ACPI: thinkpad-acpi: add development version tag
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
blobc6ecf87ddaf627503ab90f618a455635f8a0f615
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
55 * Array of node states.
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 [N_CPU] = { { [0] = 1UL } },
66 #endif /* NUMA */
68 EXPORT_SYMBOL(node_states);
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 long nr_swap_pages;
73 int percpu_pagelist_fraction;
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
79 static void __free_pages_ok(struct page *page, unsigned int order);
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
101 #endif
105 EXPORT_SYMBOL(totalram_pages);
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 "DMA32",
113 #endif
114 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 "HighMem",
117 #endif
118 "Movable",
121 int min_free_kbytes = 1024;
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
170 int page_group_by_mobility_disabled __read_mostly;
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
193 return ret;
196 static int page_is_consistent(struct zone *zone, struct page *page)
198 if (!pfn_valid_within(page_to_pfn(page)))
199 return 0;
200 if (zone != page_zone(page))
201 return 0;
203 return 1;
206 * Temporary debugging check for pages not lying within a given zone.
208 static int bad_range(struct zone *zone, struct page *page)
210 if (page_outside_zone_boundaries(zone, page))
211 return 1;
212 if (!page_is_consistent(zone, page))
213 return 1;
215 return 0;
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
220 return 0;
222 #endif
224 static void bad_page(struct page *page)
226 void *pc = page_get_page_cgroup(page);
228 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 current->comm, page, (int)(2*sizeof(unsigned long)),
231 (unsigned long)page->flags, page->mapping,
232 page_mapcount(page), page_count(page));
233 if (pc) {
234 printk(KERN_EMERG "cgroup:%p\n", pc);
235 page_reset_bad_cgroup(page);
237 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
238 KERN_EMERG "Backtrace:\n");
239 dump_stack();
240 page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
241 set_page_count(page, 0);
242 reset_page_mapcount(page);
243 page->mapping = NULL;
244 add_taint(TAINT_BAD_PAGE);
248 * Higher-order pages are called "compound pages". They are structured thusly:
250 * The first PAGE_SIZE page is called the "head page".
252 * The remaining PAGE_SIZE pages are called "tail pages".
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
262 static void free_compound_page(struct page *page)
264 __free_pages_ok(page, compound_order(page));
267 void prep_compound_page(struct page *page, unsigned long order)
269 int i;
270 int nr_pages = 1 << order;
272 set_compound_page_dtor(page, free_compound_page);
273 set_compound_order(page, order);
274 __SetPageHead(page);
275 for (i = 1; i < nr_pages; i++) {
276 struct page *p = page + i;
278 __SetPageTail(p);
279 p->first_page = page;
283 #ifdef CONFIG_HUGETLBFS
284 void prep_compound_gigantic_page(struct page *page, unsigned long order)
286 int i;
287 int nr_pages = 1 << order;
288 struct page *p = page + 1;
290 set_compound_page_dtor(page, free_compound_page);
291 set_compound_order(page, order);
292 __SetPageHead(page);
293 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
294 __SetPageTail(p);
295 p->first_page = page;
298 #endif
300 static void destroy_compound_page(struct page *page, unsigned long order)
302 int i;
303 int nr_pages = 1 << order;
305 if (unlikely(compound_order(page) != order))
306 bad_page(page);
308 if (unlikely(!PageHead(page)))
309 bad_page(page);
310 __ClearPageHead(page);
311 for (i = 1; i < nr_pages; i++) {
312 struct page *p = page + i;
314 if (unlikely(!PageTail(p) |
315 (p->first_page != page)))
316 bad_page(page);
317 __ClearPageTail(p);
321 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
323 int i;
326 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
327 * and __GFP_HIGHMEM from hard or soft interrupt context.
329 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
330 for (i = 0; i < (1 << order); i++)
331 clear_highpage(page + i);
334 static inline void set_page_order(struct page *page, int order)
336 set_page_private(page, order);
337 __SetPageBuddy(page);
340 static inline void rmv_page_order(struct page *page)
342 __ClearPageBuddy(page);
343 set_page_private(page, 0);
347 * Locate the struct page for both the matching buddy in our
348 * pair (buddy1) and the combined O(n+1) page they form (page).
350 * 1) Any buddy B1 will have an order O twin B2 which satisfies
351 * the following equation:
352 * B2 = B1 ^ (1 << O)
353 * For example, if the starting buddy (buddy2) is #8 its order
354 * 1 buddy is #10:
355 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
357 * 2) Any buddy B will have an order O+1 parent P which
358 * satisfies the following equation:
359 * P = B & ~(1 << O)
361 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
363 static inline struct page *
364 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
366 unsigned long buddy_idx = page_idx ^ (1 << order);
368 return page + (buddy_idx - page_idx);
371 static inline unsigned long
372 __find_combined_index(unsigned long page_idx, unsigned int order)
374 return (page_idx & ~(1 << order));
378 * This function checks whether a page is free && is the buddy
379 * we can do coalesce a page and its buddy if
380 * (a) the buddy is not in a hole &&
381 * (b) the buddy is in the buddy system &&
382 * (c) a page and its buddy have the same order &&
383 * (d) a page and its buddy are in the same zone.
385 * For recording whether a page is in the buddy system, we use PG_buddy.
386 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
388 * For recording page's order, we use page_private(page).
390 static inline int page_is_buddy(struct page *page, struct page *buddy,
391 int order)
393 if (!pfn_valid_within(page_to_pfn(buddy)))
394 return 0;
396 if (page_zone_id(page) != page_zone_id(buddy))
397 return 0;
399 if (PageBuddy(buddy) && page_order(buddy) == order) {
400 BUG_ON(page_count(buddy) != 0);
401 return 1;
403 return 0;
407 * Freeing function for a buddy system allocator.
409 * The concept of a buddy system is to maintain direct-mapped table
410 * (containing bit values) for memory blocks of various "orders".
411 * The bottom level table contains the map for the smallest allocatable
412 * units of memory (here, pages), and each level above it describes
413 * pairs of units from the levels below, hence, "buddies".
414 * At a high level, all that happens here is marking the table entry
415 * at the bottom level available, and propagating the changes upward
416 * as necessary, plus some accounting needed to play nicely with other
417 * parts of the VM system.
418 * At each level, we keep a list of pages, which are heads of continuous
419 * free pages of length of (1 << order) and marked with PG_buddy. Page's
420 * order is recorded in page_private(page) field.
421 * So when we are allocating or freeing one, we can derive the state of the
422 * other. That is, if we allocate a small block, and both were
423 * free, the remainder of the region must be split into blocks.
424 * If a block is freed, and its buddy is also free, then this
425 * triggers coalescing into a block of larger size.
427 * -- wli
430 static inline void __free_one_page(struct page *page,
431 struct zone *zone, unsigned int order)
433 unsigned long page_idx;
434 int order_size = 1 << order;
435 int migratetype = get_pageblock_migratetype(page);
437 if (unlikely(PageCompound(page)))
438 destroy_compound_page(page, order);
440 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
442 VM_BUG_ON(page_idx & (order_size - 1));
443 VM_BUG_ON(bad_range(zone, page));
445 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
446 while (order < MAX_ORDER-1) {
447 unsigned long combined_idx;
448 struct page *buddy;
450 buddy = __page_find_buddy(page, page_idx, order);
451 if (!page_is_buddy(page, buddy, order))
452 break;
454 /* Our buddy is free, merge with it and move up one order. */
455 list_del(&buddy->lru);
456 zone->free_area[order].nr_free--;
457 rmv_page_order(buddy);
458 combined_idx = __find_combined_index(page_idx, order);
459 page = page + (combined_idx - page_idx);
460 page_idx = combined_idx;
461 order++;
463 set_page_order(page, order);
464 list_add(&page->lru,
465 &zone->free_area[order].free_list[migratetype]);
466 zone->free_area[order].nr_free++;
469 static inline int free_pages_check(struct page *page)
471 if (unlikely(page_mapcount(page) |
472 (page->mapping != NULL) |
473 (page_get_page_cgroup(page) != NULL) |
474 (page_count(page) != 0) |
475 (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
476 bad_page(page);
477 if (PageDirty(page))
478 __ClearPageDirty(page);
480 * For now, we report if PG_reserved was found set, but do not
481 * clear it, and do not free the page. But we shall soon need
482 * to do more, for when the ZERO_PAGE count wraps negative.
484 return PageReserved(page);
488 * Frees a list of pages.
489 * Assumes all pages on list are in same zone, and of same order.
490 * count is the number of pages to free.
492 * If the zone was previously in an "all pages pinned" state then look to
493 * see if this freeing clears that state.
495 * And clear the zone's pages_scanned counter, to hold off the "all pages are
496 * pinned" detection logic.
498 static void free_pages_bulk(struct zone *zone, int count,
499 struct list_head *list, int order)
501 spin_lock(&zone->lock);
502 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
503 zone->pages_scanned = 0;
504 while (count--) {
505 struct page *page;
507 VM_BUG_ON(list_empty(list));
508 page = list_entry(list->prev, struct page, lru);
509 /* have to delete it as __free_one_page list manipulates */
510 list_del(&page->lru);
511 __free_one_page(page, zone, order);
513 spin_unlock(&zone->lock);
516 static void free_one_page(struct zone *zone, struct page *page, int order)
518 spin_lock(&zone->lock);
519 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
520 zone->pages_scanned = 0;
521 __free_one_page(page, zone, order);
522 spin_unlock(&zone->lock);
525 static void __free_pages_ok(struct page *page, unsigned int order)
527 unsigned long flags;
528 int i;
529 int reserved = 0;
531 for (i = 0 ; i < (1 << order) ; ++i)
532 reserved += free_pages_check(page + i);
533 if (reserved)
534 return;
536 if (!PageHighMem(page)) {
537 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
538 debug_check_no_obj_freed(page_address(page),
539 PAGE_SIZE << order);
541 arch_free_page(page, order);
542 kernel_map_pages(page, 1 << order, 0);
544 local_irq_save(flags);
545 __count_vm_events(PGFREE, 1 << order);
546 free_one_page(page_zone(page), page, order);
547 local_irq_restore(flags);
551 * permit the bootmem allocator to evade page validation on high-order frees
553 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
555 if (order == 0) {
556 __ClearPageReserved(page);
557 set_page_count(page, 0);
558 set_page_refcounted(page);
559 __free_page(page);
560 } else {
561 int loop;
563 prefetchw(page);
564 for (loop = 0; loop < BITS_PER_LONG; loop++) {
565 struct page *p = &page[loop];
567 if (loop + 1 < BITS_PER_LONG)
568 prefetchw(p + 1);
569 __ClearPageReserved(p);
570 set_page_count(p, 0);
573 set_page_refcounted(page);
574 __free_pages(page, order);
580 * The order of subdivision here is critical for the IO subsystem.
581 * Please do not alter this order without good reasons and regression
582 * testing. Specifically, as large blocks of memory are subdivided,
583 * the order in which smaller blocks are delivered depends on the order
584 * they're subdivided in this function. This is the primary factor
585 * influencing the order in which pages are delivered to the IO
586 * subsystem according to empirical testing, and this is also justified
587 * by considering the behavior of a buddy system containing a single
588 * large block of memory acted on by a series of small allocations.
589 * This behavior is a critical factor in sglist merging's success.
591 * -- wli
593 static inline void expand(struct zone *zone, struct page *page,
594 int low, int high, struct free_area *area,
595 int migratetype)
597 unsigned long size = 1 << high;
599 while (high > low) {
600 area--;
601 high--;
602 size >>= 1;
603 VM_BUG_ON(bad_range(zone, &page[size]));
604 list_add(&page[size].lru, &area->free_list[migratetype]);
605 area->nr_free++;
606 set_page_order(&page[size], high);
611 * This page is about to be returned from the page allocator
613 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
615 if (unlikely(page_mapcount(page) |
616 (page->mapping != NULL) |
617 (page_get_page_cgroup(page) != NULL) |
618 (page_count(page) != 0) |
619 (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
620 bad_page(page);
623 * For now, we report if PG_reserved was found set, but do not
624 * clear it, and do not allocate the page: as a safety net.
626 if (PageReserved(page))
627 return 1;
629 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
630 1 << PG_referenced | 1 << PG_arch_1 |
631 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
632 set_page_private(page, 0);
633 set_page_refcounted(page);
635 arch_alloc_page(page, order);
636 kernel_map_pages(page, 1 << order, 1);
638 if (gfp_flags & __GFP_ZERO)
639 prep_zero_page(page, order, gfp_flags);
641 if (order && (gfp_flags & __GFP_COMP))
642 prep_compound_page(page, order);
644 return 0;
648 * Go through the free lists for the given migratetype and remove
649 * the smallest available page from the freelists
651 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
652 int migratetype)
654 unsigned int current_order;
655 struct free_area * area;
656 struct page *page;
658 /* Find a page of the appropriate size in the preferred list */
659 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
660 area = &(zone->free_area[current_order]);
661 if (list_empty(&area->free_list[migratetype]))
662 continue;
664 page = list_entry(area->free_list[migratetype].next,
665 struct page, lru);
666 list_del(&page->lru);
667 rmv_page_order(page);
668 area->nr_free--;
669 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
670 expand(zone, page, order, current_order, area, migratetype);
671 return page;
674 return NULL;
679 * This array describes the order lists are fallen back to when
680 * the free lists for the desirable migrate type are depleted
682 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
683 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
684 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
685 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
686 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
690 * Move the free pages in a range to the free lists of the requested type.
691 * Note that start_page and end_pages are not aligned on a pageblock
692 * boundary. If alignment is required, use move_freepages_block()
694 static int move_freepages(struct zone *zone,
695 struct page *start_page, struct page *end_page,
696 int migratetype)
698 struct page *page;
699 unsigned long order;
700 int pages_moved = 0;
702 #ifndef CONFIG_HOLES_IN_ZONE
704 * page_zone is not safe to call in this context when
705 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
706 * anyway as we check zone boundaries in move_freepages_block().
707 * Remove at a later date when no bug reports exist related to
708 * grouping pages by mobility
710 BUG_ON(page_zone(start_page) != page_zone(end_page));
711 #endif
713 for (page = start_page; page <= end_page;) {
714 /* Make sure we are not inadvertently changing nodes */
715 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
717 if (!pfn_valid_within(page_to_pfn(page))) {
718 page++;
719 continue;
722 if (!PageBuddy(page)) {
723 page++;
724 continue;
727 order = page_order(page);
728 list_del(&page->lru);
729 list_add(&page->lru,
730 &zone->free_area[order].free_list[migratetype]);
731 page += 1 << order;
732 pages_moved += 1 << order;
735 return pages_moved;
738 static int move_freepages_block(struct zone *zone, struct page *page,
739 int migratetype)
741 unsigned long start_pfn, end_pfn;
742 struct page *start_page, *end_page;
744 start_pfn = page_to_pfn(page);
745 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
746 start_page = pfn_to_page(start_pfn);
747 end_page = start_page + pageblock_nr_pages - 1;
748 end_pfn = start_pfn + pageblock_nr_pages - 1;
750 /* Do not cross zone boundaries */
751 if (start_pfn < zone->zone_start_pfn)
752 start_page = page;
753 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
754 return 0;
756 return move_freepages(zone, start_page, end_page, migratetype);
759 /* Remove an element from the buddy allocator from the fallback list */
760 static struct page *__rmqueue_fallback(struct zone *zone, int order,
761 int start_migratetype)
763 struct free_area * area;
764 int current_order;
765 struct page *page;
766 int migratetype, i;
768 /* Find the largest possible block of pages in the other list */
769 for (current_order = MAX_ORDER-1; current_order >= order;
770 --current_order) {
771 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
772 migratetype = fallbacks[start_migratetype][i];
774 /* MIGRATE_RESERVE handled later if necessary */
775 if (migratetype == MIGRATE_RESERVE)
776 continue;
778 area = &(zone->free_area[current_order]);
779 if (list_empty(&area->free_list[migratetype]))
780 continue;
782 page = list_entry(area->free_list[migratetype].next,
783 struct page, lru);
784 area->nr_free--;
787 * If breaking a large block of pages, move all free
788 * pages to the preferred allocation list. If falling
789 * back for a reclaimable kernel allocation, be more
790 * agressive about taking ownership of free pages
792 if (unlikely(current_order >= (pageblock_order >> 1)) ||
793 start_migratetype == MIGRATE_RECLAIMABLE) {
794 unsigned long pages;
795 pages = move_freepages_block(zone, page,
796 start_migratetype);
798 /* Claim the whole block if over half of it is free */
799 if (pages >= (1 << (pageblock_order-1)))
800 set_pageblock_migratetype(page,
801 start_migratetype);
803 migratetype = start_migratetype;
806 /* Remove the page from the freelists */
807 list_del(&page->lru);
808 rmv_page_order(page);
809 __mod_zone_page_state(zone, NR_FREE_PAGES,
810 -(1UL << order));
812 if (current_order == pageblock_order)
813 set_pageblock_migratetype(page,
814 start_migratetype);
816 expand(zone, page, order, current_order, area, migratetype);
817 return page;
821 /* Use MIGRATE_RESERVE rather than fail an allocation */
822 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
826 * Do the hard work of removing an element from the buddy allocator.
827 * Call me with the zone->lock already held.
829 static struct page *__rmqueue(struct zone *zone, unsigned int order,
830 int migratetype)
832 struct page *page;
834 page = __rmqueue_smallest(zone, order, migratetype);
836 if (unlikely(!page))
837 page = __rmqueue_fallback(zone, order, migratetype);
839 return page;
843 * Obtain a specified number of elements from the buddy allocator, all under
844 * a single hold of the lock, for efficiency. Add them to the supplied list.
845 * Returns the number of new pages which were placed at *list.
847 static int rmqueue_bulk(struct zone *zone, unsigned int order,
848 unsigned long count, struct list_head *list,
849 int migratetype, int cold)
851 int i;
853 spin_lock(&zone->lock);
854 for (i = 0; i < count; ++i) {
855 struct page *page = __rmqueue(zone, order, migratetype);
856 if (unlikely(page == NULL))
857 break;
860 * Split buddy pages returned by expand() are received here
861 * in physical page order. The page is added to the callers and
862 * list and the list head then moves forward. From the callers
863 * perspective, the linked list is ordered by page number in
864 * some conditions. This is useful for IO devices that can
865 * merge IO requests if the physical pages are ordered
866 * properly.
868 if (likely(cold == 0))
869 list_add(&page->lru, list);
870 else
871 list_add_tail(&page->lru, list);
872 set_page_private(page, migratetype);
873 list = &page->lru;
875 spin_unlock(&zone->lock);
876 return i;
879 #ifdef CONFIG_NUMA
881 * Called from the vmstat counter updater to drain pagesets of this
882 * currently executing processor on remote nodes after they have
883 * expired.
885 * Note that this function must be called with the thread pinned to
886 * a single processor.
888 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
890 unsigned long flags;
891 int to_drain;
893 local_irq_save(flags);
894 if (pcp->count >= pcp->batch)
895 to_drain = pcp->batch;
896 else
897 to_drain = pcp->count;
898 free_pages_bulk(zone, to_drain, &pcp->list, 0);
899 pcp->count -= to_drain;
900 local_irq_restore(flags);
902 #endif
905 * Drain pages of the indicated processor.
907 * The processor must either be the current processor and the
908 * thread pinned to the current processor or a processor that
909 * is not online.
911 static void drain_pages(unsigned int cpu)
913 unsigned long flags;
914 struct zone *zone;
916 for_each_zone(zone) {
917 struct per_cpu_pageset *pset;
918 struct per_cpu_pages *pcp;
920 if (!populated_zone(zone))
921 continue;
923 pset = zone_pcp(zone, cpu);
925 pcp = &pset->pcp;
926 local_irq_save(flags);
927 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
928 pcp->count = 0;
929 local_irq_restore(flags);
934 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
936 void drain_local_pages(void *arg)
938 drain_pages(smp_processor_id());
942 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
944 void drain_all_pages(void)
946 on_each_cpu(drain_local_pages, NULL, 1);
949 #ifdef CONFIG_HIBERNATION
951 void mark_free_pages(struct zone *zone)
953 unsigned long pfn, max_zone_pfn;
954 unsigned long flags;
955 int order, t;
956 struct list_head *curr;
958 if (!zone->spanned_pages)
959 return;
961 spin_lock_irqsave(&zone->lock, flags);
963 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
964 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
965 if (pfn_valid(pfn)) {
966 struct page *page = pfn_to_page(pfn);
968 if (!swsusp_page_is_forbidden(page))
969 swsusp_unset_page_free(page);
972 for_each_migratetype_order(order, t) {
973 list_for_each(curr, &zone->free_area[order].free_list[t]) {
974 unsigned long i;
976 pfn = page_to_pfn(list_entry(curr, struct page, lru));
977 for (i = 0; i < (1UL << order); i++)
978 swsusp_set_page_free(pfn_to_page(pfn + i));
981 spin_unlock_irqrestore(&zone->lock, flags);
983 #endif /* CONFIG_PM */
986 * Free a 0-order page
988 static void free_hot_cold_page(struct page *page, int cold)
990 struct zone *zone = page_zone(page);
991 struct per_cpu_pages *pcp;
992 unsigned long flags;
994 if (PageAnon(page))
995 page->mapping = NULL;
996 if (free_pages_check(page))
997 return;
999 if (!PageHighMem(page)) {
1000 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1001 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1003 arch_free_page(page, 0);
1004 kernel_map_pages(page, 1, 0);
1006 pcp = &zone_pcp(zone, get_cpu())->pcp;
1007 local_irq_save(flags);
1008 __count_vm_event(PGFREE);
1009 if (cold)
1010 list_add_tail(&page->lru, &pcp->list);
1011 else
1012 list_add(&page->lru, &pcp->list);
1013 set_page_private(page, get_pageblock_migratetype(page));
1014 pcp->count++;
1015 if (pcp->count >= pcp->high) {
1016 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1017 pcp->count -= pcp->batch;
1019 local_irq_restore(flags);
1020 put_cpu();
1023 void free_hot_page(struct page *page)
1025 free_hot_cold_page(page, 0);
1028 void free_cold_page(struct page *page)
1030 free_hot_cold_page(page, 1);
1034 * split_page takes a non-compound higher-order page, and splits it into
1035 * n (1<<order) sub-pages: page[0..n]
1036 * Each sub-page must be freed individually.
1038 * Note: this is probably too low level an operation for use in drivers.
1039 * Please consult with lkml before using this in your driver.
1041 void split_page(struct page *page, unsigned int order)
1043 int i;
1045 VM_BUG_ON(PageCompound(page));
1046 VM_BUG_ON(!page_count(page));
1047 for (i = 1; i < (1 << order); i++)
1048 set_page_refcounted(page + i);
1052 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1053 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1054 * or two.
1056 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1057 struct zone *zone, int order, gfp_t gfp_flags)
1059 unsigned long flags;
1060 struct page *page;
1061 int cold = !!(gfp_flags & __GFP_COLD);
1062 int cpu;
1063 int migratetype = allocflags_to_migratetype(gfp_flags);
1065 again:
1066 cpu = get_cpu();
1067 if (likely(order == 0)) {
1068 struct per_cpu_pages *pcp;
1070 pcp = &zone_pcp(zone, cpu)->pcp;
1071 local_irq_save(flags);
1072 if (!pcp->count) {
1073 pcp->count = rmqueue_bulk(zone, 0,
1074 pcp->batch, &pcp->list,
1075 migratetype, cold);
1076 if (unlikely(!pcp->count))
1077 goto failed;
1080 /* Find a page of the appropriate migrate type */
1081 if (cold) {
1082 list_for_each_entry_reverse(page, &pcp->list, lru)
1083 if (page_private(page) == migratetype)
1084 break;
1085 } else {
1086 list_for_each_entry(page, &pcp->list, lru)
1087 if (page_private(page) == migratetype)
1088 break;
1091 /* Allocate more to the pcp list if necessary */
1092 if (unlikely(&page->lru == &pcp->list)) {
1093 pcp->count += rmqueue_bulk(zone, 0,
1094 pcp->batch, &pcp->list,
1095 migratetype, cold);
1096 page = list_entry(pcp->list.next, struct page, lru);
1099 list_del(&page->lru);
1100 pcp->count--;
1101 } else {
1102 spin_lock_irqsave(&zone->lock, flags);
1103 page = __rmqueue(zone, order, migratetype);
1104 spin_unlock(&zone->lock);
1105 if (!page)
1106 goto failed;
1109 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1110 zone_statistics(preferred_zone, zone);
1111 local_irq_restore(flags);
1112 put_cpu();
1114 VM_BUG_ON(bad_range(zone, page));
1115 if (prep_new_page(page, order, gfp_flags))
1116 goto again;
1117 return page;
1119 failed:
1120 local_irq_restore(flags);
1121 put_cpu();
1122 return NULL;
1125 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1126 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1127 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1128 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1129 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1130 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1131 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1133 #ifdef CONFIG_FAIL_PAGE_ALLOC
1135 static struct fail_page_alloc_attr {
1136 struct fault_attr attr;
1138 u32 ignore_gfp_highmem;
1139 u32 ignore_gfp_wait;
1140 u32 min_order;
1142 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1144 struct dentry *ignore_gfp_highmem_file;
1145 struct dentry *ignore_gfp_wait_file;
1146 struct dentry *min_order_file;
1148 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1150 } fail_page_alloc = {
1151 .attr = FAULT_ATTR_INITIALIZER,
1152 .ignore_gfp_wait = 1,
1153 .ignore_gfp_highmem = 1,
1154 .min_order = 1,
1157 static int __init setup_fail_page_alloc(char *str)
1159 return setup_fault_attr(&fail_page_alloc.attr, str);
1161 __setup("fail_page_alloc=", setup_fail_page_alloc);
1163 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1165 if (order < fail_page_alloc.min_order)
1166 return 0;
1167 if (gfp_mask & __GFP_NOFAIL)
1168 return 0;
1169 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1170 return 0;
1171 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1172 return 0;
1174 return should_fail(&fail_page_alloc.attr, 1 << order);
1177 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1179 static int __init fail_page_alloc_debugfs(void)
1181 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1182 struct dentry *dir;
1183 int err;
1185 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1186 "fail_page_alloc");
1187 if (err)
1188 return err;
1189 dir = fail_page_alloc.attr.dentries.dir;
1191 fail_page_alloc.ignore_gfp_wait_file =
1192 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1193 &fail_page_alloc.ignore_gfp_wait);
1195 fail_page_alloc.ignore_gfp_highmem_file =
1196 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1197 &fail_page_alloc.ignore_gfp_highmem);
1198 fail_page_alloc.min_order_file =
1199 debugfs_create_u32("min-order", mode, dir,
1200 &fail_page_alloc.min_order);
1202 if (!fail_page_alloc.ignore_gfp_wait_file ||
1203 !fail_page_alloc.ignore_gfp_highmem_file ||
1204 !fail_page_alloc.min_order_file) {
1205 err = -ENOMEM;
1206 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1207 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1208 debugfs_remove(fail_page_alloc.min_order_file);
1209 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1212 return err;
1215 late_initcall(fail_page_alloc_debugfs);
1217 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1219 #else /* CONFIG_FAIL_PAGE_ALLOC */
1221 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1223 return 0;
1226 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1229 * Return 1 if free pages are above 'mark'. This takes into account the order
1230 * of the allocation.
1232 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1233 int classzone_idx, int alloc_flags)
1235 /* free_pages my go negative - that's OK */
1236 long min = mark;
1237 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1238 int o;
1240 if (alloc_flags & ALLOC_HIGH)
1241 min -= min / 2;
1242 if (alloc_flags & ALLOC_HARDER)
1243 min -= min / 4;
1245 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1246 return 0;
1247 for (o = 0; o < order; o++) {
1248 /* At the next order, this order's pages become unavailable */
1249 free_pages -= z->free_area[o].nr_free << o;
1251 /* Require fewer higher order pages to be free */
1252 min >>= 1;
1254 if (free_pages <= min)
1255 return 0;
1257 return 1;
1260 #ifdef CONFIG_NUMA
1262 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1263 * skip over zones that are not allowed by the cpuset, or that have
1264 * been recently (in last second) found to be nearly full. See further
1265 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1266 * that have to skip over a lot of full or unallowed zones.
1268 * If the zonelist cache is present in the passed in zonelist, then
1269 * returns a pointer to the allowed node mask (either the current
1270 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1272 * If the zonelist cache is not available for this zonelist, does
1273 * nothing and returns NULL.
1275 * If the fullzones BITMAP in the zonelist cache is stale (more than
1276 * a second since last zap'd) then we zap it out (clear its bits.)
1278 * We hold off even calling zlc_setup, until after we've checked the
1279 * first zone in the zonelist, on the theory that most allocations will
1280 * be satisfied from that first zone, so best to examine that zone as
1281 * quickly as we can.
1283 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1285 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1286 nodemask_t *allowednodes; /* zonelist_cache approximation */
1288 zlc = zonelist->zlcache_ptr;
1289 if (!zlc)
1290 return NULL;
1292 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1293 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1294 zlc->last_full_zap = jiffies;
1297 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1298 &cpuset_current_mems_allowed :
1299 &node_states[N_HIGH_MEMORY];
1300 return allowednodes;
1304 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1305 * if it is worth looking at further for free memory:
1306 * 1) Check that the zone isn't thought to be full (doesn't have its
1307 * bit set in the zonelist_cache fullzones BITMAP).
1308 * 2) Check that the zones node (obtained from the zonelist_cache
1309 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1310 * Return true (non-zero) if zone is worth looking at further, or
1311 * else return false (zero) if it is not.
1313 * This check -ignores- the distinction between various watermarks,
1314 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1315 * found to be full for any variation of these watermarks, it will
1316 * be considered full for up to one second by all requests, unless
1317 * we are so low on memory on all allowed nodes that we are forced
1318 * into the second scan of the zonelist.
1320 * In the second scan we ignore this zonelist cache and exactly
1321 * apply the watermarks to all zones, even it is slower to do so.
1322 * We are low on memory in the second scan, and should leave no stone
1323 * unturned looking for a free page.
1325 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1326 nodemask_t *allowednodes)
1328 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1329 int i; /* index of *z in zonelist zones */
1330 int n; /* node that zone *z is on */
1332 zlc = zonelist->zlcache_ptr;
1333 if (!zlc)
1334 return 1;
1336 i = z - zonelist->_zonerefs;
1337 n = zlc->z_to_n[i];
1339 /* This zone is worth trying if it is allowed but not full */
1340 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1344 * Given 'z' scanning a zonelist, set the corresponding bit in
1345 * zlc->fullzones, so that subsequent attempts to allocate a page
1346 * from that zone don't waste time re-examining it.
1348 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1350 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1351 int i; /* index of *z in zonelist zones */
1353 zlc = zonelist->zlcache_ptr;
1354 if (!zlc)
1355 return;
1357 i = z - zonelist->_zonerefs;
1359 set_bit(i, zlc->fullzones);
1362 #else /* CONFIG_NUMA */
1364 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1366 return NULL;
1369 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1370 nodemask_t *allowednodes)
1372 return 1;
1375 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1378 #endif /* CONFIG_NUMA */
1381 * get_page_from_freelist goes through the zonelist trying to allocate
1382 * a page.
1384 static struct page *
1385 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1386 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1388 struct zoneref *z;
1389 struct page *page = NULL;
1390 int classzone_idx;
1391 struct zone *zone, *preferred_zone;
1392 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1393 int zlc_active = 0; /* set if using zonelist_cache */
1394 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1396 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1397 &preferred_zone);
1398 if (!preferred_zone)
1399 return NULL;
1401 classzone_idx = zone_idx(preferred_zone);
1403 zonelist_scan:
1405 * Scan zonelist, looking for a zone with enough free.
1406 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1408 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1409 high_zoneidx, nodemask) {
1410 if (NUMA_BUILD && zlc_active &&
1411 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1412 continue;
1413 if ((alloc_flags & ALLOC_CPUSET) &&
1414 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1415 goto try_next_zone;
1417 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1418 unsigned long mark;
1419 if (alloc_flags & ALLOC_WMARK_MIN)
1420 mark = zone->pages_min;
1421 else if (alloc_flags & ALLOC_WMARK_LOW)
1422 mark = zone->pages_low;
1423 else
1424 mark = zone->pages_high;
1425 if (!zone_watermark_ok(zone, order, mark,
1426 classzone_idx, alloc_flags)) {
1427 if (!zone_reclaim_mode ||
1428 !zone_reclaim(zone, gfp_mask, order))
1429 goto this_zone_full;
1433 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1434 if (page)
1435 break;
1436 this_zone_full:
1437 if (NUMA_BUILD)
1438 zlc_mark_zone_full(zonelist, z);
1439 try_next_zone:
1440 if (NUMA_BUILD && !did_zlc_setup) {
1441 /* we do zlc_setup after the first zone is tried */
1442 allowednodes = zlc_setup(zonelist, alloc_flags);
1443 zlc_active = 1;
1444 did_zlc_setup = 1;
1448 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1449 /* Disable zlc cache for second zonelist scan */
1450 zlc_active = 0;
1451 goto zonelist_scan;
1453 return page;
1457 * This is the 'heart' of the zoned buddy allocator.
1459 struct page *
1460 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1461 struct zonelist *zonelist, nodemask_t *nodemask)
1463 const gfp_t wait = gfp_mask & __GFP_WAIT;
1464 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1465 struct zoneref *z;
1466 struct zone *zone;
1467 struct page *page;
1468 struct reclaim_state reclaim_state;
1469 struct task_struct *p = current;
1470 int do_retry;
1471 int alloc_flags;
1472 unsigned long did_some_progress;
1473 unsigned long pages_reclaimed = 0;
1475 might_sleep_if(wait);
1477 if (should_fail_alloc_page(gfp_mask, order))
1478 return NULL;
1480 restart:
1481 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1483 if (unlikely(!z->zone)) {
1485 * Happens if we have an empty zonelist as a result of
1486 * GFP_THISNODE being used on a memoryless node
1488 return NULL;
1491 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1492 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1493 if (page)
1494 goto got_pg;
1497 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1498 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1499 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1500 * using a larger set of nodes after it has established that the
1501 * allowed per node queues are empty and that nodes are
1502 * over allocated.
1504 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1505 goto nopage;
1507 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1508 wakeup_kswapd(zone, order);
1511 * OK, we're below the kswapd watermark and have kicked background
1512 * reclaim. Now things get more complex, so set up alloc_flags according
1513 * to how we want to proceed.
1515 * The caller may dip into page reserves a bit more if the caller
1516 * cannot run direct reclaim, or if the caller has realtime scheduling
1517 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1518 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1520 alloc_flags = ALLOC_WMARK_MIN;
1521 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1522 alloc_flags |= ALLOC_HARDER;
1523 if (gfp_mask & __GFP_HIGH)
1524 alloc_flags |= ALLOC_HIGH;
1525 if (wait)
1526 alloc_flags |= ALLOC_CPUSET;
1529 * Go through the zonelist again. Let __GFP_HIGH and allocations
1530 * coming from realtime tasks go deeper into reserves.
1532 * This is the last chance, in general, before the goto nopage.
1533 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1534 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1536 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1537 high_zoneidx, alloc_flags);
1538 if (page)
1539 goto got_pg;
1541 /* This allocation should allow future memory freeing. */
1543 rebalance:
1544 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1545 && !in_interrupt()) {
1546 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1547 nofail_alloc:
1548 /* go through the zonelist yet again, ignoring mins */
1549 page = get_page_from_freelist(gfp_mask, nodemask, order,
1550 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1551 if (page)
1552 goto got_pg;
1553 if (gfp_mask & __GFP_NOFAIL) {
1554 congestion_wait(WRITE, HZ/50);
1555 goto nofail_alloc;
1558 goto nopage;
1561 /* Atomic allocations - we can't balance anything */
1562 if (!wait)
1563 goto nopage;
1565 cond_resched();
1567 /* We now go into synchronous reclaim */
1568 cpuset_memory_pressure_bump();
1569 p->flags |= PF_MEMALLOC;
1570 reclaim_state.reclaimed_slab = 0;
1571 p->reclaim_state = &reclaim_state;
1573 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1575 p->reclaim_state = NULL;
1576 p->flags &= ~PF_MEMALLOC;
1578 cond_resched();
1580 if (order != 0)
1581 drain_all_pages();
1583 if (likely(did_some_progress)) {
1584 page = get_page_from_freelist(gfp_mask, nodemask, order,
1585 zonelist, high_zoneidx, alloc_flags);
1586 if (page)
1587 goto got_pg;
1588 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1589 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1590 schedule_timeout_uninterruptible(1);
1591 goto restart;
1595 * Go through the zonelist yet one more time, keep
1596 * very high watermark here, this is only to catch
1597 * a parallel oom killing, we must fail if we're still
1598 * under heavy pressure.
1600 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1601 order, zonelist, high_zoneidx,
1602 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1603 if (page) {
1604 clear_zonelist_oom(zonelist, gfp_mask);
1605 goto got_pg;
1608 /* The OOM killer will not help higher order allocs so fail */
1609 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1610 clear_zonelist_oom(zonelist, gfp_mask);
1611 goto nopage;
1614 out_of_memory(zonelist, gfp_mask, order);
1615 clear_zonelist_oom(zonelist, gfp_mask);
1616 goto restart;
1620 * Don't let big-order allocations loop unless the caller explicitly
1621 * requests that. Wait for some write requests to complete then retry.
1623 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1624 * means __GFP_NOFAIL, but that may not be true in other
1625 * implementations.
1627 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1628 * specified, then we retry until we no longer reclaim any pages
1629 * (above), or we've reclaimed an order of pages at least as
1630 * large as the allocation's order. In both cases, if the
1631 * allocation still fails, we stop retrying.
1633 pages_reclaimed += did_some_progress;
1634 do_retry = 0;
1635 if (!(gfp_mask & __GFP_NORETRY)) {
1636 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1637 do_retry = 1;
1638 } else {
1639 if (gfp_mask & __GFP_REPEAT &&
1640 pages_reclaimed < (1 << order))
1641 do_retry = 1;
1643 if (gfp_mask & __GFP_NOFAIL)
1644 do_retry = 1;
1646 if (do_retry) {
1647 congestion_wait(WRITE, HZ/50);
1648 goto rebalance;
1651 nopage:
1652 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1653 printk(KERN_WARNING "%s: page allocation failure."
1654 " order:%d, mode:0x%x\n",
1655 p->comm, order, gfp_mask);
1656 dump_stack();
1657 show_mem();
1659 got_pg:
1660 return page;
1662 EXPORT_SYMBOL(__alloc_pages_internal);
1665 * Common helper functions.
1667 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1669 struct page * page;
1670 page = alloc_pages(gfp_mask, order);
1671 if (!page)
1672 return 0;
1673 return (unsigned long) page_address(page);
1676 EXPORT_SYMBOL(__get_free_pages);
1678 unsigned long get_zeroed_page(gfp_t gfp_mask)
1680 struct page * page;
1683 * get_zeroed_page() returns a 32-bit address, which cannot represent
1684 * a highmem page
1686 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1688 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1689 if (page)
1690 return (unsigned long) page_address(page);
1691 return 0;
1694 EXPORT_SYMBOL(get_zeroed_page);
1696 void __pagevec_free(struct pagevec *pvec)
1698 int i = pagevec_count(pvec);
1700 while (--i >= 0)
1701 free_hot_cold_page(pvec->pages[i], pvec->cold);
1704 void __free_pages(struct page *page, unsigned int order)
1706 if (put_page_testzero(page)) {
1707 if (order == 0)
1708 free_hot_page(page);
1709 else
1710 __free_pages_ok(page, order);
1714 EXPORT_SYMBOL(__free_pages);
1716 void free_pages(unsigned long addr, unsigned int order)
1718 if (addr != 0) {
1719 VM_BUG_ON(!virt_addr_valid((void *)addr));
1720 __free_pages(virt_to_page((void *)addr), order);
1724 EXPORT_SYMBOL(free_pages);
1727 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1728 * @size: the number of bytes to allocate
1729 * @gfp_mask: GFP flags for the allocation
1731 * This function is similar to alloc_pages(), except that it allocates the
1732 * minimum number of pages to satisfy the request. alloc_pages() can only
1733 * allocate memory in power-of-two pages.
1735 * This function is also limited by MAX_ORDER.
1737 * Memory allocated by this function must be released by free_pages_exact().
1739 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1741 unsigned int order = get_order(size);
1742 unsigned long addr;
1744 addr = __get_free_pages(gfp_mask, order);
1745 if (addr) {
1746 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1747 unsigned long used = addr + PAGE_ALIGN(size);
1749 split_page(virt_to_page(addr), order);
1750 while (used < alloc_end) {
1751 free_page(used);
1752 used += PAGE_SIZE;
1756 return (void *)addr;
1758 EXPORT_SYMBOL(alloc_pages_exact);
1761 * free_pages_exact - release memory allocated via alloc_pages_exact()
1762 * @virt: the value returned by alloc_pages_exact.
1763 * @size: size of allocation, same value as passed to alloc_pages_exact().
1765 * Release the memory allocated by a previous call to alloc_pages_exact.
1767 void free_pages_exact(void *virt, size_t size)
1769 unsigned long addr = (unsigned long)virt;
1770 unsigned long end = addr + PAGE_ALIGN(size);
1772 while (addr < end) {
1773 free_page(addr);
1774 addr += PAGE_SIZE;
1777 EXPORT_SYMBOL(free_pages_exact);
1779 static unsigned int nr_free_zone_pages(int offset)
1781 struct zoneref *z;
1782 struct zone *zone;
1784 /* Just pick one node, since fallback list is circular */
1785 unsigned int sum = 0;
1787 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1789 for_each_zone_zonelist(zone, z, zonelist, offset) {
1790 unsigned long size = zone->present_pages;
1791 unsigned long high = zone->pages_high;
1792 if (size > high)
1793 sum += size - high;
1796 return sum;
1800 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1802 unsigned int nr_free_buffer_pages(void)
1804 return nr_free_zone_pages(gfp_zone(GFP_USER));
1806 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1809 * Amount of free RAM allocatable within all zones
1811 unsigned int nr_free_pagecache_pages(void)
1813 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1816 static inline void show_node(struct zone *zone)
1818 if (NUMA_BUILD)
1819 printk("Node %d ", zone_to_nid(zone));
1822 void si_meminfo(struct sysinfo *val)
1824 val->totalram = totalram_pages;
1825 val->sharedram = 0;
1826 val->freeram = global_page_state(NR_FREE_PAGES);
1827 val->bufferram = nr_blockdev_pages();
1828 val->totalhigh = totalhigh_pages;
1829 val->freehigh = nr_free_highpages();
1830 val->mem_unit = PAGE_SIZE;
1833 EXPORT_SYMBOL(si_meminfo);
1835 #ifdef CONFIG_NUMA
1836 void si_meminfo_node(struct sysinfo *val, int nid)
1838 pg_data_t *pgdat = NODE_DATA(nid);
1840 val->totalram = pgdat->node_present_pages;
1841 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1842 #ifdef CONFIG_HIGHMEM
1843 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1844 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1845 NR_FREE_PAGES);
1846 #else
1847 val->totalhigh = 0;
1848 val->freehigh = 0;
1849 #endif
1850 val->mem_unit = PAGE_SIZE;
1852 #endif
1854 #define K(x) ((x) << (PAGE_SHIFT-10))
1857 * Show free area list (used inside shift_scroll-lock stuff)
1858 * We also calculate the percentage fragmentation. We do this by counting the
1859 * memory on each free list with the exception of the first item on the list.
1861 void show_free_areas(void)
1863 int cpu;
1864 struct zone *zone;
1866 for_each_zone(zone) {
1867 if (!populated_zone(zone))
1868 continue;
1870 show_node(zone);
1871 printk("%s per-cpu:\n", zone->name);
1873 for_each_online_cpu(cpu) {
1874 struct per_cpu_pageset *pageset;
1876 pageset = zone_pcp(zone, cpu);
1878 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1879 cpu, pageset->pcp.high,
1880 pageset->pcp.batch, pageset->pcp.count);
1884 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1885 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1886 global_page_state(NR_ACTIVE),
1887 global_page_state(NR_INACTIVE),
1888 global_page_state(NR_FILE_DIRTY),
1889 global_page_state(NR_WRITEBACK),
1890 global_page_state(NR_UNSTABLE_NFS),
1891 global_page_state(NR_FREE_PAGES),
1892 global_page_state(NR_SLAB_RECLAIMABLE) +
1893 global_page_state(NR_SLAB_UNRECLAIMABLE),
1894 global_page_state(NR_FILE_MAPPED),
1895 global_page_state(NR_PAGETABLE),
1896 global_page_state(NR_BOUNCE));
1898 for_each_zone(zone) {
1899 int i;
1901 if (!populated_zone(zone))
1902 continue;
1904 show_node(zone);
1905 printk("%s"
1906 " free:%lukB"
1907 " min:%lukB"
1908 " low:%lukB"
1909 " high:%lukB"
1910 " active:%lukB"
1911 " inactive:%lukB"
1912 " present:%lukB"
1913 " pages_scanned:%lu"
1914 " all_unreclaimable? %s"
1915 "\n",
1916 zone->name,
1917 K(zone_page_state(zone, NR_FREE_PAGES)),
1918 K(zone->pages_min),
1919 K(zone->pages_low),
1920 K(zone->pages_high),
1921 K(zone_page_state(zone, NR_ACTIVE)),
1922 K(zone_page_state(zone, NR_INACTIVE)),
1923 K(zone->present_pages),
1924 zone->pages_scanned,
1925 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1927 printk("lowmem_reserve[]:");
1928 for (i = 0; i < MAX_NR_ZONES; i++)
1929 printk(" %lu", zone->lowmem_reserve[i]);
1930 printk("\n");
1933 for_each_zone(zone) {
1934 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1936 if (!populated_zone(zone))
1937 continue;
1939 show_node(zone);
1940 printk("%s: ", zone->name);
1942 spin_lock_irqsave(&zone->lock, flags);
1943 for (order = 0; order < MAX_ORDER; order++) {
1944 nr[order] = zone->free_area[order].nr_free;
1945 total += nr[order] << order;
1947 spin_unlock_irqrestore(&zone->lock, flags);
1948 for (order = 0; order < MAX_ORDER; order++)
1949 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1950 printk("= %lukB\n", K(total));
1953 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1955 show_swap_cache_info();
1958 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1960 zoneref->zone = zone;
1961 zoneref->zone_idx = zone_idx(zone);
1965 * Builds allocation fallback zone lists.
1967 * Add all populated zones of a node to the zonelist.
1969 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1970 int nr_zones, enum zone_type zone_type)
1972 struct zone *zone;
1974 BUG_ON(zone_type >= MAX_NR_ZONES);
1975 zone_type++;
1977 do {
1978 zone_type--;
1979 zone = pgdat->node_zones + zone_type;
1980 if (populated_zone(zone)) {
1981 zoneref_set_zone(zone,
1982 &zonelist->_zonerefs[nr_zones++]);
1983 check_highest_zone(zone_type);
1986 } while (zone_type);
1987 return nr_zones;
1992 * zonelist_order:
1993 * 0 = automatic detection of better ordering.
1994 * 1 = order by ([node] distance, -zonetype)
1995 * 2 = order by (-zonetype, [node] distance)
1997 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1998 * the same zonelist. So only NUMA can configure this param.
2000 #define ZONELIST_ORDER_DEFAULT 0
2001 #define ZONELIST_ORDER_NODE 1
2002 #define ZONELIST_ORDER_ZONE 2
2004 /* zonelist order in the kernel.
2005 * set_zonelist_order() will set this to NODE or ZONE.
2007 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2008 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2011 #ifdef CONFIG_NUMA
2012 /* The value user specified ....changed by config */
2013 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2014 /* string for sysctl */
2015 #define NUMA_ZONELIST_ORDER_LEN 16
2016 char numa_zonelist_order[16] = "default";
2019 * interface for configure zonelist ordering.
2020 * command line option "numa_zonelist_order"
2021 * = "[dD]efault - default, automatic configuration.
2022 * = "[nN]ode - order by node locality, then by zone within node
2023 * = "[zZ]one - order by zone, then by locality within zone
2026 static int __parse_numa_zonelist_order(char *s)
2028 if (*s == 'd' || *s == 'D') {
2029 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2030 } else if (*s == 'n' || *s == 'N') {
2031 user_zonelist_order = ZONELIST_ORDER_NODE;
2032 } else if (*s == 'z' || *s == 'Z') {
2033 user_zonelist_order = ZONELIST_ORDER_ZONE;
2034 } else {
2035 printk(KERN_WARNING
2036 "Ignoring invalid numa_zonelist_order value: "
2037 "%s\n", s);
2038 return -EINVAL;
2040 return 0;
2043 static __init int setup_numa_zonelist_order(char *s)
2045 if (s)
2046 return __parse_numa_zonelist_order(s);
2047 return 0;
2049 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2052 * sysctl handler for numa_zonelist_order
2054 int numa_zonelist_order_handler(ctl_table *table, int write,
2055 struct file *file, void __user *buffer, size_t *length,
2056 loff_t *ppos)
2058 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2059 int ret;
2061 if (write)
2062 strncpy(saved_string, (char*)table->data,
2063 NUMA_ZONELIST_ORDER_LEN);
2064 ret = proc_dostring(table, write, file, buffer, length, ppos);
2065 if (ret)
2066 return ret;
2067 if (write) {
2068 int oldval = user_zonelist_order;
2069 if (__parse_numa_zonelist_order((char*)table->data)) {
2071 * bogus value. restore saved string
2073 strncpy((char*)table->data, saved_string,
2074 NUMA_ZONELIST_ORDER_LEN);
2075 user_zonelist_order = oldval;
2076 } else if (oldval != user_zonelist_order)
2077 build_all_zonelists();
2079 return 0;
2083 #define MAX_NODE_LOAD (num_online_nodes())
2084 static int node_load[MAX_NUMNODES];
2087 * find_next_best_node - find the next node that should appear in a given node's fallback list
2088 * @node: node whose fallback list we're appending
2089 * @used_node_mask: nodemask_t of already used nodes
2091 * We use a number of factors to determine which is the next node that should
2092 * appear on a given node's fallback list. The node should not have appeared
2093 * already in @node's fallback list, and it should be the next closest node
2094 * according to the distance array (which contains arbitrary distance values
2095 * from each node to each node in the system), and should also prefer nodes
2096 * with no CPUs, since presumably they'll have very little allocation pressure
2097 * on them otherwise.
2098 * It returns -1 if no node is found.
2100 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2102 int n, val;
2103 int min_val = INT_MAX;
2104 int best_node = -1;
2105 node_to_cpumask_ptr(tmp, 0);
2107 /* Use the local node if we haven't already */
2108 if (!node_isset(node, *used_node_mask)) {
2109 node_set(node, *used_node_mask);
2110 return node;
2113 for_each_node_state(n, N_HIGH_MEMORY) {
2115 /* Don't want a node to appear more than once */
2116 if (node_isset(n, *used_node_mask))
2117 continue;
2119 /* Use the distance array to find the distance */
2120 val = node_distance(node, n);
2122 /* Penalize nodes under us ("prefer the next node") */
2123 val += (n < node);
2125 /* Give preference to headless and unused nodes */
2126 node_to_cpumask_ptr_next(tmp, n);
2127 if (!cpus_empty(*tmp))
2128 val += PENALTY_FOR_NODE_WITH_CPUS;
2130 /* Slight preference for less loaded node */
2131 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2132 val += node_load[n];
2134 if (val < min_val) {
2135 min_val = val;
2136 best_node = n;
2140 if (best_node >= 0)
2141 node_set(best_node, *used_node_mask);
2143 return best_node;
2148 * Build zonelists ordered by node and zones within node.
2149 * This results in maximum locality--normal zone overflows into local
2150 * DMA zone, if any--but risks exhausting DMA zone.
2152 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2154 int j;
2155 struct zonelist *zonelist;
2157 zonelist = &pgdat->node_zonelists[0];
2158 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2160 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2161 MAX_NR_ZONES - 1);
2162 zonelist->_zonerefs[j].zone = NULL;
2163 zonelist->_zonerefs[j].zone_idx = 0;
2167 * Build gfp_thisnode zonelists
2169 static void build_thisnode_zonelists(pg_data_t *pgdat)
2171 int j;
2172 struct zonelist *zonelist;
2174 zonelist = &pgdat->node_zonelists[1];
2175 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2176 zonelist->_zonerefs[j].zone = NULL;
2177 zonelist->_zonerefs[j].zone_idx = 0;
2181 * Build zonelists ordered by zone and nodes within zones.
2182 * This results in conserving DMA zone[s] until all Normal memory is
2183 * exhausted, but results in overflowing to remote node while memory
2184 * may still exist in local DMA zone.
2186 static int node_order[MAX_NUMNODES];
2188 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2190 int pos, j, node;
2191 int zone_type; /* needs to be signed */
2192 struct zone *z;
2193 struct zonelist *zonelist;
2195 zonelist = &pgdat->node_zonelists[0];
2196 pos = 0;
2197 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2198 for (j = 0; j < nr_nodes; j++) {
2199 node = node_order[j];
2200 z = &NODE_DATA(node)->node_zones[zone_type];
2201 if (populated_zone(z)) {
2202 zoneref_set_zone(z,
2203 &zonelist->_zonerefs[pos++]);
2204 check_highest_zone(zone_type);
2208 zonelist->_zonerefs[pos].zone = NULL;
2209 zonelist->_zonerefs[pos].zone_idx = 0;
2212 static int default_zonelist_order(void)
2214 int nid, zone_type;
2215 unsigned long low_kmem_size,total_size;
2216 struct zone *z;
2217 int average_size;
2219 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2220 * If they are really small and used heavily, the system can fall
2221 * into OOM very easily.
2222 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2224 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2225 low_kmem_size = 0;
2226 total_size = 0;
2227 for_each_online_node(nid) {
2228 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2229 z = &NODE_DATA(nid)->node_zones[zone_type];
2230 if (populated_zone(z)) {
2231 if (zone_type < ZONE_NORMAL)
2232 low_kmem_size += z->present_pages;
2233 total_size += z->present_pages;
2237 if (!low_kmem_size || /* there are no DMA area. */
2238 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2239 return ZONELIST_ORDER_NODE;
2241 * look into each node's config.
2242 * If there is a node whose DMA/DMA32 memory is very big area on
2243 * local memory, NODE_ORDER may be suitable.
2245 average_size = total_size /
2246 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2247 for_each_online_node(nid) {
2248 low_kmem_size = 0;
2249 total_size = 0;
2250 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2251 z = &NODE_DATA(nid)->node_zones[zone_type];
2252 if (populated_zone(z)) {
2253 if (zone_type < ZONE_NORMAL)
2254 low_kmem_size += z->present_pages;
2255 total_size += z->present_pages;
2258 if (low_kmem_size &&
2259 total_size > average_size && /* ignore small node */
2260 low_kmem_size > total_size * 70/100)
2261 return ZONELIST_ORDER_NODE;
2263 return ZONELIST_ORDER_ZONE;
2266 static void set_zonelist_order(void)
2268 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2269 current_zonelist_order = default_zonelist_order();
2270 else
2271 current_zonelist_order = user_zonelist_order;
2274 static void build_zonelists(pg_data_t *pgdat)
2276 int j, node, load;
2277 enum zone_type i;
2278 nodemask_t used_mask;
2279 int local_node, prev_node;
2280 struct zonelist *zonelist;
2281 int order = current_zonelist_order;
2283 /* initialize zonelists */
2284 for (i = 0; i < MAX_ZONELISTS; i++) {
2285 zonelist = pgdat->node_zonelists + i;
2286 zonelist->_zonerefs[0].zone = NULL;
2287 zonelist->_zonerefs[0].zone_idx = 0;
2290 /* NUMA-aware ordering of nodes */
2291 local_node = pgdat->node_id;
2292 load = num_online_nodes();
2293 prev_node = local_node;
2294 nodes_clear(used_mask);
2296 memset(node_load, 0, sizeof(node_load));
2297 memset(node_order, 0, sizeof(node_order));
2298 j = 0;
2300 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2301 int distance = node_distance(local_node, node);
2304 * If another node is sufficiently far away then it is better
2305 * to reclaim pages in a zone before going off node.
2307 if (distance > RECLAIM_DISTANCE)
2308 zone_reclaim_mode = 1;
2311 * We don't want to pressure a particular node.
2312 * So adding penalty to the first node in same
2313 * distance group to make it round-robin.
2315 if (distance != node_distance(local_node, prev_node))
2316 node_load[node] = load;
2318 prev_node = node;
2319 load--;
2320 if (order == ZONELIST_ORDER_NODE)
2321 build_zonelists_in_node_order(pgdat, node);
2322 else
2323 node_order[j++] = node; /* remember order */
2326 if (order == ZONELIST_ORDER_ZONE) {
2327 /* calculate node order -- i.e., DMA last! */
2328 build_zonelists_in_zone_order(pgdat, j);
2331 build_thisnode_zonelists(pgdat);
2334 /* Construct the zonelist performance cache - see further mmzone.h */
2335 static void build_zonelist_cache(pg_data_t *pgdat)
2337 struct zonelist *zonelist;
2338 struct zonelist_cache *zlc;
2339 struct zoneref *z;
2341 zonelist = &pgdat->node_zonelists[0];
2342 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2343 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2344 for (z = zonelist->_zonerefs; z->zone; z++)
2345 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2349 #else /* CONFIG_NUMA */
2351 static void set_zonelist_order(void)
2353 current_zonelist_order = ZONELIST_ORDER_ZONE;
2356 static void build_zonelists(pg_data_t *pgdat)
2358 int node, local_node;
2359 enum zone_type j;
2360 struct zonelist *zonelist;
2362 local_node = pgdat->node_id;
2364 zonelist = &pgdat->node_zonelists[0];
2365 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2368 * Now we build the zonelist so that it contains the zones
2369 * of all the other nodes.
2370 * We don't want to pressure a particular node, so when
2371 * building the zones for node N, we make sure that the
2372 * zones coming right after the local ones are those from
2373 * node N+1 (modulo N)
2375 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2376 if (!node_online(node))
2377 continue;
2378 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2379 MAX_NR_ZONES - 1);
2381 for (node = 0; node < local_node; node++) {
2382 if (!node_online(node))
2383 continue;
2384 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2385 MAX_NR_ZONES - 1);
2388 zonelist->_zonerefs[j].zone = NULL;
2389 zonelist->_zonerefs[j].zone_idx = 0;
2392 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2393 static void build_zonelist_cache(pg_data_t *pgdat)
2395 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2398 #endif /* CONFIG_NUMA */
2400 /* return values int ....just for stop_machine() */
2401 static int __build_all_zonelists(void *dummy)
2403 int nid;
2405 for_each_online_node(nid) {
2406 pg_data_t *pgdat = NODE_DATA(nid);
2408 build_zonelists(pgdat);
2409 build_zonelist_cache(pgdat);
2411 return 0;
2414 void build_all_zonelists(void)
2416 set_zonelist_order();
2418 if (system_state == SYSTEM_BOOTING) {
2419 __build_all_zonelists(NULL);
2420 mminit_verify_zonelist();
2421 cpuset_init_current_mems_allowed();
2422 } else {
2423 /* we have to stop all cpus to guarantee there is no user
2424 of zonelist */
2425 stop_machine(__build_all_zonelists, NULL, NULL);
2426 /* cpuset refresh routine should be here */
2428 vm_total_pages = nr_free_pagecache_pages();
2430 * Disable grouping by mobility if the number of pages in the
2431 * system is too low to allow the mechanism to work. It would be
2432 * more accurate, but expensive to check per-zone. This check is
2433 * made on memory-hotadd so a system can start with mobility
2434 * disabled and enable it later
2436 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2437 page_group_by_mobility_disabled = 1;
2438 else
2439 page_group_by_mobility_disabled = 0;
2441 printk("Built %i zonelists in %s order, mobility grouping %s. "
2442 "Total pages: %ld\n",
2443 num_online_nodes(),
2444 zonelist_order_name[current_zonelist_order],
2445 page_group_by_mobility_disabled ? "off" : "on",
2446 vm_total_pages);
2447 #ifdef CONFIG_NUMA
2448 printk("Policy zone: %s\n", zone_names[policy_zone]);
2449 #endif
2453 * Helper functions to size the waitqueue hash table.
2454 * Essentially these want to choose hash table sizes sufficiently
2455 * large so that collisions trying to wait on pages are rare.
2456 * But in fact, the number of active page waitqueues on typical
2457 * systems is ridiculously low, less than 200. So this is even
2458 * conservative, even though it seems large.
2460 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2461 * waitqueues, i.e. the size of the waitq table given the number of pages.
2463 #define PAGES_PER_WAITQUEUE 256
2465 #ifndef CONFIG_MEMORY_HOTPLUG
2466 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2468 unsigned long size = 1;
2470 pages /= PAGES_PER_WAITQUEUE;
2472 while (size < pages)
2473 size <<= 1;
2476 * Once we have dozens or even hundreds of threads sleeping
2477 * on IO we've got bigger problems than wait queue collision.
2478 * Limit the size of the wait table to a reasonable size.
2480 size = min(size, 4096UL);
2482 return max(size, 4UL);
2484 #else
2486 * A zone's size might be changed by hot-add, so it is not possible to determine
2487 * a suitable size for its wait_table. So we use the maximum size now.
2489 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2491 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2492 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2493 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2495 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2496 * or more by the traditional way. (See above). It equals:
2498 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2499 * ia64(16K page size) : = ( 8G + 4M)byte.
2500 * powerpc (64K page size) : = (32G +16M)byte.
2502 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2504 return 4096UL;
2506 #endif
2509 * This is an integer logarithm so that shifts can be used later
2510 * to extract the more random high bits from the multiplicative
2511 * hash function before the remainder is taken.
2513 static inline unsigned long wait_table_bits(unsigned long size)
2515 return ffz(~size);
2518 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2521 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2522 * of blocks reserved is based on zone->pages_min. The memory within the
2523 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2524 * higher will lead to a bigger reserve which will get freed as contiguous
2525 * blocks as reclaim kicks in
2527 static void setup_zone_migrate_reserve(struct zone *zone)
2529 unsigned long start_pfn, pfn, end_pfn;
2530 struct page *page;
2531 unsigned long reserve, block_migratetype;
2533 /* Get the start pfn, end pfn and the number of blocks to reserve */
2534 start_pfn = zone->zone_start_pfn;
2535 end_pfn = start_pfn + zone->spanned_pages;
2536 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2537 pageblock_order;
2539 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2540 if (!pfn_valid(pfn))
2541 continue;
2542 page = pfn_to_page(pfn);
2544 /* Watch out for overlapping nodes */
2545 if (page_to_nid(page) != zone_to_nid(zone))
2546 continue;
2548 /* Blocks with reserved pages will never free, skip them. */
2549 if (PageReserved(page))
2550 continue;
2552 block_migratetype = get_pageblock_migratetype(page);
2554 /* If this block is reserved, account for it */
2555 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2556 reserve--;
2557 continue;
2560 /* Suitable for reserving if this block is movable */
2561 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2562 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2563 move_freepages_block(zone, page, MIGRATE_RESERVE);
2564 reserve--;
2565 continue;
2569 * If the reserve is met and this is a previous reserved block,
2570 * take it back
2572 if (block_migratetype == MIGRATE_RESERVE) {
2573 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2574 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2580 * Initially all pages are reserved - free ones are freed
2581 * up by free_all_bootmem() once the early boot process is
2582 * done. Non-atomic initialization, single-pass.
2584 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2585 unsigned long start_pfn, enum memmap_context context)
2587 struct page *page;
2588 unsigned long end_pfn = start_pfn + size;
2589 unsigned long pfn;
2590 struct zone *z;
2592 z = &NODE_DATA(nid)->node_zones[zone];
2593 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2595 * There can be holes in boot-time mem_map[]s
2596 * handed to this function. They do not
2597 * exist on hotplugged memory.
2599 if (context == MEMMAP_EARLY) {
2600 if (!early_pfn_valid(pfn))
2601 continue;
2602 if (!early_pfn_in_nid(pfn, nid))
2603 continue;
2605 page = pfn_to_page(pfn);
2606 set_page_links(page, zone, nid, pfn);
2607 mminit_verify_page_links(page, zone, nid, pfn);
2608 init_page_count(page);
2609 reset_page_mapcount(page);
2610 SetPageReserved(page);
2612 * Mark the block movable so that blocks are reserved for
2613 * movable at startup. This will force kernel allocations
2614 * to reserve their blocks rather than leaking throughout
2615 * the address space during boot when many long-lived
2616 * kernel allocations are made. Later some blocks near
2617 * the start are marked MIGRATE_RESERVE by
2618 * setup_zone_migrate_reserve()
2620 * bitmap is created for zone's valid pfn range. but memmap
2621 * can be created for invalid pages (for alignment)
2622 * check here not to call set_pageblock_migratetype() against
2623 * pfn out of zone.
2625 if ((z->zone_start_pfn <= pfn)
2626 && (pfn < z->zone_start_pfn + z->spanned_pages)
2627 && !(pfn & (pageblock_nr_pages - 1)))
2628 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2630 INIT_LIST_HEAD(&page->lru);
2631 #ifdef WANT_PAGE_VIRTUAL
2632 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2633 if (!is_highmem_idx(zone))
2634 set_page_address(page, __va(pfn << PAGE_SHIFT));
2635 #endif
2639 static void __meminit zone_init_free_lists(struct zone *zone)
2641 int order, t;
2642 for_each_migratetype_order(order, t) {
2643 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2644 zone->free_area[order].nr_free = 0;
2648 #ifndef __HAVE_ARCH_MEMMAP_INIT
2649 #define memmap_init(size, nid, zone, start_pfn) \
2650 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2651 #endif
2653 static int zone_batchsize(struct zone *zone)
2655 int batch;
2658 * The per-cpu-pages pools are set to around 1000th of the
2659 * size of the zone. But no more than 1/2 of a meg.
2661 * OK, so we don't know how big the cache is. So guess.
2663 batch = zone->present_pages / 1024;
2664 if (batch * PAGE_SIZE > 512 * 1024)
2665 batch = (512 * 1024) / PAGE_SIZE;
2666 batch /= 4; /* We effectively *= 4 below */
2667 if (batch < 1)
2668 batch = 1;
2671 * Clamp the batch to a 2^n - 1 value. Having a power
2672 * of 2 value was found to be more likely to have
2673 * suboptimal cache aliasing properties in some cases.
2675 * For example if 2 tasks are alternately allocating
2676 * batches of pages, one task can end up with a lot
2677 * of pages of one half of the possible page colors
2678 * and the other with pages of the other colors.
2680 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2682 return batch;
2685 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2687 struct per_cpu_pages *pcp;
2689 memset(p, 0, sizeof(*p));
2691 pcp = &p->pcp;
2692 pcp->count = 0;
2693 pcp->high = 6 * batch;
2694 pcp->batch = max(1UL, 1 * batch);
2695 INIT_LIST_HEAD(&pcp->list);
2699 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2700 * to the value high for the pageset p.
2703 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2704 unsigned long high)
2706 struct per_cpu_pages *pcp;
2708 pcp = &p->pcp;
2709 pcp->high = high;
2710 pcp->batch = max(1UL, high/4);
2711 if ((high/4) > (PAGE_SHIFT * 8))
2712 pcp->batch = PAGE_SHIFT * 8;
2716 #ifdef CONFIG_NUMA
2718 * Boot pageset table. One per cpu which is going to be used for all
2719 * zones and all nodes. The parameters will be set in such a way
2720 * that an item put on a list will immediately be handed over to
2721 * the buddy list. This is safe since pageset manipulation is done
2722 * with interrupts disabled.
2724 * Some NUMA counter updates may also be caught by the boot pagesets.
2726 * The boot_pagesets must be kept even after bootup is complete for
2727 * unused processors and/or zones. They do play a role for bootstrapping
2728 * hotplugged processors.
2730 * zoneinfo_show() and maybe other functions do
2731 * not check if the processor is online before following the pageset pointer.
2732 * Other parts of the kernel may not check if the zone is available.
2734 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2737 * Dynamically allocate memory for the
2738 * per cpu pageset array in struct zone.
2740 static int __cpuinit process_zones(int cpu)
2742 struct zone *zone, *dzone;
2743 int node = cpu_to_node(cpu);
2745 node_set_state(node, N_CPU); /* this node has a cpu */
2747 for_each_zone(zone) {
2749 if (!populated_zone(zone))
2750 continue;
2752 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2753 GFP_KERNEL, node);
2754 if (!zone_pcp(zone, cpu))
2755 goto bad;
2757 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2759 if (percpu_pagelist_fraction)
2760 setup_pagelist_highmark(zone_pcp(zone, cpu),
2761 (zone->present_pages / percpu_pagelist_fraction));
2764 return 0;
2765 bad:
2766 for_each_zone(dzone) {
2767 if (!populated_zone(dzone))
2768 continue;
2769 if (dzone == zone)
2770 break;
2771 kfree(zone_pcp(dzone, cpu));
2772 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
2774 return -ENOMEM;
2777 static inline void free_zone_pagesets(int cpu)
2779 struct zone *zone;
2781 for_each_zone(zone) {
2782 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2784 /* Free per_cpu_pageset if it is slab allocated */
2785 if (pset != &boot_pageset[cpu])
2786 kfree(pset);
2787 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2791 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2792 unsigned long action,
2793 void *hcpu)
2795 int cpu = (long)hcpu;
2796 int ret = NOTIFY_OK;
2798 switch (action) {
2799 case CPU_UP_PREPARE:
2800 case CPU_UP_PREPARE_FROZEN:
2801 if (process_zones(cpu))
2802 ret = NOTIFY_BAD;
2803 break;
2804 case CPU_UP_CANCELED:
2805 case CPU_UP_CANCELED_FROZEN:
2806 case CPU_DEAD:
2807 case CPU_DEAD_FROZEN:
2808 free_zone_pagesets(cpu);
2809 break;
2810 default:
2811 break;
2813 return ret;
2816 static struct notifier_block __cpuinitdata pageset_notifier =
2817 { &pageset_cpuup_callback, NULL, 0 };
2819 void __init setup_per_cpu_pageset(void)
2821 int err;
2823 /* Initialize per_cpu_pageset for cpu 0.
2824 * A cpuup callback will do this for every cpu
2825 * as it comes online
2827 err = process_zones(smp_processor_id());
2828 BUG_ON(err);
2829 register_cpu_notifier(&pageset_notifier);
2832 #endif
2834 static noinline __init_refok
2835 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2837 int i;
2838 struct pglist_data *pgdat = zone->zone_pgdat;
2839 size_t alloc_size;
2842 * The per-page waitqueue mechanism uses hashed waitqueues
2843 * per zone.
2845 zone->wait_table_hash_nr_entries =
2846 wait_table_hash_nr_entries(zone_size_pages);
2847 zone->wait_table_bits =
2848 wait_table_bits(zone->wait_table_hash_nr_entries);
2849 alloc_size = zone->wait_table_hash_nr_entries
2850 * sizeof(wait_queue_head_t);
2852 if (!slab_is_available()) {
2853 zone->wait_table = (wait_queue_head_t *)
2854 alloc_bootmem_node(pgdat, alloc_size);
2855 } else {
2857 * This case means that a zone whose size was 0 gets new memory
2858 * via memory hot-add.
2859 * But it may be the case that a new node was hot-added. In
2860 * this case vmalloc() will not be able to use this new node's
2861 * memory - this wait_table must be initialized to use this new
2862 * node itself as well.
2863 * To use this new node's memory, further consideration will be
2864 * necessary.
2866 zone->wait_table = vmalloc(alloc_size);
2868 if (!zone->wait_table)
2869 return -ENOMEM;
2871 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2872 init_waitqueue_head(zone->wait_table + i);
2874 return 0;
2877 static __meminit void zone_pcp_init(struct zone *zone)
2879 int cpu;
2880 unsigned long batch = zone_batchsize(zone);
2882 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2883 #ifdef CONFIG_NUMA
2884 /* Early boot. Slab allocator not functional yet */
2885 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2886 setup_pageset(&boot_pageset[cpu],0);
2887 #else
2888 setup_pageset(zone_pcp(zone,cpu), batch);
2889 #endif
2891 if (zone->present_pages)
2892 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2893 zone->name, zone->present_pages, batch);
2896 __meminit int init_currently_empty_zone(struct zone *zone,
2897 unsigned long zone_start_pfn,
2898 unsigned long size,
2899 enum memmap_context context)
2901 struct pglist_data *pgdat = zone->zone_pgdat;
2902 int ret;
2903 ret = zone_wait_table_init(zone, size);
2904 if (ret)
2905 return ret;
2906 pgdat->nr_zones = zone_idx(zone) + 1;
2908 zone->zone_start_pfn = zone_start_pfn;
2910 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2911 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2912 pgdat->node_id,
2913 (unsigned long)zone_idx(zone),
2914 zone_start_pfn, (zone_start_pfn + size));
2916 zone_init_free_lists(zone);
2918 return 0;
2921 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2923 * Basic iterator support. Return the first range of PFNs for a node
2924 * Note: nid == MAX_NUMNODES returns first region regardless of node
2926 static int __meminit first_active_region_index_in_nid(int nid)
2928 int i;
2930 for (i = 0; i < nr_nodemap_entries; i++)
2931 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2932 return i;
2934 return -1;
2938 * Basic iterator support. Return the next active range of PFNs for a node
2939 * Note: nid == MAX_NUMNODES returns next region regardless of node
2941 static int __meminit next_active_region_index_in_nid(int index, int nid)
2943 for (index = index + 1; index < nr_nodemap_entries; index++)
2944 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2945 return index;
2947 return -1;
2950 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2952 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2953 * Architectures may implement their own version but if add_active_range()
2954 * was used and there are no special requirements, this is a convenient
2955 * alternative
2957 int __meminit __early_pfn_to_nid(unsigned long pfn)
2959 int i;
2961 for (i = 0; i < nr_nodemap_entries; i++) {
2962 unsigned long start_pfn = early_node_map[i].start_pfn;
2963 unsigned long end_pfn = early_node_map[i].end_pfn;
2965 if (start_pfn <= pfn && pfn < end_pfn)
2966 return early_node_map[i].nid;
2968 /* This is a memory hole */
2969 return -1;
2971 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2973 int __meminit early_pfn_to_nid(unsigned long pfn)
2975 int nid;
2977 nid = __early_pfn_to_nid(pfn);
2978 if (nid >= 0)
2979 return nid;
2980 /* just returns 0 */
2981 return 0;
2984 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
2985 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
2987 int nid;
2989 nid = __early_pfn_to_nid(pfn);
2990 if (nid >= 0 && nid != node)
2991 return false;
2992 return true;
2994 #endif
2996 /* Basic iterator support to walk early_node_map[] */
2997 #define for_each_active_range_index_in_nid(i, nid) \
2998 for (i = first_active_region_index_in_nid(nid); i != -1; \
2999 i = next_active_region_index_in_nid(i, nid))
3002 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3003 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3004 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3006 * If an architecture guarantees that all ranges registered with
3007 * add_active_ranges() contain no holes and may be freed, this
3008 * this function may be used instead of calling free_bootmem() manually.
3010 void __init free_bootmem_with_active_regions(int nid,
3011 unsigned long max_low_pfn)
3013 int i;
3015 for_each_active_range_index_in_nid(i, nid) {
3016 unsigned long size_pages = 0;
3017 unsigned long end_pfn = early_node_map[i].end_pfn;
3019 if (early_node_map[i].start_pfn >= max_low_pfn)
3020 continue;
3022 if (end_pfn > max_low_pfn)
3023 end_pfn = max_low_pfn;
3025 size_pages = end_pfn - early_node_map[i].start_pfn;
3026 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3027 PFN_PHYS(early_node_map[i].start_pfn),
3028 size_pages << PAGE_SHIFT);
3032 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3034 int i;
3035 int ret;
3037 for_each_active_range_index_in_nid(i, nid) {
3038 ret = work_fn(early_node_map[i].start_pfn,
3039 early_node_map[i].end_pfn, data);
3040 if (ret)
3041 break;
3045 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3046 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3048 * If an architecture guarantees that all ranges registered with
3049 * add_active_ranges() contain no holes and may be freed, this
3050 * function may be used instead of calling memory_present() manually.
3052 void __init sparse_memory_present_with_active_regions(int nid)
3054 int i;
3056 for_each_active_range_index_in_nid(i, nid)
3057 memory_present(early_node_map[i].nid,
3058 early_node_map[i].start_pfn,
3059 early_node_map[i].end_pfn);
3063 * push_node_boundaries - Push node boundaries to at least the requested boundary
3064 * @nid: The nid of the node to push the boundary for
3065 * @start_pfn: The start pfn of the node
3066 * @end_pfn: The end pfn of the node
3068 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3069 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3070 * be hotplugged even though no physical memory exists. This function allows
3071 * an arch to push out the node boundaries so mem_map is allocated that can
3072 * be used later.
3074 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3075 void __init push_node_boundaries(unsigned int nid,
3076 unsigned long start_pfn, unsigned long end_pfn)
3078 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3079 "Entering push_node_boundaries(%u, %lu, %lu)\n",
3080 nid, start_pfn, end_pfn);
3082 /* Initialise the boundary for this node if necessary */
3083 if (node_boundary_end_pfn[nid] == 0)
3084 node_boundary_start_pfn[nid] = -1UL;
3086 /* Update the boundaries */
3087 if (node_boundary_start_pfn[nid] > start_pfn)
3088 node_boundary_start_pfn[nid] = start_pfn;
3089 if (node_boundary_end_pfn[nid] < end_pfn)
3090 node_boundary_end_pfn[nid] = end_pfn;
3093 /* If necessary, push the node boundary out for reserve hotadd */
3094 static void __meminit account_node_boundary(unsigned int nid,
3095 unsigned long *start_pfn, unsigned long *end_pfn)
3097 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3098 "Entering account_node_boundary(%u, %lu, %lu)\n",
3099 nid, *start_pfn, *end_pfn);
3101 /* Return if boundary information has not been provided */
3102 if (node_boundary_end_pfn[nid] == 0)
3103 return;
3105 /* Check the boundaries and update if necessary */
3106 if (node_boundary_start_pfn[nid] < *start_pfn)
3107 *start_pfn = node_boundary_start_pfn[nid];
3108 if (node_boundary_end_pfn[nid] > *end_pfn)
3109 *end_pfn = node_boundary_end_pfn[nid];
3111 #else
3112 void __init push_node_boundaries(unsigned int nid,
3113 unsigned long start_pfn, unsigned long end_pfn) {}
3115 static void __meminit account_node_boundary(unsigned int nid,
3116 unsigned long *start_pfn, unsigned long *end_pfn) {}
3117 #endif
3121 * get_pfn_range_for_nid - Return the start and end page frames for a node
3122 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3123 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3124 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3126 * It returns the start and end page frame of a node based on information
3127 * provided by an arch calling add_active_range(). If called for a node
3128 * with no available memory, a warning is printed and the start and end
3129 * PFNs will be 0.
3131 void __meminit get_pfn_range_for_nid(unsigned int nid,
3132 unsigned long *start_pfn, unsigned long *end_pfn)
3134 int i;
3135 *start_pfn = -1UL;
3136 *end_pfn = 0;
3138 for_each_active_range_index_in_nid(i, nid) {
3139 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3140 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3143 if (*start_pfn == -1UL)
3144 *start_pfn = 0;
3146 /* Push the node boundaries out if requested */
3147 account_node_boundary(nid, start_pfn, end_pfn);
3151 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3152 * assumption is made that zones within a node are ordered in monotonic
3153 * increasing memory addresses so that the "highest" populated zone is used
3155 static void __init find_usable_zone_for_movable(void)
3157 int zone_index;
3158 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3159 if (zone_index == ZONE_MOVABLE)
3160 continue;
3162 if (arch_zone_highest_possible_pfn[zone_index] >
3163 arch_zone_lowest_possible_pfn[zone_index])
3164 break;
3167 VM_BUG_ON(zone_index == -1);
3168 movable_zone = zone_index;
3172 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3173 * because it is sized independant of architecture. Unlike the other zones,
3174 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3175 * in each node depending on the size of each node and how evenly kernelcore
3176 * is distributed. This helper function adjusts the zone ranges
3177 * provided by the architecture for a given node by using the end of the
3178 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3179 * zones within a node are in order of monotonic increases memory addresses
3181 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3182 unsigned long zone_type,
3183 unsigned long node_start_pfn,
3184 unsigned long node_end_pfn,
3185 unsigned long *zone_start_pfn,
3186 unsigned long *zone_end_pfn)
3188 /* Only adjust if ZONE_MOVABLE is on this node */
3189 if (zone_movable_pfn[nid]) {
3190 /* Size ZONE_MOVABLE */
3191 if (zone_type == ZONE_MOVABLE) {
3192 *zone_start_pfn = zone_movable_pfn[nid];
3193 *zone_end_pfn = min(node_end_pfn,
3194 arch_zone_highest_possible_pfn[movable_zone]);
3196 /* Adjust for ZONE_MOVABLE starting within this range */
3197 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3198 *zone_end_pfn > zone_movable_pfn[nid]) {
3199 *zone_end_pfn = zone_movable_pfn[nid];
3201 /* Check if this whole range is within ZONE_MOVABLE */
3202 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3203 *zone_start_pfn = *zone_end_pfn;
3208 * Return the number of pages a zone spans in a node, including holes
3209 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3211 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3212 unsigned long zone_type,
3213 unsigned long *ignored)
3215 unsigned long node_start_pfn, node_end_pfn;
3216 unsigned long zone_start_pfn, zone_end_pfn;
3218 /* Get the start and end of the node and zone */
3219 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3220 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3221 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3222 adjust_zone_range_for_zone_movable(nid, zone_type,
3223 node_start_pfn, node_end_pfn,
3224 &zone_start_pfn, &zone_end_pfn);
3226 /* Check that this node has pages within the zone's required range */
3227 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3228 return 0;
3230 /* Move the zone boundaries inside the node if necessary */
3231 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3232 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3234 /* Return the spanned pages */
3235 return zone_end_pfn - zone_start_pfn;
3239 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3240 * then all holes in the requested range will be accounted for.
3242 static unsigned long __meminit __absent_pages_in_range(int nid,
3243 unsigned long range_start_pfn,
3244 unsigned long range_end_pfn)
3246 int i = 0;
3247 unsigned long prev_end_pfn = 0, hole_pages = 0;
3248 unsigned long start_pfn;
3250 /* Find the end_pfn of the first active range of pfns in the node */
3251 i = first_active_region_index_in_nid(nid);
3252 if (i == -1)
3253 return 0;
3255 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3257 /* Account for ranges before physical memory on this node */
3258 if (early_node_map[i].start_pfn > range_start_pfn)
3259 hole_pages = prev_end_pfn - range_start_pfn;
3261 /* Find all holes for the zone within the node */
3262 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3264 /* No need to continue if prev_end_pfn is outside the zone */
3265 if (prev_end_pfn >= range_end_pfn)
3266 break;
3268 /* Make sure the end of the zone is not within the hole */
3269 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3270 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3272 /* Update the hole size cound and move on */
3273 if (start_pfn > range_start_pfn) {
3274 BUG_ON(prev_end_pfn > start_pfn);
3275 hole_pages += start_pfn - prev_end_pfn;
3277 prev_end_pfn = early_node_map[i].end_pfn;
3280 /* Account for ranges past physical memory on this node */
3281 if (range_end_pfn > prev_end_pfn)
3282 hole_pages += range_end_pfn -
3283 max(range_start_pfn, prev_end_pfn);
3285 return hole_pages;
3289 * absent_pages_in_range - Return number of page frames in holes within a range
3290 * @start_pfn: The start PFN to start searching for holes
3291 * @end_pfn: The end PFN to stop searching for holes
3293 * It returns the number of pages frames in memory holes within a range.
3295 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3296 unsigned long end_pfn)
3298 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3301 /* Return the number of page frames in holes in a zone on a node */
3302 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3303 unsigned long zone_type,
3304 unsigned long *ignored)
3306 unsigned long node_start_pfn, node_end_pfn;
3307 unsigned long zone_start_pfn, zone_end_pfn;
3309 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3310 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3311 node_start_pfn);
3312 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3313 node_end_pfn);
3315 adjust_zone_range_for_zone_movable(nid, zone_type,
3316 node_start_pfn, node_end_pfn,
3317 &zone_start_pfn, &zone_end_pfn);
3318 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3321 #else
3322 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3323 unsigned long zone_type,
3324 unsigned long *zones_size)
3326 return zones_size[zone_type];
3329 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3330 unsigned long zone_type,
3331 unsigned long *zholes_size)
3333 if (!zholes_size)
3334 return 0;
3336 return zholes_size[zone_type];
3339 #endif
3341 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3342 unsigned long *zones_size, unsigned long *zholes_size)
3344 unsigned long realtotalpages, totalpages = 0;
3345 enum zone_type i;
3347 for (i = 0; i < MAX_NR_ZONES; i++)
3348 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3349 zones_size);
3350 pgdat->node_spanned_pages = totalpages;
3352 realtotalpages = totalpages;
3353 for (i = 0; i < MAX_NR_ZONES; i++)
3354 realtotalpages -=
3355 zone_absent_pages_in_node(pgdat->node_id, i,
3356 zholes_size);
3357 pgdat->node_present_pages = realtotalpages;
3358 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3359 realtotalpages);
3362 #ifndef CONFIG_SPARSEMEM
3364 * Calculate the size of the zone->blockflags rounded to an unsigned long
3365 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3366 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3367 * round what is now in bits to nearest long in bits, then return it in
3368 * bytes.
3370 static unsigned long __init usemap_size(unsigned long zonesize)
3372 unsigned long usemapsize;
3374 usemapsize = roundup(zonesize, pageblock_nr_pages);
3375 usemapsize = usemapsize >> pageblock_order;
3376 usemapsize *= NR_PAGEBLOCK_BITS;
3377 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3379 return usemapsize / 8;
3382 static void __init setup_usemap(struct pglist_data *pgdat,
3383 struct zone *zone, unsigned long zonesize)
3385 unsigned long usemapsize = usemap_size(zonesize);
3386 zone->pageblock_flags = NULL;
3387 if (usemapsize) {
3388 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3389 memset(zone->pageblock_flags, 0, usemapsize);
3392 #else
3393 static void inline setup_usemap(struct pglist_data *pgdat,
3394 struct zone *zone, unsigned long zonesize) {}
3395 #endif /* CONFIG_SPARSEMEM */
3397 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3399 /* Return a sensible default order for the pageblock size. */
3400 static inline int pageblock_default_order(void)
3402 if (HPAGE_SHIFT > PAGE_SHIFT)
3403 return HUGETLB_PAGE_ORDER;
3405 return MAX_ORDER-1;
3408 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3409 static inline void __init set_pageblock_order(unsigned int order)
3411 /* Check that pageblock_nr_pages has not already been setup */
3412 if (pageblock_order)
3413 return;
3416 * Assume the largest contiguous order of interest is a huge page.
3417 * This value may be variable depending on boot parameters on IA64
3419 pageblock_order = order;
3421 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3424 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3425 * and pageblock_default_order() are unused as pageblock_order is set
3426 * at compile-time. See include/linux/pageblock-flags.h for the values of
3427 * pageblock_order based on the kernel config
3429 static inline int pageblock_default_order(unsigned int order)
3431 return MAX_ORDER-1;
3433 #define set_pageblock_order(x) do {} while (0)
3435 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3438 * Set up the zone data structures:
3439 * - mark all pages reserved
3440 * - mark all memory queues empty
3441 * - clear the memory bitmaps
3443 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3444 unsigned long *zones_size, unsigned long *zholes_size)
3446 enum zone_type j;
3447 int nid = pgdat->node_id;
3448 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3449 int ret;
3451 pgdat_resize_init(pgdat);
3452 pgdat->nr_zones = 0;
3453 init_waitqueue_head(&pgdat->kswapd_wait);
3454 pgdat->kswapd_max_order = 0;
3456 for (j = 0; j < MAX_NR_ZONES; j++) {
3457 struct zone *zone = pgdat->node_zones + j;
3458 unsigned long size, realsize, memmap_pages;
3460 size = zone_spanned_pages_in_node(nid, j, zones_size);
3461 realsize = size - zone_absent_pages_in_node(nid, j,
3462 zholes_size);
3465 * Adjust realsize so that it accounts for how much memory
3466 * is used by this zone for memmap. This affects the watermark
3467 * and per-cpu initialisations
3469 memmap_pages =
3470 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3471 if (realsize >= memmap_pages) {
3472 realsize -= memmap_pages;
3473 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3474 "%s zone: %lu pages used for memmap\n",
3475 zone_names[j], memmap_pages);
3476 } else
3477 printk(KERN_WARNING
3478 " %s zone: %lu pages exceeds realsize %lu\n",
3479 zone_names[j], memmap_pages, realsize);
3481 /* Account for reserved pages */
3482 if (j == 0 && realsize > dma_reserve) {
3483 realsize -= dma_reserve;
3484 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3485 "%s zone: %lu pages reserved\n",
3486 zone_names[0], dma_reserve);
3489 if (!is_highmem_idx(j))
3490 nr_kernel_pages += realsize;
3491 nr_all_pages += realsize;
3493 zone->spanned_pages = size;
3494 zone->present_pages = realsize;
3495 #ifdef CONFIG_NUMA
3496 zone->node = nid;
3497 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3498 / 100;
3499 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3500 #endif
3501 zone->name = zone_names[j];
3502 spin_lock_init(&zone->lock);
3503 spin_lock_init(&zone->lru_lock);
3504 zone_seqlock_init(zone);
3505 zone->zone_pgdat = pgdat;
3507 zone->prev_priority = DEF_PRIORITY;
3509 zone_pcp_init(zone);
3510 INIT_LIST_HEAD(&zone->active_list);
3511 INIT_LIST_HEAD(&zone->inactive_list);
3512 zone->nr_scan_active = 0;
3513 zone->nr_scan_inactive = 0;
3514 zap_zone_vm_stats(zone);
3515 zone->flags = 0;
3516 if (!size)
3517 continue;
3519 set_pageblock_order(pageblock_default_order());
3520 setup_usemap(pgdat, zone, size);
3521 ret = init_currently_empty_zone(zone, zone_start_pfn,
3522 size, MEMMAP_EARLY);
3523 BUG_ON(ret);
3524 memmap_init(size, nid, j, zone_start_pfn);
3525 zone_start_pfn += size;
3529 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3531 /* Skip empty nodes */
3532 if (!pgdat->node_spanned_pages)
3533 return;
3535 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3536 /* ia64 gets its own node_mem_map, before this, without bootmem */
3537 if (!pgdat->node_mem_map) {
3538 unsigned long size, start, end;
3539 struct page *map;
3542 * The zone's endpoints aren't required to be MAX_ORDER
3543 * aligned but the node_mem_map endpoints must be in order
3544 * for the buddy allocator to function correctly.
3546 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3547 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3548 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3549 size = (end - start) * sizeof(struct page);
3550 map = alloc_remap(pgdat->node_id, size);
3551 if (!map)
3552 map = alloc_bootmem_node(pgdat, size);
3553 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3555 #ifndef CONFIG_NEED_MULTIPLE_NODES
3557 * With no DISCONTIG, the global mem_map is just set as node 0's
3559 if (pgdat == NODE_DATA(0)) {
3560 mem_map = NODE_DATA(0)->node_mem_map;
3561 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3562 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3563 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3564 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3566 #endif
3567 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3570 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3571 unsigned long node_start_pfn, unsigned long *zholes_size)
3573 pg_data_t *pgdat = NODE_DATA(nid);
3575 pgdat->node_id = nid;
3576 pgdat->node_start_pfn = node_start_pfn;
3577 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3579 alloc_node_mem_map(pgdat);
3580 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3581 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3582 nid, (unsigned long)pgdat,
3583 (unsigned long)pgdat->node_mem_map);
3584 #endif
3586 free_area_init_core(pgdat, zones_size, zholes_size);
3589 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3591 #if MAX_NUMNODES > 1
3593 * Figure out the number of possible node ids.
3595 static void __init setup_nr_node_ids(void)
3597 unsigned int node;
3598 unsigned int highest = 0;
3600 for_each_node_mask(node, node_possible_map)
3601 highest = node;
3602 nr_node_ids = highest + 1;
3604 #else
3605 static inline void setup_nr_node_ids(void)
3608 #endif
3611 * add_active_range - Register a range of PFNs backed by physical memory
3612 * @nid: The node ID the range resides on
3613 * @start_pfn: The start PFN of the available physical memory
3614 * @end_pfn: The end PFN of the available physical memory
3616 * These ranges are stored in an early_node_map[] and later used by
3617 * free_area_init_nodes() to calculate zone sizes and holes. If the
3618 * range spans a memory hole, it is up to the architecture to ensure
3619 * the memory is not freed by the bootmem allocator. If possible
3620 * the range being registered will be merged with existing ranges.
3622 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3623 unsigned long end_pfn)
3625 int i;
3627 mminit_dprintk(MMINIT_TRACE, "memory_register",
3628 "Entering add_active_range(%d, %#lx, %#lx) "
3629 "%d entries of %d used\n",
3630 nid, start_pfn, end_pfn,
3631 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3633 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3635 /* Merge with existing active regions if possible */
3636 for (i = 0; i < nr_nodemap_entries; i++) {
3637 if (early_node_map[i].nid != nid)
3638 continue;
3640 /* Skip if an existing region covers this new one */
3641 if (start_pfn >= early_node_map[i].start_pfn &&
3642 end_pfn <= early_node_map[i].end_pfn)
3643 return;
3645 /* Merge forward if suitable */
3646 if (start_pfn <= early_node_map[i].end_pfn &&
3647 end_pfn > early_node_map[i].end_pfn) {
3648 early_node_map[i].end_pfn = end_pfn;
3649 return;
3652 /* Merge backward if suitable */
3653 if (start_pfn < early_node_map[i].end_pfn &&
3654 end_pfn >= early_node_map[i].start_pfn) {
3655 early_node_map[i].start_pfn = start_pfn;
3656 return;
3660 /* Check that early_node_map is large enough */
3661 if (i >= MAX_ACTIVE_REGIONS) {
3662 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3663 MAX_ACTIVE_REGIONS);
3664 return;
3667 early_node_map[i].nid = nid;
3668 early_node_map[i].start_pfn = start_pfn;
3669 early_node_map[i].end_pfn = end_pfn;
3670 nr_nodemap_entries = i + 1;
3674 * remove_active_range - Shrink an existing registered range of PFNs
3675 * @nid: The node id the range is on that should be shrunk
3676 * @start_pfn: The new PFN of the range
3677 * @end_pfn: The new PFN of the range
3679 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3680 * The map is kept near the end physical page range that has already been
3681 * registered. This function allows an arch to shrink an existing registered
3682 * range.
3684 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3685 unsigned long end_pfn)
3687 int i, j;
3688 int removed = 0;
3690 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3691 nid, start_pfn, end_pfn);
3693 /* Find the old active region end and shrink */
3694 for_each_active_range_index_in_nid(i, nid) {
3695 if (early_node_map[i].start_pfn >= start_pfn &&
3696 early_node_map[i].end_pfn <= end_pfn) {
3697 /* clear it */
3698 early_node_map[i].start_pfn = 0;
3699 early_node_map[i].end_pfn = 0;
3700 removed = 1;
3701 continue;
3703 if (early_node_map[i].start_pfn < start_pfn &&
3704 early_node_map[i].end_pfn > start_pfn) {
3705 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3706 early_node_map[i].end_pfn = start_pfn;
3707 if (temp_end_pfn > end_pfn)
3708 add_active_range(nid, end_pfn, temp_end_pfn);
3709 continue;
3711 if (early_node_map[i].start_pfn >= start_pfn &&
3712 early_node_map[i].end_pfn > end_pfn &&
3713 early_node_map[i].start_pfn < end_pfn) {
3714 early_node_map[i].start_pfn = end_pfn;
3715 continue;
3719 if (!removed)
3720 return;
3722 /* remove the blank ones */
3723 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3724 if (early_node_map[i].nid != nid)
3725 continue;
3726 if (early_node_map[i].end_pfn)
3727 continue;
3728 /* we found it, get rid of it */
3729 for (j = i; j < nr_nodemap_entries - 1; j++)
3730 memcpy(&early_node_map[j], &early_node_map[j+1],
3731 sizeof(early_node_map[j]));
3732 j = nr_nodemap_entries - 1;
3733 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3734 nr_nodemap_entries--;
3739 * remove_all_active_ranges - Remove all currently registered regions
3741 * During discovery, it may be found that a table like SRAT is invalid
3742 * and an alternative discovery method must be used. This function removes
3743 * all currently registered regions.
3745 void __init remove_all_active_ranges(void)
3747 memset(early_node_map, 0, sizeof(early_node_map));
3748 nr_nodemap_entries = 0;
3749 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3750 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3751 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3752 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3755 /* Compare two active node_active_regions */
3756 static int __init cmp_node_active_region(const void *a, const void *b)
3758 struct node_active_region *arange = (struct node_active_region *)a;
3759 struct node_active_region *brange = (struct node_active_region *)b;
3761 /* Done this way to avoid overflows */
3762 if (arange->start_pfn > brange->start_pfn)
3763 return 1;
3764 if (arange->start_pfn < brange->start_pfn)
3765 return -1;
3767 return 0;
3770 /* sort the node_map by start_pfn */
3771 static void __init sort_node_map(void)
3773 sort(early_node_map, (size_t)nr_nodemap_entries,
3774 sizeof(struct node_active_region),
3775 cmp_node_active_region, NULL);
3778 /* Find the lowest pfn for a node */
3779 static unsigned long __init find_min_pfn_for_node(int nid)
3781 int i;
3782 unsigned long min_pfn = ULONG_MAX;
3784 /* Assuming a sorted map, the first range found has the starting pfn */
3785 for_each_active_range_index_in_nid(i, nid)
3786 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3788 if (min_pfn == ULONG_MAX) {
3789 printk(KERN_WARNING
3790 "Could not find start_pfn for node %d\n", nid);
3791 return 0;
3794 return min_pfn;
3798 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3800 * It returns the minimum PFN based on information provided via
3801 * add_active_range().
3803 unsigned long __init find_min_pfn_with_active_regions(void)
3805 return find_min_pfn_for_node(MAX_NUMNODES);
3809 * early_calculate_totalpages()
3810 * Sum pages in active regions for movable zone.
3811 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3813 static unsigned long __init early_calculate_totalpages(void)
3815 int i;
3816 unsigned long totalpages = 0;
3818 for (i = 0; i < nr_nodemap_entries; i++) {
3819 unsigned long pages = early_node_map[i].end_pfn -
3820 early_node_map[i].start_pfn;
3821 totalpages += pages;
3822 if (pages)
3823 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3825 return totalpages;
3829 * Find the PFN the Movable zone begins in each node. Kernel memory
3830 * is spread evenly between nodes as long as the nodes have enough
3831 * memory. When they don't, some nodes will have more kernelcore than
3832 * others
3834 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3836 int i, nid;
3837 unsigned long usable_startpfn;
3838 unsigned long kernelcore_node, kernelcore_remaining;
3839 unsigned long totalpages = early_calculate_totalpages();
3840 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3843 * If movablecore was specified, calculate what size of
3844 * kernelcore that corresponds so that memory usable for
3845 * any allocation type is evenly spread. If both kernelcore
3846 * and movablecore are specified, then the value of kernelcore
3847 * will be used for required_kernelcore if it's greater than
3848 * what movablecore would have allowed.
3850 if (required_movablecore) {
3851 unsigned long corepages;
3854 * Round-up so that ZONE_MOVABLE is at least as large as what
3855 * was requested by the user
3857 required_movablecore =
3858 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3859 corepages = totalpages - required_movablecore;
3861 required_kernelcore = max(required_kernelcore, corepages);
3864 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3865 if (!required_kernelcore)
3866 return;
3868 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3869 find_usable_zone_for_movable();
3870 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3872 restart:
3873 /* Spread kernelcore memory as evenly as possible throughout nodes */
3874 kernelcore_node = required_kernelcore / usable_nodes;
3875 for_each_node_state(nid, N_HIGH_MEMORY) {
3877 * Recalculate kernelcore_node if the division per node
3878 * now exceeds what is necessary to satisfy the requested
3879 * amount of memory for the kernel
3881 if (required_kernelcore < kernelcore_node)
3882 kernelcore_node = required_kernelcore / usable_nodes;
3885 * As the map is walked, we track how much memory is usable
3886 * by the kernel using kernelcore_remaining. When it is
3887 * 0, the rest of the node is usable by ZONE_MOVABLE
3889 kernelcore_remaining = kernelcore_node;
3891 /* Go through each range of PFNs within this node */
3892 for_each_active_range_index_in_nid(i, nid) {
3893 unsigned long start_pfn, end_pfn;
3894 unsigned long size_pages;
3896 start_pfn = max(early_node_map[i].start_pfn,
3897 zone_movable_pfn[nid]);
3898 end_pfn = early_node_map[i].end_pfn;
3899 if (start_pfn >= end_pfn)
3900 continue;
3902 /* Account for what is only usable for kernelcore */
3903 if (start_pfn < usable_startpfn) {
3904 unsigned long kernel_pages;
3905 kernel_pages = min(end_pfn, usable_startpfn)
3906 - start_pfn;
3908 kernelcore_remaining -= min(kernel_pages,
3909 kernelcore_remaining);
3910 required_kernelcore -= min(kernel_pages,
3911 required_kernelcore);
3913 /* Continue if range is now fully accounted */
3914 if (end_pfn <= usable_startpfn) {
3917 * Push zone_movable_pfn to the end so
3918 * that if we have to rebalance
3919 * kernelcore across nodes, we will
3920 * not double account here
3922 zone_movable_pfn[nid] = end_pfn;
3923 continue;
3925 start_pfn = usable_startpfn;
3929 * The usable PFN range for ZONE_MOVABLE is from
3930 * start_pfn->end_pfn. Calculate size_pages as the
3931 * number of pages used as kernelcore
3933 size_pages = end_pfn - start_pfn;
3934 if (size_pages > kernelcore_remaining)
3935 size_pages = kernelcore_remaining;
3936 zone_movable_pfn[nid] = start_pfn + size_pages;
3939 * Some kernelcore has been met, update counts and
3940 * break if the kernelcore for this node has been
3941 * satisified
3943 required_kernelcore -= min(required_kernelcore,
3944 size_pages);
3945 kernelcore_remaining -= size_pages;
3946 if (!kernelcore_remaining)
3947 break;
3952 * If there is still required_kernelcore, we do another pass with one
3953 * less node in the count. This will push zone_movable_pfn[nid] further
3954 * along on the nodes that still have memory until kernelcore is
3955 * satisified
3957 usable_nodes--;
3958 if (usable_nodes && required_kernelcore > usable_nodes)
3959 goto restart;
3961 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3962 for (nid = 0; nid < MAX_NUMNODES; nid++)
3963 zone_movable_pfn[nid] =
3964 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3967 /* Any regular memory on that node ? */
3968 static void check_for_regular_memory(pg_data_t *pgdat)
3970 #ifdef CONFIG_HIGHMEM
3971 enum zone_type zone_type;
3973 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3974 struct zone *zone = &pgdat->node_zones[zone_type];
3975 if (zone->present_pages)
3976 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3978 #endif
3982 * free_area_init_nodes - Initialise all pg_data_t and zone data
3983 * @max_zone_pfn: an array of max PFNs for each zone
3985 * This will call free_area_init_node() for each active node in the system.
3986 * Using the page ranges provided by add_active_range(), the size of each
3987 * zone in each node and their holes is calculated. If the maximum PFN
3988 * between two adjacent zones match, it is assumed that the zone is empty.
3989 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3990 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3991 * starts where the previous one ended. For example, ZONE_DMA32 starts
3992 * at arch_max_dma_pfn.
3994 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3996 unsigned long nid;
3997 enum zone_type i;
3999 /* Sort early_node_map as initialisation assumes it is sorted */
4000 sort_node_map();
4002 /* Record where the zone boundaries are */
4003 memset(arch_zone_lowest_possible_pfn, 0,
4004 sizeof(arch_zone_lowest_possible_pfn));
4005 memset(arch_zone_highest_possible_pfn, 0,
4006 sizeof(arch_zone_highest_possible_pfn));
4007 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4008 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4009 for (i = 1; i < MAX_NR_ZONES; i++) {
4010 if (i == ZONE_MOVABLE)
4011 continue;
4012 arch_zone_lowest_possible_pfn[i] =
4013 arch_zone_highest_possible_pfn[i-1];
4014 arch_zone_highest_possible_pfn[i] =
4015 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4017 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4018 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4020 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4021 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4022 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4024 /* Print out the zone ranges */
4025 printk("Zone PFN ranges:\n");
4026 for (i = 0; i < MAX_NR_ZONES; i++) {
4027 if (i == ZONE_MOVABLE)
4028 continue;
4029 printk(" %-8s %0#10lx -> %0#10lx\n",
4030 zone_names[i],
4031 arch_zone_lowest_possible_pfn[i],
4032 arch_zone_highest_possible_pfn[i]);
4035 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4036 printk("Movable zone start PFN for each node\n");
4037 for (i = 0; i < MAX_NUMNODES; i++) {
4038 if (zone_movable_pfn[i])
4039 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4042 /* Print out the early_node_map[] */
4043 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4044 for (i = 0; i < nr_nodemap_entries; i++)
4045 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4046 early_node_map[i].start_pfn,
4047 early_node_map[i].end_pfn);
4049 /* Initialise every node */
4050 mminit_verify_pageflags_layout();
4051 setup_nr_node_ids();
4052 for_each_online_node(nid) {
4053 pg_data_t *pgdat = NODE_DATA(nid);
4054 free_area_init_node(nid, NULL,
4055 find_min_pfn_for_node(nid), NULL);
4057 /* Any memory on that node */
4058 if (pgdat->node_present_pages)
4059 node_set_state(nid, N_HIGH_MEMORY);
4060 check_for_regular_memory(pgdat);
4064 static int __init cmdline_parse_core(char *p, unsigned long *core)
4066 unsigned long long coremem;
4067 if (!p)
4068 return -EINVAL;
4070 coremem = memparse(p, &p);
4071 *core = coremem >> PAGE_SHIFT;
4073 /* Paranoid check that UL is enough for the coremem value */
4074 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4076 return 0;
4080 * kernelcore=size sets the amount of memory for use for allocations that
4081 * cannot be reclaimed or migrated.
4083 static int __init cmdline_parse_kernelcore(char *p)
4085 return cmdline_parse_core(p, &required_kernelcore);
4089 * movablecore=size sets the amount of memory for use for allocations that
4090 * can be reclaimed or migrated.
4092 static int __init cmdline_parse_movablecore(char *p)
4094 return cmdline_parse_core(p, &required_movablecore);
4097 early_param("kernelcore", cmdline_parse_kernelcore);
4098 early_param("movablecore", cmdline_parse_movablecore);
4100 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4103 * set_dma_reserve - set the specified number of pages reserved in the first zone
4104 * @new_dma_reserve: The number of pages to mark reserved
4106 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4107 * In the DMA zone, a significant percentage may be consumed by kernel image
4108 * and other unfreeable allocations which can skew the watermarks badly. This
4109 * function may optionally be used to account for unfreeable pages in the
4110 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4111 * smaller per-cpu batchsize.
4113 void __init set_dma_reserve(unsigned long new_dma_reserve)
4115 dma_reserve = new_dma_reserve;
4118 #ifndef CONFIG_NEED_MULTIPLE_NODES
4119 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4120 EXPORT_SYMBOL(contig_page_data);
4121 #endif
4123 void __init free_area_init(unsigned long *zones_size)
4125 free_area_init_node(0, zones_size,
4126 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4129 static int page_alloc_cpu_notify(struct notifier_block *self,
4130 unsigned long action, void *hcpu)
4132 int cpu = (unsigned long)hcpu;
4134 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4135 drain_pages(cpu);
4138 * Spill the event counters of the dead processor
4139 * into the current processors event counters.
4140 * This artificially elevates the count of the current
4141 * processor.
4143 vm_events_fold_cpu(cpu);
4146 * Zero the differential counters of the dead processor
4147 * so that the vm statistics are consistent.
4149 * This is only okay since the processor is dead and cannot
4150 * race with what we are doing.
4152 refresh_cpu_vm_stats(cpu);
4154 return NOTIFY_OK;
4157 void __init page_alloc_init(void)
4159 hotcpu_notifier(page_alloc_cpu_notify, 0);
4163 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4164 * or min_free_kbytes changes.
4166 static void calculate_totalreserve_pages(void)
4168 struct pglist_data *pgdat;
4169 unsigned long reserve_pages = 0;
4170 enum zone_type i, j;
4172 for_each_online_pgdat(pgdat) {
4173 for (i = 0; i < MAX_NR_ZONES; i++) {
4174 struct zone *zone = pgdat->node_zones + i;
4175 unsigned long max = 0;
4177 /* Find valid and maximum lowmem_reserve in the zone */
4178 for (j = i; j < MAX_NR_ZONES; j++) {
4179 if (zone->lowmem_reserve[j] > max)
4180 max = zone->lowmem_reserve[j];
4183 /* we treat pages_high as reserved pages. */
4184 max += zone->pages_high;
4186 if (max > zone->present_pages)
4187 max = zone->present_pages;
4188 reserve_pages += max;
4191 totalreserve_pages = reserve_pages;
4195 * setup_per_zone_lowmem_reserve - called whenever
4196 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4197 * has a correct pages reserved value, so an adequate number of
4198 * pages are left in the zone after a successful __alloc_pages().
4200 static void setup_per_zone_lowmem_reserve(void)
4202 struct pglist_data *pgdat;
4203 enum zone_type j, idx;
4205 for_each_online_pgdat(pgdat) {
4206 for (j = 0; j < MAX_NR_ZONES; j++) {
4207 struct zone *zone = pgdat->node_zones + j;
4208 unsigned long present_pages = zone->present_pages;
4210 zone->lowmem_reserve[j] = 0;
4212 idx = j;
4213 while (idx) {
4214 struct zone *lower_zone;
4216 idx--;
4218 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4219 sysctl_lowmem_reserve_ratio[idx] = 1;
4221 lower_zone = pgdat->node_zones + idx;
4222 lower_zone->lowmem_reserve[j] = present_pages /
4223 sysctl_lowmem_reserve_ratio[idx];
4224 present_pages += lower_zone->present_pages;
4229 /* update totalreserve_pages */
4230 calculate_totalreserve_pages();
4234 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4236 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4237 * with respect to min_free_kbytes.
4239 void setup_per_zone_pages_min(void)
4241 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4242 unsigned long lowmem_pages = 0;
4243 struct zone *zone;
4244 unsigned long flags;
4246 /* Calculate total number of !ZONE_HIGHMEM pages */
4247 for_each_zone(zone) {
4248 if (!is_highmem(zone))
4249 lowmem_pages += zone->present_pages;
4252 for_each_zone(zone) {
4253 u64 tmp;
4255 spin_lock_irqsave(&zone->lock, flags);
4256 tmp = (u64)pages_min * zone->present_pages;
4257 do_div(tmp, lowmem_pages);
4258 if (is_highmem(zone)) {
4260 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4261 * need highmem pages, so cap pages_min to a small
4262 * value here.
4264 * The (pages_high-pages_low) and (pages_low-pages_min)
4265 * deltas controls asynch page reclaim, and so should
4266 * not be capped for highmem.
4268 int min_pages;
4270 min_pages = zone->present_pages / 1024;
4271 if (min_pages < SWAP_CLUSTER_MAX)
4272 min_pages = SWAP_CLUSTER_MAX;
4273 if (min_pages > 128)
4274 min_pages = 128;
4275 zone->pages_min = min_pages;
4276 } else {
4278 * If it's a lowmem zone, reserve a number of pages
4279 * proportionate to the zone's size.
4281 zone->pages_min = tmp;
4284 zone->pages_low = zone->pages_min + (tmp >> 2);
4285 zone->pages_high = zone->pages_min + (tmp >> 1);
4286 setup_zone_migrate_reserve(zone);
4287 spin_unlock_irqrestore(&zone->lock, flags);
4290 /* update totalreserve_pages */
4291 calculate_totalreserve_pages();
4295 * Initialise min_free_kbytes.
4297 * For small machines we want it small (128k min). For large machines
4298 * we want it large (64MB max). But it is not linear, because network
4299 * bandwidth does not increase linearly with machine size. We use
4301 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4302 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4304 * which yields
4306 * 16MB: 512k
4307 * 32MB: 724k
4308 * 64MB: 1024k
4309 * 128MB: 1448k
4310 * 256MB: 2048k
4311 * 512MB: 2896k
4312 * 1024MB: 4096k
4313 * 2048MB: 5792k
4314 * 4096MB: 8192k
4315 * 8192MB: 11584k
4316 * 16384MB: 16384k
4318 static int __init init_per_zone_pages_min(void)
4320 unsigned long lowmem_kbytes;
4322 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4324 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4325 if (min_free_kbytes < 128)
4326 min_free_kbytes = 128;
4327 if (min_free_kbytes > 65536)
4328 min_free_kbytes = 65536;
4329 setup_per_zone_pages_min();
4330 setup_per_zone_lowmem_reserve();
4331 return 0;
4333 module_init(init_per_zone_pages_min)
4336 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4337 * that we can call two helper functions whenever min_free_kbytes
4338 * changes.
4340 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4341 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4343 proc_dointvec(table, write, file, buffer, length, ppos);
4344 if (write)
4345 setup_per_zone_pages_min();
4346 return 0;
4349 #ifdef CONFIG_NUMA
4350 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4351 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4353 struct zone *zone;
4354 int rc;
4356 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4357 if (rc)
4358 return rc;
4360 for_each_zone(zone)
4361 zone->min_unmapped_pages = (zone->present_pages *
4362 sysctl_min_unmapped_ratio) / 100;
4363 return 0;
4366 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4367 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4369 struct zone *zone;
4370 int rc;
4372 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4373 if (rc)
4374 return rc;
4376 for_each_zone(zone)
4377 zone->min_slab_pages = (zone->present_pages *
4378 sysctl_min_slab_ratio) / 100;
4379 return 0;
4381 #endif
4384 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4385 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4386 * whenever sysctl_lowmem_reserve_ratio changes.
4388 * The reserve ratio obviously has absolutely no relation with the
4389 * pages_min watermarks. The lowmem reserve ratio can only make sense
4390 * if in function of the boot time zone sizes.
4392 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4393 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4395 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4396 setup_per_zone_lowmem_reserve();
4397 return 0;
4401 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4402 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4403 * can have before it gets flushed back to buddy allocator.
4406 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4407 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4409 struct zone *zone;
4410 unsigned int cpu;
4411 int ret;
4413 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4414 if (!write || (ret == -EINVAL))
4415 return ret;
4416 for_each_zone(zone) {
4417 if (!populated_zone(zone))
4418 continue;
4419 for_each_online_cpu(cpu) {
4420 unsigned long high;
4421 high = zone->present_pages / percpu_pagelist_fraction;
4422 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4425 return 0;
4428 int hashdist = HASHDIST_DEFAULT;
4430 #ifdef CONFIG_NUMA
4431 static int __init set_hashdist(char *str)
4433 if (!str)
4434 return 0;
4435 hashdist = simple_strtoul(str, &str, 0);
4436 return 1;
4438 __setup("hashdist=", set_hashdist);
4439 #endif
4442 * allocate a large system hash table from bootmem
4443 * - it is assumed that the hash table must contain an exact power-of-2
4444 * quantity of entries
4445 * - limit is the number of hash buckets, not the total allocation size
4447 void *__init alloc_large_system_hash(const char *tablename,
4448 unsigned long bucketsize,
4449 unsigned long numentries,
4450 int scale,
4451 int flags,
4452 unsigned int *_hash_shift,
4453 unsigned int *_hash_mask,
4454 unsigned long limit)
4456 unsigned long long max = limit;
4457 unsigned long log2qty, size;
4458 void *table = NULL;
4460 /* allow the kernel cmdline to have a say */
4461 if (!numentries) {
4462 /* round applicable memory size up to nearest megabyte */
4463 numentries = nr_kernel_pages;
4464 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4465 numentries >>= 20 - PAGE_SHIFT;
4466 numentries <<= 20 - PAGE_SHIFT;
4468 /* limit to 1 bucket per 2^scale bytes of low memory */
4469 if (scale > PAGE_SHIFT)
4470 numentries >>= (scale - PAGE_SHIFT);
4471 else
4472 numentries <<= (PAGE_SHIFT - scale);
4474 /* Make sure we've got at least a 0-order allocation.. */
4475 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4476 numentries = PAGE_SIZE / bucketsize;
4478 numentries = roundup_pow_of_two(numentries);
4480 /* limit allocation size to 1/16 total memory by default */
4481 if (max == 0) {
4482 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4483 do_div(max, bucketsize);
4486 if (numentries > max)
4487 numentries = max;
4489 log2qty = ilog2(numentries);
4491 do {
4492 size = bucketsize << log2qty;
4493 if (flags & HASH_EARLY)
4494 table = alloc_bootmem_nopanic(size);
4495 else if (hashdist)
4496 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4497 else {
4498 unsigned long order = get_order(size);
4499 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4501 * If bucketsize is not a power-of-two, we may free
4502 * some pages at the end of hash table.
4504 if (table) {
4505 unsigned long alloc_end = (unsigned long)table +
4506 (PAGE_SIZE << order);
4507 unsigned long used = (unsigned long)table +
4508 PAGE_ALIGN(size);
4509 split_page(virt_to_page(table), order);
4510 while (used < alloc_end) {
4511 free_page(used);
4512 used += PAGE_SIZE;
4516 } while (!table && size > PAGE_SIZE && --log2qty);
4518 if (!table)
4519 panic("Failed to allocate %s hash table\n", tablename);
4521 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4522 tablename,
4523 (1U << log2qty),
4524 ilog2(size) - PAGE_SHIFT,
4525 size);
4527 if (_hash_shift)
4528 *_hash_shift = log2qty;
4529 if (_hash_mask)
4530 *_hash_mask = (1 << log2qty) - 1;
4532 return table;
4535 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4536 struct page *pfn_to_page(unsigned long pfn)
4538 return __pfn_to_page(pfn);
4540 unsigned long page_to_pfn(struct page *page)
4542 return __page_to_pfn(page);
4544 EXPORT_SYMBOL(pfn_to_page);
4545 EXPORT_SYMBOL(page_to_pfn);
4546 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4548 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4549 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4550 unsigned long pfn)
4552 #ifdef CONFIG_SPARSEMEM
4553 return __pfn_to_section(pfn)->pageblock_flags;
4554 #else
4555 return zone->pageblock_flags;
4556 #endif /* CONFIG_SPARSEMEM */
4559 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4561 #ifdef CONFIG_SPARSEMEM
4562 pfn &= (PAGES_PER_SECTION-1);
4563 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4564 #else
4565 pfn = pfn - zone->zone_start_pfn;
4566 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4567 #endif /* CONFIG_SPARSEMEM */
4571 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4572 * @page: The page within the block of interest
4573 * @start_bitidx: The first bit of interest to retrieve
4574 * @end_bitidx: The last bit of interest
4575 * returns pageblock_bits flags
4577 unsigned long get_pageblock_flags_group(struct page *page,
4578 int start_bitidx, int end_bitidx)
4580 struct zone *zone;
4581 unsigned long *bitmap;
4582 unsigned long pfn, bitidx;
4583 unsigned long flags = 0;
4584 unsigned long value = 1;
4586 zone = page_zone(page);
4587 pfn = page_to_pfn(page);
4588 bitmap = get_pageblock_bitmap(zone, pfn);
4589 bitidx = pfn_to_bitidx(zone, pfn);
4591 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4592 if (test_bit(bitidx + start_bitidx, bitmap))
4593 flags |= value;
4595 return flags;
4599 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4600 * @page: The page within the block of interest
4601 * @start_bitidx: The first bit of interest
4602 * @end_bitidx: The last bit of interest
4603 * @flags: The flags to set
4605 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4606 int start_bitidx, int end_bitidx)
4608 struct zone *zone;
4609 unsigned long *bitmap;
4610 unsigned long pfn, bitidx;
4611 unsigned long value = 1;
4613 zone = page_zone(page);
4614 pfn = page_to_pfn(page);
4615 bitmap = get_pageblock_bitmap(zone, pfn);
4616 bitidx = pfn_to_bitidx(zone, pfn);
4617 VM_BUG_ON(pfn < zone->zone_start_pfn);
4618 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4620 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4621 if (flags & value)
4622 __set_bit(bitidx + start_bitidx, bitmap);
4623 else
4624 __clear_bit(bitidx + start_bitidx, bitmap);
4628 * This is designed as sub function...plz see page_isolation.c also.
4629 * set/clear page block's type to be ISOLATE.
4630 * page allocater never alloc memory from ISOLATE block.
4633 int set_migratetype_isolate(struct page *page)
4635 struct zone *zone;
4636 unsigned long flags;
4637 int ret = -EBUSY;
4639 zone = page_zone(page);
4640 spin_lock_irqsave(&zone->lock, flags);
4642 * In future, more migrate types will be able to be isolation target.
4644 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4645 goto out;
4646 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4647 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4648 ret = 0;
4649 out:
4650 spin_unlock_irqrestore(&zone->lock, flags);
4651 if (!ret)
4652 drain_all_pages();
4653 return ret;
4656 void unset_migratetype_isolate(struct page *page)
4658 struct zone *zone;
4659 unsigned long flags;
4660 zone = page_zone(page);
4661 spin_lock_irqsave(&zone->lock, flags);
4662 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4663 goto out;
4664 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4665 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4666 out:
4667 spin_unlock_irqrestore(&zone->lock, flags);
4670 #ifdef CONFIG_MEMORY_HOTREMOVE
4672 * All pages in the range must be isolated before calling this.
4674 void
4675 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4677 struct page *page;
4678 struct zone *zone;
4679 int order, i;
4680 unsigned long pfn;
4681 unsigned long flags;
4682 /* find the first valid pfn */
4683 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4684 if (pfn_valid(pfn))
4685 break;
4686 if (pfn == end_pfn)
4687 return;
4688 zone = page_zone(pfn_to_page(pfn));
4689 spin_lock_irqsave(&zone->lock, flags);
4690 pfn = start_pfn;
4691 while (pfn < end_pfn) {
4692 if (!pfn_valid(pfn)) {
4693 pfn++;
4694 continue;
4696 page = pfn_to_page(pfn);
4697 BUG_ON(page_count(page));
4698 BUG_ON(!PageBuddy(page));
4699 order = page_order(page);
4700 #ifdef CONFIG_DEBUG_VM
4701 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4702 pfn, 1 << order, end_pfn);
4703 #endif
4704 list_del(&page->lru);
4705 rmv_page_order(page);
4706 zone->free_area[order].nr_free--;
4707 __mod_zone_page_state(zone, NR_FREE_PAGES,
4708 - (1UL << order));
4709 for (i = 0; i < (1 << order); i++)
4710 SetPageReserved((page+i));
4711 pfn += (1 << order);
4713 spin_unlock_irqrestore(&zone->lock, flags);
4715 #endif