ACPI: thinkpad-acpi: add development version tag
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / pci / pci.c
blobb8eb5e77df8b29b88175938f0d3d688ef4a77bd3
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include <linux/device.h>
24 #include <asm/setup.h>
25 #include "pci.h"
27 const char *pci_power_names[] = {
28 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
30 EXPORT_SYMBOL_GPL(pci_power_names);
32 unsigned int pci_pm_d3_delay;
34 static void pci_dev_d3_sleep(struct pci_dev *dev)
36 unsigned int delay = dev->d3_delay;
38 if (delay < pci_pm_d3_delay)
39 delay = pci_pm_d3_delay;
41 msleep(delay);
44 #ifdef CONFIG_PCI_DOMAINS
45 int pci_domains_supported = 1;
46 #endif
48 #define DEFAULT_CARDBUS_IO_SIZE (256)
49 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
50 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
51 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
52 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
54 #define DEFAULT_HOTPLUG_IO_SIZE (256)
55 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
56 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
57 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
58 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
61 * The default CLS is used if arch didn't set CLS explicitly and not
62 * all pci devices agree on the same value. Arch can override either
63 * the dfl or actual value as it sees fit. Don't forget this is
64 * measured in 32-bit words, not bytes.
66 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
67 u8 pci_cache_line_size;
69 /**
70 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
71 * @bus: pointer to PCI bus structure to search
73 * Given a PCI bus, returns the highest PCI bus number present in the set
74 * including the given PCI bus and its list of child PCI buses.
76 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
78 struct list_head *tmp;
79 unsigned char max, n;
81 max = bus->subordinate;
82 list_for_each(tmp, &bus->children) {
83 n = pci_bus_max_busnr(pci_bus_b(tmp));
84 if(n > max)
85 max = n;
87 return max;
89 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
91 #ifdef CONFIG_HAS_IOMEM
92 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
95 * Make sure the BAR is actually a memory resource, not an IO resource
97 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
98 WARN_ON(1);
99 return NULL;
101 return ioremap_nocache(pci_resource_start(pdev, bar),
102 pci_resource_len(pdev, bar));
104 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
105 #endif
107 #if 0
109 * pci_max_busnr - returns maximum PCI bus number
111 * Returns the highest PCI bus number present in the system global list of
112 * PCI buses.
114 unsigned char __devinit
115 pci_max_busnr(void)
117 struct pci_bus *bus = NULL;
118 unsigned char max, n;
120 max = 0;
121 while ((bus = pci_find_next_bus(bus)) != NULL) {
122 n = pci_bus_max_busnr(bus);
123 if(n > max)
124 max = n;
126 return max;
129 #endif /* 0 */
131 #define PCI_FIND_CAP_TTL 48
133 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
134 u8 pos, int cap, int *ttl)
136 u8 id;
138 while ((*ttl)--) {
139 pci_bus_read_config_byte(bus, devfn, pos, &pos);
140 if (pos < 0x40)
141 break;
142 pos &= ~3;
143 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
144 &id);
145 if (id == 0xff)
146 break;
147 if (id == cap)
148 return pos;
149 pos += PCI_CAP_LIST_NEXT;
151 return 0;
154 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
155 u8 pos, int cap)
157 int ttl = PCI_FIND_CAP_TTL;
159 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
162 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
164 return __pci_find_next_cap(dev->bus, dev->devfn,
165 pos + PCI_CAP_LIST_NEXT, cap);
167 EXPORT_SYMBOL_GPL(pci_find_next_capability);
169 static int __pci_bus_find_cap_start(struct pci_bus *bus,
170 unsigned int devfn, u8 hdr_type)
172 u16 status;
174 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
175 if (!(status & PCI_STATUS_CAP_LIST))
176 return 0;
178 switch (hdr_type) {
179 case PCI_HEADER_TYPE_NORMAL:
180 case PCI_HEADER_TYPE_BRIDGE:
181 return PCI_CAPABILITY_LIST;
182 case PCI_HEADER_TYPE_CARDBUS:
183 return PCI_CB_CAPABILITY_LIST;
184 default:
185 return 0;
188 return 0;
192 * pci_find_capability - query for devices' capabilities
193 * @dev: PCI device to query
194 * @cap: capability code
196 * Tell if a device supports a given PCI capability.
197 * Returns the address of the requested capability structure within the
198 * device's PCI configuration space or 0 in case the device does not
199 * support it. Possible values for @cap:
201 * %PCI_CAP_ID_PM Power Management
202 * %PCI_CAP_ID_AGP Accelerated Graphics Port
203 * %PCI_CAP_ID_VPD Vital Product Data
204 * %PCI_CAP_ID_SLOTID Slot Identification
205 * %PCI_CAP_ID_MSI Message Signalled Interrupts
206 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
207 * %PCI_CAP_ID_PCIX PCI-X
208 * %PCI_CAP_ID_EXP PCI Express
210 int pci_find_capability(struct pci_dev *dev, int cap)
212 int pos;
214 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
215 if (pos)
216 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
218 return pos;
222 * pci_bus_find_capability - query for devices' capabilities
223 * @bus: the PCI bus to query
224 * @devfn: PCI device to query
225 * @cap: capability code
227 * Like pci_find_capability() but works for pci devices that do not have a
228 * pci_dev structure set up yet.
230 * Returns the address of the requested capability structure within the
231 * device's PCI configuration space or 0 in case the device does not
232 * support it.
234 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
236 int pos;
237 u8 hdr_type;
239 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
241 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
242 if (pos)
243 pos = __pci_find_next_cap(bus, devfn, pos, cap);
245 return pos;
249 * pci_find_ext_capability - Find an extended capability
250 * @dev: PCI device to query
251 * @cap: capability code
253 * Returns the address of the requested extended capability structure
254 * within the device's PCI configuration space or 0 if the device does
255 * not support it. Possible values for @cap:
257 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
258 * %PCI_EXT_CAP_ID_VC Virtual Channel
259 * %PCI_EXT_CAP_ID_DSN Device Serial Number
260 * %PCI_EXT_CAP_ID_PWR Power Budgeting
262 int pci_find_ext_capability(struct pci_dev *dev, int cap)
264 u32 header;
265 int ttl;
266 int pos = PCI_CFG_SPACE_SIZE;
268 /* minimum 8 bytes per capability */
269 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
271 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
272 return 0;
274 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
275 return 0;
278 * If we have no capabilities, this is indicated by cap ID,
279 * cap version and next pointer all being 0.
281 if (header == 0)
282 return 0;
284 while (ttl-- > 0) {
285 if (PCI_EXT_CAP_ID(header) == cap)
286 return pos;
288 pos = PCI_EXT_CAP_NEXT(header);
289 if (pos < PCI_CFG_SPACE_SIZE)
290 break;
292 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
293 break;
296 return 0;
298 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
300 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
302 int rc, ttl = PCI_FIND_CAP_TTL;
303 u8 cap, mask;
305 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
306 mask = HT_3BIT_CAP_MASK;
307 else
308 mask = HT_5BIT_CAP_MASK;
310 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
311 PCI_CAP_ID_HT, &ttl);
312 while (pos) {
313 rc = pci_read_config_byte(dev, pos + 3, &cap);
314 if (rc != PCIBIOS_SUCCESSFUL)
315 return 0;
317 if ((cap & mask) == ht_cap)
318 return pos;
320 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
321 pos + PCI_CAP_LIST_NEXT,
322 PCI_CAP_ID_HT, &ttl);
325 return 0;
328 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
329 * @dev: PCI device to query
330 * @pos: Position from which to continue searching
331 * @ht_cap: Hypertransport capability code
333 * To be used in conjunction with pci_find_ht_capability() to search for
334 * all capabilities matching @ht_cap. @pos should always be a value returned
335 * from pci_find_ht_capability().
337 * NB. To be 100% safe against broken PCI devices, the caller should take
338 * steps to avoid an infinite loop.
340 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
342 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
344 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
347 * pci_find_ht_capability - query a device's Hypertransport capabilities
348 * @dev: PCI device to query
349 * @ht_cap: Hypertransport capability code
351 * Tell if a device supports a given Hypertransport capability.
352 * Returns an address within the device's PCI configuration space
353 * or 0 in case the device does not support the request capability.
354 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
355 * which has a Hypertransport capability matching @ht_cap.
357 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
359 int pos;
361 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
362 if (pos)
363 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
365 return pos;
367 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
370 * pci_find_parent_resource - return resource region of parent bus of given region
371 * @dev: PCI device structure contains resources to be searched
372 * @res: child resource record for which parent is sought
374 * For given resource region of given device, return the resource
375 * region of parent bus the given region is contained in or where
376 * it should be allocated from.
378 struct resource *
379 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
381 const struct pci_bus *bus = dev->bus;
382 int i;
383 struct resource *best = NULL;
385 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
386 struct resource *r = bus->resource[i];
387 if (!r)
388 continue;
389 if (res->start && !(res->start >= r->start && res->end <= r->end))
390 continue; /* Not contained */
391 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
392 continue; /* Wrong type */
393 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
394 return r; /* Exact match */
395 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
396 if (r->flags & IORESOURCE_PREFETCH)
397 continue;
398 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
399 if (!best)
400 best = r;
402 return best;
406 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
407 * @dev: PCI device to have its BARs restored
409 * Restore the BAR values for a given device, so as to make it
410 * accessible by its driver.
412 static void
413 pci_restore_bars(struct pci_dev *dev)
415 int i;
417 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
418 pci_update_resource(dev, i);
421 static struct pci_platform_pm_ops *pci_platform_pm;
423 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
425 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
426 || !ops->sleep_wake || !ops->can_wakeup)
427 return -EINVAL;
428 pci_platform_pm = ops;
429 return 0;
432 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
434 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
437 static inline int platform_pci_set_power_state(struct pci_dev *dev,
438 pci_power_t t)
440 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
443 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
445 return pci_platform_pm ?
446 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
449 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
451 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
454 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
456 return pci_platform_pm ?
457 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
461 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
462 * given PCI device
463 * @dev: PCI device to handle.
464 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
466 * RETURN VALUE:
467 * -EINVAL if the requested state is invalid.
468 * -EIO if device does not support PCI PM or its PM capabilities register has a
469 * wrong version, or device doesn't support the requested state.
470 * 0 if device already is in the requested state.
471 * 0 if device's power state has been successfully changed.
473 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
475 u16 pmcsr;
476 bool need_restore = false;
478 /* Check if we're already there */
479 if (dev->current_state == state)
480 return 0;
482 if (!dev->pm_cap)
483 return -EIO;
485 if (state < PCI_D0 || state > PCI_D3hot)
486 return -EINVAL;
488 /* Validate current state:
489 * Can enter D0 from any state, but if we can only go deeper
490 * to sleep if we're already in a low power state
492 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
493 && dev->current_state > state) {
494 dev_err(&dev->dev, "invalid power transition "
495 "(from state %d to %d)\n", dev->current_state, state);
496 return -EINVAL;
499 /* check if this device supports the desired state */
500 if ((state == PCI_D1 && !dev->d1_support)
501 || (state == PCI_D2 && !dev->d2_support))
502 return -EIO;
504 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
506 /* If we're (effectively) in D3, force entire word to 0.
507 * This doesn't affect PME_Status, disables PME_En, and
508 * sets PowerState to 0.
510 switch (dev->current_state) {
511 case PCI_D0:
512 case PCI_D1:
513 case PCI_D2:
514 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
515 pmcsr |= state;
516 break;
517 case PCI_D3hot:
518 case PCI_D3cold:
519 case PCI_UNKNOWN: /* Boot-up */
520 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
521 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
522 need_restore = true;
523 /* Fall-through: force to D0 */
524 default:
525 pmcsr = 0;
526 break;
529 /* enter specified state */
530 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
532 /* Mandatory power management transition delays */
533 /* see PCI PM 1.1 5.6.1 table 18 */
534 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
535 pci_dev_d3_sleep(dev);
536 else if (state == PCI_D2 || dev->current_state == PCI_D2)
537 udelay(PCI_PM_D2_DELAY);
539 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
540 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
541 if (dev->current_state != state && printk_ratelimit())
542 dev_info(&dev->dev, "Refused to change power state, "
543 "currently in D%d\n", dev->current_state);
545 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
546 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
547 * from D3hot to D0 _may_ perform an internal reset, thereby
548 * going to "D0 Uninitialized" rather than "D0 Initialized".
549 * For example, at least some versions of the 3c905B and the
550 * 3c556B exhibit this behaviour.
552 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
553 * devices in a D3hot state at boot. Consequently, we need to
554 * restore at least the BARs so that the device will be
555 * accessible to its driver.
557 if (need_restore)
558 pci_restore_bars(dev);
560 if (dev->bus->self)
561 pcie_aspm_pm_state_change(dev->bus->self);
563 return 0;
567 * pci_update_current_state - Read PCI power state of given device from its
568 * PCI PM registers and cache it
569 * @dev: PCI device to handle.
570 * @state: State to cache in case the device doesn't have the PM capability
572 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
574 if (dev->pm_cap) {
575 u16 pmcsr;
577 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
578 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
579 } else {
580 dev->current_state = state;
585 * pci_platform_power_transition - Use platform to change device power state
586 * @dev: PCI device to handle.
587 * @state: State to put the device into.
589 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
591 int error;
593 if (platform_pci_power_manageable(dev)) {
594 error = platform_pci_set_power_state(dev, state);
595 if (!error)
596 pci_update_current_state(dev, state);
597 } else {
598 error = -ENODEV;
599 /* Fall back to PCI_D0 if native PM is not supported */
600 if (!dev->pm_cap)
601 dev->current_state = PCI_D0;
604 return error;
608 * __pci_start_power_transition - Start power transition of a PCI device
609 * @dev: PCI device to handle.
610 * @state: State to put the device into.
612 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
614 if (state == PCI_D0)
615 pci_platform_power_transition(dev, PCI_D0);
619 * __pci_complete_power_transition - Complete power transition of a PCI device
620 * @dev: PCI device to handle.
621 * @state: State to put the device into.
623 * This function should not be called directly by device drivers.
625 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
627 return state >= PCI_D0 ?
628 pci_platform_power_transition(dev, state) : -EINVAL;
630 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
633 * pci_set_power_state - Set the power state of a PCI device
634 * @dev: PCI device to handle.
635 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
637 * Transition a device to a new power state, using the platform firmware and/or
638 * the device's PCI PM registers.
640 * RETURN VALUE:
641 * -EINVAL if the requested state is invalid.
642 * -EIO if device does not support PCI PM or its PM capabilities register has a
643 * wrong version, or device doesn't support the requested state.
644 * 0 if device already is in the requested state.
645 * 0 if device's power state has been successfully changed.
647 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
649 int error;
651 /* bound the state we're entering */
652 if (state > PCI_D3hot)
653 state = PCI_D3hot;
654 else if (state < PCI_D0)
655 state = PCI_D0;
656 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
658 * If the device or the parent bridge do not support PCI PM,
659 * ignore the request if we're doing anything other than putting
660 * it into D0 (which would only happen on boot).
662 return 0;
664 __pci_start_power_transition(dev, state);
666 /* This device is quirked not to be put into D3, so
667 don't put it in D3 */
668 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
669 return 0;
671 error = pci_raw_set_power_state(dev, state);
673 if (!__pci_complete_power_transition(dev, state))
674 error = 0;
676 return error;
680 * pci_choose_state - Choose the power state of a PCI device
681 * @dev: PCI device to be suspended
682 * @state: target sleep state for the whole system. This is the value
683 * that is passed to suspend() function.
685 * Returns PCI power state suitable for given device and given system
686 * message.
689 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
691 pci_power_t ret;
693 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
694 return PCI_D0;
696 ret = platform_pci_choose_state(dev);
697 if (ret != PCI_POWER_ERROR)
698 return ret;
700 switch (state.event) {
701 case PM_EVENT_ON:
702 return PCI_D0;
703 case PM_EVENT_FREEZE:
704 case PM_EVENT_PRETHAW:
705 /* REVISIT both freeze and pre-thaw "should" use D0 */
706 case PM_EVENT_SUSPEND:
707 case PM_EVENT_HIBERNATE:
708 return PCI_D3hot;
709 default:
710 dev_info(&dev->dev, "unrecognized suspend event %d\n",
711 state.event);
712 BUG();
714 return PCI_D0;
717 EXPORT_SYMBOL(pci_choose_state);
719 #define PCI_EXP_SAVE_REGS 7
721 #define pcie_cap_has_devctl(type, flags) 1
722 #define pcie_cap_has_lnkctl(type, flags) \
723 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
724 (type == PCI_EXP_TYPE_ROOT_PORT || \
725 type == PCI_EXP_TYPE_ENDPOINT || \
726 type == PCI_EXP_TYPE_LEG_END))
727 #define pcie_cap_has_sltctl(type, flags) \
728 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
729 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
730 (type == PCI_EXP_TYPE_DOWNSTREAM && \
731 (flags & PCI_EXP_FLAGS_SLOT))))
732 #define pcie_cap_has_rtctl(type, flags) \
733 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
734 (type == PCI_EXP_TYPE_ROOT_PORT || \
735 type == PCI_EXP_TYPE_RC_EC))
736 #define pcie_cap_has_devctl2(type, flags) \
737 ((flags & PCI_EXP_FLAGS_VERS) > 1)
738 #define pcie_cap_has_lnkctl2(type, flags) \
739 ((flags & PCI_EXP_FLAGS_VERS) > 1)
740 #define pcie_cap_has_sltctl2(type, flags) \
741 ((flags & PCI_EXP_FLAGS_VERS) > 1)
743 static int pci_save_pcie_state(struct pci_dev *dev)
745 int pos, i = 0;
746 struct pci_cap_saved_state *save_state;
747 u16 *cap;
748 u16 flags;
750 pos = pci_pcie_cap(dev);
751 if (!pos)
752 return 0;
754 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
755 if (!save_state) {
756 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
757 return -ENOMEM;
759 cap = (u16 *)&save_state->data[0];
761 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
763 if (pcie_cap_has_devctl(dev->pcie_type, flags))
764 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
765 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
766 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
767 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
768 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
769 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
770 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
771 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
772 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
773 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
774 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
775 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
776 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
778 return 0;
781 static void pci_restore_pcie_state(struct pci_dev *dev)
783 int i = 0, pos;
784 struct pci_cap_saved_state *save_state;
785 u16 *cap;
786 u16 flags;
788 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
789 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
790 if (!save_state || pos <= 0)
791 return;
792 cap = (u16 *)&save_state->data[0];
794 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
796 if (pcie_cap_has_devctl(dev->pcie_type, flags))
797 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
798 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
799 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
800 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
801 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
802 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
803 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
804 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
805 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
806 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
807 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
808 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
809 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
813 static int pci_save_pcix_state(struct pci_dev *dev)
815 int pos;
816 struct pci_cap_saved_state *save_state;
818 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
819 if (pos <= 0)
820 return 0;
822 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
823 if (!save_state) {
824 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
825 return -ENOMEM;
828 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
830 return 0;
833 static void pci_restore_pcix_state(struct pci_dev *dev)
835 int i = 0, pos;
836 struct pci_cap_saved_state *save_state;
837 u16 *cap;
839 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
840 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
841 if (!save_state || pos <= 0)
842 return;
843 cap = (u16 *)&save_state->data[0];
845 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
850 * pci_save_state - save the PCI configuration space of a device before suspending
851 * @dev: - PCI device that we're dealing with
854 pci_save_state(struct pci_dev *dev)
856 int i;
857 /* XXX: 100% dword access ok here? */
858 for (i = 0; i < 16; i++)
859 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
860 dev->state_saved = true;
861 if ((i = pci_save_pcie_state(dev)) != 0)
862 return i;
863 if ((i = pci_save_pcix_state(dev)) != 0)
864 return i;
865 return 0;
868 /**
869 * pci_restore_state - Restore the saved state of a PCI device
870 * @dev: - PCI device that we're dealing with
872 int
873 pci_restore_state(struct pci_dev *dev)
875 int i;
876 u32 val;
878 if (!dev->state_saved)
879 return 0;
881 /* PCI Express register must be restored first */
882 pci_restore_pcie_state(dev);
885 * The Base Address register should be programmed before the command
886 * register(s)
888 for (i = 15; i >= 0; i--) {
889 pci_read_config_dword(dev, i * 4, &val);
890 if (val != dev->saved_config_space[i]) {
891 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
892 "space at offset %#x (was %#x, writing %#x)\n",
893 i, val, (int)dev->saved_config_space[i]);
894 pci_write_config_dword(dev,i * 4,
895 dev->saved_config_space[i]);
898 pci_restore_pcix_state(dev);
899 pci_restore_msi_state(dev);
900 pci_restore_iov_state(dev);
902 dev->state_saved = false;
904 return 0;
907 static int do_pci_enable_device(struct pci_dev *dev, int bars)
909 int err;
911 err = pci_set_power_state(dev, PCI_D0);
912 if (err < 0 && err != -EIO)
913 return err;
914 err = pcibios_enable_device(dev, bars);
915 if (err < 0)
916 return err;
917 pci_fixup_device(pci_fixup_enable, dev);
919 return 0;
923 * pci_reenable_device - Resume abandoned device
924 * @dev: PCI device to be resumed
926 * Note this function is a backend of pci_default_resume and is not supposed
927 * to be called by normal code, write proper resume handler and use it instead.
929 int pci_reenable_device(struct pci_dev *dev)
931 if (pci_is_enabled(dev))
932 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
933 return 0;
936 static int __pci_enable_device_flags(struct pci_dev *dev,
937 resource_size_t flags)
939 int err;
940 int i, bars = 0;
942 if (atomic_add_return(1, &dev->enable_cnt) > 1)
943 return 0; /* already enabled */
945 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
946 if (dev->resource[i].flags & flags)
947 bars |= (1 << i);
949 err = do_pci_enable_device(dev, bars);
950 if (err < 0)
951 atomic_dec(&dev->enable_cnt);
952 return err;
956 * pci_enable_device_io - Initialize a device for use with IO space
957 * @dev: PCI device to be initialized
959 * Initialize device before it's used by a driver. Ask low-level code
960 * to enable I/O resources. Wake up the device if it was suspended.
961 * Beware, this function can fail.
963 int pci_enable_device_io(struct pci_dev *dev)
965 return __pci_enable_device_flags(dev, IORESOURCE_IO);
969 * pci_enable_device_mem - Initialize a device for use with Memory space
970 * @dev: PCI device to be initialized
972 * Initialize device before it's used by a driver. Ask low-level code
973 * to enable Memory resources. Wake up the device if it was suspended.
974 * Beware, this function can fail.
976 int pci_enable_device_mem(struct pci_dev *dev)
978 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
982 * pci_enable_device - Initialize device before it's used by a driver.
983 * @dev: PCI device to be initialized
985 * Initialize device before it's used by a driver. Ask low-level code
986 * to enable I/O and memory. Wake up the device if it was suspended.
987 * Beware, this function can fail.
989 * Note we don't actually enable the device many times if we call
990 * this function repeatedly (we just increment the count).
992 int pci_enable_device(struct pci_dev *dev)
994 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
998 * Managed PCI resources. This manages device on/off, intx/msi/msix
999 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1000 * there's no need to track it separately. pci_devres is initialized
1001 * when a device is enabled using managed PCI device enable interface.
1003 struct pci_devres {
1004 unsigned int enabled:1;
1005 unsigned int pinned:1;
1006 unsigned int orig_intx:1;
1007 unsigned int restore_intx:1;
1008 u32 region_mask;
1011 static void pcim_release(struct device *gendev, void *res)
1013 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1014 struct pci_devres *this = res;
1015 int i;
1017 if (dev->msi_enabled)
1018 pci_disable_msi(dev);
1019 if (dev->msix_enabled)
1020 pci_disable_msix(dev);
1022 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1023 if (this->region_mask & (1 << i))
1024 pci_release_region(dev, i);
1026 if (this->restore_intx)
1027 pci_intx(dev, this->orig_intx);
1029 if (this->enabled && !this->pinned)
1030 pci_disable_device(dev);
1033 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1035 struct pci_devres *dr, *new_dr;
1037 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1038 if (dr)
1039 return dr;
1041 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1042 if (!new_dr)
1043 return NULL;
1044 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1047 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1049 if (pci_is_managed(pdev))
1050 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1051 return NULL;
1055 * pcim_enable_device - Managed pci_enable_device()
1056 * @pdev: PCI device to be initialized
1058 * Managed pci_enable_device().
1060 int pcim_enable_device(struct pci_dev *pdev)
1062 struct pci_devres *dr;
1063 int rc;
1065 dr = get_pci_dr(pdev);
1066 if (unlikely(!dr))
1067 return -ENOMEM;
1068 if (dr->enabled)
1069 return 0;
1071 rc = pci_enable_device(pdev);
1072 if (!rc) {
1073 pdev->is_managed = 1;
1074 dr->enabled = 1;
1076 return rc;
1080 * pcim_pin_device - Pin managed PCI device
1081 * @pdev: PCI device to pin
1083 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1084 * driver detach. @pdev must have been enabled with
1085 * pcim_enable_device().
1087 void pcim_pin_device(struct pci_dev *pdev)
1089 struct pci_devres *dr;
1091 dr = find_pci_dr(pdev);
1092 WARN_ON(!dr || !dr->enabled);
1093 if (dr)
1094 dr->pinned = 1;
1098 * pcibios_disable_device - disable arch specific PCI resources for device dev
1099 * @dev: the PCI device to disable
1101 * Disables architecture specific PCI resources for the device. This
1102 * is the default implementation. Architecture implementations can
1103 * override this.
1105 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1107 static void do_pci_disable_device(struct pci_dev *dev)
1109 u16 pci_command;
1111 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1112 if (pci_command & PCI_COMMAND_MASTER) {
1113 pci_command &= ~PCI_COMMAND_MASTER;
1114 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1117 pcibios_disable_device(dev);
1121 * pci_disable_enabled_device - Disable device without updating enable_cnt
1122 * @dev: PCI device to disable
1124 * NOTE: This function is a backend of PCI power management routines and is
1125 * not supposed to be called drivers.
1127 void pci_disable_enabled_device(struct pci_dev *dev)
1129 if (pci_is_enabled(dev))
1130 do_pci_disable_device(dev);
1134 * pci_disable_device - Disable PCI device after use
1135 * @dev: PCI device to be disabled
1137 * Signal to the system that the PCI device is not in use by the system
1138 * anymore. This only involves disabling PCI bus-mastering, if active.
1140 * Note we don't actually disable the device until all callers of
1141 * pci_device_enable() have called pci_device_disable().
1143 void
1144 pci_disable_device(struct pci_dev *dev)
1146 struct pci_devres *dr;
1148 dr = find_pci_dr(dev);
1149 if (dr)
1150 dr->enabled = 0;
1152 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1153 return;
1155 do_pci_disable_device(dev);
1157 dev->is_busmaster = 0;
1161 * pcibios_set_pcie_reset_state - set reset state for device dev
1162 * @dev: the PCIe device reset
1163 * @state: Reset state to enter into
1166 * Sets the PCIe reset state for the device. This is the default
1167 * implementation. Architecture implementations can override this.
1169 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1170 enum pcie_reset_state state)
1172 return -EINVAL;
1176 * pci_set_pcie_reset_state - set reset state for device dev
1177 * @dev: the PCIe device reset
1178 * @state: Reset state to enter into
1181 * Sets the PCI reset state for the device.
1183 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1185 return pcibios_set_pcie_reset_state(dev, state);
1189 * pci_pme_capable - check the capability of PCI device to generate PME#
1190 * @dev: PCI device to handle.
1191 * @state: PCI state from which device will issue PME#.
1193 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1195 if (!dev->pm_cap)
1196 return false;
1198 return !!(dev->pme_support & (1 << state));
1202 * pci_pme_active - enable or disable PCI device's PME# function
1203 * @dev: PCI device to handle.
1204 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1206 * The caller must verify that the device is capable of generating PME# before
1207 * calling this function with @enable equal to 'true'.
1209 void pci_pme_active(struct pci_dev *dev, bool enable)
1211 u16 pmcsr;
1213 if (!dev->pm_cap)
1214 return;
1216 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1217 /* Clear PME_Status by writing 1 to it and enable PME# */
1218 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1219 if (!enable)
1220 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1222 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1224 dev_printk(KERN_DEBUG, &dev->dev, "PME# %s\n",
1225 enable ? "enabled" : "disabled");
1229 * pci_enable_wake - enable PCI device as wakeup event source
1230 * @dev: PCI device affected
1231 * @state: PCI state from which device will issue wakeup events
1232 * @enable: True to enable event generation; false to disable
1234 * This enables the device as a wakeup event source, or disables it.
1235 * When such events involves platform-specific hooks, those hooks are
1236 * called automatically by this routine.
1238 * Devices with legacy power management (no standard PCI PM capabilities)
1239 * always require such platform hooks.
1241 * RETURN VALUE:
1242 * 0 is returned on success
1243 * -EINVAL is returned if device is not supposed to wake up the system
1244 * Error code depending on the platform is returned if both the platform and
1245 * the native mechanism fail to enable the generation of wake-up events
1247 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1249 int ret = 0;
1251 if (enable && !device_may_wakeup(&dev->dev))
1252 return -EINVAL;
1254 /* Don't do the same thing twice in a row for one device. */
1255 if (!!enable == !!dev->wakeup_prepared)
1256 return 0;
1259 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1260 * Anderson we should be doing PME# wake enable followed by ACPI wake
1261 * enable. To disable wake-up we call the platform first, for symmetry.
1264 if (enable) {
1265 int error;
1267 if (pci_pme_capable(dev, state))
1268 pci_pme_active(dev, true);
1269 else
1270 ret = 1;
1271 error = platform_pci_sleep_wake(dev, true);
1272 if (ret)
1273 ret = error;
1274 if (!ret)
1275 dev->wakeup_prepared = true;
1276 } else {
1277 platform_pci_sleep_wake(dev, false);
1278 pci_pme_active(dev, false);
1279 dev->wakeup_prepared = false;
1282 return ret;
1286 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1287 * @dev: PCI device to prepare
1288 * @enable: True to enable wake-up event generation; false to disable
1290 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1291 * and this function allows them to set that up cleanly - pci_enable_wake()
1292 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1293 * ordering constraints.
1295 * This function only returns error code if the device is not capable of
1296 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1297 * enable wake-up power for it.
1299 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1301 return pci_pme_capable(dev, PCI_D3cold) ?
1302 pci_enable_wake(dev, PCI_D3cold, enable) :
1303 pci_enable_wake(dev, PCI_D3hot, enable);
1307 * pci_target_state - find an appropriate low power state for a given PCI dev
1308 * @dev: PCI device
1310 * Use underlying platform code to find a supported low power state for @dev.
1311 * If the platform can't manage @dev, return the deepest state from which it
1312 * can generate wake events, based on any available PME info.
1314 pci_power_t pci_target_state(struct pci_dev *dev)
1316 pci_power_t target_state = PCI_D3hot;
1318 if (platform_pci_power_manageable(dev)) {
1320 * Call the platform to choose the target state of the device
1321 * and enable wake-up from this state if supported.
1323 pci_power_t state = platform_pci_choose_state(dev);
1325 switch (state) {
1326 case PCI_POWER_ERROR:
1327 case PCI_UNKNOWN:
1328 break;
1329 case PCI_D1:
1330 case PCI_D2:
1331 if (pci_no_d1d2(dev))
1332 break;
1333 default:
1334 target_state = state;
1336 } else if (!dev->pm_cap) {
1337 target_state = PCI_D0;
1338 } else if (device_may_wakeup(&dev->dev)) {
1340 * Find the deepest state from which the device can generate
1341 * wake-up events, make it the target state and enable device
1342 * to generate PME#.
1344 if (dev->pme_support) {
1345 while (target_state
1346 && !(dev->pme_support & (1 << target_state)))
1347 target_state--;
1351 return target_state;
1355 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1356 * @dev: Device to handle.
1358 * Choose the power state appropriate for the device depending on whether
1359 * it can wake up the system and/or is power manageable by the platform
1360 * (PCI_D3hot is the default) and put the device into that state.
1362 int pci_prepare_to_sleep(struct pci_dev *dev)
1364 pci_power_t target_state = pci_target_state(dev);
1365 int error;
1367 if (target_state == PCI_POWER_ERROR)
1368 return -EIO;
1370 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1372 error = pci_set_power_state(dev, target_state);
1374 if (error)
1375 pci_enable_wake(dev, target_state, false);
1377 return error;
1381 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1382 * @dev: Device to handle.
1384 * Disable device's sytem wake-up capability and put it into D0.
1386 int pci_back_from_sleep(struct pci_dev *dev)
1388 pci_enable_wake(dev, PCI_D0, false);
1389 return pci_set_power_state(dev, PCI_D0);
1393 * pci_pm_init - Initialize PM functions of given PCI device
1394 * @dev: PCI device to handle.
1396 void pci_pm_init(struct pci_dev *dev)
1398 int pm;
1399 u16 pmc;
1401 dev->wakeup_prepared = false;
1402 dev->pm_cap = 0;
1404 /* find PCI PM capability in list */
1405 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1406 if (!pm)
1407 return;
1408 /* Check device's ability to generate PME# */
1409 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1411 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1412 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1413 pmc & PCI_PM_CAP_VER_MASK);
1414 return;
1417 dev->pm_cap = pm;
1418 dev->d3_delay = PCI_PM_D3_WAIT;
1420 dev->d1_support = false;
1421 dev->d2_support = false;
1422 if (!pci_no_d1d2(dev)) {
1423 if (pmc & PCI_PM_CAP_D1)
1424 dev->d1_support = true;
1425 if (pmc & PCI_PM_CAP_D2)
1426 dev->d2_support = true;
1428 if (dev->d1_support || dev->d2_support)
1429 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1430 dev->d1_support ? " D1" : "",
1431 dev->d2_support ? " D2" : "");
1434 pmc &= PCI_PM_CAP_PME_MASK;
1435 if (pmc) {
1436 dev_printk(KERN_DEBUG, &dev->dev,
1437 "PME# supported from%s%s%s%s%s\n",
1438 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1439 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1440 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1441 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1442 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1443 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1445 * Make device's PM flags reflect the wake-up capability, but
1446 * let the user space enable it to wake up the system as needed.
1448 device_set_wakeup_capable(&dev->dev, true);
1449 device_set_wakeup_enable(&dev->dev, false);
1450 /* Disable the PME# generation functionality */
1451 pci_pme_active(dev, false);
1452 } else {
1453 dev->pme_support = 0;
1458 * platform_pci_wakeup_init - init platform wakeup if present
1459 * @dev: PCI device
1461 * Some devices don't have PCI PM caps but can still generate wakeup
1462 * events through platform methods (like ACPI events). If @dev supports
1463 * platform wakeup events, set the device flag to indicate as much. This
1464 * may be redundant if the device also supports PCI PM caps, but double
1465 * initialization should be safe in that case.
1467 void platform_pci_wakeup_init(struct pci_dev *dev)
1469 if (!platform_pci_can_wakeup(dev))
1470 return;
1472 device_set_wakeup_capable(&dev->dev, true);
1473 device_set_wakeup_enable(&dev->dev, false);
1474 platform_pci_sleep_wake(dev, false);
1478 * pci_add_save_buffer - allocate buffer for saving given capability registers
1479 * @dev: the PCI device
1480 * @cap: the capability to allocate the buffer for
1481 * @size: requested size of the buffer
1483 static int pci_add_cap_save_buffer(
1484 struct pci_dev *dev, char cap, unsigned int size)
1486 int pos;
1487 struct pci_cap_saved_state *save_state;
1489 pos = pci_find_capability(dev, cap);
1490 if (pos <= 0)
1491 return 0;
1493 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1494 if (!save_state)
1495 return -ENOMEM;
1497 save_state->cap_nr = cap;
1498 pci_add_saved_cap(dev, save_state);
1500 return 0;
1504 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1505 * @dev: the PCI device
1507 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1509 int error;
1511 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1512 PCI_EXP_SAVE_REGS * sizeof(u16));
1513 if (error)
1514 dev_err(&dev->dev,
1515 "unable to preallocate PCI Express save buffer\n");
1517 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1518 if (error)
1519 dev_err(&dev->dev,
1520 "unable to preallocate PCI-X save buffer\n");
1524 * pci_enable_ari - enable ARI forwarding if hardware support it
1525 * @dev: the PCI device
1527 void pci_enable_ari(struct pci_dev *dev)
1529 int pos;
1530 u32 cap;
1531 u16 ctrl;
1532 struct pci_dev *bridge;
1534 if (!pci_is_pcie(dev) || dev->devfn)
1535 return;
1537 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1538 if (!pos)
1539 return;
1541 bridge = dev->bus->self;
1542 if (!bridge || !pci_is_pcie(bridge))
1543 return;
1545 pos = pci_pcie_cap(bridge);
1546 if (!pos)
1547 return;
1549 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1550 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1551 return;
1553 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1554 ctrl |= PCI_EXP_DEVCTL2_ARI;
1555 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1557 bridge->ari_enabled = 1;
1560 static int pci_acs_enable;
1563 * pci_request_acs - ask for ACS to be enabled if supported
1565 void pci_request_acs(void)
1567 pci_acs_enable = 1;
1571 * pci_enable_acs - enable ACS if hardware support it
1572 * @dev: the PCI device
1574 void pci_enable_acs(struct pci_dev *dev)
1576 int pos;
1577 u16 cap;
1578 u16 ctrl;
1580 if (!pci_acs_enable)
1581 return;
1583 if (!pci_is_pcie(dev))
1584 return;
1586 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
1587 if (!pos)
1588 return;
1590 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1591 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1593 /* Source Validation */
1594 ctrl |= (cap & PCI_ACS_SV);
1596 /* P2P Request Redirect */
1597 ctrl |= (cap & PCI_ACS_RR);
1599 /* P2P Completion Redirect */
1600 ctrl |= (cap & PCI_ACS_CR);
1602 /* Upstream Forwarding */
1603 ctrl |= (cap & PCI_ACS_UF);
1605 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1609 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1610 * @dev: the PCI device
1611 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1613 * Perform INTx swizzling for a device behind one level of bridge. This is
1614 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1615 * behind bridges on add-in cards. For devices with ARI enabled, the slot
1616 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
1617 * the PCI Express Base Specification, Revision 2.1)
1619 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1621 int slot;
1623 if (pci_ari_enabled(dev->bus))
1624 slot = 0;
1625 else
1626 slot = PCI_SLOT(dev->devfn);
1628 return (((pin - 1) + slot) % 4) + 1;
1632 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1634 u8 pin;
1636 pin = dev->pin;
1637 if (!pin)
1638 return -1;
1640 while (!pci_is_root_bus(dev->bus)) {
1641 pin = pci_swizzle_interrupt_pin(dev, pin);
1642 dev = dev->bus->self;
1644 *bridge = dev;
1645 return pin;
1649 * pci_common_swizzle - swizzle INTx all the way to root bridge
1650 * @dev: the PCI device
1651 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1653 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1654 * bridges all the way up to a PCI root bus.
1656 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1658 u8 pin = *pinp;
1660 while (!pci_is_root_bus(dev->bus)) {
1661 pin = pci_swizzle_interrupt_pin(dev, pin);
1662 dev = dev->bus->self;
1664 *pinp = pin;
1665 return PCI_SLOT(dev->devfn);
1669 * pci_release_region - Release a PCI bar
1670 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1671 * @bar: BAR to release
1673 * Releases the PCI I/O and memory resources previously reserved by a
1674 * successful call to pci_request_region. Call this function only
1675 * after all use of the PCI regions has ceased.
1677 void pci_release_region(struct pci_dev *pdev, int bar)
1679 struct pci_devres *dr;
1681 if (pci_resource_len(pdev, bar) == 0)
1682 return;
1683 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1684 release_region(pci_resource_start(pdev, bar),
1685 pci_resource_len(pdev, bar));
1686 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1687 release_mem_region(pci_resource_start(pdev, bar),
1688 pci_resource_len(pdev, bar));
1690 dr = find_pci_dr(pdev);
1691 if (dr)
1692 dr->region_mask &= ~(1 << bar);
1696 * __pci_request_region - Reserved PCI I/O and memory resource
1697 * @pdev: PCI device whose resources are to be reserved
1698 * @bar: BAR to be reserved
1699 * @res_name: Name to be associated with resource.
1700 * @exclusive: whether the region access is exclusive or not
1702 * Mark the PCI region associated with PCI device @pdev BR @bar as
1703 * being reserved by owner @res_name. Do not access any
1704 * address inside the PCI regions unless this call returns
1705 * successfully.
1707 * If @exclusive is set, then the region is marked so that userspace
1708 * is explicitly not allowed to map the resource via /dev/mem or
1709 * sysfs MMIO access.
1711 * Returns 0 on success, or %EBUSY on error. A warning
1712 * message is also printed on failure.
1714 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1715 int exclusive)
1717 struct pci_devres *dr;
1719 if (pci_resource_len(pdev, bar) == 0)
1720 return 0;
1722 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1723 if (!request_region(pci_resource_start(pdev, bar),
1724 pci_resource_len(pdev, bar), res_name))
1725 goto err_out;
1727 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1728 if (!__request_mem_region(pci_resource_start(pdev, bar),
1729 pci_resource_len(pdev, bar), res_name,
1730 exclusive))
1731 goto err_out;
1734 dr = find_pci_dr(pdev);
1735 if (dr)
1736 dr->region_mask |= 1 << bar;
1738 return 0;
1740 err_out:
1741 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
1742 &pdev->resource[bar]);
1743 return -EBUSY;
1747 * pci_request_region - Reserve PCI I/O and memory resource
1748 * @pdev: PCI device whose resources are to be reserved
1749 * @bar: BAR to be reserved
1750 * @res_name: Name to be associated with resource
1752 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1753 * being reserved by owner @res_name. Do not access any
1754 * address inside the PCI regions unless this call returns
1755 * successfully.
1757 * Returns 0 on success, or %EBUSY on error. A warning
1758 * message is also printed on failure.
1760 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1762 return __pci_request_region(pdev, bar, res_name, 0);
1766 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1767 * @pdev: PCI device whose resources are to be reserved
1768 * @bar: BAR to be reserved
1769 * @res_name: Name to be associated with resource.
1771 * Mark the PCI region associated with PCI device @pdev BR @bar as
1772 * being reserved by owner @res_name. Do not access any
1773 * address inside the PCI regions unless this call returns
1774 * successfully.
1776 * Returns 0 on success, or %EBUSY on error. A warning
1777 * message is also printed on failure.
1779 * The key difference that _exclusive makes it that userspace is
1780 * explicitly not allowed to map the resource via /dev/mem or
1781 * sysfs.
1783 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1785 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1788 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1789 * @pdev: PCI device whose resources were previously reserved
1790 * @bars: Bitmask of BARs to be released
1792 * Release selected PCI I/O and memory resources previously reserved.
1793 * Call this function only after all use of the PCI regions has ceased.
1795 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1797 int i;
1799 for (i = 0; i < 6; i++)
1800 if (bars & (1 << i))
1801 pci_release_region(pdev, i);
1804 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1805 const char *res_name, int excl)
1807 int i;
1809 for (i = 0; i < 6; i++)
1810 if (bars & (1 << i))
1811 if (__pci_request_region(pdev, i, res_name, excl))
1812 goto err_out;
1813 return 0;
1815 err_out:
1816 while(--i >= 0)
1817 if (bars & (1 << i))
1818 pci_release_region(pdev, i);
1820 return -EBUSY;
1825 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1826 * @pdev: PCI device whose resources are to be reserved
1827 * @bars: Bitmask of BARs to be requested
1828 * @res_name: Name to be associated with resource
1830 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1831 const char *res_name)
1833 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1836 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1837 int bars, const char *res_name)
1839 return __pci_request_selected_regions(pdev, bars, res_name,
1840 IORESOURCE_EXCLUSIVE);
1844 * pci_release_regions - Release reserved PCI I/O and memory resources
1845 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1847 * Releases all PCI I/O and memory resources previously reserved by a
1848 * successful call to pci_request_regions. Call this function only
1849 * after all use of the PCI regions has ceased.
1852 void pci_release_regions(struct pci_dev *pdev)
1854 pci_release_selected_regions(pdev, (1 << 6) - 1);
1858 * pci_request_regions - Reserved PCI I/O and memory resources
1859 * @pdev: PCI device whose resources are to be reserved
1860 * @res_name: Name to be associated with resource.
1862 * Mark all PCI regions associated with PCI device @pdev as
1863 * being reserved by owner @res_name. Do not access any
1864 * address inside the PCI regions unless this call returns
1865 * successfully.
1867 * Returns 0 on success, or %EBUSY on error. A warning
1868 * message is also printed on failure.
1870 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1872 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1876 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1877 * @pdev: PCI device whose resources are to be reserved
1878 * @res_name: Name to be associated with resource.
1880 * Mark all PCI regions associated with PCI device @pdev as
1881 * being reserved by owner @res_name. Do not access any
1882 * address inside the PCI regions unless this call returns
1883 * successfully.
1885 * pci_request_regions_exclusive() will mark the region so that
1886 * /dev/mem and the sysfs MMIO access will not be allowed.
1888 * Returns 0 on success, or %EBUSY on error. A warning
1889 * message is also printed on failure.
1891 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1893 return pci_request_selected_regions_exclusive(pdev,
1894 ((1 << 6) - 1), res_name);
1897 static void __pci_set_master(struct pci_dev *dev, bool enable)
1899 u16 old_cmd, cmd;
1901 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1902 if (enable)
1903 cmd = old_cmd | PCI_COMMAND_MASTER;
1904 else
1905 cmd = old_cmd & ~PCI_COMMAND_MASTER;
1906 if (cmd != old_cmd) {
1907 dev_dbg(&dev->dev, "%s bus mastering\n",
1908 enable ? "enabling" : "disabling");
1909 pci_write_config_word(dev, PCI_COMMAND, cmd);
1911 dev->is_busmaster = enable;
1915 * pci_set_master - enables bus-mastering for device dev
1916 * @dev: the PCI device to enable
1918 * Enables bus-mastering on the device and calls pcibios_set_master()
1919 * to do the needed arch specific settings.
1921 void pci_set_master(struct pci_dev *dev)
1923 __pci_set_master(dev, true);
1924 pcibios_set_master(dev);
1928 * pci_clear_master - disables bus-mastering for device dev
1929 * @dev: the PCI device to disable
1931 void pci_clear_master(struct pci_dev *dev)
1933 __pci_set_master(dev, false);
1937 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1938 * @dev: the PCI device for which MWI is to be enabled
1940 * Helper function for pci_set_mwi.
1941 * Originally copied from drivers/net/acenic.c.
1942 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1944 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1946 int pci_set_cacheline_size(struct pci_dev *dev)
1948 u8 cacheline_size;
1950 if (!pci_cache_line_size)
1951 return -EINVAL;
1953 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1954 equal to or multiple of the right value. */
1955 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1956 if (cacheline_size >= pci_cache_line_size &&
1957 (cacheline_size % pci_cache_line_size) == 0)
1958 return 0;
1960 /* Write the correct value. */
1961 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1962 /* Read it back. */
1963 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1964 if (cacheline_size == pci_cache_line_size)
1965 return 0;
1967 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1968 "supported\n", pci_cache_line_size << 2);
1970 return -EINVAL;
1972 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
1974 #ifdef PCI_DISABLE_MWI
1975 int pci_set_mwi(struct pci_dev *dev)
1977 return 0;
1980 int pci_try_set_mwi(struct pci_dev *dev)
1982 return 0;
1985 void pci_clear_mwi(struct pci_dev *dev)
1989 #else
1992 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1993 * @dev: the PCI device for which MWI is enabled
1995 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1997 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2000 pci_set_mwi(struct pci_dev *dev)
2002 int rc;
2003 u16 cmd;
2005 rc = pci_set_cacheline_size(dev);
2006 if (rc)
2007 return rc;
2009 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2010 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2011 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2012 cmd |= PCI_COMMAND_INVALIDATE;
2013 pci_write_config_word(dev, PCI_COMMAND, cmd);
2016 return 0;
2020 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2021 * @dev: the PCI device for which MWI is enabled
2023 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2024 * Callers are not required to check the return value.
2026 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2028 int pci_try_set_mwi(struct pci_dev *dev)
2030 int rc = pci_set_mwi(dev);
2031 return rc;
2035 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2036 * @dev: the PCI device to disable
2038 * Disables PCI Memory-Write-Invalidate transaction on the device
2040 void
2041 pci_clear_mwi(struct pci_dev *dev)
2043 u16 cmd;
2045 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2046 if (cmd & PCI_COMMAND_INVALIDATE) {
2047 cmd &= ~PCI_COMMAND_INVALIDATE;
2048 pci_write_config_word(dev, PCI_COMMAND, cmd);
2051 #endif /* ! PCI_DISABLE_MWI */
2054 * pci_intx - enables/disables PCI INTx for device dev
2055 * @pdev: the PCI device to operate on
2056 * @enable: boolean: whether to enable or disable PCI INTx
2058 * Enables/disables PCI INTx for device dev
2060 void
2061 pci_intx(struct pci_dev *pdev, int enable)
2063 u16 pci_command, new;
2065 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2067 if (enable) {
2068 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2069 } else {
2070 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2073 if (new != pci_command) {
2074 struct pci_devres *dr;
2076 pci_write_config_word(pdev, PCI_COMMAND, new);
2078 dr = find_pci_dr(pdev);
2079 if (dr && !dr->restore_intx) {
2080 dr->restore_intx = 1;
2081 dr->orig_intx = !enable;
2087 * pci_msi_off - disables any msi or msix capabilities
2088 * @dev: the PCI device to operate on
2090 * If you want to use msi see pci_enable_msi and friends.
2091 * This is a lower level primitive that allows us to disable
2092 * msi operation at the device level.
2094 void pci_msi_off(struct pci_dev *dev)
2096 int pos;
2097 u16 control;
2099 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2100 if (pos) {
2101 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2102 control &= ~PCI_MSI_FLAGS_ENABLE;
2103 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2105 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2106 if (pos) {
2107 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2108 control &= ~PCI_MSIX_FLAGS_ENABLE;
2109 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2113 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
2115 * These can be overridden by arch-specific implementations
2118 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
2120 if (!pci_dma_supported(dev, mask))
2121 return -EIO;
2123 dev->dma_mask = mask;
2124 dev_dbg(&dev->dev, "using %dbit DMA mask\n", fls64(mask));
2126 return 0;
2130 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
2132 if (!pci_dma_supported(dev, mask))
2133 return -EIO;
2135 dev->dev.coherent_dma_mask = mask;
2136 dev_dbg(&dev->dev, "using %dbit consistent DMA mask\n", fls64(mask));
2138 return 0;
2140 #endif
2142 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2143 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2145 return dma_set_max_seg_size(&dev->dev, size);
2147 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2148 #endif
2150 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2151 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2153 return dma_set_seg_boundary(&dev->dev, mask);
2155 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2156 #endif
2158 static int pcie_flr(struct pci_dev *dev, int probe)
2160 int i;
2161 int pos;
2162 u32 cap;
2163 u16 status, control;
2165 pos = pci_pcie_cap(dev);
2166 if (!pos)
2167 return -ENOTTY;
2169 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2170 if (!(cap & PCI_EXP_DEVCAP_FLR))
2171 return -ENOTTY;
2173 if (probe)
2174 return 0;
2176 /* Wait for Transaction Pending bit clean */
2177 for (i = 0; i < 4; i++) {
2178 if (i)
2179 msleep((1 << (i - 1)) * 100);
2181 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2182 if (!(status & PCI_EXP_DEVSTA_TRPND))
2183 goto clear;
2186 dev_err(&dev->dev, "transaction is not cleared; "
2187 "proceeding with reset anyway\n");
2189 clear:
2190 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
2191 control |= PCI_EXP_DEVCTL_BCR_FLR;
2192 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
2194 msleep(100);
2196 return 0;
2199 static int pci_af_flr(struct pci_dev *dev, int probe)
2201 int i;
2202 int pos;
2203 u8 cap;
2204 u8 status;
2206 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2207 if (!pos)
2208 return -ENOTTY;
2210 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2211 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2212 return -ENOTTY;
2214 if (probe)
2215 return 0;
2217 /* Wait for Transaction Pending bit clean */
2218 for (i = 0; i < 4; i++) {
2219 if (i)
2220 msleep((1 << (i - 1)) * 100);
2222 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2223 if (!(status & PCI_AF_STATUS_TP))
2224 goto clear;
2227 dev_err(&dev->dev, "transaction is not cleared; "
2228 "proceeding with reset anyway\n");
2230 clear:
2231 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2232 msleep(100);
2234 return 0;
2237 static int pci_pm_reset(struct pci_dev *dev, int probe)
2239 u16 csr;
2241 if (!dev->pm_cap)
2242 return -ENOTTY;
2244 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2245 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2246 return -ENOTTY;
2248 if (probe)
2249 return 0;
2251 if (dev->current_state != PCI_D0)
2252 return -EINVAL;
2254 csr &= ~PCI_PM_CTRL_STATE_MASK;
2255 csr |= PCI_D3hot;
2256 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2257 pci_dev_d3_sleep(dev);
2259 csr &= ~PCI_PM_CTRL_STATE_MASK;
2260 csr |= PCI_D0;
2261 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2262 pci_dev_d3_sleep(dev);
2264 return 0;
2267 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2269 u16 ctrl;
2270 struct pci_dev *pdev;
2272 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2273 return -ENOTTY;
2275 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2276 if (pdev != dev)
2277 return -ENOTTY;
2279 if (probe)
2280 return 0;
2282 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2283 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2284 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2285 msleep(100);
2287 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2288 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2289 msleep(100);
2291 return 0;
2294 static int pci_dev_reset(struct pci_dev *dev, int probe)
2296 int rc;
2298 might_sleep();
2300 if (!probe) {
2301 pci_block_user_cfg_access(dev);
2302 /* block PM suspend, driver probe, etc. */
2303 down(&dev->dev.sem);
2306 rc = pci_dev_specific_reset(dev, probe);
2307 if (rc != -ENOTTY)
2308 goto done;
2310 rc = pcie_flr(dev, probe);
2311 if (rc != -ENOTTY)
2312 goto done;
2314 rc = pci_af_flr(dev, probe);
2315 if (rc != -ENOTTY)
2316 goto done;
2318 rc = pci_pm_reset(dev, probe);
2319 if (rc != -ENOTTY)
2320 goto done;
2322 rc = pci_parent_bus_reset(dev, probe);
2323 done:
2324 if (!probe) {
2325 up(&dev->dev.sem);
2326 pci_unblock_user_cfg_access(dev);
2329 return rc;
2333 * __pci_reset_function - reset a PCI device function
2334 * @dev: PCI device to reset
2336 * Some devices allow an individual function to be reset without affecting
2337 * other functions in the same device. The PCI device must be responsive
2338 * to PCI config space in order to use this function.
2340 * The device function is presumed to be unused when this function is called.
2341 * Resetting the device will make the contents of PCI configuration space
2342 * random, so any caller of this must be prepared to reinitialise the
2343 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2344 * etc.
2346 * Returns 0 if the device function was successfully reset or negative if the
2347 * device doesn't support resetting a single function.
2349 int __pci_reset_function(struct pci_dev *dev)
2351 return pci_dev_reset(dev, 0);
2353 EXPORT_SYMBOL_GPL(__pci_reset_function);
2356 * pci_probe_reset_function - check whether the device can be safely reset
2357 * @dev: PCI device to reset
2359 * Some devices allow an individual function to be reset without affecting
2360 * other functions in the same device. The PCI device must be responsive
2361 * to PCI config space in order to use this function.
2363 * Returns 0 if the device function can be reset or negative if the
2364 * device doesn't support resetting a single function.
2366 int pci_probe_reset_function(struct pci_dev *dev)
2368 return pci_dev_reset(dev, 1);
2372 * pci_reset_function - quiesce and reset a PCI device function
2373 * @dev: PCI device to reset
2375 * Some devices allow an individual function to be reset without affecting
2376 * other functions in the same device. The PCI device must be responsive
2377 * to PCI config space in order to use this function.
2379 * This function does not just reset the PCI portion of a device, but
2380 * clears all the state associated with the device. This function differs
2381 * from __pci_reset_function in that it saves and restores device state
2382 * over the reset.
2384 * Returns 0 if the device function was successfully reset or negative if the
2385 * device doesn't support resetting a single function.
2387 int pci_reset_function(struct pci_dev *dev)
2389 int rc;
2391 rc = pci_dev_reset(dev, 1);
2392 if (rc)
2393 return rc;
2395 pci_save_state(dev);
2398 * both INTx and MSI are disabled after the Interrupt Disable bit
2399 * is set and the Bus Master bit is cleared.
2401 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2403 rc = pci_dev_reset(dev, 0);
2405 pci_restore_state(dev);
2407 return rc;
2409 EXPORT_SYMBOL_GPL(pci_reset_function);
2412 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2413 * @dev: PCI device to query
2415 * Returns mmrbc: maximum designed memory read count in bytes
2416 * or appropriate error value.
2418 int pcix_get_max_mmrbc(struct pci_dev *dev)
2420 int cap;
2421 u32 stat;
2423 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2424 if (!cap)
2425 return -EINVAL;
2427 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
2428 return -EINVAL;
2430 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
2432 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2435 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2436 * @dev: PCI device to query
2438 * Returns mmrbc: maximum memory read count in bytes
2439 * or appropriate error value.
2441 int pcix_get_mmrbc(struct pci_dev *dev)
2443 int cap;
2444 u16 cmd;
2446 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2447 if (!cap)
2448 return -EINVAL;
2450 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
2451 return -EINVAL;
2453 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2455 EXPORT_SYMBOL(pcix_get_mmrbc);
2458 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2459 * @dev: PCI device to query
2460 * @mmrbc: maximum memory read count in bytes
2461 * valid values are 512, 1024, 2048, 4096
2463 * If possible sets maximum memory read byte count, some bridges have erratas
2464 * that prevent this.
2466 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2468 int cap;
2469 u32 stat, v, o;
2470 u16 cmd;
2472 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2473 return -EINVAL;
2475 v = ffs(mmrbc) - 10;
2477 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2478 if (!cap)
2479 return -EINVAL;
2481 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
2482 return -EINVAL;
2484 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2485 return -E2BIG;
2487 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
2488 return -EINVAL;
2490 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2491 if (o != v) {
2492 if (v > o && dev->bus &&
2493 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2494 return -EIO;
2496 cmd &= ~PCI_X_CMD_MAX_READ;
2497 cmd |= v << 2;
2498 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
2499 return -EIO;
2501 return 0;
2503 EXPORT_SYMBOL(pcix_set_mmrbc);
2506 * pcie_get_readrq - get PCI Express read request size
2507 * @dev: PCI device to query
2509 * Returns maximum memory read request in bytes
2510 * or appropriate error value.
2512 int pcie_get_readrq(struct pci_dev *dev)
2514 int ret, cap;
2515 u16 ctl;
2517 cap = pci_pcie_cap(dev);
2518 if (!cap)
2519 return -EINVAL;
2521 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2522 if (!ret)
2523 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2525 return ret;
2527 EXPORT_SYMBOL(pcie_get_readrq);
2530 * pcie_set_readrq - set PCI Express maximum memory read request
2531 * @dev: PCI device to query
2532 * @rq: maximum memory read count in bytes
2533 * valid values are 128, 256, 512, 1024, 2048, 4096
2535 * If possible sets maximum read byte count
2537 int pcie_set_readrq(struct pci_dev *dev, int rq)
2539 int cap, err = -EINVAL;
2540 u16 ctl, v;
2542 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2543 goto out;
2545 v = (ffs(rq) - 8) << 12;
2547 cap = pci_pcie_cap(dev);
2548 if (!cap)
2549 goto out;
2551 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2552 if (err)
2553 goto out;
2555 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2556 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2557 ctl |= v;
2558 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2561 out:
2562 return err;
2564 EXPORT_SYMBOL(pcie_set_readrq);
2567 * pci_select_bars - Make BAR mask from the type of resource
2568 * @dev: the PCI device for which BAR mask is made
2569 * @flags: resource type mask to be selected
2571 * This helper routine makes bar mask from the type of resource.
2573 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2575 int i, bars = 0;
2576 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2577 if (pci_resource_flags(dev, i) & flags)
2578 bars |= (1 << i);
2579 return bars;
2583 * pci_resource_bar - get position of the BAR associated with a resource
2584 * @dev: the PCI device
2585 * @resno: the resource number
2586 * @type: the BAR type to be filled in
2588 * Returns BAR position in config space, or 0 if the BAR is invalid.
2590 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2592 int reg;
2594 if (resno < PCI_ROM_RESOURCE) {
2595 *type = pci_bar_unknown;
2596 return PCI_BASE_ADDRESS_0 + 4 * resno;
2597 } else if (resno == PCI_ROM_RESOURCE) {
2598 *type = pci_bar_mem32;
2599 return dev->rom_base_reg;
2600 } else if (resno < PCI_BRIDGE_RESOURCES) {
2601 /* device specific resource */
2602 reg = pci_iov_resource_bar(dev, resno, type);
2603 if (reg)
2604 return reg;
2607 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
2608 return 0;
2611 /* Some architectures require additional programming to enable VGA */
2612 static arch_set_vga_state_t arch_set_vga_state;
2614 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
2616 arch_set_vga_state = func; /* NULL disables */
2619 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
2620 unsigned int command_bits, bool change_bridge)
2622 if (arch_set_vga_state)
2623 return arch_set_vga_state(dev, decode, command_bits,
2624 change_bridge);
2625 return 0;
2629 * pci_set_vga_state - set VGA decode state on device and parents if requested
2630 * @dev: the PCI device
2631 * @decode: true = enable decoding, false = disable decoding
2632 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
2633 * @change_bridge: traverse ancestors and change bridges
2635 int pci_set_vga_state(struct pci_dev *dev, bool decode,
2636 unsigned int command_bits, bool change_bridge)
2638 struct pci_bus *bus;
2639 struct pci_dev *bridge;
2640 u16 cmd;
2641 int rc;
2643 WARN_ON(command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY));
2645 /* ARCH specific VGA enables */
2646 rc = pci_set_vga_state_arch(dev, decode, command_bits, change_bridge);
2647 if (rc)
2648 return rc;
2650 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2651 if (decode == true)
2652 cmd |= command_bits;
2653 else
2654 cmd &= ~command_bits;
2655 pci_write_config_word(dev, PCI_COMMAND, cmd);
2657 if (change_bridge == false)
2658 return 0;
2660 bus = dev->bus;
2661 while (bus) {
2662 bridge = bus->self;
2663 if (bridge) {
2664 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
2665 &cmd);
2666 if (decode == true)
2667 cmd |= PCI_BRIDGE_CTL_VGA;
2668 else
2669 cmd &= ~PCI_BRIDGE_CTL_VGA;
2670 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
2671 cmd);
2673 bus = bus->parent;
2675 return 0;
2678 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2679 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2680 static DEFINE_SPINLOCK(resource_alignment_lock);
2683 * pci_specified_resource_alignment - get resource alignment specified by user.
2684 * @dev: the PCI device to get
2686 * RETURNS: Resource alignment if it is specified.
2687 * Zero if it is not specified.
2689 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2691 int seg, bus, slot, func, align_order, count;
2692 resource_size_t align = 0;
2693 char *p;
2695 spin_lock(&resource_alignment_lock);
2696 p = resource_alignment_param;
2697 while (*p) {
2698 count = 0;
2699 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2700 p[count] == '@') {
2701 p += count + 1;
2702 } else {
2703 align_order = -1;
2705 if (sscanf(p, "%x:%x:%x.%x%n",
2706 &seg, &bus, &slot, &func, &count) != 4) {
2707 seg = 0;
2708 if (sscanf(p, "%x:%x.%x%n",
2709 &bus, &slot, &func, &count) != 3) {
2710 /* Invalid format */
2711 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2713 break;
2716 p += count;
2717 if (seg == pci_domain_nr(dev->bus) &&
2718 bus == dev->bus->number &&
2719 slot == PCI_SLOT(dev->devfn) &&
2720 func == PCI_FUNC(dev->devfn)) {
2721 if (align_order == -1) {
2722 align = PAGE_SIZE;
2723 } else {
2724 align = 1 << align_order;
2726 /* Found */
2727 break;
2729 if (*p != ';' && *p != ',') {
2730 /* End of param or invalid format */
2731 break;
2733 p++;
2735 spin_unlock(&resource_alignment_lock);
2736 return align;
2740 * pci_is_reassigndev - check if specified PCI is target device to reassign
2741 * @dev: the PCI device to check
2743 * RETURNS: non-zero for PCI device is a target device to reassign,
2744 * or zero is not.
2746 int pci_is_reassigndev(struct pci_dev *dev)
2748 return (pci_specified_resource_alignment(dev) != 0);
2751 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2753 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2754 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2755 spin_lock(&resource_alignment_lock);
2756 strncpy(resource_alignment_param, buf, count);
2757 resource_alignment_param[count] = '\0';
2758 spin_unlock(&resource_alignment_lock);
2759 return count;
2762 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2764 size_t count;
2765 spin_lock(&resource_alignment_lock);
2766 count = snprintf(buf, size, "%s", resource_alignment_param);
2767 spin_unlock(&resource_alignment_lock);
2768 return count;
2771 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2773 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2776 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2777 const char *buf, size_t count)
2779 return pci_set_resource_alignment_param(buf, count);
2782 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2783 pci_resource_alignment_store);
2785 static int __init pci_resource_alignment_sysfs_init(void)
2787 return bus_create_file(&pci_bus_type,
2788 &bus_attr_resource_alignment);
2791 late_initcall(pci_resource_alignment_sysfs_init);
2793 static void __devinit pci_no_domains(void)
2795 #ifdef CONFIG_PCI_DOMAINS
2796 pci_domains_supported = 0;
2797 #endif
2801 * pci_ext_cfg_enabled - can we access extended PCI config space?
2802 * @dev: The PCI device of the root bridge.
2804 * Returns 1 if we can access PCI extended config space (offsets
2805 * greater than 0xff). This is the default implementation. Architecture
2806 * implementations can override this.
2808 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2810 return 1;
2813 void __weak pci_fixup_cardbus(struct pci_bus *bus)
2816 EXPORT_SYMBOL(pci_fixup_cardbus);
2818 static int __init pci_setup(char *str)
2820 while (str) {
2821 char *k = strchr(str, ',');
2822 if (k)
2823 *k++ = 0;
2824 if (*str && (str = pcibios_setup(str)) && *str) {
2825 if (!strcmp(str, "nomsi")) {
2826 pci_no_msi();
2827 } else if (!strcmp(str, "noaer")) {
2828 pci_no_aer();
2829 } else if (!strcmp(str, "nodomains")) {
2830 pci_no_domains();
2831 } else if (!strncmp(str, "cbiosize=", 9)) {
2832 pci_cardbus_io_size = memparse(str + 9, &str);
2833 } else if (!strncmp(str, "cbmemsize=", 10)) {
2834 pci_cardbus_mem_size = memparse(str + 10, &str);
2835 } else if (!strncmp(str, "resource_alignment=", 19)) {
2836 pci_set_resource_alignment_param(str + 19,
2837 strlen(str + 19));
2838 } else if (!strncmp(str, "ecrc=", 5)) {
2839 pcie_ecrc_get_policy(str + 5);
2840 } else if (!strncmp(str, "hpiosize=", 9)) {
2841 pci_hotplug_io_size = memparse(str + 9, &str);
2842 } else if (!strncmp(str, "hpmemsize=", 10)) {
2843 pci_hotplug_mem_size = memparse(str + 10, &str);
2844 } else {
2845 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2846 str);
2849 str = k;
2851 return 0;
2853 early_param("pci", pci_setup);
2855 EXPORT_SYMBOL(pci_reenable_device);
2856 EXPORT_SYMBOL(pci_enable_device_io);
2857 EXPORT_SYMBOL(pci_enable_device_mem);
2858 EXPORT_SYMBOL(pci_enable_device);
2859 EXPORT_SYMBOL(pcim_enable_device);
2860 EXPORT_SYMBOL(pcim_pin_device);
2861 EXPORT_SYMBOL(pci_disable_device);
2862 EXPORT_SYMBOL(pci_find_capability);
2863 EXPORT_SYMBOL(pci_bus_find_capability);
2864 EXPORT_SYMBOL(pci_release_regions);
2865 EXPORT_SYMBOL(pci_request_regions);
2866 EXPORT_SYMBOL(pci_request_regions_exclusive);
2867 EXPORT_SYMBOL(pci_release_region);
2868 EXPORT_SYMBOL(pci_request_region);
2869 EXPORT_SYMBOL(pci_request_region_exclusive);
2870 EXPORT_SYMBOL(pci_release_selected_regions);
2871 EXPORT_SYMBOL(pci_request_selected_regions);
2872 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2873 EXPORT_SYMBOL(pci_set_master);
2874 EXPORT_SYMBOL(pci_clear_master);
2875 EXPORT_SYMBOL(pci_set_mwi);
2876 EXPORT_SYMBOL(pci_try_set_mwi);
2877 EXPORT_SYMBOL(pci_clear_mwi);
2878 EXPORT_SYMBOL_GPL(pci_intx);
2879 EXPORT_SYMBOL(pci_set_dma_mask);
2880 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2881 EXPORT_SYMBOL(pci_assign_resource);
2882 EXPORT_SYMBOL(pci_find_parent_resource);
2883 EXPORT_SYMBOL(pci_select_bars);
2885 EXPORT_SYMBOL(pci_set_power_state);
2886 EXPORT_SYMBOL(pci_save_state);
2887 EXPORT_SYMBOL(pci_restore_state);
2888 EXPORT_SYMBOL(pci_pme_capable);
2889 EXPORT_SYMBOL(pci_pme_active);
2890 EXPORT_SYMBOL(pci_enable_wake);
2891 EXPORT_SYMBOL(pci_wake_from_d3);
2892 EXPORT_SYMBOL(pci_target_state);
2893 EXPORT_SYMBOL(pci_prepare_to_sleep);
2894 EXPORT_SYMBOL(pci_back_from_sleep);
2895 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);