ACPI: thinkpad-acpi: add development version tag
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / binfmt_elf.c
blobf4781d1bffc6f1a7b36dda0b3b7bb0bf9b9c2ae3
1 /*
2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/stat.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/fcntl.h>
25 #include <linux/ptrace.h>
26 #include <linux/slab.h>
27 #include <linux/shm.h>
28 #include <linux/personality.h>
29 #include <linux/elfcore.h>
30 #include <linux/init.h>
31 #include <linux/highuid.h>
32 #include <linux/smp.h>
33 #include <linux/compiler.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/security.h>
37 #include <linux/syscalls.h>
38 #include <linux/random.h>
39 #include <linux/elf.h>
40 #include <linux/utsname.h>
41 #include <asm/uaccess.h>
42 #include <asm/param.h>
43 #include <asm/page.h>
45 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
46 static int load_elf_library(struct file *);
47 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
48 int, int, unsigned long);
51 * If we don't support core dumping, then supply a NULL so we
52 * don't even try.
54 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
55 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit);
56 #else
57 #define elf_core_dump NULL
58 #endif
60 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
61 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
62 #else
63 #define ELF_MIN_ALIGN PAGE_SIZE
64 #endif
66 #ifndef ELF_CORE_EFLAGS
67 #define ELF_CORE_EFLAGS 0
68 #endif
70 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
71 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
72 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
74 static struct linux_binfmt elf_format = {
75 .module = THIS_MODULE,
76 .load_binary = load_elf_binary,
77 .load_shlib = load_elf_library,
78 .core_dump = elf_core_dump,
79 .min_coredump = ELF_EXEC_PAGESIZE,
80 .hasvdso = 1
83 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
85 static int set_brk(unsigned long start, unsigned long end)
87 start = ELF_PAGEALIGN(start);
88 end = ELF_PAGEALIGN(end);
89 if (end > start) {
90 unsigned long addr;
91 down_write(&current->mm->mmap_sem);
92 addr = do_brk(start, end - start);
93 up_write(&current->mm->mmap_sem);
94 if (BAD_ADDR(addr))
95 return addr;
97 current->mm->start_brk = current->mm->brk = end;
98 return 0;
101 /* We need to explicitly zero any fractional pages
102 after the data section (i.e. bss). This would
103 contain the junk from the file that should not
104 be in memory
106 static int padzero(unsigned long elf_bss)
108 unsigned long nbyte;
110 nbyte = ELF_PAGEOFFSET(elf_bss);
111 if (nbyte) {
112 nbyte = ELF_MIN_ALIGN - nbyte;
113 if (clear_user((void __user *) elf_bss, nbyte))
114 return -EFAULT;
116 return 0;
119 /* Let's use some macros to make this stack manipulation a little clearer */
120 #ifdef CONFIG_STACK_GROWSUP
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
122 #define STACK_ROUND(sp, items) \
123 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ \
125 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
126 old_sp; })
127 #else
128 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
129 #define STACK_ROUND(sp, items) \
130 (((unsigned long) (sp - items)) &~ 15UL)
131 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
132 #endif
134 #ifndef ELF_BASE_PLATFORM
136 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
137 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
138 * will be copied to the user stack in the same manner as AT_PLATFORM.
140 #define ELF_BASE_PLATFORM NULL
141 #endif
143 static int
144 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
145 unsigned long load_addr, unsigned long interp_load_addr)
147 unsigned long p = bprm->p;
148 int argc = bprm->argc;
149 int envc = bprm->envc;
150 elf_addr_t __user *argv;
151 elf_addr_t __user *envp;
152 elf_addr_t __user *sp;
153 elf_addr_t __user *u_platform;
154 elf_addr_t __user *u_base_platform;
155 const char *k_platform = ELF_PLATFORM;
156 const char *k_base_platform = ELF_BASE_PLATFORM;
157 int items;
158 elf_addr_t *elf_info;
159 int ei_index = 0;
160 struct task_struct *tsk = current;
161 struct vm_area_struct *vma;
164 * In some cases (e.g. Hyper-Threading), we want to avoid L1
165 * evictions by the processes running on the same package. One
166 * thing we can do is to shuffle the initial stack for them.
169 p = arch_align_stack(p);
172 * If this architecture has a platform capability string, copy it
173 * to userspace. In some cases (Sparc), this info is impossible
174 * for userspace to get any other way, in others (i386) it is
175 * merely difficult.
177 u_platform = NULL;
178 if (k_platform) {
179 size_t len = strlen(k_platform) + 1;
181 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
182 if (__copy_to_user(u_platform, k_platform, len))
183 return -EFAULT;
187 * If this architecture has a "base" platform capability
188 * string, copy it to userspace.
190 u_base_platform = NULL;
191 if (k_base_platform) {
192 size_t len = strlen(k_base_platform) + 1;
194 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
195 if (__copy_to_user(u_base_platform, k_base_platform, len))
196 return -EFAULT;
199 /* Create the ELF interpreter info */
200 elf_info = (elf_addr_t *)current->mm->saved_auxv;
201 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
202 #define NEW_AUX_ENT(id, val) \
203 do { \
204 elf_info[ei_index++] = id; \
205 elf_info[ei_index++] = val; \
206 } while (0)
208 #ifdef ARCH_DLINFO
210 * ARCH_DLINFO must come first so PPC can do its special alignment of
211 * AUXV.
212 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
213 * ARCH_DLINFO changes
215 ARCH_DLINFO;
216 #endif
217 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
218 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
219 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
220 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
221 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
222 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
223 NEW_AUX_ENT(AT_BASE, interp_load_addr);
224 NEW_AUX_ENT(AT_FLAGS, 0);
225 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
226 NEW_AUX_ENT(AT_UID, tsk->uid);
227 NEW_AUX_ENT(AT_EUID, tsk->euid);
228 NEW_AUX_ENT(AT_GID, tsk->gid);
229 NEW_AUX_ENT(AT_EGID, tsk->egid);
230 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
231 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
232 if (k_platform) {
233 NEW_AUX_ENT(AT_PLATFORM,
234 (elf_addr_t)(unsigned long)u_platform);
236 if (k_base_platform) {
237 NEW_AUX_ENT(AT_BASE_PLATFORM,
238 (elf_addr_t)(unsigned long)u_base_platform);
240 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
241 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
243 #undef NEW_AUX_ENT
244 /* AT_NULL is zero; clear the rest too */
245 memset(&elf_info[ei_index], 0,
246 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
248 /* And advance past the AT_NULL entry. */
249 ei_index += 2;
251 sp = STACK_ADD(p, ei_index);
253 items = (argc + 1) + (envc + 1) + 1;
254 bprm->p = STACK_ROUND(sp, items);
256 /* Point sp at the lowest address on the stack */
257 #ifdef CONFIG_STACK_GROWSUP
258 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
259 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
260 #else
261 sp = (elf_addr_t __user *)bprm->p;
262 #endif
266 * Grow the stack manually; some architectures have a limit on how
267 * far ahead a user-space access may be in order to grow the stack.
269 vma = find_extend_vma(current->mm, bprm->p);
270 if (!vma)
271 return -EFAULT;
273 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
274 if (__put_user(argc, sp++))
275 return -EFAULT;
276 argv = sp;
277 envp = argv + argc + 1;
279 /* Populate argv and envp */
280 p = current->mm->arg_end = current->mm->arg_start;
281 while (argc-- > 0) {
282 size_t len;
283 if (__put_user((elf_addr_t)p, argv++))
284 return -EFAULT;
285 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
286 if (!len || len > MAX_ARG_STRLEN)
287 return -EINVAL;
288 p += len;
290 if (__put_user(0, argv))
291 return -EFAULT;
292 current->mm->arg_end = current->mm->env_start = p;
293 while (envc-- > 0) {
294 size_t len;
295 if (__put_user((elf_addr_t)p, envp++))
296 return -EFAULT;
297 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
298 if (!len || len > MAX_ARG_STRLEN)
299 return -EINVAL;
300 p += len;
302 if (__put_user(0, envp))
303 return -EFAULT;
304 current->mm->env_end = p;
306 /* Put the elf_info on the stack in the right place. */
307 sp = (elf_addr_t __user *)envp + 1;
308 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
309 return -EFAULT;
310 return 0;
313 #ifndef elf_map
315 static unsigned long elf_map(struct file *filep, unsigned long addr,
316 struct elf_phdr *eppnt, int prot, int type,
317 unsigned long total_size)
319 unsigned long map_addr;
320 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
321 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
322 addr = ELF_PAGESTART(addr);
323 size = ELF_PAGEALIGN(size);
325 /* mmap() will return -EINVAL if given a zero size, but a
326 * segment with zero filesize is perfectly valid */
327 if (!size)
328 return addr;
330 down_write(&current->mm->mmap_sem);
332 * total_size is the size of the ELF (interpreter) image.
333 * The _first_ mmap needs to know the full size, otherwise
334 * randomization might put this image into an overlapping
335 * position with the ELF binary image. (since size < total_size)
336 * So we first map the 'big' image - and unmap the remainder at
337 * the end. (which unmap is needed for ELF images with holes.)
339 if (total_size) {
340 total_size = ELF_PAGEALIGN(total_size);
341 map_addr = do_mmap(filep, addr, total_size, prot, type, off);
342 if (!BAD_ADDR(map_addr))
343 do_munmap(current->mm, map_addr+size, total_size-size);
344 } else
345 map_addr = do_mmap(filep, addr, size, prot, type, off);
347 up_write(&current->mm->mmap_sem);
348 return(map_addr);
351 #endif /* !elf_map */
353 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
355 int i, first_idx = -1, last_idx = -1;
357 for (i = 0; i < nr; i++) {
358 if (cmds[i].p_type == PT_LOAD) {
359 last_idx = i;
360 if (first_idx == -1)
361 first_idx = i;
364 if (first_idx == -1)
365 return 0;
367 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
368 ELF_PAGESTART(cmds[first_idx].p_vaddr);
372 /* This is much more generalized than the library routine read function,
373 so we keep this separate. Technically the library read function
374 is only provided so that we can read a.out libraries that have
375 an ELF header */
377 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
378 struct file *interpreter, unsigned long *interp_map_addr,
379 unsigned long no_base)
381 struct elf_phdr *elf_phdata;
382 struct elf_phdr *eppnt;
383 unsigned long load_addr = 0;
384 int load_addr_set = 0;
385 unsigned long last_bss = 0, elf_bss = 0;
386 unsigned long error = ~0UL;
387 unsigned long total_size;
388 int retval, i, size;
390 /* First of all, some simple consistency checks */
391 if (interp_elf_ex->e_type != ET_EXEC &&
392 interp_elf_ex->e_type != ET_DYN)
393 goto out;
394 if (!elf_check_arch(interp_elf_ex))
395 goto out;
396 if (!interpreter->f_op || !interpreter->f_op->mmap)
397 goto out;
400 * If the size of this structure has changed, then punt, since
401 * we will be doing the wrong thing.
403 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
404 goto out;
405 if (interp_elf_ex->e_phnum < 1 ||
406 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
407 goto out;
409 /* Now read in all of the header information */
410 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
411 if (size > ELF_MIN_ALIGN)
412 goto out;
413 elf_phdata = kmalloc(size, GFP_KERNEL);
414 if (!elf_phdata)
415 goto out;
417 retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
418 (char *)elf_phdata,size);
419 error = -EIO;
420 if (retval != size) {
421 if (retval < 0)
422 error = retval;
423 goto out_close;
426 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
427 if (!total_size) {
428 error = -EINVAL;
429 goto out_close;
432 eppnt = elf_phdata;
433 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
434 if (eppnt->p_type == PT_LOAD) {
435 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
436 int elf_prot = 0;
437 unsigned long vaddr = 0;
438 unsigned long k, map_addr;
440 if (eppnt->p_flags & PF_R)
441 elf_prot = PROT_READ;
442 if (eppnt->p_flags & PF_W)
443 elf_prot |= PROT_WRITE;
444 if (eppnt->p_flags & PF_X)
445 elf_prot |= PROT_EXEC;
446 vaddr = eppnt->p_vaddr;
447 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
448 elf_type |= MAP_FIXED;
449 else if (no_base && interp_elf_ex->e_type == ET_DYN)
450 load_addr = -vaddr;
452 map_addr = elf_map(interpreter, load_addr + vaddr,
453 eppnt, elf_prot, elf_type, total_size);
454 total_size = 0;
455 if (!*interp_map_addr)
456 *interp_map_addr = map_addr;
457 error = map_addr;
458 if (BAD_ADDR(map_addr))
459 goto out_close;
461 if (!load_addr_set &&
462 interp_elf_ex->e_type == ET_DYN) {
463 load_addr = map_addr - ELF_PAGESTART(vaddr);
464 load_addr_set = 1;
468 * Check to see if the section's size will overflow the
469 * allowed task size. Note that p_filesz must always be
470 * <= p_memsize so it's only necessary to check p_memsz.
472 k = load_addr + eppnt->p_vaddr;
473 if (BAD_ADDR(k) ||
474 eppnt->p_filesz > eppnt->p_memsz ||
475 eppnt->p_memsz > TASK_SIZE ||
476 TASK_SIZE - eppnt->p_memsz < k) {
477 error = -ENOMEM;
478 goto out_close;
482 * Find the end of the file mapping for this phdr, and
483 * keep track of the largest address we see for this.
485 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
486 if (k > elf_bss)
487 elf_bss = k;
490 * Do the same thing for the memory mapping - between
491 * elf_bss and last_bss is the bss section.
493 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
494 if (k > last_bss)
495 last_bss = k;
500 * Now fill out the bss section. First pad the last page up
501 * to the page boundary, and then perform a mmap to make sure
502 * that there are zero-mapped pages up to and including the
503 * last bss page.
505 if (padzero(elf_bss)) {
506 error = -EFAULT;
507 goto out_close;
510 /* What we have mapped so far */
511 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
513 /* Map the last of the bss segment */
514 if (last_bss > elf_bss) {
515 down_write(&current->mm->mmap_sem);
516 error = do_brk(elf_bss, last_bss - elf_bss);
517 up_write(&current->mm->mmap_sem);
518 if (BAD_ADDR(error))
519 goto out_close;
522 error = load_addr;
524 out_close:
525 kfree(elf_phdata);
526 out:
527 return error;
531 * These are the functions used to load ELF style executables and shared
532 * libraries. There is no binary dependent code anywhere else.
535 #define INTERPRETER_NONE 0
536 #define INTERPRETER_ELF 2
538 #ifndef STACK_RND_MASK
539 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
540 #endif
542 static unsigned long randomize_stack_top(unsigned long stack_top)
544 unsigned int random_variable = 0;
546 if ((current->flags & PF_RANDOMIZE) &&
547 !(current->personality & ADDR_NO_RANDOMIZE)) {
548 random_variable = get_random_int() & STACK_RND_MASK;
549 random_variable <<= PAGE_SHIFT;
551 #ifdef CONFIG_STACK_GROWSUP
552 return PAGE_ALIGN(stack_top) + random_variable;
553 #else
554 return PAGE_ALIGN(stack_top) - random_variable;
555 #endif
558 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
560 struct file *interpreter = NULL; /* to shut gcc up */
561 unsigned long load_addr = 0, load_bias = 0;
562 int load_addr_set = 0;
563 char * elf_interpreter = NULL;
564 unsigned long error;
565 struct elf_phdr *elf_ppnt, *elf_phdata;
566 unsigned long elf_bss, elf_brk;
567 int elf_exec_fileno;
568 int retval, i;
569 unsigned int size;
570 unsigned long elf_entry;
571 unsigned long interp_load_addr = 0;
572 unsigned long start_code, end_code, start_data, end_data;
573 unsigned long reloc_func_desc = 0;
574 int executable_stack = EXSTACK_DEFAULT;
575 unsigned long def_flags = 0;
576 struct {
577 struct elfhdr elf_ex;
578 struct elfhdr interp_elf_ex;
579 } *loc;
581 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
582 if (!loc) {
583 retval = -ENOMEM;
584 goto out_ret;
587 /* Get the exec-header */
588 loc->elf_ex = *((struct elfhdr *)bprm->buf);
590 retval = -ENOEXEC;
591 /* First of all, some simple consistency checks */
592 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
593 goto out;
595 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
596 goto out;
597 if (!elf_check_arch(&loc->elf_ex))
598 goto out;
599 if (!bprm->file->f_op||!bprm->file->f_op->mmap)
600 goto out;
602 /* Now read in all of the header information */
603 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
604 goto out;
605 if (loc->elf_ex.e_phnum < 1 ||
606 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
607 goto out;
608 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
609 retval = -ENOMEM;
610 elf_phdata = kmalloc(size, GFP_KERNEL);
611 if (!elf_phdata)
612 goto out;
614 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
615 (char *)elf_phdata, size);
616 if (retval != size) {
617 if (retval >= 0)
618 retval = -EIO;
619 goto out_free_ph;
622 retval = get_unused_fd();
623 if (retval < 0)
624 goto out_free_ph;
625 get_file(bprm->file);
626 fd_install(elf_exec_fileno = retval, bprm->file);
628 elf_ppnt = elf_phdata;
629 elf_bss = 0;
630 elf_brk = 0;
632 start_code = ~0UL;
633 end_code = 0;
634 start_data = 0;
635 end_data = 0;
637 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
638 if (elf_ppnt->p_type == PT_INTERP) {
639 /* This is the program interpreter used for
640 * shared libraries - for now assume that this
641 * is an a.out format binary
643 retval = -ENOEXEC;
644 if (elf_ppnt->p_filesz > PATH_MAX ||
645 elf_ppnt->p_filesz < 2)
646 goto out_free_file;
648 retval = -ENOMEM;
649 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
650 GFP_KERNEL);
651 if (!elf_interpreter)
652 goto out_free_file;
654 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
655 elf_interpreter,
656 elf_ppnt->p_filesz);
657 if (retval != elf_ppnt->p_filesz) {
658 if (retval >= 0)
659 retval = -EIO;
660 goto out_free_interp;
662 /* make sure path is NULL terminated */
663 retval = -ENOEXEC;
664 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
665 goto out_free_interp;
668 * The early SET_PERSONALITY here is so that the lookup
669 * for the interpreter happens in the namespace of the
670 * to-be-execed image. SET_PERSONALITY can select an
671 * alternate root.
673 * However, SET_PERSONALITY is NOT allowed to switch
674 * this task into the new images's memory mapping
675 * policy - that is, TASK_SIZE must still evaluate to
676 * that which is appropriate to the execing application.
677 * This is because exit_mmap() needs to have TASK_SIZE
678 * evaluate to the size of the old image.
680 * So if (say) a 64-bit application is execing a 32-bit
681 * application it is the architecture's responsibility
682 * to defer changing the value of TASK_SIZE until the
683 * switch really is going to happen - do this in
684 * flush_thread(). - akpm
686 SET_PERSONALITY(loc->elf_ex);
688 interpreter = open_exec(elf_interpreter);
689 retval = PTR_ERR(interpreter);
690 if (IS_ERR(interpreter))
691 goto out_free_interp;
694 * If the binary is not readable then enforce
695 * mm->dumpable = 0 regardless of the interpreter's
696 * permissions.
698 if (file_permission(interpreter, MAY_READ) < 0)
699 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
701 retval = kernel_read(interpreter, 0, bprm->buf,
702 BINPRM_BUF_SIZE);
703 if (retval != BINPRM_BUF_SIZE) {
704 if (retval >= 0)
705 retval = -EIO;
706 goto out_free_dentry;
709 /* Get the exec headers */
710 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
711 break;
713 elf_ppnt++;
716 elf_ppnt = elf_phdata;
717 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
718 if (elf_ppnt->p_type == PT_GNU_STACK) {
719 if (elf_ppnt->p_flags & PF_X)
720 executable_stack = EXSTACK_ENABLE_X;
721 else
722 executable_stack = EXSTACK_DISABLE_X;
723 break;
726 /* Some simple consistency checks for the interpreter */
727 if (elf_interpreter) {
728 retval = -ELIBBAD;
729 /* Not an ELF interpreter */
730 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
731 goto out_free_dentry;
732 /* Verify the interpreter has a valid arch */
733 if (!elf_check_arch(&loc->interp_elf_ex))
734 goto out_free_dentry;
735 } else {
736 /* Executables without an interpreter also need a personality */
737 SET_PERSONALITY(loc->elf_ex);
740 /* Flush all traces of the currently running executable */
741 retval = flush_old_exec(bprm);
742 if (retval)
743 goto out_free_dentry;
745 /* OK, This is the point of no return */
746 current->flags &= ~PF_FORKNOEXEC;
747 current->mm->def_flags = def_flags;
749 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
750 may depend on the personality. */
751 SET_PERSONALITY(loc->elf_ex);
752 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
753 current->personality |= READ_IMPLIES_EXEC;
755 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
756 current->flags |= PF_RANDOMIZE;
757 arch_pick_mmap_layout(current->mm);
759 /* Do this so that we can load the interpreter, if need be. We will
760 change some of these later */
761 current->mm->free_area_cache = current->mm->mmap_base;
762 current->mm->cached_hole_size = 0;
763 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
764 executable_stack);
765 if (retval < 0) {
766 send_sig(SIGKILL, current, 0);
767 goto out_free_dentry;
770 current->mm->start_stack = bprm->p;
772 /* Now we do a little grungy work by mmaping the ELF image into
773 the correct location in memory. */
774 for(i = 0, elf_ppnt = elf_phdata;
775 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
776 int elf_prot = 0, elf_flags;
777 unsigned long k, vaddr;
779 if (elf_ppnt->p_type != PT_LOAD)
780 continue;
782 if (unlikely (elf_brk > elf_bss)) {
783 unsigned long nbyte;
785 /* There was a PT_LOAD segment with p_memsz > p_filesz
786 before this one. Map anonymous pages, if needed,
787 and clear the area. */
788 retval = set_brk (elf_bss + load_bias,
789 elf_brk + load_bias);
790 if (retval) {
791 send_sig(SIGKILL, current, 0);
792 goto out_free_dentry;
794 nbyte = ELF_PAGEOFFSET(elf_bss);
795 if (nbyte) {
796 nbyte = ELF_MIN_ALIGN - nbyte;
797 if (nbyte > elf_brk - elf_bss)
798 nbyte = elf_brk - elf_bss;
799 if (clear_user((void __user *)elf_bss +
800 load_bias, nbyte)) {
802 * This bss-zeroing can fail if the ELF
803 * file specifies odd protections. So
804 * we don't check the return value
810 if (elf_ppnt->p_flags & PF_R)
811 elf_prot |= PROT_READ;
812 if (elf_ppnt->p_flags & PF_W)
813 elf_prot |= PROT_WRITE;
814 if (elf_ppnt->p_flags & PF_X)
815 elf_prot |= PROT_EXEC;
817 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
819 vaddr = elf_ppnt->p_vaddr;
820 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
821 elf_flags |= MAP_FIXED;
822 } else if (loc->elf_ex.e_type == ET_DYN) {
823 /* Try and get dynamic programs out of the way of the
824 * default mmap base, as well as whatever program they
825 * might try to exec. This is because the brk will
826 * follow the loader, and is not movable. */
827 #ifdef CONFIG_X86
828 load_bias = 0;
829 #else
830 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
831 #endif
834 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
835 elf_prot, elf_flags, 0);
836 if (BAD_ADDR(error)) {
837 send_sig(SIGKILL, current, 0);
838 retval = IS_ERR((void *)error) ?
839 PTR_ERR((void*)error) : -EINVAL;
840 goto out_free_dentry;
843 if (!load_addr_set) {
844 load_addr_set = 1;
845 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
846 if (loc->elf_ex.e_type == ET_DYN) {
847 load_bias += error -
848 ELF_PAGESTART(load_bias + vaddr);
849 load_addr += load_bias;
850 reloc_func_desc = load_bias;
853 k = elf_ppnt->p_vaddr;
854 if (k < start_code)
855 start_code = k;
856 if (start_data < k)
857 start_data = k;
860 * Check to see if the section's size will overflow the
861 * allowed task size. Note that p_filesz must always be
862 * <= p_memsz so it is only necessary to check p_memsz.
864 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
865 elf_ppnt->p_memsz > TASK_SIZE ||
866 TASK_SIZE - elf_ppnt->p_memsz < k) {
867 /* set_brk can never work. Avoid overflows. */
868 send_sig(SIGKILL, current, 0);
869 retval = -EINVAL;
870 goto out_free_dentry;
873 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
875 if (k > elf_bss)
876 elf_bss = k;
877 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
878 end_code = k;
879 if (end_data < k)
880 end_data = k;
881 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
882 if (k > elf_brk)
883 elf_brk = k;
886 loc->elf_ex.e_entry += load_bias;
887 elf_bss += load_bias;
888 elf_brk += load_bias;
889 start_code += load_bias;
890 end_code += load_bias;
891 start_data += load_bias;
892 end_data += load_bias;
894 /* Calling set_brk effectively mmaps the pages that we need
895 * for the bss and break sections. We must do this before
896 * mapping in the interpreter, to make sure it doesn't wind
897 * up getting placed where the bss needs to go.
899 retval = set_brk(elf_bss, elf_brk);
900 if (retval) {
901 send_sig(SIGKILL, current, 0);
902 goto out_free_dentry;
904 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
905 send_sig(SIGSEGV, current, 0);
906 retval = -EFAULT; /* Nobody gets to see this, but.. */
907 goto out_free_dentry;
910 if (elf_interpreter) {
911 unsigned long uninitialized_var(interp_map_addr);
913 elf_entry = load_elf_interp(&loc->interp_elf_ex,
914 interpreter,
915 &interp_map_addr,
916 load_bias);
917 if (!IS_ERR((void *)elf_entry)) {
919 * load_elf_interp() returns relocation
920 * adjustment
922 interp_load_addr = elf_entry;
923 elf_entry += loc->interp_elf_ex.e_entry;
925 if (BAD_ADDR(elf_entry)) {
926 force_sig(SIGSEGV, current);
927 retval = IS_ERR((void *)elf_entry) ?
928 (int)elf_entry : -EINVAL;
929 goto out_free_dentry;
931 reloc_func_desc = interp_load_addr;
933 allow_write_access(interpreter);
934 fput(interpreter);
935 kfree(elf_interpreter);
936 } else {
937 elf_entry = loc->elf_ex.e_entry;
938 if (BAD_ADDR(elf_entry)) {
939 force_sig(SIGSEGV, current);
940 retval = -EINVAL;
941 goto out_free_dentry;
945 kfree(elf_phdata);
947 sys_close(elf_exec_fileno);
949 set_binfmt(&elf_format);
951 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
952 retval = arch_setup_additional_pages(bprm, executable_stack);
953 if (retval < 0) {
954 send_sig(SIGKILL, current, 0);
955 goto out;
957 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
959 compute_creds(bprm);
960 current->flags &= ~PF_FORKNOEXEC;
961 retval = create_elf_tables(bprm, &loc->elf_ex,
962 load_addr, interp_load_addr);
963 if (retval < 0) {
964 send_sig(SIGKILL, current, 0);
965 goto out;
967 /* N.B. passed_fileno might not be initialized? */
968 current->mm->end_code = end_code;
969 current->mm->start_code = start_code;
970 current->mm->start_data = start_data;
971 current->mm->end_data = end_data;
972 current->mm->start_stack = bprm->p;
974 #ifdef arch_randomize_brk
975 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1))
976 current->mm->brk = current->mm->start_brk =
977 arch_randomize_brk(current->mm);
978 #endif
980 if (current->personality & MMAP_PAGE_ZERO) {
981 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
982 and some applications "depend" upon this behavior.
983 Since we do not have the power to recompile these, we
984 emulate the SVr4 behavior. Sigh. */
985 down_write(&current->mm->mmap_sem);
986 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
987 MAP_FIXED | MAP_PRIVATE, 0);
988 up_write(&current->mm->mmap_sem);
991 #ifdef ELF_PLAT_INIT
993 * The ABI may specify that certain registers be set up in special
994 * ways (on i386 %edx is the address of a DT_FINI function, for
995 * example. In addition, it may also specify (eg, PowerPC64 ELF)
996 * that the e_entry field is the address of the function descriptor
997 * for the startup routine, rather than the address of the startup
998 * routine itself. This macro performs whatever initialization to
999 * the regs structure is required as well as any relocations to the
1000 * function descriptor entries when executing dynamically links apps.
1002 ELF_PLAT_INIT(regs, reloc_func_desc);
1003 #endif
1005 start_thread(regs, elf_entry, bprm->p);
1006 retval = 0;
1007 out:
1008 kfree(loc);
1009 out_ret:
1010 return retval;
1012 /* error cleanup */
1013 out_free_dentry:
1014 allow_write_access(interpreter);
1015 if (interpreter)
1016 fput(interpreter);
1017 out_free_interp:
1018 kfree(elf_interpreter);
1019 out_free_file:
1020 sys_close(elf_exec_fileno);
1021 out_free_ph:
1022 kfree(elf_phdata);
1023 goto out;
1026 /* This is really simpleminded and specialized - we are loading an
1027 a.out library that is given an ELF header. */
1028 static int load_elf_library(struct file *file)
1030 struct elf_phdr *elf_phdata;
1031 struct elf_phdr *eppnt;
1032 unsigned long elf_bss, bss, len;
1033 int retval, error, i, j;
1034 struct elfhdr elf_ex;
1036 error = -ENOEXEC;
1037 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1038 if (retval != sizeof(elf_ex))
1039 goto out;
1041 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1042 goto out;
1044 /* First of all, some simple consistency checks */
1045 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1046 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1047 goto out;
1049 /* Now read in all of the header information */
1051 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1052 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1054 error = -ENOMEM;
1055 elf_phdata = kmalloc(j, GFP_KERNEL);
1056 if (!elf_phdata)
1057 goto out;
1059 eppnt = elf_phdata;
1060 error = -ENOEXEC;
1061 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1062 if (retval != j)
1063 goto out_free_ph;
1065 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1066 if ((eppnt + i)->p_type == PT_LOAD)
1067 j++;
1068 if (j != 1)
1069 goto out_free_ph;
1071 while (eppnt->p_type != PT_LOAD)
1072 eppnt++;
1074 /* Now use mmap to map the library into memory. */
1075 down_write(&current->mm->mmap_sem);
1076 error = do_mmap(file,
1077 ELF_PAGESTART(eppnt->p_vaddr),
1078 (eppnt->p_filesz +
1079 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1080 PROT_READ | PROT_WRITE | PROT_EXEC,
1081 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1082 (eppnt->p_offset -
1083 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1084 up_write(&current->mm->mmap_sem);
1085 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1086 goto out_free_ph;
1088 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1089 if (padzero(elf_bss)) {
1090 error = -EFAULT;
1091 goto out_free_ph;
1094 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1095 ELF_MIN_ALIGN - 1);
1096 bss = eppnt->p_memsz + eppnt->p_vaddr;
1097 if (bss > len) {
1098 down_write(&current->mm->mmap_sem);
1099 do_brk(len, bss - len);
1100 up_write(&current->mm->mmap_sem);
1102 error = 0;
1104 out_free_ph:
1105 kfree(elf_phdata);
1106 out:
1107 return error;
1111 * Note that some platforms still use traditional core dumps and not
1112 * the ELF core dump. Each platform can select it as appropriate.
1114 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
1117 * ELF core dumper
1119 * Modelled on fs/exec.c:aout_core_dump()
1120 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1123 * These are the only things you should do on a core-file: use only these
1124 * functions to write out all the necessary info.
1126 static int dump_write(struct file *file, const void *addr, int nr)
1128 return file->f_op->write(file, addr, nr, &file->f_pos) == nr;
1131 static int dump_seek(struct file *file, loff_t off)
1133 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
1134 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
1135 return 0;
1136 } else {
1137 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
1138 if (!buf)
1139 return 0;
1140 while (off > 0) {
1141 unsigned long n = off;
1142 if (n > PAGE_SIZE)
1143 n = PAGE_SIZE;
1144 if (!dump_write(file, buf, n))
1145 return 0;
1146 off -= n;
1148 free_page((unsigned long)buf);
1150 return 1;
1154 * Decide what to dump of a segment, part, all or none.
1156 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1157 unsigned long mm_flags)
1159 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1161 /* The vma can be set up to tell us the answer directly. */
1162 if (vma->vm_flags & VM_ALWAYSDUMP)
1163 goto whole;
1165 /* Hugetlb memory check */
1166 if (vma->vm_flags & VM_HUGETLB) {
1167 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1168 goto whole;
1169 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1170 goto whole;
1173 /* Do not dump I/O mapped devices or special mappings */
1174 if (vma->vm_flags & (VM_IO | VM_RESERVED))
1175 return 0;
1177 /* By default, dump shared memory if mapped from an anonymous file. */
1178 if (vma->vm_flags & VM_SHARED) {
1179 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1180 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1181 goto whole;
1182 return 0;
1185 /* Dump segments that have been written to. */
1186 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1187 goto whole;
1188 if (vma->vm_file == NULL)
1189 return 0;
1191 if (FILTER(MAPPED_PRIVATE))
1192 goto whole;
1195 * If this looks like the beginning of a DSO or executable mapping,
1196 * check for an ELF header. If we find one, dump the first page to
1197 * aid in determining what was mapped here.
1199 if (FILTER(ELF_HEADERS) &&
1200 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1201 u32 __user *header = (u32 __user *) vma->vm_start;
1202 u32 word;
1203 mm_segment_t fs = get_fs();
1205 * Doing it this way gets the constant folded by GCC.
1207 union {
1208 u32 cmp;
1209 char elfmag[SELFMAG];
1210 } magic;
1211 BUILD_BUG_ON(SELFMAG != sizeof word);
1212 magic.elfmag[EI_MAG0] = ELFMAG0;
1213 magic.elfmag[EI_MAG1] = ELFMAG1;
1214 magic.elfmag[EI_MAG2] = ELFMAG2;
1215 magic.elfmag[EI_MAG3] = ELFMAG3;
1217 * Switch to the user "segment" for get_user(),
1218 * then put back what elf_core_dump() had in place.
1220 set_fs(USER_DS);
1221 if (unlikely(get_user(word, header)))
1222 word = 0;
1223 set_fs(fs);
1224 if (word == magic.cmp)
1225 return PAGE_SIZE;
1228 #undef FILTER
1230 return 0;
1232 whole:
1233 return vma->vm_end - vma->vm_start;
1236 /* An ELF note in memory */
1237 struct memelfnote
1239 const char *name;
1240 int type;
1241 unsigned int datasz;
1242 void *data;
1245 static int notesize(struct memelfnote *en)
1247 int sz;
1249 sz = sizeof(struct elf_note);
1250 sz += roundup(strlen(en->name) + 1, 4);
1251 sz += roundup(en->datasz, 4);
1253 return sz;
1256 #define DUMP_WRITE(addr, nr, foffset) \
1257 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1259 static int alignfile(struct file *file, loff_t *foffset)
1261 static const char buf[4] = { 0, };
1262 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1263 return 1;
1266 static int writenote(struct memelfnote *men, struct file *file,
1267 loff_t *foffset)
1269 struct elf_note en;
1270 en.n_namesz = strlen(men->name) + 1;
1271 en.n_descsz = men->datasz;
1272 en.n_type = men->type;
1274 DUMP_WRITE(&en, sizeof(en), foffset);
1275 DUMP_WRITE(men->name, en.n_namesz, foffset);
1276 if (!alignfile(file, foffset))
1277 return 0;
1278 DUMP_WRITE(men->data, men->datasz, foffset);
1279 if (!alignfile(file, foffset))
1280 return 0;
1282 return 1;
1284 #undef DUMP_WRITE
1286 #define DUMP_WRITE(addr, nr) \
1287 if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \
1288 goto end_coredump;
1289 #define DUMP_SEEK(off) \
1290 if (!dump_seek(file, (off))) \
1291 goto end_coredump;
1293 static void fill_elf_header(struct elfhdr *elf, int segs,
1294 u16 machine, u32 flags, u8 osabi)
1296 memset(elf, 0, sizeof(*elf));
1298 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1299 elf->e_ident[EI_CLASS] = ELF_CLASS;
1300 elf->e_ident[EI_DATA] = ELF_DATA;
1301 elf->e_ident[EI_VERSION] = EV_CURRENT;
1302 elf->e_ident[EI_OSABI] = ELF_OSABI;
1304 elf->e_type = ET_CORE;
1305 elf->e_machine = machine;
1306 elf->e_version = EV_CURRENT;
1307 elf->e_phoff = sizeof(struct elfhdr);
1308 elf->e_flags = flags;
1309 elf->e_ehsize = sizeof(struct elfhdr);
1310 elf->e_phentsize = sizeof(struct elf_phdr);
1311 elf->e_phnum = segs;
1313 return;
1316 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1318 phdr->p_type = PT_NOTE;
1319 phdr->p_offset = offset;
1320 phdr->p_vaddr = 0;
1321 phdr->p_paddr = 0;
1322 phdr->p_filesz = sz;
1323 phdr->p_memsz = 0;
1324 phdr->p_flags = 0;
1325 phdr->p_align = 0;
1326 return;
1329 static void fill_note(struct memelfnote *note, const char *name, int type,
1330 unsigned int sz, void *data)
1332 note->name = name;
1333 note->type = type;
1334 note->datasz = sz;
1335 note->data = data;
1336 return;
1340 * fill up all the fields in prstatus from the given task struct, except
1341 * registers which need to be filled up separately.
1343 static void fill_prstatus(struct elf_prstatus *prstatus,
1344 struct task_struct *p, long signr)
1346 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1347 prstatus->pr_sigpend = p->pending.signal.sig[0];
1348 prstatus->pr_sighold = p->blocked.sig[0];
1349 prstatus->pr_pid = task_pid_vnr(p);
1350 prstatus->pr_ppid = task_pid_vnr(p->real_parent);
1351 prstatus->pr_pgrp = task_pgrp_vnr(p);
1352 prstatus->pr_sid = task_session_vnr(p);
1353 if (thread_group_leader(p)) {
1354 struct task_cputime cputime;
1357 * This is the record for the group leader. It shows the
1358 * group-wide total, not its individual thread total.
1360 thread_group_cputime(p, &cputime);
1361 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1362 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1363 } else {
1364 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1365 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1367 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1368 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1371 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1372 struct mm_struct *mm)
1374 unsigned int i, len;
1376 /* first copy the parameters from user space */
1377 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1379 len = mm->arg_end - mm->arg_start;
1380 if (len >= ELF_PRARGSZ)
1381 len = ELF_PRARGSZ-1;
1382 if (copy_from_user(&psinfo->pr_psargs,
1383 (const char __user *)mm->arg_start, len))
1384 return -EFAULT;
1385 for(i = 0; i < len; i++)
1386 if (psinfo->pr_psargs[i] == 0)
1387 psinfo->pr_psargs[i] = ' ';
1388 psinfo->pr_psargs[len] = 0;
1390 psinfo->pr_pid = task_pid_vnr(p);
1391 psinfo->pr_ppid = task_pid_vnr(p->real_parent);
1392 psinfo->pr_pgrp = task_pgrp_vnr(p);
1393 psinfo->pr_sid = task_session_vnr(p);
1395 i = p->state ? ffz(~p->state) + 1 : 0;
1396 psinfo->pr_state = i;
1397 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1398 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1399 psinfo->pr_nice = task_nice(p);
1400 psinfo->pr_flag = p->flags;
1401 SET_UID(psinfo->pr_uid, p->uid);
1402 SET_GID(psinfo->pr_gid, p->gid);
1403 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1405 return 0;
1408 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1410 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1411 int i = 0;
1413 i += 2;
1414 while (auxv[i - 2] != AT_NULL);
1415 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1418 #ifdef CORE_DUMP_USE_REGSET
1419 #include <linux/regset.h>
1421 struct elf_thread_core_info {
1422 struct elf_thread_core_info *next;
1423 struct task_struct *task;
1424 struct elf_prstatus prstatus;
1425 struct memelfnote notes[0];
1428 struct elf_note_info {
1429 struct elf_thread_core_info *thread;
1430 struct memelfnote psinfo;
1431 struct memelfnote auxv;
1432 size_t size;
1433 int thread_notes;
1437 * When a regset has a writeback hook, we call it on each thread before
1438 * dumping user memory. On register window machines, this makes sure the
1439 * user memory backing the register data is up to date before we read it.
1441 static void do_thread_regset_writeback(struct task_struct *task,
1442 const struct user_regset *regset)
1444 if (regset->writeback)
1445 regset->writeback(task, regset, 1);
1448 static int fill_thread_core_info(struct elf_thread_core_info *t,
1449 const struct user_regset_view *view,
1450 long signr, size_t *total)
1452 unsigned int i;
1455 * NT_PRSTATUS is the one special case, because the regset data
1456 * goes into the pr_reg field inside the note contents, rather
1457 * than being the whole note contents. We fill the reset in here.
1458 * We assume that regset 0 is NT_PRSTATUS.
1460 fill_prstatus(&t->prstatus, t->task, signr);
1461 (void) view->regsets[0].get(t->task, &view->regsets[0],
1462 0, sizeof(t->prstatus.pr_reg),
1463 &t->prstatus.pr_reg, NULL);
1465 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1466 sizeof(t->prstatus), &t->prstatus);
1467 *total += notesize(&t->notes[0]);
1469 do_thread_regset_writeback(t->task, &view->regsets[0]);
1472 * Each other regset might generate a note too. For each regset
1473 * that has no core_note_type or is inactive, we leave t->notes[i]
1474 * all zero and we'll know to skip writing it later.
1476 for (i = 1; i < view->n; ++i) {
1477 const struct user_regset *regset = &view->regsets[i];
1478 do_thread_regset_writeback(t->task, regset);
1479 if (regset->core_note_type &&
1480 (!regset->active || regset->active(t->task, regset))) {
1481 int ret;
1482 size_t size = regset->n * regset->size;
1483 void *data = kmalloc(size, GFP_KERNEL);
1484 if (unlikely(!data))
1485 return 0;
1486 ret = regset->get(t->task, regset,
1487 0, size, data, NULL);
1488 if (unlikely(ret))
1489 kfree(data);
1490 else {
1491 if (regset->core_note_type != NT_PRFPREG)
1492 fill_note(&t->notes[i], "LINUX",
1493 regset->core_note_type,
1494 size, data);
1495 else {
1496 t->prstatus.pr_fpvalid = 1;
1497 fill_note(&t->notes[i], "CORE",
1498 NT_PRFPREG, size, data);
1500 *total += notesize(&t->notes[i]);
1505 return 1;
1508 static int fill_note_info(struct elfhdr *elf, int phdrs,
1509 struct elf_note_info *info,
1510 long signr, struct pt_regs *regs)
1512 struct task_struct *dump_task = current;
1513 const struct user_regset_view *view = task_user_regset_view(dump_task);
1514 struct elf_thread_core_info *t;
1515 struct elf_prpsinfo *psinfo;
1516 struct core_thread *ct;
1517 unsigned int i;
1519 info->size = 0;
1520 info->thread = NULL;
1522 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1523 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1525 if (psinfo == NULL)
1526 return 0;
1529 * Figure out how many notes we're going to need for each thread.
1531 info->thread_notes = 0;
1532 for (i = 0; i < view->n; ++i)
1533 if (view->regsets[i].core_note_type != 0)
1534 ++info->thread_notes;
1537 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1538 * since it is our one special case.
1540 if (unlikely(info->thread_notes == 0) ||
1541 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1542 WARN_ON(1);
1543 return 0;
1547 * Initialize the ELF file header.
1549 fill_elf_header(elf, phdrs,
1550 view->e_machine, view->e_flags, view->ei_osabi);
1553 * Allocate a structure for each thread.
1555 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1556 t = kzalloc(offsetof(struct elf_thread_core_info,
1557 notes[info->thread_notes]),
1558 GFP_KERNEL);
1559 if (unlikely(!t))
1560 return 0;
1562 t->task = ct->task;
1563 if (ct->task == dump_task || !info->thread) {
1564 t->next = info->thread;
1565 info->thread = t;
1566 } else {
1568 * Make sure to keep the original task at
1569 * the head of the list.
1571 t->next = info->thread->next;
1572 info->thread->next = t;
1577 * Now fill in each thread's information.
1579 for (t = info->thread; t != NULL; t = t->next)
1580 if (!fill_thread_core_info(t, view, signr, &info->size))
1581 return 0;
1584 * Fill in the two process-wide notes.
1586 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1587 info->size += notesize(&info->psinfo);
1589 fill_auxv_note(&info->auxv, current->mm);
1590 info->size += notesize(&info->auxv);
1592 return 1;
1595 static size_t get_note_info_size(struct elf_note_info *info)
1597 return info->size;
1601 * Write all the notes for each thread. When writing the first thread, the
1602 * process-wide notes are interleaved after the first thread-specific note.
1604 static int write_note_info(struct elf_note_info *info,
1605 struct file *file, loff_t *foffset)
1607 bool first = 1;
1608 struct elf_thread_core_info *t = info->thread;
1610 do {
1611 int i;
1613 if (!writenote(&t->notes[0], file, foffset))
1614 return 0;
1616 if (first && !writenote(&info->psinfo, file, foffset))
1617 return 0;
1618 if (first && !writenote(&info->auxv, file, foffset))
1619 return 0;
1621 for (i = 1; i < info->thread_notes; ++i)
1622 if (t->notes[i].data &&
1623 !writenote(&t->notes[i], file, foffset))
1624 return 0;
1626 first = 0;
1627 t = t->next;
1628 } while (t);
1630 return 1;
1633 static void free_note_info(struct elf_note_info *info)
1635 struct elf_thread_core_info *threads = info->thread;
1636 while (threads) {
1637 unsigned int i;
1638 struct elf_thread_core_info *t = threads;
1639 threads = t->next;
1640 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1641 for (i = 1; i < info->thread_notes; ++i)
1642 kfree(t->notes[i].data);
1643 kfree(t);
1645 kfree(info->psinfo.data);
1648 #else
1650 /* Here is the structure in which status of each thread is captured. */
1651 struct elf_thread_status
1653 struct list_head list;
1654 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1655 elf_fpregset_t fpu; /* NT_PRFPREG */
1656 struct task_struct *thread;
1657 #ifdef ELF_CORE_COPY_XFPREGS
1658 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1659 #endif
1660 struct memelfnote notes[3];
1661 int num_notes;
1665 * In order to add the specific thread information for the elf file format,
1666 * we need to keep a linked list of every threads pr_status and then create
1667 * a single section for them in the final core file.
1669 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1671 int sz = 0;
1672 struct task_struct *p = t->thread;
1673 t->num_notes = 0;
1675 fill_prstatus(&t->prstatus, p, signr);
1676 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1678 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1679 &(t->prstatus));
1680 t->num_notes++;
1681 sz += notesize(&t->notes[0]);
1683 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1684 &t->fpu))) {
1685 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1686 &(t->fpu));
1687 t->num_notes++;
1688 sz += notesize(&t->notes[1]);
1691 #ifdef ELF_CORE_COPY_XFPREGS
1692 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1693 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1694 sizeof(t->xfpu), &t->xfpu);
1695 t->num_notes++;
1696 sz += notesize(&t->notes[2]);
1698 #endif
1699 return sz;
1702 struct elf_note_info {
1703 struct memelfnote *notes;
1704 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1705 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1706 struct list_head thread_list;
1707 elf_fpregset_t *fpu;
1708 #ifdef ELF_CORE_COPY_XFPREGS
1709 elf_fpxregset_t *xfpu;
1710 #endif
1711 int thread_status_size;
1712 int numnote;
1715 static int fill_note_info(struct elfhdr *elf, int phdrs,
1716 struct elf_note_info *info,
1717 long signr, struct pt_regs *regs)
1719 #define NUM_NOTES 6
1720 struct list_head *t;
1722 info->notes = NULL;
1723 info->prstatus = NULL;
1724 info->psinfo = NULL;
1725 info->fpu = NULL;
1726 #ifdef ELF_CORE_COPY_XFPREGS
1727 info->xfpu = NULL;
1728 #endif
1729 INIT_LIST_HEAD(&info->thread_list);
1731 info->notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote),
1732 GFP_KERNEL);
1733 if (!info->notes)
1734 return 0;
1735 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1736 if (!info->psinfo)
1737 return 0;
1738 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1739 if (!info->prstatus)
1740 return 0;
1741 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1742 if (!info->fpu)
1743 return 0;
1744 #ifdef ELF_CORE_COPY_XFPREGS
1745 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1746 if (!info->xfpu)
1747 return 0;
1748 #endif
1750 info->thread_status_size = 0;
1751 if (signr) {
1752 struct core_thread *ct;
1753 struct elf_thread_status *ets;
1755 for (ct = current->mm->core_state->dumper.next;
1756 ct; ct = ct->next) {
1757 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1758 if (!ets)
1759 return 0;
1761 ets->thread = ct->task;
1762 list_add(&ets->list, &info->thread_list);
1765 list_for_each(t, &info->thread_list) {
1766 int sz;
1768 ets = list_entry(t, struct elf_thread_status, list);
1769 sz = elf_dump_thread_status(signr, ets);
1770 info->thread_status_size += sz;
1773 /* now collect the dump for the current */
1774 memset(info->prstatus, 0, sizeof(*info->prstatus));
1775 fill_prstatus(info->prstatus, current, signr);
1776 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1778 /* Set up header */
1779 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1782 * Set up the notes in similar form to SVR4 core dumps made
1783 * with info from their /proc.
1786 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1787 sizeof(*info->prstatus), info->prstatus);
1788 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1789 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1790 sizeof(*info->psinfo), info->psinfo);
1792 info->numnote = 2;
1794 fill_auxv_note(&info->notes[info->numnote++], current->mm);
1796 /* Try to dump the FPU. */
1797 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1798 info->fpu);
1799 if (info->prstatus->pr_fpvalid)
1800 fill_note(info->notes + info->numnote++,
1801 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1802 #ifdef ELF_CORE_COPY_XFPREGS
1803 if (elf_core_copy_task_xfpregs(current, info->xfpu))
1804 fill_note(info->notes + info->numnote++,
1805 "LINUX", ELF_CORE_XFPREG_TYPE,
1806 sizeof(*info->xfpu), info->xfpu);
1807 #endif
1809 return 1;
1811 #undef NUM_NOTES
1814 static size_t get_note_info_size(struct elf_note_info *info)
1816 int sz = 0;
1817 int i;
1819 for (i = 0; i < info->numnote; i++)
1820 sz += notesize(info->notes + i);
1822 sz += info->thread_status_size;
1824 return sz;
1827 static int write_note_info(struct elf_note_info *info,
1828 struct file *file, loff_t *foffset)
1830 int i;
1831 struct list_head *t;
1833 for (i = 0; i < info->numnote; i++)
1834 if (!writenote(info->notes + i, file, foffset))
1835 return 0;
1837 /* write out the thread status notes section */
1838 list_for_each(t, &info->thread_list) {
1839 struct elf_thread_status *tmp =
1840 list_entry(t, struct elf_thread_status, list);
1842 for (i = 0; i < tmp->num_notes; i++)
1843 if (!writenote(&tmp->notes[i], file, foffset))
1844 return 0;
1847 return 1;
1850 static void free_note_info(struct elf_note_info *info)
1852 while (!list_empty(&info->thread_list)) {
1853 struct list_head *tmp = info->thread_list.next;
1854 list_del(tmp);
1855 kfree(list_entry(tmp, struct elf_thread_status, list));
1858 kfree(info->prstatus);
1859 kfree(info->psinfo);
1860 kfree(info->notes);
1861 kfree(info->fpu);
1862 #ifdef ELF_CORE_COPY_XFPREGS
1863 kfree(info->xfpu);
1864 #endif
1867 #endif
1869 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1870 struct vm_area_struct *gate_vma)
1872 struct vm_area_struct *ret = tsk->mm->mmap;
1874 if (ret)
1875 return ret;
1876 return gate_vma;
1879 * Helper function for iterating across a vma list. It ensures that the caller
1880 * will visit `gate_vma' prior to terminating the search.
1882 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1883 struct vm_area_struct *gate_vma)
1885 struct vm_area_struct *ret;
1887 ret = this_vma->vm_next;
1888 if (ret)
1889 return ret;
1890 if (this_vma == gate_vma)
1891 return NULL;
1892 return gate_vma;
1896 * Actual dumper
1898 * This is a two-pass process; first we find the offsets of the bits,
1899 * and then they are actually written out. If we run out of core limit
1900 * we just truncate.
1902 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit)
1904 int has_dumped = 0;
1905 mm_segment_t fs;
1906 int segs;
1907 size_t size = 0;
1908 struct vm_area_struct *vma, *gate_vma;
1909 struct elfhdr *elf = NULL;
1910 loff_t offset = 0, dataoff, foffset;
1911 unsigned long mm_flags;
1912 struct elf_note_info info;
1915 * We no longer stop all VM operations.
1917 * This is because those proceses that could possibly change map_count
1918 * or the mmap / vma pages are now blocked in do_exit on current
1919 * finishing this core dump.
1921 * Only ptrace can touch these memory addresses, but it doesn't change
1922 * the map_count or the pages allocated. So no possibility of crashing
1923 * exists while dumping the mm->vm_next areas to the core file.
1926 /* alloc memory for large data structures: too large to be on stack */
1927 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1928 if (!elf)
1929 goto out;
1931 segs = current->mm->map_count;
1932 #ifdef ELF_CORE_EXTRA_PHDRS
1933 segs += ELF_CORE_EXTRA_PHDRS;
1934 #endif
1936 gate_vma = get_gate_vma(current);
1937 if (gate_vma != NULL)
1938 segs++;
1941 * Collect all the non-memory information about the process for the
1942 * notes. This also sets up the file header.
1944 if (!fill_note_info(elf, segs + 1, /* including notes section */
1945 &info, signr, regs))
1946 goto cleanup;
1948 has_dumped = 1;
1949 current->flags |= PF_DUMPCORE;
1951 fs = get_fs();
1952 set_fs(KERNEL_DS);
1954 DUMP_WRITE(elf, sizeof(*elf));
1955 offset += sizeof(*elf); /* Elf header */
1956 offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */
1957 foffset = offset;
1959 /* Write notes phdr entry */
1961 struct elf_phdr phdr;
1962 size_t sz = get_note_info_size(&info);
1964 sz += elf_coredump_extra_notes_size();
1966 fill_elf_note_phdr(&phdr, sz, offset);
1967 offset += sz;
1968 DUMP_WRITE(&phdr, sizeof(phdr));
1971 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1974 * We must use the same mm->flags while dumping core to avoid
1975 * inconsistency between the program headers and bodies, otherwise an
1976 * unusable core file can be generated.
1978 mm_flags = current->mm->flags;
1980 /* Write program headers for segments dump */
1981 for (vma = first_vma(current, gate_vma); vma != NULL;
1982 vma = next_vma(vma, gate_vma)) {
1983 struct elf_phdr phdr;
1985 phdr.p_type = PT_LOAD;
1986 phdr.p_offset = offset;
1987 phdr.p_vaddr = vma->vm_start;
1988 phdr.p_paddr = 0;
1989 phdr.p_filesz = vma_dump_size(vma, mm_flags);
1990 phdr.p_memsz = vma->vm_end - vma->vm_start;
1991 offset += phdr.p_filesz;
1992 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
1993 if (vma->vm_flags & VM_WRITE)
1994 phdr.p_flags |= PF_W;
1995 if (vma->vm_flags & VM_EXEC)
1996 phdr.p_flags |= PF_X;
1997 phdr.p_align = ELF_EXEC_PAGESIZE;
1999 DUMP_WRITE(&phdr, sizeof(phdr));
2002 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS
2003 ELF_CORE_WRITE_EXTRA_PHDRS;
2004 #endif
2006 /* write out the notes section */
2007 if (!write_note_info(&info, file, &foffset))
2008 goto end_coredump;
2010 if (elf_coredump_extra_notes_write(file, &foffset))
2011 goto end_coredump;
2013 /* Align to page */
2014 DUMP_SEEK(dataoff - foffset);
2016 for (vma = first_vma(current, gate_vma); vma != NULL;
2017 vma = next_vma(vma, gate_vma)) {
2018 unsigned long addr;
2019 unsigned long end;
2021 end = vma->vm_start + vma_dump_size(vma, mm_flags);
2023 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2024 struct page *page;
2025 struct vm_area_struct *tmp_vma;
2027 if (get_user_pages(current, current->mm, addr, 1, 0, 1,
2028 &page, &tmp_vma) <= 0) {
2029 DUMP_SEEK(PAGE_SIZE);
2030 } else {
2031 if (page == ZERO_PAGE(0)) {
2032 if (!dump_seek(file, PAGE_SIZE)) {
2033 page_cache_release(page);
2034 goto end_coredump;
2036 } else {
2037 void *kaddr;
2038 flush_cache_page(tmp_vma, addr,
2039 page_to_pfn(page));
2040 kaddr = kmap(page);
2041 if ((size += PAGE_SIZE) > limit ||
2042 !dump_write(file, kaddr,
2043 PAGE_SIZE)) {
2044 kunmap(page);
2045 page_cache_release(page);
2046 goto end_coredump;
2048 kunmap(page);
2050 page_cache_release(page);
2055 #ifdef ELF_CORE_WRITE_EXTRA_DATA
2056 ELF_CORE_WRITE_EXTRA_DATA;
2057 #endif
2059 end_coredump:
2060 set_fs(fs);
2062 cleanup:
2063 free_note_info(&info);
2064 kfree(elf);
2065 out:
2066 return has_dumped;
2069 #endif /* USE_ELF_CORE_DUMP */
2071 static int __init init_elf_binfmt(void)
2073 return register_binfmt(&elf_format);
2076 static void __exit exit_elf_binfmt(void)
2078 /* Remove the COFF and ELF loaders. */
2079 unregister_binfmt(&elf_format);
2082 core_initcall(init_elf_binfmt);
2083 module_exit(exit_elf_binfmt);
2084 MODULE_LICENSE("GPL");