sched_class;
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
98 #ifdef CONFIG_FAIR_GROUP_SCHED
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
103 return cfs_rq->rq;
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
109 static inline struct task_struct *task_of(struct sched_entity *se)
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113 #endif
114 return container_of(se, struct task_struct, se);
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
123 return p->se.cfs_rq;
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
129 return se->cfs_rq;
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
135 return grp->my_q;
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
141 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
143 return cfs_rq->tg->cfs_rq[this_cpu];
146 /* Iterate thr' all leaf cfs_rq's on a runqueue */
147 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
150 /* Do the two (enqueued) entities belong to the same group ? */
151 static inline int
152 is_same_group(struct sched_entity *se, struct sched_entity *pse)
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
157 return 0;
160 static inline struct sched_entity *parent_entity(struct sched_entity *se)
162 return se->parent;
165 /* return depth at which a sched entity is present in the hierarchy */
166 static inline int depth_se(struct sched_entity *se)
168 int depth = 0;
170 for_each_sched_entity(se)
171 depth++;
173 return depth;
176 static void
177 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
179 int se_depth, pse_depth;
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
208 #else /* !CONFIG_FAIR_GROUP_SCHED */
210 static inline struct task_struct *task_of(struct sched_entity *se)
212 return container_of(se, struct task_struct, se);
215 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
217 return container_of(cfs_rq, struct rq, cfs);
220 #define entity_is_task(se) 1
222 #define for_each_sched_entity(se) \
223 for (; se; se = NULL)
225 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
227 return &task_rq(p)->cfs;
230 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
235 return &rq->cfs;
238 /* runqueue "owned" by this group */
239 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
241 return NULL;
244 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
246 return &cpu_rq(this_cpu)->cfs;
249 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
252 static inline int
253 is_same_group(struct sched_entity *se, struct sched_entity *pse)
255 return 1;
258 static inline struct sched_entity *parent_entity(struct sched_entity *se)
260 return NULL;
263 static inline void
264 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
268 #endif /* CONFIG_FAIR_GROUP_SCHED */
271 /**************************************************************
272 * Scheduling class tree data structure manipulation methods:
275 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
279 min_vruntime = vruntime;
281 return min_vruntime;
284 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
290 return min_vruntime;
293 static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
296 return (s64)(a->vruntime - b->vruntime) < 0;
299 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
301 return se->vruntime - cfs_rq->min_vruntime;
304 static void update_min_vruntime(struct cfs_rq *cfs_rq)
306 u64 vruntime = cfs_rq->min_vruntime;
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
316 if (!cfs_rq->curr)
317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
326 * Enqueue an entity into the rb-tree:
328 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
333 s64 key = entity_key(cfs_rq, se);
334 int leftmost = 1;
337 * Find the right place in the rbtree:
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
346 if (key < entity_key(cfs_rq, entry)) {
347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
358 if (leftmost)
359 cfs_rq->rb_leftmost = &se->run_node;
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
365 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
377 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
379 struct rb_node *left = cfs_rq->rb_leftmost;
381 if (!left)
382 return NULL;
384 return rb_entry(left, struct sched_entity, run_node);
387 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
391 if (!last)
392 return NULL;
394 return rb_entry(last, struct sched_entity, run_node);
397 /**************************************************************
398 * Scheduling class statistics methods:
401 #ifdef CONFIG_SCHED_DEBUG
402 int sched_proc_update_handler(struct ctl_table *table, int write,
403 void __user *buffer, size_t *lenp,
404 loff_t *ppos)
406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
407 int factor = get_update_sysctl_factor();
409 if (ret || !write)
410 return ret;
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
415 #define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421 #undef WRT_SYSCTL
423 return 0;
425 #endif
428 * delta /= w
430 static inline unsigned long
431 calc_delta_fair(unsigned long delta, struct sched_entity *se)
433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
436 return delta;
440 * The idea is to set a period in which each task runs once.
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
445 * p = (nr <= nl) ? l : l*nr/nl
447 static u64 __sched_period(unsigned long nr_running)
449 u64 period = sysctl_sched_latency;
450 unsigned long nr_latency = sched_nr_latency;
452 if (unlikely(nr_running > nr_latency)) {
453 period = sysctl_sched_min_granularity;
454 period *= nr_running;
457 return period;
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
464 * s = p*P[w/rw]
466 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
470 for_each_sched_entity(se) {
471 struct load_weight *load;
472 struct load_weight lw;
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
477 if (unlikely(!se->on_rq)) {
478 lw = cfs_rq->load;
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
483 slice = calc_delta_mine(slice, se->load.weight, load);
485 return slice;
489 * We calculate the vruntime slice of a to be inserted task
491 * vs = s/w
493 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
502 static inline void
503 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
506 unsigned long delta_exec_weighted;
508 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
510 curr->sum_exec_runtime += delta_exec;
511 schedstat_add(cfs_rq, exec_clock, delta_exec);
512 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
514 curr->vruntime += delta_exec_weighted;
515 update_min_vruntime(cfs_rq);
518 static void update_curr(struct cfs_rq *cfs_rq)
520 struct sched_entity *curr = cfs_rq->curr;
521 u64 now = rq_of(cfs_rq)->clock;
522 unsigned long delta_exec;
524 if (unlikely(!curr))
525 return;
528 * Get the amount of time the current task was running
529 * since the last time we changed load (this cannot
530 * overflow on 32 bits):
532 delta_exec = (unsigned long)(now - curr->exec_start);
533 if (!delta_exec)
534 return;
536 __update_curr(cfs_rq, curr, delta_exec);
537 curr->exec_start = now;
539 if (entity_is_task(curr)) {
540 struct task_struct *curtask = task_of(curr);
542 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
543 cpuacct_charge(curtask, delta_exec);
544 account_group_exec_runtime(curtask, delta_exec);
548 static inline void
549 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
551 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
555 * Task is being enqueued - update stats:
557 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
560 * Are we enqueueing a waiting task? (for current tasks
561 * a dequeue/enqueue event is a NOP)
563 if (se != cfs_rq->curr)
564 update_stats_wait_start(cfs_rq, se);
567 static void
568 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
570 schedstat_set(se->wait_max, max(se->wait_max,
571 rq_of(cfs_rq)->clock - se->wait_start));
572 schedstat_set(se->wait_count, se->wait_count + 1);
573 schedstat_set(se->wait_sum, se->wait_sum +
574 rq_of(cfs_rq)->clock - se->wait_start);
575 #ifdef CONFIG_SCHEDSTATS
576 if (entity_is_task(se)) {
577 trace_sched_stat_wait(task_of(se),
578 rq_of(cfs_rq)->clock - se->wait_start);
580 #endif
581 schedstat_set(se->wait_start, 0);
584 static inline void
585 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
588 * Mark the end of the wait period if dequeueing a
589 * waiting task:
591 if (se != cfs_rq->curr)
592 update_stats_wait_end(cfs_rq, se);
596 * We are picking a new current task - update its stats:
598 static inline void
599 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
602 * We are starting a new run period:
604 se->exec_start = rq_of(cfs_rq)->clock;
607 /**************************************************
608 * Scheduling class queueing methods:
611 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
612 static void
613 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
615 cfs_rq->task_weight += weight;
617 #else
618 static inline void
619 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
622 #endif
624 static void
625 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 update_load_add(&cfs_rq->load, se->load.weight);
628 if (!parent_entity(se))
629 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
630 if (entity_is_task(se)) {
631 add_cfs_task_weight(cfs_rq, se->load.weight);
632 list_add(&se->group_node, &cfs_rq->tasks);
634 cfs_rq->nr_running++;
635 se->on_rq = 1;
638 static void
639 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
641 update_load_sub(&cfs_rq->load, se->load.weight);
642 if (!parent_entity(se))
643 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
644 if (entity_is_task(se)) {
645 add_cfs_task_weight(cfs_rq, -se->load.weight);
646 list_del_init(&se->group_node);
648 cfs_rq->nr_running--;
649 se->on_rq = 0;
652 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 #ifdef CONFIG_SCHEDSTATS
655 struct task_struct *tsk = NULL;
657 if (entity_is_task(se))
658 tsk = task_of(se);
660 if (se->sleep_start) {
661 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
663 if ((s64)delta < 0)
664 delta = 0;
666 if (unlikely(delta > se->sleep_max))
667 se->sleep_max = delta;
669 se->sleep_start = 0;
670 se->sum_sleep_runtime += delta;
672 if (tsk) {
673 account_scheduler_latency(tsk, delta >> 10, 1);
674 trace_sched_stat_sleep(tsk, delta);
677 if (se->block_start) {
678 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
680 if ((s64)delta < 0)
681 delta = 0;
683 if (unlikely(delta > se->block_max))
684 se->block_max = delta;
686 se->block_start = 0;
687 se->sum_sleep_runtime += delta;
689 if (tsk) {
690 if (tsk->in_iowait) {
691 se->iowait_sum += delta;
692 se->iowait_count++;
693 trace_sched_stat_iowait(tsk, delta);
697 * Blocking time is in units of nanosecs, so shift by
698 * 20 to get a milliseconds-range estimation of the
699 * amount of time that the task spent sleeping:
701 if (unlikely(prof_on == SLEEP_PROFILING)) {
702 profile_hits(SLEEP_PROFILING,
703 (void *)get_wchan(tsk),
704 delta >> 20);
706 account_scheduler_latency(tsk, delta >> 10, 0);
709 #endif
712 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
714 #ifdef CONFIG_SCHED_DEBUG
715 s64 d = se->vruntime - cfs_rq->min_vruntime;
717 if (d < 0)
718 d = -d;
720 if (d > 3*sysctl_sched_latency)
721 schedstat_inc(cfs_rq, nr_spread_over);
722 #endif
725 static void
726 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
728 u64 vruntime = cfs_rq->min_vruntime;
731 * The 'current' period is already promised to the current tasks,
732 * however the extra weight of the new task will slow them down a
733 * little, place the new task so that it fits in the slot that
734 * stays open at the end.
736 if (initial && sched_feat(START_DEBIT))
737 vruntime += sched_vslice(cfs_rq, se);
739 /* sleeps up to a single latency don't count. */
740 if (!initial && sched_feat(FAIR_SLEEPERS)) {
741 unsigned long thresh = sysctl_sched_latency;
744 * Convert the sleeper threshold into virtual time.
745 * SCHED_IDLE is a special sub-class. We care about
746 * fairness only relative to other SCHED_IDLE tasks,
747 * all of which have the same weight.
749 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
750 task_of(se)->policy != SCHED_IDLE))
751 thresh = calc_delta_fair(thresh, se);
754 * Halve their sleep time's effect, to allow
755 * for a gentler effect of sleepers:
757 if (sched_feat(GENTLE_FAIR_SLEEPERS))
758 thresh >>= 1;
760 vruntime -= thresh;
763 /* ensure we never gain time by being placed backwards. */
764 vruntime = max_vruntime(se->vruntime, vruntime);
766 se->vruntime = vruntime;
769 #define ENQUEUE_WAKEUP 1
770 #define ENQUEUE_MIGRATE 2
772 static void
773 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
776 * Update the normalized vruntime before updating min_vruntime
777 * through callig update_curr().
779 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
780 se->vruntime += cfs_rq->min_vruntime;
783 * Update run-time statistics of the 'current'.
785 update_curr(cfs_rq);
786 account_entity_enqueue(cfs_rq, se);
788 if (flags & ENQUEUE_WAKEUP) {
789 place_entity(cfs_rq, se, 0);
790 enqueue_sleeper(cfs_rq, se);
793 update_stats_enqueue(cfs_rq, se);
794 check_spread(cfs_rq, se);
795 if (se != cfs_rq->curr)
796 __enqueue_entity(cfs_rq, se);
799 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
801 if (!se || cfs_rq->last == se)
802 cfs_rq->last = NULL;
804 if (!se || cfs_rq->next == se)
805 cfs_rq->next = NULL;
808 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
810 for_each_sched_entity(se)
811 __clear_buddies(cfs_rq_of(se), se);
814 static void
815 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
818 * Update run-time statistics of the 'current'.
820 update_curr(cfs_rq);
822 update_stats_dequeue(cfs_rq, se);
823 if (sleep) {
824 #ifdef CONFIG_SCHEDSTATS
825 if (entity_is_task(se)) {
826 struct task_struct *tsk = task_of(se);
828 if (tsk->state & TASK_INTERRUPTIBLE)
829 se->sleep_start = rq_of(cfs_rq)->clock;
830 if (tsk->state & TASK_UNINTERRUPTIBLE)
831 se->block_start = rq_of(cfs_rq)->clock;
833 #endif
836 clear_buddies(cfs_rq, se);
838 if (se != cfs_rq->curr)
839 __dequeue_entity(cfs_rq, se);
840 account_entity_dequeue(cfs_rq, se);
841 update_min_vruntime(cfs_rq);
844 * Normalize the entity after updating the min_vruntime because the
845 * update can refer to the ->curr item and we need to reflect this
846 * movement in our normalized position.
848 if (!sleep)
849 se->vruntime -= cfs_rq->min_vruntime;
853 * Preempt the current task with a newly woken task if needed:
855 static void
856 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
858 unsigned long ideal_runtime, delta_exec;
860 ideal_runtime = sched_slice(cfs_rq, curr);
861 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
862 if (delta_exec > ideal_runtime) {
863 resched_task(rq_of(cfs_rq)->curr);
865 * The current task ran long enough, ensure it doesn't get
866 * re-elected due to buddy favours.
868 clear_buddies(cfs_rq, curr);
869 return;
873 * Ensure that a task that missed wakeup preemption by a
874 * narrow margin doesn't have to wait for a full slice.
875 * This also mitigates buddy induced latencies under load.
877 if (!sched_feat(WAKEUP_PREEMPT))
878 return;
880 if (delta_exec < sysctl_sched_min_granularity)
881 return;
883 if (cfs_rq->nr_running > 1) {
884 struct sched_entity *se = __pick_next_entity(cfs_rq);
885 s64 delta = curr->vruntime - se->vruntime;
887 if (delta > ideal_runtime)
888 resched_task(rq_of(cfs_rq)->curr);
892 static void
893 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
895 /* 'current' is not kept within the tree. */
896 if (se->on_rq) {
898 * Any task has to be enqueued before it get to execute on
899 * a CPU. So account for the time it spent waiting on the
900 * runqueue.
902 update_stats_wait_end(cfs_rq, se);
903 __dequeue_entity(cfs_rq, se);
906 update_stats_curr_start(cfs_rq, se);
907 cfs_rq->curr = se;
908 #ifdef CONFIG_SCHEDSTATS
910 * Track our maximum slice length, if the CPU's load is at
911 * least twice that of our own weight (i.e. dont track it
912 * when there are only lesser-weight tasks around):
914 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
915 se->slice_max = max(se->slice_max,
916 se->sum_exec_runtime - se->prev_sum_exec_runtime);
918 #endif
919 se->prev_sum_exec_runtime = se->sum_exec_runtime;
922 static int
923 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
925 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
927 struct sched_entity *se = __pick_next_entity(cfs_rq);
928 struct sched_entity *left = se;
930 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
931 se = cfs_rq->next;
934 * Prefer last buddy, try to return the CPU to a preempted task.
936 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
937 se = cfs_rq->last;
939 clear_buddies(cfs_rq, se);
941 return se;
944 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
947 * If still on the runqueue then deactivate_task()
948 * was not called and update_curr() has to be done:
950 if (prev->on_rq)
951 update_curr(cfs_rq);
953 check_spread(cfs_rq, prev);
954 if (prev->on_rq) {
955 update_stats_wait_start(cfs_rq, prev);
956 /* Put 'current' back into the tree. */
957 __enqueue_entity(cfs_rq, prev);
959 cfs_rq->curr = NULL;
962 static void
963 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
966 * Update run-time statistics of the 'current'.
968 update_curr(cfs_rq);
970 #ifdef CONFIG_SCHED_HRTICK
972 * queued ticks are scheduled to match the slice, so don't bother
973 * validating it and just reschedule.
975 if (queued) {
976 resched_task(rq_of(cfs_rq)->curr);
977 return;
980 * don't let the period tick interfere with the hrtick preemption
982 if (!sched_feat(DOUBLE_TICK) &&
983 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
984 return;
985 #endif
987 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
988 check_preempt_tick(cfs_rq, curr);
991 /**************************************************
992 * CFS operations on tasks:
995 #ifdef CONFIG_SCHED_HRTICK
996 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
998 struct sched_entity *se = &p->se;
999 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1001 WARN_ON(task_rq(p) != rq);
1003 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1004 u64 slice = sched_slice(cfs_rq, se);
1005 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1006 s64 delta = slice - ran;
1008 if (delta < 0) {
1009 if (rq->curr == p)
1010 resched_task(p);
1011 return;
1015 * Don't schedule slices shorter than 10000ns, that just
1016 * doesn't make sense. Rely on vruntime for fairness.
1018 if (rq->curr != p)
1019 delta = max_t(s64, 10000LL, delta);
1021 hrtick_start(rq, delta);
1026 * called from enqueue/dequeue and updates the hrtick when the
1027 * current task is from our class and nr_running is low enough
1028 * to matter.
1030 static void hrtick_update(struct rq *rq)
1032 struct task_struct *curr = rq->curr;
1034 if (curr->sched_class != &fair_sched_class)
1035 return;
1037 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1038 hrtick_start_fair(rq, curr);
1040 #else /* !CONFIG_SCHED_HRTICK */
1041 static inline void
1042 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1046 static inline void hrtick_update(struct rq *rq)
1049 #endif
1052 * The enqueue_task method is called before nr_running is
1053 * increased. Here we update the fair scheduling stats and
1054 * then put the task into the rbtree:
1056 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
1058 struct cfs_rq *cfs_rq;
1059 struct sched_entity *se = &p->se;
1060 int flags = 0;
1062 if (wakeup)
1063 flags |= ENQUEUE_WAKEUP;
1064 if (p->state == TASK_WAKING)
1065 flags |= ENQUEUE_MIGRATE;
1067 for_each_sched_entity(se) {
1068 if (se->on_rq)
1069 break;
1070 cfs_rq = cfs_rq_of(se);
1071 enqueue_entity(cfs_rq, se, flags);
1072 flags = ENQUEUE_WAKEUP;
1075 hrtick_update(rq);
1079 * The dequeue_task method is called before nr_running is
1080 * decreased. We remove the task from the rbtree and
1081 * update the fair scheduling stats:
1083 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1085 struct cfs_rq *cfs_rq;
1086 struct sched_entity *se = &p->se;
1088 for_each_sched_entity(se) {
1089 cfs_rq = cfs_rq_of(se);
1090 dequeue_entity(cfs_rq, se, sleep);
1091 /* Don't dequeue parent if it has other entities besides us */
1092 if (cfs_rq->load.weight)
1093 break;
1094 sleep = 1;
1097 hrtick_update(rq);
1101 * sched_yield() support is very simple - we dequeue and enqueue.
1103 * If compat_yield is turned on then we requeue to the end of the tree.
1105 static void yield_task_fair(struct rq *rq)
1107 struct task_struct *curr = rq->curr;
1108 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1109 struct sched_entity *rightmost, *se = &curr->se;
1112 * Are we the only task in the tree?
1114 if (unlikely(cfs_rq->nr_running == 1))
1115 return;
1117 clear_buddies(cfs_rq, se);
1119 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1120 update_rq_clock(rq);
1122 * Update run-time statistics of the 'current'.
1124 update_curr(cfs_rq);
1126 return;
1129 * Find the rightmost entry in the rbtree:
1131 rightmost = __pick_last_entity(cfs_rq);
1133 * Already in the rightmost position?
1135 if (unlikely(!rightmost || entity_before(rightmost, se)))
1136 return;
1139 * Minimally necessary key value to be last in the tree:
1140 * Upon rescheduling, sched_class::put_prev_task() will place
1141 * 'current' within the tree based on its new key value.
1143 se->vruntime = rightmost->vruntime + 1;
1146 #ifdef CONFIG_SMP
1148 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1150 struct sched_entity *se = &p->se;
1151 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1153 se->vruntime -= cfs_rq->min_vruntime;
1156 #ifdef CONFIG_FAIR_GROUP_SCHED
1158 * effective_load() calculates the load change as seen from the root_task_group
1160 * Adding load to a group doesn't make a group heavier, but can cause movement
1161 * of group shares between cpus. Assuming the shares were perfectly aligned one
1162 * can calculate the shift in shares.
1164 * The problem is that perfectly aligning the shares is rather expensive, hence
1165 * we try to avoid doing that too often - see update_shares(), which ratelimits
1166 * this change.
1168 * We compensate this by not only taking the current delta into account, but
1169 * also considering the delta between when the shares were last adjusted and
1170 * now.
1172 * We still saw a performance dip, some tracing learned us that between
1173 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1174 * significantly. Therefore try to bias the error in direction of failing
1175 * the affine wakeup.
1178 static long effective_load(struct task_group *tg, int cpu,
1179 long wl, long wg)
1181 struct sched_entity *se = tg->se[cpu];
1183 if (!tg->parent)
1184 return wl;
1187 * By not taking the decrease of shares on the other cpu into
1188 * account our error leans towards reducing the affine wakeups.
1190 if (!wl && sched_feat(ASYM_EFF_LOAD))
1191 return wl;
1193 for_each_sched_entity(se) {
1194 long S, rw, s, a, b;
1195 long more_w;
1198 * Instead of using this increment, also add the difference
1199 * between when the shares were last updated and now.
1201 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1202 wl += more_w;
1203 wg += more_w;
1205 S = se->my_q->tg->shares;
1206 s = se->my_q->shares;
1207 rw = se->my_q->rq_weight;
1209 a = S*(rw + wl);
1210 b = S*rw + s*wg;
1212 wl = s*(a-b);
1214 if (likely(b))
1215 wl /= b;
1218 * Assume the group is already running and will
1219 * thus already be accounted for in the weight.
1221 * That is, moving shares between CPUs, does not
1222 * alter the group weight.
1224 wg = 0;
1227 return wl;
1230 #else
1232 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1233 unsigned long wl, unsigned long wg)
1235 return wl;
1238 #endif
1240 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1242 struct task_struct *curr = current;
1243 unsigned long this_load, load;
1244 int idx, this_cpu, prev_cpu;
1245 unsigned long tl_per_task;
1246 unsigned int imbalance;
1247 struct task_group *tg;
1248 unsigned long weight;
1249 int balanced;
1251 idx = sd->wake_idx;
1252 this_cpu = smp_processor_id();
1253 prev_cpu = task_cpu(p);
1254 load = source_load(prev_cpu, idx);
1255 this_load = target_load(this_cpu, idx);
1257 if (sync) {
1258 if (sched_feat(SYNC_LESS) &&
1259 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1260 p->se.avg_overlap > sysctl_sched_migration_cost))
1261 sync = 0;
1262 } else {
1263 if (sched_feat(SYNC_MORE) &&
1264 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1265 p->se.avg_overlap < sysctl_sched_migration_cost))
1266 sync = 1;
1270 * If sync wakeup then subtract the (maximum possible)
1271 * effect of the currently running task from the load
1272 * of the current CPU:
1274 if (sync) {
1275 tg = task_group(current);
1276 weight = current->se.load.weight;
1278 this_load += effective_load(tg, this_cpu, -weight, -weight);
1279 load += effective_load(tg, prev_cpu, 0, -weight);
1282 tg = task_group(p);
1283 weight = p->se.load.weight;
1285 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1288 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1289 * due to the sync cause above having dropped this_load to 0, we'll
1290 * always have an imbalance, but there's really nothing you can do
1291 * about that, so that's good too.
1293 * Otherwise check if either cpus are near enough in load to allow this
1294 * task to be woken on this_cpu.
1296 balanced = !this_load ||
1297 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1298 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1301 * If the currently running task will sleep within
1302 * a reasonable amount of time then attract this newly
1303 * woken task:
1305 if (sync && balanced)
1306 return 1;
1308 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1309 tl_per_task = cpu_avg_load_per_task(this_cpu);
1311 if (balanced ||
1312 (this_load <= load &&
1313 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1315 * This domain has SD_WAKE_AFFINE and
1316 * p is cache cold in this domain, and
1317 * there is no bad imbalance.
1319 schedstat_inc(sd, ttwu_move_affine);
1320 schedstat_inc(p, se.nr_wakeups_affine);
1322 return 1;
1324 return 0;
1328 * find_idlest_group finds and returns the least busy CPU group within the
1329 * domain.
1331 static struct sched_group *
1332 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1333 int this_cpu, int load_idx)
1335 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1336 unsigned long min_load = ULONG_MAX, this_load = 0;
1337 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1339 do {
1340 unsigned long load, avg_load;
1341 int local_group;
1342 int i;
1344 /* Skip over this group if it has no CPUs allowed */
1345 if (!cpumask_intersects(sched_group_cpus(group),
1346 &p->cpus_allowed))
1347 continue;
1349 local_group = cpumask_test_cpu(this_cpu,
1350 sched_group_cpus(group));
1352 /* Tally up the load of all CPUs in the group */
1353 avg_load = 0;
1355 for_each_cpu(i, sched_group_cpus(group)) {
1356 /* Bias balancing toward cpus of our domain */
1357 if (local_group)
1358 load = source_load(i, load_idx);
1359 else
1360 load = target_load(i, load_idx);
1362 avg_load += load;
1365 /* Adjust by relative CPU power of the group */
1366 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1368 if (local_group) {
1369 this_load = avg_load;
1370 this = group;
1371 } else if (avg_load < min_load) {
1372 min_load = avg_load;
1373 idlest = group;
1375 } while (group = group->next, group != sd->groups);
1377 if (!idlest || 100*this_load < imbalance*min_load)
1378 return NULL;
1379 return idlest;
1383 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1385 static int
1386 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1388 unsigned long load, min_load = ULONG_MAX;
1389 int idlest = -1;
1390 int i;
1392 /* Traverse only the allowed CPUs */
1393 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1394 load = weighted_cpuload(i);
1396 if (load < min_load || (load == min_load && i == this_cpu)) {
1397 min_load = load;
1398 idlest = i;
1402 return idlest;
1406 * Try and locate an idle CPU in the sched_domain.
1408 static int
1409 select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1411 int cpu = smp_processor_id();
1412 int prev_cpu = task_cpu(p);
1413 int i;
1416 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1417 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1418 * always a better target than the current cpu.
1420 if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
1421 return prev_cpu;
1424 * Otherwise, iterate the domain and find an elegible idle cpu.
1426 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1427 if (!cpu_rq(i)->cfs.nr_running) {
1428 target = i;
1429 break;
1433 return target;
1437 * sched_balance_self: balance the current task (running on cpu) in domains
1438 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1439 * SD_BALANCE_EXEC.
1441 * Balance, ie. select the least loaded group.
1443 * Returns the target CPU number, or the same CPU if no balancing is needed.
1445 * preempt must be disabled.
1447 static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1449 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1450 int cpu = smp_processor_id();
1451 int prev_cpu = task_cpu(p);
1452 int new_cpu = cpu;
1453 int want_affine = 0;
1454 int want_sd = 1;
1455 int sync = wake_flags & WF_SYNC;
1457 if (sd_flag & SD_BALANCE_WAKE) {
1458 if (sched_feat(AFFINE_WAKEUPS) &&
1459 cpumask_test_cpu(cpu, &p->cpus_allowed))
1460 want_affine = 1;
1461 new_cpu = prev_cpu;
1464 for_each_domain(cpu, tmp) {
1465 if (!(tmp->flags & SD_LOAD_BALANCE))
1466 continue;
1469 * If power savings logic is enabled for a domain, see if we
1470 * are not overloaded, if so, don't balance wider.
1472 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1473 unsigned long power = 0;
1474 unsigned long nr_running = 0;
1475 unsigned long capacity;
1476 int i;
1478 for_each_cpu(i, sched_domain_span(tmp)) {
1479 power += power_of(i);
1480 nr_running += cpu_rq(i)->cfs.nr_running;
1483 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1485 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1486 nr_running /= 2;
1488 if (nr_running < capacity)
1489 want_sd = 0;
1493 * While iterating the domains looking for a spanning
1494 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1495 * in cache sharing domains along the way.
1497 if (want_affine) {
1498 int target = -1;
1501 * If both cpu and prev_cpu are part of this domain,
1502 * cpu is a valid SD_WAKE_AFFINE target.
1504 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1505 target = cpu;
1508 * If there's an idle sibling in this domain, make that
1509 * the wake_affine target instead of the current cpu.
1511 if (tmp->flags & SD_SHARE_PKG_RESOURCES)
1512 target = select_idle_sibling(p, tmp, target);
1514 if (target >= 0) {
1515 if (tmp->flags & SD_WAKE_AFFINE) {
1516 affine_sd = tmp;
1517 want_affine = 0;
1519 cpu = target;
1523 if (!want_sd && !want_affine)
1524 break;
1526 if (!(tmp->flags & sd_flag))
1527 continue;
1529 if (want_sd)
1530 sd = tmp;
1533 if (sched_feat(LB_SHARES_UPDATE)) {
1535 * Pick the largest domain to update shares over
1537 tmp = sd;
1538 if (affine_sd && (!tmp ||
1539 cpumask_weight(sched_domain_span(affine_sd)) >
1540 cpumask_weight(sched_domain_span(sd))))
1541 tmp = affine_sd;
1543 if (tmp)
1544 update_shares(tmp);
1547 if (affine_sd && wake_affine(affine_sd, p, sync))
1548 return cpu;
1550 while (sd) {
1551 int load_idx = sd->forkexec_idx;
1552 struct sched_group *group;
1553 int weight;
1555 if (!(sd->flags & sd_flag)) {
1556 sd = sd->child;
1557 continue;
1560 if (sd_flag & SD_BALANCE_WAKE)
1561 load_idx = sd->wake_idx;
1563 group = find_idlest_group(sd, p, cpu, load_idx);
1564 if (!group) {
1565 sd = sd->child;
1566 continue;
1569 new_cpu = find_idlest_cpu(group, p, cpu);
1570 if (new_cpu == -1 || new_cpu == cpu) {
1571 /* Now try balancing at a lower domain level of cpu */
1572 sd = sd->child;
1573 continue;
1576 /* Now try balancing at a lower domain level of new_cpu */
1577 cpu = new_cpu;
1578 weight = cpumask_weight(sched_domain_span(sd));
1579 sd = NULL;
1580 for_each_domain(cpu, tmp) {
1581 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1582 break;
1583 if (tmp->flags & sd_flag)
1584 sd = tmp;
1586 /* while loop will break here if sd == NULL */
1589 return new_cpu;
1591 #endif /* CONFIG_SMP */
1594 * Adaptive granularity
1596 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1597 * with the limit of wakeup_gran -- when it never does a wakeup.
1599 * So the smaller avg_wakeup is the faster we want this task to preempt,
1600 * but we don't want to treat the preemptee unfairly and therefore allow it
1601 * to run for at least the amount of time we'd like to run.
1603 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1605 * NOTE: we use *nr_running to scale with load, this nicely matches the
1606 * degrading latency on load.
1608 static unsigned long
1609 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1611 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1612 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1613 u64 gran = 0;
1615 if (this_run < expected_wakeup)
1616 gran = expected_wakeup - this_run;
1618 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1621 static unsigned long
1622 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1624 unsigned long gran = sysctl_sched_wakeup_granularity;
1626 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1627 gran = adaptive_gran(curr, se);
1630 * Since its curr running now, convert the gran from real-time
1631 * to virtual-time in his units.
1633 if (sched_feat(ASYM_GRAN)) {
1635 * By using 'se' instead of 'curr' we penalize light tasks, so
1636 * they get preempted easier. That is, if 'se' < 'curr' then
1637 * the resulting gran will be larger, therefore penalizing the
1638 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1639 * be smaller, again penalizing the lighter task.
1641 * This is especially important for buddies when the leftmost
1642 * task is higher priority than the buddy.
1644 if (unlikely(se->load.weight != NICE_0_LOAD))
1645 gran = calc_delta_fair(gran, se);
1646 } else {
1647 if (unlikely(curr->load.weight != NICE_0_LOAD))
1648 gran = calc_delta_fair(gran, curr);
1651 return gran;
1655 * Should 'se' preempt 'curr'.
1657 * |s1
1658 * |s2
1659 * |s3
1661 * |<--->|c
1663 * w(c, s1) = -1
1664 * w(c, s2) = 0
1665 * w(c, s3) = 1
1668 static int
1669 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1671 s64 gran, vdiff = curr->vruntime - se->vruntime;
1673 if (vdiff <= 0)
1674 return -1;
1676 gran = wakeup_gran(curr, se);
1677 if (vdiff > gran)
1678 return 1;
1680 return 0;
1683 static void set_last_buddy(struct sched_entity *se)
1685 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1686 for_each_sched_entity(se)
1687 cfs_rq_of(se)->last = se;
1691 static void set_next_buddy(struct sched_entity *se)
1693 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1694 for_each_sched_entity(se)
1695 cfs_rq_of(se)->next = se;
1700 * Preempt the current task with a newly woken task if needed:
1702 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1704 struct task_struct *curr = rq->curr;
1705 struct sched_entity *se = &curr->se, *pse = &p->se;
1706 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1707 int sync = wake_flags & WF_SYNC;
1708 int scale = cfs_rq->nr_running >= sched_nr_latency;
1710 if (unlikely(rt_prio(p->prio)))
1711 goto preempt;
1713 if (unlikely(p->sched_class != &fair_sched_class))
1714 return;
1716 if (unlikely(se == pse))
1717 return;
1719 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1720 set_next_buddy(pse);
1723 * We can come here with TIF_NEED_RESCHED already set from new task
1724 * wake up path.
1726 if (test_tsk_need_resched(curr))
1727 return;
1730 * Batch and idle tasks do not preempt (their preemption is driven by
1731 * the tick):
1733 if (unlikely(p->policy != SCHED_NORMAL))
1734 return;
1736 /* Idle tasks are by definition preempted by everybody. */
1737 if (unlikely(curr->policy == SCHED_IDLE))
1738 goto preempt;
1740 if (sched_feat(WAKEUP_SYNC) && sync)
1741 goto preempt;
1743 if (sched_feat(WAKEUP_OVERLAP) &&
1744 se->avg_overlap < sysctl_sched_migration_cost &&
1745 pse->avg_overlap < sysctl_sched_migration_cost)
1746 goto preempt;
1748 if (!sched_feat(WAKEUP_PREEMPT))
1749 return;
1751 update_curr(cfs_rq);
1752 find_matching_se(&se, &pse);
1753 BUG_ON(!pse);
1754 if (wakeup_preempt_entity(se, pse) == 1)
1755 goto preempt;
1757 return;
1759 preempt:
1760 resched_task(curr);
1762 * Only set the backward buddy when the current task is still
1763 * on the rq. This can happen when a wakeup gets interleaved
1764 * with schedule on the ->pre_schedule() or idle_balance()
1765 * point, either of which can * drop the rq lock.
1767 * Also, during early boot the idle thread is in the fair class,
1768 * for obvious reasons its a bad idea to schedule back to it.
1770 if (unlikely(!se->on_rq || curr == rq->idle))
1771 return;
1773 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1774 set_last_buddy(se);
1777 static struct task_struct *pick_next_task_fair(struct rq *rq)
1779 struct task_struct *p;
1780 struct cfs_rq *cfs_rq = &rq->cfs;
1781 struct sched_entity *se;
1783 if (!cfs_rq->nr_running)
1784 return NULL;
1786 do {
1787 se = pick_next_entity(cfs_rq);
1788 set_next_entity(cfs_rq, se);
1789 cfs_rq = group_cfs_rq(se);
1790 } while (cfs_rq);
1792 p = task_of(se);
1793 hrtick_start_fair(rq, p);
1795 return p;
1799 * Account for a descheduled task:
1801 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1803 struct sched_entity *se = &prev->se;
1804 struct cfs_rq *cfs_rq;
1806 for_each_sched_entity(se) {
1807 cfs_rq = cfs_rq_of(se);
1808 put_prev_entity(cfs_rq, se);
1812 #ifdef CONFIG_SMP
1813 /**************************************************
1814 * Fair scheduling class load-balancing methods:
1818 * Load-balancing iterator. Note: while the runqueue stays locked
1819 * during the whole iteration, the current task might be
1820 * dequeued so the iterator has to be dequeue-safe. Here we
1821 * achieve that by always pre-iterating before returning
1822 * the current task:
1824 static struct task_struct *
1825 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1827 struct task_struct *p = NULL;
1828 struct sched_entity *se;
1830 if (next == &cfs_rq->tasks)
1831 return NULL;
1833 se = list_entry(next, struct sched_entity, group_node);
1834 p = task_of(se);
1835 cfs_rq->balance_iterator = next->next;
1837 return p;
1840 static struct task_struct *load_balance_start_fair(void *arg)
1842 struct cfs_rq *cfs_rq = arg;
1844 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1847 static struct task_struct *load_balance_next_fair(void *arg)
1849 struct cfs_rq *cfs_rq = arg;
1851 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1854 static unsigned long
1855 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1856 unsigned long max_load_move, struct sched_domain *sd,
1857 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1858 struct cfs_rq *cfs_rq)
1860 struct rq_iterator cfs_rq_iterator;
1862 cfs_rq_iterator.start = load_balance_start_fair;
1863 cfs_rq_iterator.next = load_balance_next_fair;
1864 cfs_rq_iterator.arg = cfs_rq;
1866 return balance_tasks(this_rq, this_cpu, busiest,
1867 max_load_move, sd, idle, all_pinned,
1868 this_best_prio, &cfs_rq_iterator);
1871 #ifdef CONFIG_FAIR_GROUP_SCHED
1872 static unsigned long
1873 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1874 unsigned long max_load_move,
1875 struct sched_domain *sd, enum cpu_idle_type idle,
1876 int *all_pinned, int *this_best_prio)
1878 long rem_load_move = max_load_move;
1879 int busiest_cpu = cpu_of(busiest);
1880 struct task_group *tg;
1882 rcu_read_lock();
1883 update_h_load(busiest_cpu);
1885 list_for_each_entry_rcu(tg, &task_groups, list) {
1886 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1887 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1888 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1889 u64 rem_load, moved_load;
1892 * empty group
1894 if (!busiest_cfs_rq->task_weight)
1895 continue;
1897 rem_load = (u64)rem_load_move * busiest_weight;
1898 rem_load = div_u64(rem_load, busiest_h_load + 1);
1900 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1901 rem_load, sd, idle, all_pinned, this_best_prio,
1902 tg->cfs_rq[busiest_cpu]);
1904 if (!moved_load)
1905 continue;
1907 moved_load *= busiest_h_load;
1908 moved_load = div_u64(moved_load, busiest_weight + 1);
1910 rem_load_move -= moved_load;
1911 if (rem_load_move < 0)
1912 break;
1914 rcu_read_unlock();
1916 return max_load_move - rem_load_move;
1918 #else
1919 static unsigned long
1920 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1921 unsigned long max_load_move,
1922 struct sched_domain *sd, enum cpu_idle_type idle,
1923 int *all_pinned, int *this_best_prio)
1925 return __load_balance_fair(this_rq, this_cpu, busiest,
1926 max_load_move, sd, idle, all_pinned,
1927 this_best_prio, &busiest->cfs);
1929 #endif
1931 static int
1932 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1933 struct sched_domain *sd, enum cpu_idle_type idle)
1935 struct cfs_rq *busy_cfs_rq;
1936 struct rq_iterator cfs_rq_iterator;
1938 cfs_rq_iterator.start = load_balance_start_fair;
1939 cfs_rq_iterator.next = load_balance_next_fair;
1941 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1943 * pass busy_cfs_rq argument into
1944 * load_balance_[start|next]_fair iterators
1946 cfs_rq_iterator.arg = busy_cfs_rq;
1947 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1948 &cfs_rq_iterator))
1949 return 1;
1952 return 0;
1955 static void rq_online_fair(struct rq *rq)
1957 update_sysctl();
1960 static void rq_offline_fair(struct rq *rq)
1962 update_sysctl();
1965 #endif /* CONFIG_SMP */
1968 * scheduler tick hitting a task of our scheduling class:
1970 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1972 struct cfs_rq *cfs_rq;
1973 struct sched_entity *se = &curr->se;
1975 for_each_sched_entity(se) {
1976 cfs_rq = cfs_rq_of(se);
1977 entity_tick(cfs_rq, se, queued);
1982 * called on fork with the child task as argument from the parent's context
1983 * - child not yet on the tasklist
1984 * - preemption disabled
1986 static void task_fork_fair(struct task_struct *p)
1988 struct cfs_rq *cfs_rq = task_cfs_rq(current);
1989 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1990 int this_cpu = smp_processor_id();
1991 struct rq *rq = this_rq();
1992 unsigned long flags;
1994 raw_spin_lock_irqsave(&rq->lock, flags);
1996 if (unlikely(task_cpu(p) != this_cpu))
1997 __set_task_cpu(p, this_cpu);
1999 update_curr(cfs_rq);
2001 if (curr)
2002 se->vruntime = curr->vruntime;
2003 place_entity(cfs_rq, se, 1);
2005 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
2007 * Upon rescheduling, sched_class::put_prev_task() will place
2008 * 'current' within the tree based on its new key value.
2010 swap(curr->vruntime, se->vruntime);
2011 resched_task(rq->curr);
2014 se->vruntime -= cfs_rq->min_vruntime;
2016 raw_spin_unlock_irqrestore(&rq->lock, flags);
2020 * Priority of the task has changed. Check to see if we preempt
2021 * the current task.
2023 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
2024 int oldprio, int running)
2027 * Reschedule if we are currently running on this runqueue and
2028 * our priority decreased, or if we are not currently running on
2029 * this runqueue and our priority is higher than the current's
2031 if (running) {
2032 if (p->prio > oldprio)
2033 resched_task(rq->curr);
2034 } else
2035 check_preempt_curr(rq, p, 0);
2039 * We switched to the sched_fair class.
2041 static void switched_to_fair(struct rq *rq, struct task_struct *p,
2042 int running)
2045 * We were most likely switched from sched_rt, so
2046 * kick off the schedule if running, otherwise just see
2047 * if we can still preempt the current task.
2049 if (running)
2050 resched_task(rq->curr);
2051 else
2052 check_preempt_curr(rq, p, 0);
2055 /* Account for a task changing its policy or group.
2057 * This routine is mostly called to set cfs_rq->curr field when a task
2058 * migrates between groups/classes.
2060 static void set_curr_task_fair(struct rq *rq)
2062 struct sched_entity *se = &rq->curr->se;
2064 for_each_sched_entity(se)
2065 set_next_entity(cfs_rq_of(se), se);
2068 #ifdef CONFIG_FAIR_GROUP_SCHED
2069 static void moved_group_fair(struct task_struct *p, int on_rq)
2071 struct cfs_rq *cfs_rq = task_cfs_rq(p);
2073 update_curr(cfs_rq);
2074 if (!on_rq)
2075 place_entity(cfs_rq, &p->se, 1);
2077 #endif
2079 unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
2081 struct sched_entity *se = &task->se;
2082 unsigned int rr_interval = 0;
2085 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
2086 * idle runqueue:
2088 if (rq->cfs.load.weight)
2089 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
2091 return rr_interval;
2095 * All the scheduling class methods:
2097 static const struct sched_class fair_sched_class = {
2098 .next = &idle_sched_class,
2099 .enqueue_task = enqueue_task_fair,
2100 .dequeue_task = dequeue_task_fair,
2101 .yield_task = yield_task_fair,
2103 .check_preempt_curr = check_preempt_wakeup,
2105 .pick_next_task = pick_next_task_fair,
2106 .put_prev_task = put_prev_task_fair,
2108 #ifdef CONFIG_SMP
2109 .select_task_rq = select_task_rq_fair,
2111 .load_balance = load_balance_fair,
2112 .move_one_task = move_one_task_fair,
2113 .rq_online = rq_online_fair,
2114 .rq_offline = rq_offline_fair,
2116 .task_waking = task_waking_fair,
2117 #endif
2119 .set_curr_task = set_curr_task_fair,
2120 .task_tick = task_tick_fair,
2121 .task_fork = task_fork_fair,
2123 .prio_changed = prio_changed_fair,
2124 .switched_to = switched_to_fair,
2126 .get_rr_interval = get_rr_interval_fair,
2128 #ifdef CONFIG_FAIR_GROUP_SCHED
2129 .moved_group = moved_group_fair,
2130 #endif
2133 #ifdef CONFIG_SCHED_DEBUG
2134 static void print_cfs_stats(struct seq_file *m, int cpu)
2136 struct cfs_rq *cfs_rq;
2138 rcu_read_lock();
2139 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
2140 print_cfs_rq(m, cpu, cfs_rq);
2141 rcu_read_unlock();
2143 #endif