ACPI: thinkpad-acpi: add development version tag
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / hrtimer.c
blobcb8a15c1958318c52c116d08e33003ad2ea0cc98
1 /*
2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
22 * Credits:
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
47 #include <asm/uaccess.h>
49 /**
50 * ktime_get - get the monotonic time in ktime_t format
52 * returns the time in ktime_t format
54 ktime_t ktime_get(void)
56 struct timespec now;
58 ktime_get_ts(&now);
60 return timespec_to_ktime(now);
62 EXPORT_SYMBOL_GPL(ktime_get);
64 /**
65 * ktime_get_real - get the real (wall-) time in ktime_t format
67 * returns the time in ktime_t format
69 ktime_t ktime_get_real(void)
71 struct timespec now;
73 getnstimeofday(&now);
75 return timespec_to_ktime(now);
78 EXPORT_SYMBOL_GPL(ktime_get_real);
81 * The timer bases:
83 * Note: If we want to add new timer bases, we have to skip the two
84 * clock ids captured by the cpu-timers. We do this by holding empty
85 * entries rather than doing math adjustment of the clock ids.
86 * This ensures that we capture erroneous accesses to these clock ids
87 * rather than moving them into the range of valid clock id's.
89 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
92 .clock_base =
95 .index = CLOCK_REALTIME,
96 .get_time = &ktime_get_real,
97 .resolution = KTIME_LOW_RES,
100 .index = CLOCK_MONOTONIC,
101 .get_time = &ktime_get,
102 .resolution = KTIME_LOW_RES,
108 * ktime_get_ts - get the monotonic clock in timespec format
109 * @ts: pointer to timespec variable
111 * The function calculates the monotonic clock from the realtime
112 * clock and the wall_to_monotonic offset and stores the result
113 * in normalized timespec format in the variable pointed to by @ts.
115 void ktime_get_ts(struct timespec *ts)
117 struct timespec tomono;
118 unsigned long seq;
120 do {
121 seq = read_seqbegin(&xtime_lock);
122 getnstimeofday(ts);
123 tomono = wall_to_monotonic;
125 } while (read_seqretry(&xtime_lock, seq));
127 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
128 ts->tv_nsec + tomono.tv_nsec);
130 EXPORT_SYMBOL_GPL(ktime_get_ts);
133 * Get the coarse grained time at the softirq based on xtime and
134 * wall_to_monotonic.
136 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
138 ktime_t xtim, tomono;
139 struct timespec xts, tom;
140 unsigned long seq;
142 do {
143 seq = read_seqbegin(&xtime_lock);
144 xts = current_kernel_time();
145 tom = wall_to_monotonic;
146 } while (read_seqretry(&xtime_lock, seq));
148 xtim = timespec_to_ktime(xts);
149 tomono = timespec_to_ktime(tom);
150 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
151 base->clock_base[CLOCK_MONOTONIC].softirq_time =
152 ktime_add(xtim, tomono);
156 * Functions and macros which are different for UP/SMP systems are kept in a
157 * single place
159 #ifdef CONFIG_SMP
162 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
163 * means that all timers which are tied to this base via timer->base are
164 * locked, and the base itself is locked too.
166 * So __run_timers/migrate_timers can safely modify all timers which could
167 * be found on the lists/queues.
169 * When the timer's base is locked, and the timer removed from list, it is
170 * possible to set timer->base = NULL and drop the lock: the timer remains
171 * locked.
173 static
174 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
175 unsigned long *flags)
177 struct hrtimer_clock_base *base;
179 for (;;) {
180 base = timer->base;
181 if (likely(base != NULL)) {
182 spin_lock_irqsave(&base->cpu_base->lock, *flags);
183 if (likely(base == timer->base))
184 return base;
185 /* The timer has migrated to another CPU: */
186 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
188 cpu_relax();
193 * Switch the timer base to the current CPU when possible.
195 static inline struct hrtimer_clock_base *
196 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
198 struct hrtimer_clock_base *new_base;
199 struct hrtimer_cpu_base *new_cpu_base;
201 new_cpu_base = &__get_cpu_var(hrtimer_bases);
202 new_base = &new_cpu_base->clock_base[base->index];
204 if (base != new_base) {
206 * We are trying to schedule the timer on the local CPU.
207 * However we can't change timer's base while it is running,
208 * so we keep it on the same CPU. No hassle vs. reprogramming
209 * the event source in the high resolution case. The softirq
210 * code will take care of this when the timer function has
211 * completed. There is no conflict as we hold the lock until
212 * the timer is enqueued.
214 if (unlikely(hrtimer_callback_running(timer)))
215 return base;
217 /* See the comment in lock_timer_base() */
218 timer->base = NULL;
219 spin_unlock(&base->cpu_base->lock);
220 spin_lock(&new_base->cpu_base->lock);
221 timer->base = new_base;
223 return new_base;
226 #else /* CONFIG_SMP */
228 static inline struct hrtimer_clock_base *
229 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
231 struct hrtimer_clock_base *base = timer->base;
233 spin_lock_irqsave(&base->cpu_base->lock, *flags);
235 return base;
238 # define switch_hrtimer_base(t, b) (b)
240 #endif /* !CONFIG_SMP */
243 * Functions for the union type storage format of ktime_t which are
244 * too large for inlining:
246 #if BITS_PER_LONG < 64
247 # ifndef CONFIG_KTIME_SCALAR
249 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
250 * @kt: addend
251 * @nsec: the scalar nsec value to add
253 * Returns the sum of kt and nsec in ktime_t format
255 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
257 ktime_t tmp;
259 if (likely(nsec < NSEC_PER_SEC)) {
260 tmp.tv64 = nsec;
261 } else {
262 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
264 tmp = ktime_set((long)nsec, rem);
267 return ktime_add(kt, tmp);
270 EXPORT_SYMBOL_GPL(ktime_add_ns);
273 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
274 * @kt: minuend
275 * @nsec: the scalar nsec value to subtract
277 * Returns the subtraction of @nsec from @kt in ktime_t format
279 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
281 ktime_t tmp;
283 if (likely(nsec < NSEC_PER_SEC)) {
284 tmp.tv64 = nsec;
285 } else {
286 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
288 tmp = ktime_set((long)nsec, rem);
291 return ktime_sub(kt, tmp);
294 EXPORT_SYMBOL_GPL(ktime_sub_ns);
295 # endif /* !CONFIG_KTIME_SCALAR */
298 * Divide a ktime value by a nanosecond value
300 u64 ktime_divns(const ktime_t kt, s64 div)
302 u64 dclc;
303 int sft = 0;
305 dclc = ktime_to_ns(kt);
306 /* Make sure the divisor is less than 2^32: */
307 while (div >> 32) {
308 sft++;
309 div >>= 1;
311 dclc >>= sft;
312 do_div(dclc, (unsigned long) div);
314 return dclc;
316 #endif /* BITS_PER_LONG >= 64 */
319 * Add two ktime values and do a safety check for overflow:
321 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
323 ktime_t res = ktime_add(lhs, rhs);
326 * We use KTIME_SEC_MAX here, the maximum timeout which we can
327 * return to user space in a timespec:
329 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
330 res = ktime_set(KTIME_SEC_MAX, 0);
332 return res;
335 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
337 static struct debug_obj_descr hrtimer_debug_descr;
340 * fixup_init is called when:
341 * - an active object is initialized
343 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
345 struct hrtimer *timer = addr;
347 switch (state) {
348 case ODEBUG_STATE_ACTIVE:
349 hrtimer_cancel(timer);
350 debug_object_init(timer, &hrtimer_debug_descr);
351 return 1;
352 default:
353 return 0;
358 * fixup_activate is called when:
359 * - an active object is activated
360 * - an unknown object is activated (might be a statically initialized object)
362 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
364 switch (state) {
366 case ODEBUG_STATE_NOTAVAILABLE:
367 WARN_ON_ONCE(1);
368 return 0;
370 case ODEBUG_STATE_ACTIVE:
371 WARN_ON(1);
373 default:
374 return 0;
379 * fixup_free is called when:
380 * - an active object is freed
382 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
384 struct hrtimer *timer = addr;
386 switch (state) {
387 case ODEBUG_STATE_ACTIVE:
388 hrtimer_cancel(timer);
389 debug_object_free(timer, &hrtimer_debug_descr);
390 return 1;
391 default:
392 return 0;
396 static struct debug_obj_descr hrtimer_debug_descr = {
397 .name = "hrtimer",
398 .fixup_init = hrtimer_fixup_init,
399 .fixup_activate = hrtimer_fixup_activate,
400 .fixup_free = hrtimer_fixup_free,
403 static inline void debug_hrtimer_init(struct hrtimer *timer)
405 debug_object_init(timer, &hrtimer_debug_descr);
408 static inline void debug_hrtimer_activate(struct hrtimer *timer)
410 debug_object_activate(timer, &hrtimer_debug_descr);
413 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
415 debug_object_deactivate(timer, &hrtimer_debug_descr);
418 static inline void debug_hrtimer_free(struct hrtimer *timer)
420 debug_object_free(timer, &hrtimer_debug_descr);
423 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
424 enum hrtimer_mode mode);
426 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
427 enum hrtimer_mode mode)
429 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
430 __hrtimer_init(timer, clock_id, mode);
433 void destroy_hrtimer_on_stack(struct hrtimer *timer)
435 debug_object_free(timer, &hrtimer_debug_descr);
438 #else
439 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
440 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
441 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
442 #endif
444 /* High resolution timer related functions */
445 #ifdef CONFIG_HIGH_RES_TIMERS
448 * High resolution timer enabled ?
450 static int hrtimer_hres_enabled __read_mostly = 1;
453 * Enable / Disable high resolution mode
455 static int __init setup_hrtimer_hres(char *str)
457 if (!strcmp(str, "off"))
458 hrtimer_hres_enabled = 0;
459 else if (!strcmp(str, "on"))
460 hrtimer_hres_enabled = 1;
461 else
462 return 0;
463 return 1;
466 __setup("highres=", setup_hrtimer_hres);
469 * hrtimer_high_res_enabled - query, if the highres mode is enabled
471 static inline int hrtimer_is_hres_enabled(void)
473 return hrtimer_hres_enabled;
477 * Is the high resolution mode active ?
479 static inline int hrtimer_hres_active(void)
481 return __get_cpu_var(hrtimer_bases).hres_active;
485 * Reprogram the event source with checking both queues for the
486 * next event
487 * Called with interrupts disabled and base->lock held
489 static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
491 int i;
492 struct hrtimer_clock_base *base = cpu_base->clock_base;
493 ktime_t expires;
495 cpu_base->expires_next.tv64 = KTIME_MAX;
497 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
498 struct hrtimer *timer;
500 if (!base->first)
501 continue;
502 timer = rb_entry(base->first, struct hrtimer, node);
503 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
505 * clock_was_set() has changed base->offset so the
506 * result might be negative. Fix it up to prevent a
507 * false positive in clockevents_program_event()
509 if (expires.tv64 < 0)
510 expires.tv64 = 0;
511 if (expires.tv64 < cpu_base->expires_next.tv64)
512 cpu_base->expires_next = expires;
515 if (cpu_base->expires_next.tv64 != KTIME_MAX)
516 tick_program_event(cpu_base->expires_next, 1);
520 * Shared reprogramming for clock_realtime and clock_monotonic
522 * When a timer is enqueued and expires earlier than the already enqueued
523 * timers, we have to check, whether it expires earlier than the timer for
524 * which the clock event device was armed.
526 * Called with interrupts disabled and base->cpu_base.lock held
528 static int hrtimer_reprogram(struct hrtimer *timer,
529 struct hrtimer_clock_base *base)
531 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
532 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
533 int res;
535 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
538 * When the callback is running, we do not reprogram the clock event
539 * device. The timer callback is either running on a different CPU or
540 * the callback is executed in the hrtimer_interrupt context. The
541 * reprogramming is handled either by the softirq, which called the
542 * callback or at the end of the hrtimer_interrupt.
544 if (hrtimer_callback_running(timer))
545 return 0;
548 * CLOCK_REALTIME timer might be requested with an absolute
549 * expiry time which is less than base->offset. Nothing wrong
550 * about that, just avoid to call into the tick code, which
551 * has now objections against negative expiry values.
553 if (expires.tv64 < 0)
554 return -ETIME;
556 if (expires.tv64 >= expires_next->tv64)
557 return 0;
560 * Clockevents returns -ETIME, when the event was in the past.
562 res = tick_program_event(expires, 0);
563 if (!IS_ERR_VALUE(res))
564 *expires_next = expires;
565 return res;
570 * Retrigger next event is called after clock was set
572 * Called with interrupts disabled via on_each_cpu()
574 static void retrigger_next_event(void *arg)
576 struct hrtimer_cpu_base *base;
577 struct timespec realtime_offset;
578 unsigned long seq;
580 if (!hrtimer_hres_active())
581 return;
583 do {
584 seq = read_seqbegin(&xtime_lock);
585 set_normalized_timespec(&realtime_offset,
586 -wall_to_monotonic.tv_sec,
587 -wall_to_monotonic.tv_nsec);
588 } while (read_seqretry(&xtime_lock, seq));
590 base = &__get_cpu_var(hrtimer_bases);
592 /* Adjust CLOCK_REALTIME offset */
593 spin_lock(&base->lock);
594 base->clock_base[CLOCK_REALTIME].offset =
595 timespec_to_ktime(realtime_offset);
597 hrtimer_force_reprogram(base);
598 spin_unlock(&base->lock);
602 * Clock realtime was set
604 * Change the offset of the realtime clock vs. the monotonic
605 * clock.
607 * We might have to reprogram the high resolution timer interrupt. On
608 * SMP we call the architecture specific code to retrigger _all_ high
609 * resolution timer interrupts. On UP we just disable interrupts and
610 * call the high resolution interrupt code.
612 void clock_was_set(void)
614 /* Retrigger the CPU local events everywhere */
615 on_each_cpu(retrigger_next_event, NULL, 1);
619 * During resume we might have to reprogram the high resolution timer
620 * interrupt (on the local CPU):
622 void hres_timers_resume(void)
624 WARN_ONCE(!irqs_disabled(),
625 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
627 retrigger_next_event(NULL);
631 * Initialize the high resolution related parts of cpu_base
633 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
635 base->expires_next.tv64 = KTIME_MAX;
636 base->hres_active = 0;
640 * Initialize the high resolution related parts of a hrtimer
642 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
648 * When High resolution timers are active, try to reprogram. Note, that in case
649 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
650 * check happens. The timer gets enqueued into the rbtree. The reprogramming
651 * and expiry check is done in the hrtimer_interrupt or in the softirq.
653 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
654 struct hrtimer_clock_base *base,
655 int wakeup)
657 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
658 if (wakeup) {
659 spin_unlock(&base->cpu_base->lock);
660 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
661 spin_lock(&base->cpu_base->lock);
662 } else
663 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
665 return 1;
668 return 0;
672 * Switch to high resolution mode
674 static int hrtimer_switch_to_hres(void)
676 int cpu = smp_processor_id();
677 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
678 unsigned long flags;
680 if (base->hres_active)
681 return 1;
683 local_irq_save(flags);
685 if (tick_init_highres()) {
686 local_irq_restore(flags);
687 printk(KERN_WARNING "Could not switch to high resolution "
688 "mode on CPU %d\n", cpu);
689 return 0;
691 base->hres_active = 1;
692 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
693 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
695 tick_setup_sched_timer();
697 /* "Retrigger" the interrupt to get things going */
698 retrigger_next_event(NULL);
699 local_irq_restore(flags);
700 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
701 smp_processor_id());
702 return 1;
705 #else
707 static inline int hrtimer_hres_active(void) { return 0; }
708 static inline int hrtimer_is_hres_enabled(void) { return 0; }
709 static inline int hrtimer_switch_to_hres(void) { return 0; }
710 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
711 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
712 struct hrtimer_clock_base *base,
713 int wakeup)
715 return 0;
717 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
718 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
720 #endif /* CONFIG_HIGH_RES_TIMERS */
722 #ifdef CONFIG_TIMER_STATS
723 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
725 if (timer->start_site)
726 return;
728 timer->start_site = addr;
729 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
730 timer->start_pid = current->pid;
732 #endif
735 * Counterpart to lock_hrtimer_base above:
737 static inline
738 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
740 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
744 * hrtimer_forward - forward the timer expiry
745 * @timer: hrtimer to forward
746 * @now: forward past this time
747 * @interval: the interval to forward
749 * Forward the timer expiry so it will expire in the future.
750 * Returns the number of overruns.
752 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
754 u64 orun = 1;
755 ktime_t delta;
757 delta = ktime_sub(now, hrtimer_get_expires(timer));
759 if (delta.tv64 < 0)
760 return 0;
762 if (interval.tv64 < timer->base->resolution.tv64)
763 interval.tv64 = timer->base->resolution.tv64;
765 if (unlikely(delta.tv64 >= interval.tv64)) {
766 s64 incr = ktime_to_ns(interval);
768 orun = ktime_divns(delta, incr);
769 hrtimer_add_expires_ns(timer, incr * orun);
770 if (hrtimer_get_expires_tv64(timer) > now.tv64)
771 return orun;
773 * This (and the ktime_add() below) is the
774 * correction for exact:
776 orun++;
778 hrtimer_add_expires(timer, interval);
780 return orun;
782 EXPORT_SYMBOL_GPL(hrtimer_forward);
785 * enqueue_hrtimer - internal function to (re)start a timer
787 * The timer is inserted in expiry order. Insertion into the
788 * red black tree is O(log(n)). Must hold the base lock.
790 * Returns 1 when the new timer is the leftmost timer in the tree.
792 static int enqueue_hrtimer(struct hrtimer *timer,
793 struct hrtimer_clock_base *base)
795 struct rb_node **link = &base->active.rb_node;
796 struct rb_node *parent = NULL;
797 struct hrtimer *entry;
798 int leftmost = 1;
800 debug_hrtimer_activate(timer);
803 * Find the right place in the rbtree:
805 while (*link) {
806 parent = *link;
807 entry = rb_entry(parent, struct hrtimer, node);
809 * We dont care about collisions. Nodes with
810 * the same expiry time stay together.
812 if (hrtimer_get_expires_tv64(timer) <
813 hrtimer_get_expires_tv64(entry)) {
814 link = &(*link)->rb_left;
815 } else {
816 link = &(*link)->rb_right;
817 leftmost = 0;
822 * Insert the timer to the rbtree and check whether it
823 * replaces the first pending timer
825 if (leftmost)
826 base->first = &timer->node;
828 rb_link_node(&timer->node, parent, link);
829 rb_insert_color(&timer->node, &base->active);
831 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
832 * state of a possibly running callback.
834 timer->state |= HRTIMER_STATE_ENQUEUED;
836 return leftmost;
840 * __remove_hrtimer - internal function to remove a timer
842 * Caller must hold the base lock.
844 * High resolution timer mode reprograms the clock event device when the
845 * timer is the one which expires next. The caller can disable this by setting
846 * reprogram to zero. This is useful, when the context does a reprogramming
847 * anyway (e.g. timer interrupt)
849 static void __remove_hrtimer(struct hrtimer *timer,
850 struct hrtimer_clock_base *base,
851 unsigned long newstate, int reprogram)
853 if (timer->state & HRTIMER_STATE_ENQUEUED) {
855 * Remove the timer from the rbtree and replace the
856 * first entry pointer if necessary.
858 if (base->first == &timer->node) {
859 base->first = rb_next(&timer->node);
860 /* Reprogram the clock event device. if enabled */
861 if (reprogram && hrtimer_hres_active())
862 hrtimer_force_reprogram(base->cpu_base);
864 rb_erase(&timer->node, &base->active);
866 timer->state = newstate;
870 * remove hrtimer, called with base lock held
872 static inline int
873 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
875 if (hrtimer_is_queued(timer)) {
876 int reprogram;
879 * Remove the timer and force reprogramming when high
880 * resolution mode is active and the timer is on the current
881 * CPU. If we remove a timer on another CPU, reprogramming is
882 * skipped. The interrupt event on this CPU is fired and
883 * reprogramming happens in the interrupt handler. This is a
884 * rare case and less expensive than a smp call.
886 debug_hrtimer_deactivate(timer);
887 timer_stats_hrtimer_clear_start_info(timer);
888 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
889 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
890 reprogram);
891 return 1;
893 return 0;
896 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
897 unsigned long delta_ns, const enum hrtimer_mode mode,
898 int wakeup)
900 struct hrtimer_clock_base *base, *new_base;
901 unsigned long flags;
902 int ret, leftmost;
904 base = lock_hrtimer_base(timer, &flags);
906 /* Remove an active timer from the queue: */
907 ret = remove_hrtimer(timer, base);
909 /* Switch the timer base, if necessary: */
910 new_base = switch_hrtimer_base(timer, base);
912 if (mode == HRTIMER_MODE_REL) {
913 tim = ktime_add_safe(tim, new_base->get_time());
915 * CONFIG_TIME_LOW_RES is a temporary way for architectures
916 * to signal that they simply return xtime in
917 * do_gettimeoffset(). In this case we want to round up by
918 * resolution when starting a relative timer, to avoid short
919 * timeouts. This will go away with the GTOD framework.
921 #ifdef CONFIG_TIME_LOW_RES
922 tim = ktime_add_safe(tim, base->resolution);
923 #endif
926 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
928 timer_stats_hrtimer_set_start_info(timer);
930 leftmost = enqueue_hrtimer(timer, new_base);
933 * Only allow reprogramming if the new base is on this CPU.
934 * (it might still be on another CPU if the timer was pending)
936 * XXX send_remote_softirq() ?
938 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
939 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
941 unlock_hrtimer_base(timer, &flags);
943 return ret;
947 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
948 * @timer: the timer to be added
949 * @tim: expiry time
950 * @delta_ns: "slack" range for the timer
951 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
953 * Returns:
954 * 0 on success
955 * 1 when the timer was active
957 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
958 unsigned long delta_ns, const enum hrtimer_mode mode)
960 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
962 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
965 * hrtimer_start - (re)start an hrtimer on the current CPU
966 * @timer: the timer to be added
967 * @tim: expiry time
968 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
970 * Returns:
971 * 0 on success
972 * 1 when the timer was active
975 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
977 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
979 EXPORT_SYMBOL_GPL(hrtimer_start);
983 * hrtimer_try_to_cancel - try to deactivate a timer
984 * @timer: hrtimer to stop
986 * Returns:
987 * 0 when the timer was not active
988 * 1 when the timer was active
989 * -1 when the timer is currently excuting the callback function and
990 * cannot be stopped
992 int hrtimer_try_to_cancel(struct hrtimer *timer)
994 struct hrtimer_clock_base *base;
995 unsigned long flags;
996 int ret = -1;
998 base = lock_hrtimer_base(timer, &flags);
1000 if (!hrtimer_callback_running(timer))
1001 ret = remove_hrtimer(timer, base);
1003 unlock_hrtimer_base(timer, &flags);
1005 return ret;
1008 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1011 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1012 * @timer: the timer to be cancelled
1014 * Returns:
1015 * 0 when the timer was not active
1016 * 1 when the timer was active
1018 int hrtimer_cancel(struct hrtimer *timer)
1020 for (;;) {
1021 int ret = hrtimer_try_to_cancel(timer);
1023 if (ret >= 0)
1024 return ret;
1025 cpu_relax();
1028 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1031 * hrtimer_get_remaining - get remaining time for the timer
1032 * @timer: the timer to read
1034 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1036 struct hrtimer_clock_base *base;
1037 unsigned long flags;
1038 ktime_t rem;
1040 base = lock_hrtimer_base(timer, &flags);
1041 rem = hrtimer_expires_remaining(timer);
1042 unlock_hrtimer_base(timer, &flags);
1044 return rem;
1046 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1048 #ifdef CONFIG_NO_HZ
1050 * hrtimer_get_next_event - get the time until next expiry event
1052 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1053 * is pending.
1055 ktime_t hrtimer_get_next_event(void)
1057 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1058 struct hrtimer_clock_base *base = cpu_base->clock_base;
1059 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1060 unsigned long flags;
1061 int i;
1063 spin_lock_irqsave(&cpu_base->lock, flags);
1065 if (!hrtimer_hres_active()) {
1066 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1067 struct hrtimer *timer;
1069 if (!base->first)
1070 continue;
1072 timer = rb_entry(base->first, struct hrtimer, node);
1073 delta.tv64 = hrtimer_get_expires_tv64(timer);
1074 delta = ktime_sub(delta, base->get_time());
1075 if (delta.tv64 < mindelta.tv64)
1076 mindelta.tv64 = delta.tv64;
1080 spin_unlock_irqrestore(&cpu_base->lock, flags);
1082 if (mindelta.tv64 < 0)
1083 mindelta.tv64 = 0;
1084 return mindelta;
1086 #endif
1088 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1089 enum hrtimer_mode mode)
1091 struct hrtimer_cpu_base *cpu_base;
1093 memset(timer, 0, sizeof(struct hrtimer));
1095 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1097 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1098 clock_id = CLOCK_MONOTONIC;
1100 timer->base = &cpu_base->clock_base[clock_id];
1101 INIT_LIST_HEAD(&timer->cb_entry);
1102 hrtimer_init_timer_hres(timer);
1104 #ifdef CONFIG_TIMER_STATS
1105 timer->start_site = NULL;
1106 timer->start_pid = -1;
1107 memset(timer->start_comm, 0, TASK_COMM_LEN);
1108 #endif
1112 * hrtimer_init - initialize a timer to the given clock
1113 * @timer: the timer to be initialized
1114 * @clock_id: the clock to be used
1115 * @mode: timer mode abs/rel
1117 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1118 enum hrtimer_mode mode)
1120 debug_hrtimer_init(timer);
1121 __hrtimer_init(timer, clock_id, mode);
1123 EXPORT_SYMBOL_GPL(hrtimer_init);
1126 * hrtimer_get_res - get the timer resolution for a clock
1127 * @which_clock: which clock to query
1128 * @tp: pointer to timespec variable to store the resolution
1130 * Store the resolution of the clock selected by @which_clock in the
1131 * variable pointed to by @tp.
1133 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1135 struct hrtimer_cpu_base *cpu_base;
1137 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1138 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1140 return 0;
1142 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1144 static void __run_hrtimer(struct hrtimer *timer)
1146 struct hrtimer_clock_base *base = timer->base;
1147 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1148 enum hrtimer_restart (*fn)(struct hrtimer *);
1149 int restart;
1151 WARN_ON(!irqs_disabled());
1153 debug_hrtimer_deactivate(timer);
1154 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1155 timer_stats_account_hrtimer(timer);
1156 fn = timer->function;
1159 * Because we run timers from hardirq context, there is no chance
1160 * they get migrated to another cpu, therefore its safe to unlock
1161 * the timer base.
1163 spin_unlock(&cpu_base->lock);
1164 restart = fn(timer);
1165 spin_lock(&cpu_base->lock);
1168 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1169 * we do not reprogramm the event hardware. Happens either in
1170 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1172 if (restart != HRTIMER_NORESTART) {
1173 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1174 enqueue_hrtimer(timer, base);
1176 timer->state &= ~HRTIMER_STATE_CALLBACK;
1179 #ifdef CONFIG_HIGH_RES_TIMERS
1181 static int force_clock_reprogram;
1184 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
1185 * is hanging, which could happen with something that slows the interrupt
1186 * such as the tracing. Then we force the clock reprogramming for each future
1187 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
1188 * threshold that we will overwrite.
1189 * The next tick event will be scheduled to 3 times we currently spend on
1190 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
1191 * 1/4 of their time to process the hrtimer interrupts. This is enough to
1192 * let it running without serious starvation.
1195 static inline void
1196 hrtimer_interrupt_hanging(struct clock_event_device *dev,
1197 ktime_t try_time)
1199 force_clock_reprogram = 1;
1200 dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
1201 printk(KERN_WARNING "hrtimer: interrupt too slow, "
1202 "forcing clock min delta to %lu ns\n", dev->min_delta_ns);
1205 * High resolution timer interrupt
1206 * Called with interrupts disabled
1208 void hrtimer_interrupt(struct clock_event_device *dev)
1210 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1211 struct hrtimer_clock_base *base;
1212 ktime_t expires_next, now;
1213 int nr_retries = 0;
1214 int i;
1216 BUG_ON(!cpu_base->hres_active);
1217 cpu_base->nr_events++;
1218 dev->next_event.tv64 = KTIME_MAX;
1220 retry:
1221 /* 5 retries is enough to notice a hang */
1222 if (!(++nr_retries % 5))
1223 hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));
1225 now = ktime_get();
1227 expires_next.tv64 = KTIME_MAX;
1229 base = cpu_base->clock_base;
1231 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1232 ktime_t basenow;
1233 struct rb_node *node;
1235 spin_lock(&cpu_base->lock);
1237 basenow = ktime_add(now, base->offset);
1239 while ((node = base->first)) {
1240 struct hrtimer *timer;
1242 timer = rb_entry(node, struct hrtimer, node);
1245 * The immediate goal for using the softexpires is
1246 * minimizing wakeups, not running timers at the
1247 * earliest interrupt after their soft expiration.
1248 * This allows us to avoid using a Priority Search
1249 * Tree, which can answer a stabbing querry for
1250 * overlapping intervals and instead use the simple
1251 * BST we already have.
1252 * We don't add extra wakeups by delaying timers that
1253 * are right-of a not yet expired timer, because that
1254 * timer will have to trigger a wakeup anyway.
1257 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1258 ktime_t expires;
1260 expires = ktime_sub(hrtimer_get_expires(timer),
1261 base->offset);
1262 if (expires.tv64 < expires_next.tv64)
1263 expires_next = expires;
1264 break;
1267 __run_hrtimer(timer);
1269 spin_unlock(&cpu_base->lock);
1270 base++;
1273 cpu_base->expires_next = expires_next;
1275 /* Reprogramming necessary ? */
1276 if (expires_next.tv64 != KTIME_MAX) {
1277 if (tick_program_event(expires_next, force_clock_reprogram))
1278 goto retry;
1283 * local version of hrtimer_peek_ahead_timers() called with interrupts
1284 * disabled.
1286 static void __hrtimer_peek_ahead_timers(void)
1288 struct tick_device *td;
1290 if (!hrtimer_hres_active())
1291 return;
1293 td = &__get_cpu_var(tick_cpu_device);
1294 if (td && td->evtdev)
1295 hrtimer_interrupt(td->evtdev);
1299 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1301 * hrtimer_peek_ahead_timers will peek at the timer queue of
1302 * the current cpu and check if there are any timers for which
1303 * the soft expires time has passed. If any such timers exist,
1304 * they are run immediately and then removed from the timer queue.
1307 void hrtimer_peek_ahead_timers(void)
1309 unsigned long flags;
1311 local_irq_save(flags);
1312 __hrtimer_peek_ahead_timers();
1313 local_irq_restore(flags);
1316 static void run_hrtimer_softirq(struct softirq_action *h)
1318 hrtimer_peek_ahead_timers();
1321 #else /* CONFIG_HIGH_RES_TIMERS */
1323 static inline void __hrtimer_peek_ahead_timers(void) { }
1325 #endif /* !CONFIG_HIGH_RES_TIMERS */
1328 * Called from timer softirq every jiffy, expire hrtimers:
1330 * For HRT its the fall back code to run the softirq in the timer
1331 * softirq context in case the hrtimer initialization failed or has
1332 * not been done yet.
1334 void hrtimer_run_pending(void)
1336 if (hrtimer_hres_active())
1337 return;
1340 * This _is_ ugly: We have to check in the softirq context,
1341 * whether we can switch to highres and / or nohz mode. The
1342 * clocksource switch happens in the timer interrupt with
1343 * xtime_lock held. Notification from there only sets the
1344 * check bit in the tick_oneshot code, otherwise we might
1345 * deadlock vs. xtime_lock.
1347 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1348 hrtimer_switch_to_hres();
1352 * Called from hardirq context every jiffy
1354 void hrtimer_run_queues(void)
1356 struct rb_node *node;
1357 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1358 struct hrtimer_clock_base *base;
1359 int index, gettime = 1;
1361 if (hrtimer_hres_active())
1362 return;
1364 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1365 base = &cpu_base->clock_base[index];
1367 if (!base->first)
1368 continue;
1370 if (gettime) {
1371 hrtimer_get_softirq_time(cpu_base);
1372 gettime = 0;
1375 spin_lock(&cpu_base->lock);
1377 while ((node = base->first)) {
1378 struct hrtimer *timer;
1380 timer = rb_entry(node, struct hrtimer, node);
1381 if (base->softirq_time.tv64 <=
1382 hrtimer_get_expires_tv64(timer))
1383 break;
1385 __run_hrtimer(timer);
1387 spin_unlock(&cpu_base->lock);
1392 * Sleep related functions:
1394 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1396 struct hrtimer_sleeper *t =
1397 container_of(timer, struct hrtimer_sleeper, timer);
1398 struct task_struct *task = t->task;
1400 t->task = NULL;
1401 if (task)
1402 wake_up_process(task);
1404 return HRTIMER_NORESTART;
1407 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1409 sl->timer.function = hrtimer_wakeup;
1410 sl->task = task;
1413 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1415 hrtimer_init_sleeper(t, current);
1417 do {
1418 set_current_state(TASK_INTERRUPTIBLE);
1419 hrtimer_start_expires(&t->timer, mode);
1420 if (!hrtimer_active(&t->timer))
1421 t->task = NULL;
1423 if (likely(t->task))
1424 schedule();
1426 hrtimer_cancel(&t->timer);
1427 mode = HRTIMER_MODE_ABS;
1429 } while (t->task && !signal_pending(current));
1431 __set_current_state(TASK_RUNNING);
1433 return t->task == NULL;
1436 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1438 struct timespec rmt;
1439 ktime_t rem;
1441 rem = hrtimer_expires_remaining(timer);
1442 if (rem.tv64 <= 0)
1443 return 0;
1444 rmt = ktime_to_timespec(rem);
1446 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1447 return -EFAULT;
1449 return 1;
1452 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1454 struct hrtimer_sleeper t;
1455 struct timespec __user *rmtp;
1456 int ret = 0;
1458 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1459 HRTIMER_MODE_ABS);
1460 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1462 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1463 goto out;
1465 rmtp = restart->nanosleep.rmtp;
1466 if (rmtp) {
1467 ret = update_rmtp(&t.timer, rmtp);
1468 if (ret <= 0)
1469 goto out;
1472 /* The other values in restart are already filled in */
1473 ret = -ERESTART_RESTARTBLOCK;
1474 out:
1475 destroy_hrtimer_on_stack(&t.timer);
1476 return ret;
1479 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1480 const enum hrtimer_mode mode, const clockid_t clockid)
1482 struct restart_block *restart;
1483 struct hrtimer_sleeper t;
1484 int ret = 0;
1485 unsigned long slack;
1487 slack = current->timer_slack_ns;
1488 if (rt_task(current))
1489 slack = 0;
1491 hrtimer_init_on_stack(&t.timer, clockid, mode);
1492 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1493 if (do_nanosleep(&t, mode))
1494 goto out;
1496 /* Absolute timers do not update the rmtp value and restart: */
1497 if (mode == HRTIMER_MODE_ABS) {
1498 ret = -ERESTARTNOHAND;
1499 goto out;
1502 if (rmtp) {
1503 ret = update_rmtp(&t.timer, rmtp);
1504 if (ret <= 0)
1505 goto out;
1508 restart = &current_thread_info()->restart_block;
1509 restart->fn = hrtimer_nanosleep_restart;
1510 restart->nanosleep.index = t.timer.base->index;
1511 restart->nanosleep.rmtp = rmtp;
1512 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1514 ret = -ERESTART_RESTARTBLOCK;
1515 out:
1516 destroy_hrtimer_on_stack(&t.timer);
1517 return ret;
1520 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1521 struct timespec __user *, rmtp)
1523 struct timespec tu;
1525 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1526 return -EFAULT;
1528 if (!timespec_valid(&tu))
1529 return -EINVAL;
1531 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1535 * Functions related to boot-time initialization:
1537 static void __cpuinit init_hrtimers_cpu(int cpu)
1539 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1540 int i;
1542 spin_lock_init(&cpu_base->lock);
1544 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1545 cpu_base->clock_base[i].cpu_base = cpu_base;
1547 hrtimer_init_hres(cpu_base);
1550 #ifdef CONFIG_HOTPLUG_CPU
1552 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1553 struct hrtimer_clock_base *new_base)
1555 struct hrtimer *timer;
1556 struct rb_node *node;
1558 while ((node = rb_first(&old_base->active))) {
1559 timer = rb_entry(node, struct hrtimer, node);
1560 BUG_ON(hrtimer_callback_running(timer));
1561 debug_hrtimer_deactivate(timer);
1564 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1565 * timer could be seen as !active and just vanish away
1566 * under us on another CPU
1568 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1569 timer->base = new_base;
1571 * Enqueue the timers on the new cpu. This does not
1572 * reprogram the event device in case the timer
1573 * expires before the earliest on this CPU, but we run
1574 * hrtimer_interrupt after we migrated everything to
1575 * sort out already expired timers and reprogram the
1576 * event device.
1578 enqueue_hrtimer(timer, new_base);
1580 /* Clear the migration state bit */
1581 timer->state &= ~HRTIMER_STATE_MIGRATE;
1585 static void migrate_hrtimers(int scpu)
1587 struct hrtimer_cpu_base *old_base, *new_base;
1588 int i;
1590 BUG_ON(cpu_online(scpu));
1591 tick_cancel_sched_timer(scpu);
1593 local_irq_disable();
1594 old_base = &per_cpu(hrtimer_bases, scpu);
1595 new_base = &__get_cpu_var(hrtimer_bases);
1597 * The caller is globally serialized and nobody else
1598 * takes two locks at once, deadlock is not possible.
1600 spin_lock(&new_base->lock);
1601 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1603 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1604 migrate_hrtimer_list(&old_base->clock_base[i],
1605 &new_base->clock_base[i]);
1608 spin_unlock(&old_base->lock);
1609 spin_unlock(&new_base->lock);
1611 /* Check, if we got expired work to do */
1612 __hrtimer_peek_ahead_timers();
1613 local_irq_enable();
1616 #endif /* CONFIG_HOTPLUG_CPU */
1618 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1619 unsigned long action, void *hcpu)
1621 int scpu = (long)hcpu;
1623 switch (action) {
1625 case CPU_UP_PREPARE:
1626 case CPU_UP_PREPARE_FROZEN:
1627 init_hrtimers_cpu(scpu);
1628 break;
1630 #ifdef CONFIG_HOTPLUG_CPU
1631 case CPU_DYING:
1632 case CPU_DYING_FROZEN:
1633 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1634 break;
1635 case CPU_DEAD:
1636 case CPU_DEAD_FROZEN:
1638 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1639 migrate_hrtimers(scpu);
1640 break;
1642 #endif
1644 default:
1645 break;
1648 return NOTIFY_OK;
1651 static struct notifier_block __cpuinitdata hrtimers_nb = {
1652 .notifier_call = hrtimer_cpu_notify,
1655 void __init hrtimers_init(void)
1657 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1658 (void *)(long)smp_processor_id());
1659 register_cpu_notifier(&hrtimers_nb);
1660 #ifdef CONFIG_HIGH_RES_TIMERS
1661 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1662 #endif
1666 * schedule_hrtimeout_range - sleep until timeout
1667 * @expires: timeout value (ktime_t)
1668 * @delta: slack in expires timeout (ktime_t)
1669 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1671 * Make the current task sleep until the given expiry time has
1672 * elapsed. The routine will return immediately unless
1673 * the current task state has been set (see set_current_state()).
1675 * The @delta argument gives the kernel the freedom to schedule the
1676 * actual wakeup to a time that is both power and performance friendly.
1677 * The kernel give the normal best effort behavior for "@expires+@delta",
1678 * but may decide to fire the timer earlier, but no earlier than @expires.
1680 * You can set the task state as follows -
1682 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1683 * pass before the routine returns.
1685 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1686 * delivered to the current task.
1688 * The current task state is guaranteed to be TASK_RUNNING when this
1689 * routine returns.
1691 * Returns 0 when the timer has expired otherwise -EINTR
1693 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1694 const enum hrtimer_mode mode)
1696 struct hrtimer_sleeper t;
1699 * Optimize when a zero timeout value is given. It does not
1700 * matter whether this is an absolute or a relative time.
1702 if (expires && !expires->tv64) {
1703 __set_current_state(TASK_RUNNING);
1704 return 0;
1708 * A NULL parameter means "inifinte"
1710 if (!expires) {
1711 schedule();
1712 __set_current_state(TASK_RUNNING);
1713 return -EINTR;
1716 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1717 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1719 hrtimer_init_sleeper(&t, current);
1721 hrtimer_start_expires(&t.timer, mode);
1722 if (!hrtimer_active(&t.timer))
1723 t.task = NULL;
1725 if (likely(t.task))
1726 schedule();
1728 hrtimer_cancel(&t.timer);
1729 destroy_hrtimer_on_stack(&t.timer);
1731 __set_current_state(TASK_RUNNING);
1733 return !t.task ? 0 : -EINTR;
1735 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1738 * schedule_hrtimeout - sleep until timeout
1739 * @expires: timeout value (ktime_t)
1740 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1742 * Make the current task sleep until the given expiry time has
1743 * elapsed. The routine will return immediately unless
1744 * the current task state has been set (see set_current_state()).
1746 * You can set the task state as follows -
1748 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1749 * pass before the routine returns.
1751 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1752 * delivered to the current task.
1754 * The current task state is guaranteed to be TASK_RUNNING when this
1755 * routine returns.
1757 * Returns 0 when the timer has expired otherwise -EINTR
1759 int __sched schedule_hrtimeout(ktime_t *expires,
1760 const enum hrtimer_mode mode)
1762 return schedule_hrtimeout_range(expires, 0, mode);
1764 EXPORT_SYMBOL_GPL(schedule_hrtimeout);