ACPI: thinkpad-acpi: add development version tag
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blob57c933ffbee1aab4794c30f3690b8188e4ddf02a
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 #ifdef CONFIG_SMP
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide.
126 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
128 return reciprocal_divide(load, sg->reciprocal_cpu_power);
132 * Each time a sched group cpu_power is changed,
133 * we must compute its reciprocal value
135 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
137 sg->__cpu_power += val;
138 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
140 #endif
142 static inline int rt_policy(int policy)
144 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145 return 1;
146 return 0;
149 static inline int task_has_rt_policy(struct task_struct *p)
151 return rt_policy(p->policy);
155 * This is the priority-queue data structure of the RT scheduling class:
157 struct rt_prio_array {
158 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159 struct list_head queue[MAX_RT_PRIO];
162 struct rt_bandwidth {
163 /* nests inside the rq lock: */
164 spinlock_t rt_runtime_lock;
165 ktime_t rt_period;
166 u64 rt_runtime;
167 struct hrtimer rt_period_timer;
170 static struct rt_bandwidth def_rt_bandwidth;
172 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
174 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
176 struct rt_bandwidth *rt_b =
177 container_of(timer, struct rt_bandwidth, rt_period_timer);
178 ktime_t now;
179 int overrun;
180 int idle = 0;
182 for (;;) {
183 now = hrtimer_cb_get_time(timer);
184 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
186 if (!overrun)
187 break;
189 idle = do_sched_rt_period_timer(rt_b, overrun);
192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
195 static
196 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
198 rt_b->rt_period = ns_to_ktime(period);
199 rt_b->rt_runtime = runtime;
201 spin_lock_init(&rt_b->rt_runtime_lock);
203 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer;
206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
209 static inline int rt_bandwidth_enabled(void)
211 return sysctl_sched_rt_runtime >= 0;
214 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
216 ktime_t now;
218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219 return;
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 hrtimer_start_expires(&rt_b->rt_period_timer,
232 HRTIMER_MODE_ABS);
234 spin_unlock(&rt_b->rt_runtime_lock);
237 #ifdef CONFIG_RT_GROUP_SCHED
238 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
240 hrtimer_cancel(&rt_b->rt_period_timer);
242 #endif
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
248 static DEFINE_MUTEX(sched_domains_mutex);
250 #ifdef CONFIG_GROUP_SCHED
252 #include <linux/cgroup.h>
254 struct cfs_rq;
256 static LIST_HEAD(task_groups);
258 /* task group related information */
259 struct task_group {
260 #ifdef CONFIG_CGROUP_SCHED
261 struct cgroup_subsys_state css;
262 #endif
264 #ifdef CONFIG_FAIR_GROUP_SCHED
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq **cfs_rq;
269 unsigned long shares;
270 #endif
272 #ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity **rt_se;
274 struct rt_rq **rt_rq;
276 struct rt_bandwidth rt_bandwidth;
277 #endif
279 struct rcu_head rcu;
280 struct list_head list;
282 struct task_group *parent;
283 struct list_head siblings;
284 struct list_head children;
287 #ifdef CONFIG_USER_SCHED
290 * Root task group.
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
294 struct task_group root_task_group;
296 #ifdef CONFIG_FAIR_GROUP_SCHED
297 /* Default task group's sched entity on each cpu */
298 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299 /* Default task group's cfs_rq on each cpu */
300 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301 #endif /* CONFIG_FAIR_GROUP_SCHED */
303 #ifdef CONFIG_RT_GROUP_SCHED
304 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306 #endif /* CONFIG_RT_GROUP_SCHED */
307 #else /* !CONFIG_USER_SCHED */
308 #define root_task_group init_task_group
309 #endif /* CONFIG_USER_SCHED */
311 /* task_group_lock serializes add/remove of task groups and also changes to
312 * a task group's cpu shares.
314 static DEFINE_SPINLOCK(task_group_lock);
316 #ifdef CONFIG_FAIR_GROUP_SCHED
317 #ifdef CONFIG_USER_SCHED
318 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
319 #else /* !CONFIG_USER_SCHED */
320 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
321 #endif /* CONFIG_USER_SCHED */
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
331 #define MIN_SHARES 2
332 #define MAX_SHARES (1UL << 18)
334 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
335 #endif
337 /* Default task group.
338 * Every task in system belong to this group at bootup.
340 struct task_group init_task_group;
342 /* return group to which a task belongs */
343 static inline struct task_group *task_group(struct task_struct *p)
345 struct task_group *tg;
347 #ifdef CONFIG_USER_SCHED
348 tg = p->user->tg;
349 #elif defined(CONFIG_CGROUP_SCHED)
350 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
351 struct task_group, css);
352 #else
353 tg = &init_task_group;
354 #endif
355 return tg;
358 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
359 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
363 p->se.parent = task_group(p)->se[cpu];
364 #endif
366 #ifdef CONFIG_RT_GROUP_SCHED
367 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
368 p->rt.parent = task_group(p)->rt_se[cpu];
369 #endif
372 #else
374 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 static inline struct task_group *task_group(struct task_struct *p)
377 return NULL;
380 #endif /* CONFIG_GROUP_SCHED */
382 /* CFS-related fields in a runqueue */
383 struct cfs_rq {
384 struct load_weight load;
385 unsigned long nr_running;
387 u64 exec_clock;
388 u64 min_vruntime;
390 struct rb_root tasks_timeline;
391 struct rb_node *rb_leftmost;
393 struct list_head tasks;
394 struct list_head *balance_iterator;
397 * 'curr' points to currently running entity on this cfs_rq.
398 * It is set to NULL otherwise (i.e when none are currently running).
400 struct sched_entity *curr, *next, *last;
402 unsigned long nr_spread_over;
404 #ifdef CONFIG_FAIR_GROUP_SCHED
405 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
408 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
409 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
410 * (like users, containers etc.)
412 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
413 * list is used during load balance.
415 struct list_head leaf_cfs_rq_list;
416 struct task_group *tg; /* group that "owns" this runqueue */
418 #ifdef CONFIG_SMP
420 * the part of load.weight contributed by tasks
422 unsigned long task_weight;
425 * h_load = weight * f(tg)
427 * Where f(tg) is the recursive weight fraction assigned to
428 * this group.
430 unsigned long h_load;
433 * this cpu's part of tg->shares
435 unsigned long shares;
438 * load.weight at the time we set shares
440 unsigned long rq_weight;
441 #endif
442 #endif
445 /* Real-Time classes' related field in a runqueue: */
446 struct rt_rq {
447 struct rt_prio_array active;
448 unsigned long rt_nr_running;
449 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
450 int highest_prio; /* highest queued rt task prio */
451 #endif
452 #ifdef CONFIG_SMP
453 unsigned long rt_nr_migratory;
454 int overloaded;
455 #endif
456 int rt_throttled;
457 u64 rt_time;
458 u64 rt_runtime;
459 /* Nests inside the rq lock: */
460 spinlock_t rt_runtime_lock;
462 #ifdef CONFIG_RT_GROUP_SCHED
463 unsigned long rt_nr_boosted;
465 struct rq *rq;
466 struct list_head leaf_rt_rq_list;
467 struct task_group *tg;
468 struct sched_rt_entity *rt_se;
469 #endif
472 #ifdef CONFIG_SMP
475 * We add the notion of a root-domain which will be used to define per-domain
476 * variables. Each exclusive cpuset essentially defines an island domain by
477 * fully partitioning the member cpus from any other cpuset. Whenever a new
478 * exclusive cpuset is created, we also create and attach a new root-domain
479 * object.
482 struct root_domain {
483 atomic_t refcount;
484 cpumask_t span;
485 cpumask_t online;
488 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task.
491 cpumask_t rto_mask;
492 atomic_t rto_count;
493 #ifdef CONFIG_SMP
494 struct cpupri cpupri;
495 #endif
499 * By default the system creates a single root-domain with all cpus as
500 * members (mimicking the global state we have today).
502 static struct root_domain def_root_domain;
504 #endif
507 * This is the main, per-CPU runqueue data structure.
509 * Locking rule: those places that want to lock multiple runqueues
510 * (such as the load balancing or the thread migration code), lock
511 * acquire operations must be ordered by ascending &runqueue.
513 struct rq {
514 /* runqueue lock: */
515 spinlock_t lock;
518 * nr_running and cpu_load should be in the same cacheline because
519 * remote CPUs use both these fields when doing load calculation.
521 unsigned long nr_running;
522 #define CPU_LOAD_IDX_MAX 5
523 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
524 unsigned char idle_at_tick;
525 #ifdef CONFIG_NO_HZ
526 unsigned long last_tick_seen;
527 unsigned char in_nohz_recently;
528 #endif
529 /* capture load from *all* tasks on this cpu: */
530 struct load_weight load;
531 unsigned long nr_load_updates;
532 u64 nr_switches;
534 struct cfs_rq cfs;
535 struct rt_rq rt;
537 #ifdef CONFIG_FAIR_GROUP_SCHED
538 /* list of leaf cfs_rq on this cpu: */
539 struct list_head leaf_cfs_rq_list;
540 #endif
541 #ifdef CONFIG_RT_GROUP_SCHED
542 struct list_head leaf_rt_rq_list;
543 #endif
546 * This is part of a global counter where only the total sum
547 * over all CPUs matters. A task can increase this counter on
548 * one CPU and if it got migrated afterwards it may decrease
549 * it on another CPU. Always updated under the runqueue lock:
551 unsigned long nr_uninterruptible;
553 struct task_struct *curr, *idle;
554 unsigned long next_balance;
555 struct mm_struct *prev_mm;
557 u64 clock;
559 atomic_t nr_iowait;
561 #ifdef CONFIG_SMP
562 struct root_domain *rd;
563 struct sched_domain *sd;
565 /* For active balancing */
566 int active_balance;
567 int push_cpu;
568 /* cpu of this runqueue: */
569 int cpu;
570 int online;
572 unsigned long avg_load_per_task;
574 struct task_struct *migration_thread;
575 struct list_head migration_queue;
576 #endif
578 #ifdef CONFIG_SCHED_HRTICK
579 #ifdef CONFIG_SMP
580 int hrtick_csd_pending;
581 struct call_single_data hrtick_csd;
582 #endif
583 struct hrtimer hrtick_timer;
584 #endif
586 #ifdef CONFIG_SCHEDSTATS
587 /* latency stats */
588 struct sched_info rq_sched_info;
590 /* sys_sched_yield() stats */
591 unsigned int yld_exp_empty;
592 unsigned int yld_act_empty;
593 unsigned int yld_both_empty;
594 unsigned int yld_count;
596 /* schedule() stats */
597 unsigned int sched_switch;
598 unsigned int sched_count;
599 unsigned int sched_goidle;
601 /* try_to_wake_up() stats */
602 unsigned int ttwu_count;
603 unsigned int ttwu_local;
605 /* BKL stats */
606 unsigned int bkl_count;
607 #endif
610 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
612 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
617 static inline int cpu_of(struct rq *rq)
619 #ifdef CONFIG_SMP
620 return rq->cpu;
621 #else
622 return 0;
623 #endif
627 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
628 * See detach_destroy_domains: synchronize_sched for details.
630 * The domain tree of any CPU may only be accessed from within
631 * preempt-disabled sections.
633 #define for_each_domain(cpu, __sd) \
634 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
636 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
637 #define this_rq() (&__get_cpu_var(runqueues))
638 #define task_rq(p) cpu_rq(task_cpu(p))
639 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
641 static inline void update_rq_clock(struct rq *rq)
643 rq->clock = sched_clock_cpu(cpu_of(rq));
647 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
649 #ifdef CONFIG_SCHED_DEBUG
650 # define const_debug __read_mostly
651 #else
652 # define const_debug static const
653 #endif
656 * runqueue_is_locked
658 * Returns true if the current cpu runqueue is locked.
659 * This interface allows printk to be called with the runqueue lock
660 * held and know whether or not it is OK to wake up the klogd.
662 int runqueue_is_locked(void)
664 int cpu = get_cpu();
665 struct rq *rq = cpu_rq(cpu);
666 int ret;
668 ret = spin_is_locked(&rq->lock);
669 put_cpu();
670 return ret;
674 * Debugging: various feature bits
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
680 enum {
681 #include "sched_features.h"
684 #undef SCHED_FEAT
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
689 const_debug unsigned int sysctl_sched_features =
690 #include "sched_features.h"
693 #undef SCHED_FEAT
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
697 #name ,
699 static __read_mostly char *sched_feat_names[] = {
700 #include "sched_features.h"
701 NULL
704 #undef SCHED_FEAT
706 static int sched_feat_open(struct inode *inode, struct file *filp)
708 filp->private_data = inode->i_private;
709 return 0;
712 static ssize_t
713 sched_feat_read(struct file *filp, char __user *ubuf,
714 size_t cnt, loff_t *ppos)
716 char *buf;
717 int r = 0;
718 int len = 0;
719 int i;
721 for (i = 0; sched_feat_names[i]; i++) {
722 len += strlen(sched_feat_names[i]);
723 len += 4;
726 buf = kmalloc(len + 2, GFP_KERNEL);
727 if (!buf)
728 return -ENOMEM;
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (sysctl_sched_features & (1UL << i))
732 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
733 else
734 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
737 r += sprintf(buf + r, "\n");
738 WARN_ON(r >= len + 2);
740 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
742 kfree(buf);
744 return r;
747 static ssize_t
748 sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
756 if (cnt > 63)
757 cnt = 63;
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
762 buf[cnt] = 0;
764 if (strncmp(buf, "NO_", 3) == 0) {
765 neg = 1;
766 cmp += 3;
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
781 if (!sched_feat_names[i])
782 return -EINVAL;
784 filp->f_pos += cnt;
786 return cnt;
789 static struct file_operations sched_feat_fops = {
790 .open = sched_feat_open,
791 .read = sched_feat_read,
792 .write = sched_feat_write,
795 static __init int sched_init_debug(void)
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
800 return 0;
802 late_initcall(sched_init_debug);
804 #endif
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
815 * ratelimit for updating the group shares.
816 * default: 0.25ms
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
821 * Inject some fuzzyness into changing the per-cpu group shares
822 * this avoids remote rq-locks at the expense of fairness.
823 * default: 4
825 unsigned int sysctl_sched_shares_thresh = 4;
828 * period over which we measure -rt task cpu usage in us.
829 * default: 1s
831 unsigned int sysctl_sched_rt_period = 1000000;
833 static __read_mostly int scheduler_running;
836 * part of the period that we allow rt tasks to run in us.
837 * default: 0.95s
839 int sysctl_sched_rt_runtime = 950000;
841 static inline u64 global_rt_period(void)
843 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
846 static inline u64 global_rt_runtime(void)
848 if (sysctl_sched_rt_runtime < 0)
849 return RUNTIME_INF;
851 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
854 #ifndef prepare_arch_switch
855 # define prepare_arch_switch(next) do { } while (0)
856 #endif
857 #ifndef finish_arch_switch
858 # define finish_arch_switch(prev) do { } while (0)
859 #endif
861 static inline int task_current(struct rq *rq, struct task_struct *p)
863 return rq->curr == p;
866 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
867 static inline int task_running(struct rq *rq, struct task_struct *p)
869 return task_current(rq, p);
872 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
876 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
878 #ifdef CONFIG_DEBUG_SPINLOCK
879 /* this is a valid case when another task releases the spinlock */
880 rq->lock.owner = current;
881 #endif
883 * If we are tracking spinlock dependencies then we have to
884 * fix up the runqueue lock - which gets 'carried over' from
885 * prev into current:
887 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
889 spin_unlock_irq(&rq->lock);
892 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
893 static inline int task_running(struct rq *rq, struct task_struct *p)
895 #ifdef CONFIG_SMP
896 return p->oncpu;
897 #else
898 return task_current(rq, p);
899 #endif
902 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
904 #ifdef CONFIG_SMP
906 * We can optimise this out completely for !SMP, because the
907 * SMP rebalancing from interrupt is the only thing that cares
908 * here.
910 next->oncpu = 1;
911 #endif
912 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 spin_unlock_irq(&rq->lock);
914 #else
915 spin_unlock(&rq->lock);
916 #endif
919 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
921 #ifdef CONFIG_SMP
923 * After ->oncpu is cleared, the task can be moved to a different CPU.
924 * We must ensure this doesn't happen until the switch is completely
925 * finished.
927 smp_wmb();
928 prev->oncpu = 0;
929 #endif
930 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 local_irq_enable();
932 #endif
934 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
940 static inline struct rq *__task_rq_lock(struct task_struct *p)
941 __acquires(rq->lock)
943 for (;;) {
944 struct rq *rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
948 spin_unlock(&rq->lock);
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
957 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
958 __acquires(rq->lock)
960 struct rq *rq;
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
968 spin_unlock_irqrestore(&rq->lock, *flags);
972 static void __task_rq_unlock(struct rq *rq)
973 __releases(rq->lock)
975 spin_unlock(&rq->lock);
978 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
979 __releases(rq->lock)
981 spin_unlock_irqrestore(&rq->lock, *flags);
985 * this_rq_lock - lock this runqueue and disable interrupts.
987 static struct rq *this_rq_lock(void)
988 __acquires(rq->lock)
990 struct rq *rq;
992 local_irq_disable();
993 rq = this_rq();
994 spin_lock(&rq->lock);
996 return rq;
999 #ifdef CONFIG_SCHED_HRTICK
1001 * Use HR-timers to deliver accurate preemption points.
1003 * Its all a bit involved since we cannot program an hrt while holding the
1004 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1005 * reschedule event.
1007 * When we get rescheduled we reprogram the hrtick_timer outside of the
1008 * rq->lock.
1012 * Use hrtick when:
1013 * - enabled by features
1014 * - hrtimer is actually high res
1016 static inline int hrtick_enabled(struct rq *rq)
1018 if (!sched_feat(HRTICK))
1019 return 0;
1020 if (!cpu_active(cpu_of(rq)))
1021 return 0;
1022 return hrtimer_is_hres_active(&rq->hrtick_timer);
1025 static void hrtick_clear(struct rq *rq)
1027 if (hrtimer_active(&rq->hrtick_timer))
1028 hrtimer_cancel(&rq->hrtick_timer);
1032 * High-resolution timer tick.
1033 * Runs from hardirq context with interrupts disabled.
1035 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1037 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1039 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1041 spin_lock(&rq->lock);
1042 update_rq_clock(rq);
1043 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1044 spin_unlock(&rq->lock);
1046 return HRTIMER_NORESTART;
1049 #ifdef CONFIG_SMP
1051 * called from hardirq (IPI) context
1053 static void __hrtick_start(void *arg)
1055 struct rq *rq = arg;
1057 spin_lock(&rq->lock);
1058 hrtimer_restart(&rq->hrtick_timer);
1059 rq->hrtick_csd_pending = 0;
1060 spin_unlock(&rq->lock);
1064 * Called to set the hrtick timer state.
1066 * called with rq->lock held and irqs disabled
1068 static void hrtick_start(struct rq *rq, u64 delay)
1070 struct hrtimer *timer = &rq->hrtick_timer;
1071 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1073 hrtimer_set_expires(timer, time);
1075 if (rq == this_rq()) {
1076 hrtimer_restart(timer);
1077 } else if (!rq->hrtick_csd_pending) {
1078 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1079 rq->hrtick_csd_pending = 1;
1083 static int
1084 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1086 int cpu = (int)(long)hcpu;
1088 switch (action) {
1089 case CPU_UP_CANCELED:
1090 case CPU_UP_CANCELED_FROZEN:
1091 case CPU_DOWN_PREPARE:
1092 case CPU_DOWN_PREPARE_FROZEN:
1093 case CPU_DEAD:
1094 case CPU_DEAD_FROZEN:
1095 hrtick_clear(cpu_rq(cpu));
1096 return NOTIFY_OK;
1099 return NOTIFY_DONE;
1102 static __init void init_hrtick(void)
1104 hotcpu_notifier(hotplug_hrtick, 0);
1106 #else
1108 * Called to set the hrtick timer state.
1110 * called with rq->lock held and irqs disabled
1112 static void hrtick_start(struct rq *rq, u64 delay)
1114 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1117 static inline void init_hrtick(void)
1120 #endif /* CONFIG_SMP */
1122 static void init_rq_hrtick(struct rq *rq)
1124 #ifdef CONFIG_SMP
1125 rq->hrtick_csd_pending = 0;
1127 rq->hrtick_csd.flags = 0;
1128 rq->hrtick_csd.func = __hrtick_start;
1129 rq->hrtick_csd.info = rq;
1130 #endif
1132 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1133 rq->hrtick_timer.function = hrtick;
1134 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1136 #else /* CONFIG_SCHED_HRTICK */
1137 static inline void hrtick_clear(struct rq *rq)
1141 static inline void init_rq_hrtick(struct rq *rq)
1145 static inline void init_hrtick(void)
1148 #endif /* CONFIG_SCHED_HRTICK */
1151 * resched_task - mark a task 'to be rescheduled now'.
1153 * On UP this means the setting of the need_resched flag, on SMP it
1154 * might also involve a cross-CPU call to trigger the scheduler on
1155 * the target CPU.
1157 #ifdef CONFIG_SMP
1159 #ifndef tsk_is_polling
1160 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1161 #endif
1163 static void resched_task(struct task_struct *p)
1165 int cpu;
1167 assert_spin_locked(&task_rq(p)->lock);
1169 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1170 return;
1172 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1174 cpu = task_cpu(p);
1175 if (cpu == smp_processor_id())
1176 return;
1178 /* NEED_RESCHED must be visible before we test polling */
1179 smp_mb();
1180 if (!tsk_is_polling(p))
1181 smp_send_reschedule(cpu);
1184 static void resched_cpu(int cpu)
1186 struct rq *rq = cpu_rq(cpu);
1187 unsigned long flags;
1189 if (!spin_trylock_irqsave(&rq->lock, flags))
1190 return;
1191 resched_task(cpu_curr(cpu));
1192 spin_unlock_irqrestore(&rq->lock, flags);
1195 #ifdef CONFIG_NO_HZ
1197 * When add_timer_on() enqueues a timer into the timer wheel of an
1198 * idle CPU then this timer might expire before the next timer event
1199 * which is scheduled to wake up that CPU. In case of a completely
1200 * idle system the next event might even be infinite time into the
1201 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1202 * leaves the inner idle loop so the newly added timer is taken into
1203 * account when the CPU goes back to idle and evaluates the timer
1204 * wheel for the next timer event.
1206 void wake_up_idle_cpu(int cpu)
1208 struct rq *rq = cpu_rq(cpu);
1210 if (cpu == smp_processor_id())
1211 return;
1214 * This is safe, as this function is called with the timer
1215 * wheel base lock of (cpu) held. When the CPU is on the way
1216 * to idle and has not yet set rq->curr to idle then it will
1217 * be serialized on the timer wheel base lock and take the new
1218 * timer into account automatically.
1220 if (rq->curr != rq->idle)
1221 return;
1224 * We can set TIF_RESCHED on the idle task of the other CPU
1225 * lockless. The worst case is that the other CPU runs the
1226 * idle task through an additional NOOP schedule()
1228 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1230 /* NEED_RESCHED must be visible before we test polling */
1231 smp_mb();
1232 if (!tsk_is_polling(rq->idle))
1233 smp_send_reschedule(cpu);
1235 #endif /* CONFIG_NO_HZ */
1237 #else /* !CONFIG_SMP */
1238 static void resched_task(struct task_struct *p)
1240 assert_spin_locked(&task_rq(p)->lock);
1241 set_tsk_need_resched(p);
1243 #endif /* CONFIG_SMP */
1245 #if BITS_PER_LONG == 32
1246 # define WMULT_CONST (~0UL)
1247 #else
1248 # define WMULT_CONST (1UL << 32)
1249 #endif
1251 #define WMULT_SHIFT 32
1254 * Shift right and round:
1256 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1259 * delta *= weight / lw
1261 static unsigned long
1262 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1263 struct load_weight *lw)
1265 u64 tmp;
1267 if (!lw->inv_weight) {
1268 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1269 lw->inv_weight = 1;
1270 else
1271 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1272 / (lw->weight+1);
1275 tmp = (u64)delta_exec * weight;
1277 * Check whether we'd overflow the 64-bit multiplication:
1279 if (unlikely(tmp > WMULT_CONST))
1280 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1281 WMULT_SHIFT/2);
1282 else
1283 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1285 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1288 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1290 lw->weight += inc;
1291 lw->inv_weight = 0;
1294 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1296 lw->weight -= dec;
1297 lw->inv_weight = 0;
1301 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1302 * of tasks with abnormal "nice" values across CPUs the contribution that
1303 * each task makes to its run queue's load is weighted according to its
1304 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1305 * scaled version of the new time slice allocation that they receive on time
1306 * slice expiry etc.
1309 #define WEIGHT_IDLEPRIO 2
1310 #define WMULT_IDLEPRIO (1 << 31)
1313 * Nice levels are multiplicative, with a gentle 10% change for every
1314 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1315 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1316 * that remained on nice 0.
1318 * The "10% effect" is relative and cumulative: from _any_ nice level,
1319 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1320 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1321 * If a task goes up by ~10% and another task goes down by ~10% then
1322 * the relative distance between them is ~25%.)
1324 static const int prio_to_weight[40] = {
1325 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1326 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1327 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1328 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1329 /* 0 */ 1024, 820, 655, 526, 423,
1330 /* 5 */ 335, 272, 215, 172, 137,
1331 /* 10 */ 110, 87, 70, 56, 45,
1332 /* 15 */ 36, 29, 23, 18, 15,
1336 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1338 * In cases where the weight does not change often, we can use the
1339 * precalculated inverse to speed up arithmetics by turning divisions
1340 * into multiplications:
1342 static const u32 prio_to_wmult[40] = {
1343 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1344 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1345 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1346 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1347 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1348 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1349 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1350 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1353 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1356 * runqueue iterator, to support SMP load-balancing between different
1357 * scheduling classes, without having to expose their internal data
1358 * structures to the load-balancing proper:
1360 struct rq_iterator {
1361 void *arg;
1362 struct task_struct *(*start)(void *);
1363 struct task_struct *(*next)(void *);
1366 #ifdef CONFIG_SMP
1367 static unsigned long
1368 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1369 unsigned long max_load_move, struct sched_domain *sd,
1370 enum cpu_idle_type idle, int *all_pinned,
1371 int *this_best_prio, struct rq_iterator *iterator);
1373 static int
1374 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1375 struct sched_domain *sd, enum cpu_idle_type idle,
1376 struct rq_iterator *iterator);
1377 #endif
1379 #ifdef CONFIG_CGROUP_CPUACCT
1380 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1381 #else
1382 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1383 #endif
1385 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1387 update_load_add(&rq->load, load);
1390 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1392 update_load_sub(&rq->load, load);
1395 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1396 typedef int (*tg_visitor)(struct task_group *, void *);
1399 * Iterate the full tree, calling @down when first entering a node and @up when
1400 * leaving it for the final time.
1402 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1404 struct task_group *parent, *child;
1405 int ret;
1407 rcu_read_lock();
1408 parent = &root_task_group;
1409 down:
1410 ret = (*down)(parent, data);
1411 if (ret)
1412 goto out_unlock;
1413 list_for_each_entry_rcu(child, &parent->children, siblings) {
1414 parent = child;
1415 goto down;
1418 continue;
1420 ret = (*up)(parent, data);
1421 if (ret)
1422 goto out_unlock;
1424 child = parent;
1425 parent = parent->parent;
1426 if (parent)
1427 goto up;
1428 out_unlock:
1429 rcu_read_unlock();
1431 return ret;
1434 static int tg_nop(struct task_group *tg, void *data)
1436 return 0;
1438 #endif
1440 #ifdef CONFIG_SMP
1441 static unsigned long source_load(int cpu, int type);
1442 static unsigned long target_load(int cpu, int type);
1443 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1445 static unsigned long cpu_avg_load_per_task(int cpu)
1447 struct rq *rq = cpu_rq(cpu);
1449 if (rq->nr_running)
1450 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1452 return rq->avg_load_per_task;
1455 #ifdef CONFIG_FAIR_GROUP_SCHED
1457 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1460 * Calculate and set the cpu's group shares.
1462 static void
1463 update_group_shares_cpu(struct task_group *tg, int cpu,
1464 unsigned long sd_shares, unsigned long sd_rq_weight)
1466 int boost = 0;
1467 unsigned long shares;
1468 unsigned long rq_weight;
1470 if (!tg->se[cpu])
1471 return;
1473 rq_weight = tg->cfs_rq[cpu]->load.weight;
1476 * If there are currently no tasks on the cpu pretend there is one of
1477 * average load so that when a new task gets to run here it will not
1478 * get delayed by group starvation.
1480 if (!rq_weight) {
1481 boost = 1;
1482 rq_weight = NICE_0_LOAD;
1485 if (unlikely(rq_weight > sd_rq_weight))
1486 rq_weight = sd_rq_weight;
1489 * \Sum shares * rq_weight
1490 * shares = -----------------------
1491 * \Sum rq_weight
1494 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1495 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1497 if (abs(shares - tg->se[cpu]->load.weight) >
1498 sysctl_sched_shares_thresh) {
1499 struct rq *rq = cpu_rq(cpu);
1500 unsigned long flags;
1502 spin_lock_irqsave(&rq->lock, flags);
1504 * record the actual number of shares, not the boosted amount.
1506 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1507 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1509 __set_se_shares(tg->se[cpu], shares);
1510 spin_unlock_irqrestore(&rq->lock, flags);
1515 * Re-compute the task group their per cpu shares over the given domain.
1516 * This needs to be done in a bottom-up fashion because the rq weight of a
1517 * parent group depends on the shares of its child groups.
1519 static int tg_shares_up(struct task_group *tg, void *data)
1521 unsigned long rq_weight = 0;
1522 unsigned long shares = 0;
1523 struct sched_domain *sd = data;
1524 int i;
1526 for_each_cpu_mask(i, sd->span) {
1527 rq_weight += tg->cfs_rq[i]->load.weight;
1528 shares += tg->cfs_rq[i]->shares;
1531 if ((!shares && rq_weight) || shares > tg->shares)
1532 shares = tg->shares;
1534 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1535 shares = tg->shares;
1537 if (!rq_weight)
1538 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1540 for_each_cpu_mask(i, sd->span)
1541 update_group_shares_cpu(tg, i, shares, rq_weight);
1543 return 0;
1547 * Compute the cpu's hierarchical load factor for each task group.
1548 * This needs to be done in a top-down fashion because the load of a child
1549 * group is a fraction of its parents load.
1551 static int tg_load_down(struct task_group *tg, void *data)
1553 unsigned long load;
1554 long cpu = (long)data;
1556 if (!tg->parent) {
1557 load = cpu_rq(cpu)->load.weight;
1558 } else {
1559 load = tg->parent->cfs_rq[cpu]->h_load;
1560 load *= tg->cfs_rq[cpu]->shares;
1561 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1564 tg->cfs_rq[cpu]->h_load = load;
1566 return 0;
1569 static void update_shares(struct sched_domain *sd)
1571 u64 now = cpu_clock(raw_smp_processor_id());
1572 s64 elapsed = now - sd->last_update;
1574 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1575 sd->last_update = now;
1576 walk_tg_tree(tg_nop, tg_shares_up, sd);
1580 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1582 spin_unlock(&rq->lock);
1583 update_shares(sd);
1584 spin_lock(&rq->lock);
1587 static void update_h_load(long cpu)
1589 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1592 #else
1594 static inline void update_shares(struct sched_domain *sd)
1598 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1602 #endif
1604 #endif
1606 #ifdef CONFIG_FAIR_GROUP_SCHED
1607 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1609 #ifdef CONFIG_SMP
1610 cfs_rq->shares = shares;
1611 #endif
1613 #endif
1615 #include "sched_stats.h"
1616 #include "sched_idletask.c"
1617 #include "sched_fair.c"
1618 #include "sched_rt.c"
1619 #ifdef CONFIG_SCHED_DEBUG
1620 # include "sched_debug.c"
1621 #endif
1623 #define sched_class_highest (&rt_sched_class)
1624 #define for_each_class(class) \
1625 for (class = sched_class_highest; class; class = class->next)
1627 static void inc_nr_running(struct rq *rq)
1629 rq->nr_running++;
1632 static void dec_nr_running(struct rq *rq)
1634 rq->nr_running--;
1637 static void set_load_weight(struct task_struct *p)
1639 if (task_has_rt_policy(p)) {
1640 p->se.load.weight = prio_to_weight[0] * 2;
1641 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1642 return;
1646 * SCHED_IDLE tasks get minimal weight:
1648 if (p->policy == SCHED_IDLE) {
1649 p->se.load.weight = WEIGHT_IDLEPRIO;
1650 p->se.load.inv_weight = WMULT_IDLEPRIO;
1651 return;
1654 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1655 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1658 static void update_avg(u64 *avg, u64 sample)
1660 s64 diff = sample - *avg;
1661 *avg += diff >> 3;
1664 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1666 sched_info_queued(p);
1667 p->sched_class->enqueue_task(rq, p, wakeup);
1668 p->se.on_rq = 1;
1671 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1673 if (sleep && p->se.last_wakeup) {
1674 update_avg(&p->se.avg_overlap,
1675 p->se.sum_exec_runtime - p->se.last_wakeup);
1676 p->se.last_wakeup = 0;
1679 sched_info_dequeued(p);
1680 p->sched_class->dequeue_task(rq, p, sleep);
1681 p->se.on_rq = 0;
1685 * __normal_prio - return the priority that is based on the static prio
1687 static inline int __normal_prio(struct task_struct *p)
1689 return p->static_prio;
1693 * Calculate the expected normal priority: i.e. priority
1694 * without taking RT-inheritance into account. Might be
1695 * boosted by interactivity modifiers. Changes upon fork,
1696 * setprio syscalls, and whenever the interactivity
1697 * estimator recalculates.
1699 static inline int normal_prio(struct task_struct *p)
1701 int prio;
1703 if (task_has_rt_policy(p))
1704 prio = MAX_RT_PRIO-1 - p->rt_priority;
1705 else
1706 prio = __normal_prio(p);
1707 return prio;
1711 * Calculate the current priority, i.e. the priority
1712 * taken into account by the scheduler. This value might
1713 * be boosted by RT tasks, or might be boosted by
1714 * interactivity modifiers. Will be RT if the task got
1715 * RT-boosted. If not then it returns p->normal_prio.
1717 static int effective_prio(struct task_struct *p)
1719 p->normal_prio = normal_prio(p);
1721 * If we are RT tasks or we were boosted to RT priority,
1722 * keep the priority unchanged. Otherwise, update priority
1723 * to the normal priority:
1725 if (!rt_prio(p->prio))
1726 return p->normal_prio;
1727 return p->prio;
1731 * activate_task - move a task to the runqueue.
1733 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1735 if (task_contributes_to_load(p))
1736 rq->nr_uninterruptible--;
1738 enqueue_task(rq, p, wakeup);
1739 inc_nr_running(rq);
1743 * deactivate_task - remove a task from the runqueue.
1745 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1747 if (task_contributes_to_load(p))
1748 rq->nr_uninterruptible++;
1750 dequeue_task(rq, p, sleep);
1751 dec_nr_running(rq);
1755 * task_curr - is this task currently executing on a CPU?
1756 * @p: the task in question.
1758 inline int task_curr(const struct task_struct *p)
1760 return cpu_curr(task_cpu(p)) == p;
1763 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1765 set_task_rq(p, cpu);
1766 #ifdef CONFIG_SMP
1768 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1769 * successfuly executed on another CPU. We must ensure that updates of
1770 * per-task data have been completed by this moment.
1772 smp_wmb();
1773 task_thread_info(p)->cpu = cpu;
1774 #endif
1777 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1778 const struct sched_class *prev_class,
1779 int oldprio, int running)
1781 if (prev_class != p->sched_class) {
1782 if (prev_class->switched_from)
1783 prev_class->switched_from(rq, p, running);
1784 p->sched_class->switched_to(rq, p, running);
1785 } else
1786 p->sched_class->prio_changed(rq, p, oldprio, running);
1789 #ifdef CONFIG_SMP
1791 /* Used instead of source_load when we know the type == 0 */
1792 static unsigned long weighted_cpuload(const int cpu)
1794 return cpu_rq(cpu)->load.weight;
1798 * Is this task likely cache-hot:
1800 static int
1801 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1803 s64 delta;
1806 * Buddy candidates are cache hot:
1808 if (sched_feat(CACHE_HOT_BUDDY) &&
1809 (&p->se == cfs_rq_of(&p->se)->next ||
1810 &p->se == cfs_rq_of(&p->se)->last))
1811 return 1;
1813 if (p->sched_class != &fair_sched_class)
1814 return 0;
1816 if (sysctl_sched_migration_cost == -1)
1817 return 1;
1818 if (sysctl_sched_migration_cost == 0)
1819 return 0;
1821 delta = now - p->se.exec_start;
1823 return delta < (s64)sysctl_sched_migration_cost;
1827 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1829 int old_cpu = task_cpu(p);
1830 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1831 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1832 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1833 u64 clock_offset;
1835 clock_offset = old_rq->clock - new_rq->clock;
1837 #ifdef CONFIG_SCHEDSTATS
1838 if (p->se.wait_start)
1839 p->se.wait_start -= clock_offset;
1840 if (p->se.sleep_start)
1841 p->se.sleep_start -= clock_offset;
1842 if (p->se.block_start)
1843 p->se.block_start -= clock_offset;
1844 if (old_cpu != new_cpu) {
1845 schedstat_inc(p, se.nr_migrations);
1846 if (task_hot(p, old_rq->clock, NULL))
1847 schedstat_inc(p, se.nr_forced2_migrations);
1849 #endif
1850 p->se.vruntime -= old_cfsrq->min_vruntime -
1851 new_cfsrq->min_vruntime;
1853 __set_task_cpu(p, new_cpu);
1856 struct migration_req {
1857 struct list_head list;
1859 struct task_struct *task;
1860 int dest_cpu;
1862 struct completion done;
1866 * The task's runqueue lock must be held.
1867 * Returns true if you have to wait for migration thread.
1869 static int
1870 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1872 struct rq *rq = task_rq(p);
1875 * If the task is not on a runqueue (and not running), then
1876 * it is sufficient to simply update the task's cpu field.
1878 if (!p->se.on_rq && !task_running(rq, p)) {
1879 set_task_cpu(p, dest_cpu);
1880 return 0;
1883 init_completion(&req->done);
1884 req->task = p;
1885 req->dest_cpu = dest_cpu;
1886 list_add(&req->list, &rq->migration_queue);
1888 return 1;
1892 * wait_task_inactive - wait for a thread to unschedule.
1894 * If @match_state is nonzero, it's the @p->state value just checked and
1895 * not expected to change. If it changes, i.e. @p might have woken up,
1896 * then return zero. When we succeed in waiting for @p to be off its CPU,
1897 * we return a positive number (its total switch count). If a second call
1898 * a short while later returns the same number, the caller can be sure that
1899 * @p has remained unscheduled the whole time.
1901 * The caller must ensure that the task *will* unschedule sometime soon,
1902 * else this function might spin for a *long* time. This function can't
1903 * be called with interrupts off, or it may introduce deadlock with
1904 * smp_call_function() if an IPI is sent by the same process we are
1905 * waiting to become inactive.
1907 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1909 unsigned long flags;
1910 int running, on_rq;
1911 unsigned long ncsw;
1912 struct rq *rq;
1914 for (;;) {
1916 * We do the initial early heuristics without holding
1917 * any task-queue locks at all. We'll only try to get
1918 * the runqueue lock when things look like they will
1919 * work out!
1921 rq = task_rq(p);
1924 * If the task is actively running on another CPU
1925 * still, just relax and busy-wait without holding
1926 * any locks.
1928 * NOTE! Since we don't hold any locks, it's not
1929 * even sure that "rq" stays as the right runqueue!
1930 * But we don't care, since "task_running()" will
1931 * return false if the runqueue has changed and p
1932 * is actually now running somewhere else!
1934 while (task_running(rq, p)) {
1935 if (match_state && unlikely(p->state != match_state))
1936 return 0;
1937 cpu_relax();
1941 * Ok, time to look more closely! We need the rq
1942 * lock now, to be *sure*. If we're wrong, we'll
1943 * just go back and repeat.
1945 rq = task_rq_lock(p, &flags);
1946 trace_sched_wait_task(rq, p);
1947 running = task_running(rq, p);
1948 on_rq = p->se.on_rq;
1949 ncsw = 0;
1950 if (!match_state || p->state == match_state)
1951 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1952 task_rq_unlock(rq, &flags);
1955 * If it changed from the expected state, bail out now.
1957 if (unlikely(!ncsw))
1958 break;
1961 * Was it really running after all now that we
1962 * checked with the proper locks actually held?
1964 * Oops. Go back and try again..
1966 if (unlikely(running)) {
1967 cpu_relax();
1968 continue;
1972 * It's not enough that it's not actively running,
1973 * it must be off the runqueue _entirely_, and not
1974 * preempted!
1976 * So if it wa still runnable (but just not actively
1977 * running right now), it's preempted, and we should
1978 * yield - it could be a while.
1980 if (unlikely(on_rq)) {
1981 schedule_timeout_uninterruptible(1);
1982 continue;
1986 * Ahh, all good. It wasn't running, and it wasn't
1987 * runnable, which means that it will never become
1988 * running in the future either. We're all done!
1990 break;
1993 return ncsw;
1996 /***
1997 * kick_process - kick a running thread to enter/exit the kernel
1998 * @p: the to-be-kicked thread
2000 * Cause a process which is running on another CPU to enter
2001 * kernel-mode, without any delay. (to get signals handled.)
2003 * NOTE: this function doesnt have to take the runqueue lock,
2004 * because all it wants to ensure is that the remote task enters
2005 * the kernel. If the IPI races and the task has been migrated
2006 * to another CPU then no harm is done and the purpose has been
2007 * achieved as well.
2009 void kick_process(struct task_struct *p)
2011 int cpu;
2013 preempt_disable();
2014 cpu = task_cpu(p);
2015 if ((cpu != smp_processor_id()) && task_curr(p))
2016 smp_send_reschedule(cpu);
2017 preempt_enable();
2021 * Return a low guess at the load of a migration-source cpu weighted
2022 * according to the scheduling class and "nice" value.
2024 * We want to under-estimate the load of migration sources, to
2025 * balance conservatively.
2027 static unsigned long source_load(int cpu, int type)
2029 struct rq *rq = cpu_rq(cpu);
2030 unsigned long total = weighted_cpuload(cpu);
2032 if (type == 0 || !sched_feat(LB_BIAS))
2033 return total;
2035 return min(rq->cpu_load[type-1], total);
2039 * Return a high guess at the load of a migration-target cpu weighted
2040 * according to the scheduling class and "nice" value.
2042 static unsigned long target_load(int cpu, int type)
2044 struct rq *rq = cpu_rq(cpu);
2045 unsigned long total = weighted_cpuload(cpu);
2047 if (type == 0 || !sched_feat(LB_BIAS))
2048 return total;
2050 return max(rq->cpu_load[type-1], total);
2054 * find_idlest_group finds and returns the least busy CPU group within the
2055 * domain.
2057 static struct sched_group *
2058 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2060 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2061 unsigned long min_load = ULONG_MAX, this_load = 0;
2062 int load_idx = sd->forkexec_idx;
2063 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2065 do {
2066 unsigned long load, avg_load;
2067 int local_group;
2068 int i;
2070 /* Skip over this group if it has no CPUs allowed */
2071 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2072 continue;
2074 local_group = cpu_isset(this_cpu, group->cpumask);
2076 /* Tally up the load of all CPUs in the group */
2077 avg_load = 0;
2079 for_each_cpu_mask_nr(i, group->cpumask) {
2080 /* Bias balancing toward cpus of our domain */
2081 if (local_group)
2082 load = source_load(i, load_idx);
2083 else
2084 load = target_load(i, load_idx);
2086 avg_load += load;
2089 /* Adjust by relative CPU power of the group */
2090 avg_load = sg_div_cpu_power(group,
2091 avg_load * SCHED_LOAD_SCALE);
2093 if (local_group) {
2094 this_load = avg_load;
2095 this = group;
2096 } else if (avg_load < min_load) {
2097 min_load = avg_load;
2098 idlest = group;
2100 } while (group = group->next, group != sd->groups);
2102 if (!idlest || 100*this_load < imbalance*min_load)
2103 return NULL;
2104 return idlest;
2108 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2110 static int
2111 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2112 cpumask_t *tmp)
2114 unsigned long load, min_load = ULONG_MAX;
2115 int idlest = -1;
2116 int i;
2118 /* Traverse only the allowed CPUs */
2119 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2121 for_each_cpu_mask_nr(i, *tmp) {
2122 load = weighted_cpuload(i);
2124 if (load < min_load || (load == min_load && i == this_cpu)) {
2125 min_load = load;
2126 idlest = i;
2130 return idlest;
2134 * sched_balance_self: balance the current task (running on cpu) in domains
2135 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2136 * SD_BALANCE_EXEC.
2138 * Balance, ie. select the least loaded group.
2140 * Returns the target CPU number, or the same CPU if no balancing is needed.
2142 * preempt must be disabled.
2144 static int sched_balance_self(int cpu, int flag)
2146 struct task_struct *t = current;
2147 struct sched_domain *tmp, *sd = NULL;
2149 for_each_domain(cpu, tmp) {
2151 * If power savings logic is enabled for a domain, stop there.
2153 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2154 break;
2155 if (tmp->flags & flag)
2156 sd = tmp;
2159 if (sd)
2160 update_shares(sd);
2162 while (sd) {
2163 cpumask_t span, tmpmask;
2164 struct sched_group *group;
2165 int new_cpu, weight;
2167 if (!(sd->flags & flag)) {
2168 sd = sd->child;
2169 continue;
2172 span = sd->span;
2173 group = find_idlest_group(sd, t, cpu);
2174 if (!group) {
2175 sd = sd->child;
2176 continue;
2179 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2180 if (new_cpu == -1 || new_cpu == cpu) {
2181 /* Now try balancing at a lower domain level of cpu */
2182 sd = sd->child;
2183 continue;
2186 /* Now try balancing at a lower domain level of new_cpu */
2187 cpu = new_cpu;
2188 sd = NULL;
2189 weight = cpus_weight(span);
2190 for_each_domain(cpu, tmp) {
2191 if (weight <= cpus_weight(tmp->span))
2192 break;
2193 if (tmp->flags & flag)
2194 sd = tmp;
2196 /* while loop will break here if sd == NULL */
2199 return cpu;
2202 #endif /* CONFIG_SMP */
2204 /***
2205 * try_to_wake_up - wake up a thread
2206 * @p: the to-be-woken-up thread
2207 * @state: the mask of task states that can be woken
2208 * @sync: do a synchronous wakeup?
2210 * Put it on the run-queue if it's not already there. The "current"
2211 * thread is always on the run-queue (except when the actual
2212 * re-schedule is in progress), and as such you're allowed to do
2213 * the simpler "current->state = TASK_RUNNING" to mark yourself
2214 * runnable without the overhead of this.
2216 * returns failure only if the task is already active.
2218 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2220 int cpu, orig_cpu, this_cpu, success = 0;
2221 unsigned long flags;
2222 long old_state;
2223 struct rq *rq;
2225 if (!sched_feat(SYNC_WAKEUPS))
2226 sync = 0;
2228 #ifdef CONFIG_SMP
2229 if (sched_feat(LB_WAKEUP_UPDATE)) {
2230 struct sched_domain *sd;
2232 this_cpu = raw_smp_processor_id();
2233 cpu = task_cpu(p);
2235 for_each_domain(this_cpu, sd) {
2236 if (cpu_isset(cpu, sd->span)) {
2237 update_shares(sd);
2238 break;
2242 #endif
2244 smp_wmb();
2245 rq = task_rq_lock(p, &flags);
2246 old_state = p->state;
2247 if (!(old_state & state))
2248 goto out;
2250 if (p->se.on_rq)
2251 goto out_running;
2253 cpu = task_cpu(p);
2254 orig_cpu = cpu;
2255 this_cpu = smp_processor_id();
2257 #ifdef CONFIG_SMP
2258 if (unlikely(task_running(rq, p)))
2259 goto out_activate;
2261 cpu = p->sched_class->select_task_rq(p, sync);
2262 if (cpu != orig_cpu) {
2263 set_task_cpu(p, cpu);
2264 task_rq_unlock(rq, &flags);
2265 /* might preempt at this point */
2266 rq = task_rq_lock(p, &flags);
2267 old_state = p->state;
2268 if (!(old_state & state))
2269 goto out;
2270 if (p->se.on_rq)
2271 goto out_running;
2273 this_cpu = smp_processor_id();
2274 cpu = task_cpu(p);
2277 #ifdef CONFIG_SCHEDSTATS
2278 schedstat_inc(rq, ttwu_count);
2279 if (cpu == this_cpu)
2280 schedstat_inc(rq, ttwu_local);
2281 else {
2282 struct sched_domain *sd;
2283 for_each_domain(this_cpu, sd) {
2284 if (cpu_isset(cpu, sd->span)) {
2285 schedstat_inc(sd, ttwu_wake_remote);
2286 break;
2290 #endif /* CONFIG_SCHEDSTATS */
2292 out_activate:
2293 #endif /* CONFIG_SMP */
2294 schedstat_inc(p, se.nr_wakeups);
2295 if (sync)
2296 schedstat_inc(p, se.nr_wakeups_sync);
2297 if (orig_cpu != cpu)
2298 schedstat_inc(p, se.nr_wakeups_migrate);
2299 if (cpu == this_cpu)
2300 schedstat_inc(p, se.nr_wakeups_local);
2301 else
2302 schedstat_inc(p, se.nr_wakeups_remote);
2303 update_rq_clock(rq);
2304 activate_task(rq, p, 1);
2305 success = 1;
2307 out_running:
2308 trace_sched_wakeup(rq, p);
2309 check_preempt_curr(rq, p, sync);
2311 p->state = TASK_RUNNING;
2312 #ifdef CONFIG_SMP
2313 if (p->sched_class->task_wake_up)
2314 p->sched_class->task_wake_up(rq, p);
2315 #endif
2316 out:
2317 current->se.last_wakeup = current->se.sum_exec_runtime;
2319 task_rq_unlock(rq, &flags);
2321 return success;
2324 int wake_up_process(struct task_struct *p)
2326 return try_to_wake_up(p, TASK_ALL, 0);
2328 EXPORT_SYMBOL(wake_up_process);
2330 int wake_up_state(struct task_struct *p, unsigned int state)
2332 return try_to_wake_up(p, state, 0);
2336 * Perform scheduler related setup for a newly forked process p.
2337 * p is forked by current.
2339 * __sched_fork() is basic setup used by init_idle() too:
2341 static void __sched_fork(struct task_struct *p)
2343 p->se.exec_start = 0;
2344 p->se.sum_exec_runtime = 0;
2345 p->se.prev_sum_exec_runtime = 0;
2346 p->se.last_wakeup = 0;
2347 p->se.avg_overlap = 0;
2349 #ifdef CONFIG_SCHEDSTATS
2350 p->se.wait_start = 0;
2351 p->se.sum_sleep_runtime = 0;
2352 p->se.sleep_start = 0;
2353 p->se.block_start = 0;
2354 p->se.sleep_max = 0;
2355 p->se.block_max = 0;
2356 p->se.exec_max = 0;
2357 p->se.slice_max = 0;
2358 p->se.wait_max = 0;
2359 #endif
2361 INIT_LIST_HEAD(&p->rt.run_list);
2362 p->se.on_rq = 0;
2363 INIT_LIST_HEAD(&p->se.group_node);
2365 #ifdef CONFIG_PREEMPT_NOTIFIERS
2366 INIT_HLIST_HEAD(&p->preempt_notifiers);
2367 #endif
2370 * We mark the process as running here, but have not actually
2371 * inserted it onto the runqueue yet. This guarantees that
2372 * nobody will actually run it, and a signal or other external
2373 * event cannot wake it up and insert it on the runqueue either.
2375 p->state = TASK_RUNNING;
2379 * fork()/clone()-time setup:
2381 void sched_fork(struct task_struct *p, int clone_flags)
2383 int cpu = get_cpu();
2385 __sched_fork(p);
2387 #ifdef CONFIG_SMP
2388 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2389 #endif
2390 set_task_cpu(p, cpu);
2393 * Make sure we do not leak PI boosting priority to the child:
2395 p->prio = current->normal_prio;
2396 if (!rt_prio(p->prio))
2397 p->sched_class = &fair_sched_class;
2399 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2400 if (likely(sched_info_on()))
2401 memset(&p->sched_info, 0, sizeof(p->sched_info));
2402 #endif
2403 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2404 p->oncpu = 0;
2405 #endif
2406 #ifdef CONFIG_PREEMPT
2407 /* Want to start with kernel preemption disabled. */
2408 task_thread_info(p)->preempt_count = 1;
2409 #endif
2410 put_cpu();
2414 * wake_up_new_task - wake up a newly created task for the first time.
2416 * This function will do some initial scheduler statistics housekeeping
2417 * that must be done for every newly created context, then puts the task
2418 * on the runqueue and wakes it.
2420 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2422 unsigned long flags;
2423 struct rq *rq;
2425 rq = task_rq_lock(p, &flags);
2426 BUG_ON(p->state != TASK_RUNNING);
2427 update_rq_clock(rq);
2429 p->prio = effective_prio(p);
2431 if (!p->sched_class->task_new || !current->se.on_rq) {
2432 activate_task(rq, p, 0);
2433 } else {
2435 * Let the scheduling class do new task startup
2436 * management (if any):
2438 p->sched_class->task_new(rq, p);
2439 inc_nr_running(rq);
2441 trace_sched_wakeup_new(rq, p);
2442 check_preempt_curr(rq, p, 0);
2443 #ifdef CONFIG_SMP
2444 if (p->sched_class->task_wake_up)
2445 p->sched_class->task_wake_up(rq, p);
2446 #endif
2447 task_rq_unlock(rq, &flags);
2450 #ifdef CONFIG_PREEMPT_NOTIFIERS
2453 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2454 * @notifier: notifier struct to register
2456 void preempt_notifier_register(struct preempt_notifier *notifier)
2458 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2460 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2463 * preempt_notifier_unregister - no longer interested in preemption notifications
2464 * @notifier: notifier struct to unregister
2466 * This is safe to call from within a preemption notifier.
2468 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2470 hlist_del(&notifier->link);
2472 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2474 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2476 struct preempt_notifier *notifier;
2477 struct hlist_node *node;
2479 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2480 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2483 static void
2484 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2485 struct task_struct *next)
2487 struct preempt_notifier *notifier;
2488 struct hlist_node *node;
2490 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2491 notifier->ops->sched_out(notifier, next);
2494 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2496 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2500 static void
2501 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2502 struct task_struct *next)
2506 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2509 * prepare_task_switch - prepare to switch tasks
2510 * @rq: the runqueue preparing to switch
2511 * @prev: the current task that is being switched out
2512 * @next: the task we are going to switch to.
2514 * This is called with the rq lock held and interrupts off. It must
2515 * be paired with a subsequent finish_task_switch after the context
2516 * switch.
2518 * prepare_task_switch sets up locking and calls architecture specific
2519 * hooks.
2521 static inline void
2522 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2523 struct task_struct *next)
2525 fire_sched_out_preempt_notifiers(prev, next);
2526 prepare_lock_switch(rq, next);
2527 prepare_arch_switch(next);
2531 * finish_task_switch - clean up after a task-switch
2532 * @rq: runqueue associated with task-switch
2533 * @prev: the thread we just switched away from.
2535 * finish_task_switch must be called after the context switch, paired
2536 * with a prepare_task_switch call before the context switch.
2537 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2538 * and do any other architecture-specific cleanup actions.
2540 * Note that we may have delayed dropping an mm in context_switch(). If
2541 * so, we finish that here outside of the runqueue lock. (Doing it
2542 * with the lock held can cause deadlocks; see schedule() for
2543 * details.)
2545 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2546 __releases(rq->lock)
2548 struct mm_struct *mm = rq->prev_mm;
2549 long prev_state;
2551 rq->prev_mm = NULL;
2554 * A task struct has one reference for the use as "current".
2555 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2556 * schedule one last time. The schedule call will never return, and
2557 * the scheduled task must drop that reference.
2558 * The test for TASK_DEAD must occur while the runqueue locks are
2559 * still held, otherwise prev could be scheduled on another cpu, die
2560 * there before we look at prev->state, and then the reference would
2561 * be dropped twice.
2562 * Manfred Spraul <manfred@colorfullife.com>
2564 prev_state = prev->state;
2565 finish_arch_switch(prev);
2566 finish_lock_switch(rq, prev);
2567 #ifdef CONFIG_SMP
2568 if (current->sched_class->post_schedule)
2569 current->sched_class->post_schedule(rq);
2570 #endif
2572 fire_sched_in_preempt_notifiers(current);
2573 if (mm)
2574 mmdrop(mm);
2575 if (unlikely(prev_state == TASK_DEAD)) {
2577 * Remove function-return probe instances associated with this
2578 * task and put them back on the free list.
2580 kprobe_flush_task(prev);
2581 put_task_struct(prev);
2586 * schedule_tail - first thing a freshly forked thread must call.
2587 * @prev: the thread we just switched away from.
2589 asmlinkage void schedule_tail(struct task_struct *prev)
2590 __releases(rq->lock)
2592 struct rq *rq = this_rq();
2594 finish_task_switch(rq, prev);
2595 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2596 /* In this case, finish_task_switch does not reenable preemption */
2597 preempt_enable();
2598 #endif
2599 if (current->set_child_tid)
2600 put_user(task_pid_vnr(current), current->set_child_tid);
2604 * context_switch - switch to the new MM and the new
2605 * thread's register state.
2607 static inline void
2608 context_switch(struct rq *rq, struct task_struct *prev,
2609 struct task_struct *next)
2611 struct mm_struct *mm, *oldmm;
2613 prepare_task_switch(rq, prev, next);
2614 trace_sched_switch(rq, prev, next);
2615 mm = next->mm;
2616 oldmm = prev->active_mm;
2618 * For paravirt, this is coupled with an exit in switch_to to
2619 * combine the page table reload and the switch backend into
2620 * one hypercall.
2622 arch_enter_lazy_cpu_mode();
2624 if (unlikely(!mm)) {
2625 next->active_mm = oldmm;
2626 atomic_inc(&oldmm->mm_count);
2627 enter_lazy_tlb(oldmm, next);
2628 } else
2629 switch_mm(oldmm, mm, next);
2631 if (unlikely(!prev->mm)) {
2632 prev->active_mm = NULL;
2633 rq->prev_mm = oldmm;
2636 * Since the runqueue lock will be released by the next
2637 * task (which is an invalid locking op but in the case
2638 * of the scheduler it's an obvious special-case), so we
2639 * do an early lockdep release here:
2641 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2642 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2643 #endif
2645 /* Here we just switch the register state and the stack. */
2646 switch_to(prev, next, prev);
2648 barrier();
2650 * this_rq must be evaluated again because prev may have moved
2651 * CPUs since it called schedule(), thus the 'rq' on its stack
2652 * frame will be invalid.
2654 finish_task_switch(this_rq(), prev);
2658 * nr_running, nr_uninterruptible and nr_context_switches:
2660 * externally visible scheduler statistics: current number of runnable
2661 * threads, current number of uninterruptible-sleeping threads, total
2662 * number of context switches performed since bootup.
2664 unsigned long nr_running(void)
2666 unsigned long i, sum = 0;
2668 for_each_online_cpu(i)
2669 sum += cpu_rq(i)->nr_running;
2671 return sum;
2674 unsigned long nr_uninterruptible(void)
2676 unsigned long i, sum = 0;
2678 for_each_possible_cpu(i)
2679 sum += cpu_rq(i)->nr_uninterruptible;
2682 * Since we read the counters lockless, it might be slightly
2683 * inaccurate. Do not allow it to go below zero though:
2685 if (unlikely((long)sum < 0))
2686 sum = 0;
2688 return sum;
2691 unsigned long long nr_context_switches(void)
2693 int i;
2694 unsigned long long sum = 0;
2696 for_each_possible_cpu(i)
2697 sum += cpu_rq(i)->nr_switches;
2699 return sum;
2702 unsigned long nr_iowait(void)
2704 unsigned long i, sum = 0;
2706 for_each_possible_cpu(i)
2707 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2709 return sum;
2712 unsigned long nr_active(void)
2714 unsigned long i, running = 0, uninterruptible = 0;
2716 for_each_online_cpu(i) {
2717 running += cpu_rq(i)->nr_running;
2718 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2721 if (unlikely((long)uninterruptible < 0))
2722 uninterruptible = 0;
2724 return running + uninterruptible;
2728 * Update rq->cpu_load[] statistics. This function is usually called every
2729 * scheduler tick (TICK_NSEC).
2731 static void update_cpu_load(struct rq *this_rq)
2733 unsigned long this_load = this_rq->load.weight;
2734 int i, scale;
2736 this_rq->nr_load_updates++;
2738 /* Update our load: */
2739 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2740 unsigned long old_load, new_load;
2742 /* scale is effectively 1 << i now, and >> i divides by scale */
2744 old_load = this_rq->cpu_load[i];
2745 new_load = this_load;
2747 * Round up the averaging division if load is increasing. This
2748 * prevents us from getting stuck on 9 if the load is 10, for
2749 * example.
2751 if (new_load > old_load)
2752 new_load += scale-1;
2753 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2757 #ifdef CONFIG_SMP
2760 * double_rq_lock - safely lock two runqueues
2762 * Note this does not disable interrupts like task_rq_lock,
2763 * you need to do so manually before calling.
2765 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2766 __acquires(rq1->lock)
2767 __acquires(rq2->lock)
2769 BUG_ON(!irqs_disabled());
2770 if (rq1 == rq2) {
2771 spin_lock(&rq1->lock);
2772 __acquire(rq2->lock); /* Fake it out ;) */
2773 } else {
2774 if (rq1 < rq2) {
2775 spin_lock(&rq1->lock);
2776 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2777 } else {
2778 spin_lock(&rq2->lock);
2779 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2782 update_rq_clock(rq1);
2783 update_rq_clock(rq2);
2787 * double_rq_unlock - safely unlock two runqueues
2789 * Note this does not restore interrupts like task_rq_unlock,
2790 * you need to do so manually after calling.
2792 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2793 __releases(rq1->lock)
2794 __releases(rq2->lock)
2796 spin_unlock(&rq1->lock);
2797 if (rq1 != rq2)
2798 spin_unlock(&rq2->lock);
2799 else
2800 __release(rq2->lock);
2804 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2806 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2807 __releases(this_rq->lock)
2808 __acquires(busiest->lock)
2809 __acquires(this_rq->lock)
2811 int ret = 0;
2813 if (unlikely(!irqs_disabled())) {
2814 /* printk() doesn't work good under rq->lock */
2815 spin_unlock(&this_rq->lock);
2816 BUG_ON(1);
2818 if (unlikely(!spin_trylock(&busiest->lock))) {
2819 if (busiest < this_rq) {
2820 spin_unlock(&this_rq->lock);
2821 spin_lock(&busiest->lock);
2822 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2823 ret = 1;
2824 } else
2825 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2827 return ret;
2830 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2831 __releases(busiest->lock)
2833 spin_unlock(&busiest->lock);
2834 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2838 * If dest_cpu is allowed for this process, migrate the task to it.
2839 * This is accomplished by forcing the cpu_allowed mask to only
2840 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2841 * the cpu_allowed mask is restored.
2843 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2845 struct migration_req req;
2846 unsigned long flags;
2847 struct rq *rq;
2849 rq = task_rq_lock(p, &flags);
2850 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2851 || unlikely(!cpu_active(dest_cpu)))
2852 goto out;
2854 trace_sched_migrate_task(rq, p, dest_cpu);
2855 /* force the process onto the specified CPU */
2856 if (migrate_task(p, dest_cpu, &req)) {
2857 /* Need to wait for migration thread (might exit: take ref). */
2858 struct task_struct *mt = rq->migration_thread;
2860 get_task_struct(mt);
2861 task_rq_unlock(rq, &flags);
2862 wake_up_process(mt);
2863 put_task_struct(mt);
2864 wait_for_completion(&req.done);
2866 return;
2868 out:
2869 task_rq_unlock(rq, &flags);
2873 * sched_exec - execve() is a valuable balancing opportunity, because at
2874 * this point the task has the smallest effective memory and cache footprint.
2876 void sched_exec(void)
2878 int new_cpu, this_cpu = get_cpu();
2879 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2880 put_cpu();
2881 if (new_cpu != this_cpu)
2882 sched_migrate_task(current, new_cpu);
2886 * pull_task - move a task from a remote runqueue to the local runqueue.
2887 * Both runqueues must be locked.
2889 static void pull_task(struct rq *src_rq, struct task_struct *p,
2890 struct rq *this_rq, int this_cpu)
2892 deactivate_task(src_rq, p, 0);
2893 set_task_cpu(p, this_cpu);
2894 activate_task(this_rq, p, 0);
2896 * Note that idle threads have a prio of MAX_PRIO, for this test
2897 * to be always true for them.
2899 check_preempt_curr(this_rq, p, 0);
2903 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2905 static
2906 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2907 struct sched_domain *sd, enum cpu_idle_type idle,
2908 int *all_pinned)
2911 * We do not migrate tasks that are:
2912 * 1) running (obviously), or
2913 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2914 * 3) are cache-hot on their current CPU.
2916 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2917 schedstat_inc(p, se.nr_failed_migrations_affine);
2918 return 0;
2920 *all_pinned = 0;
2922 if (task_running(rq, p)) {
2923 schedstat_inc(p, se.nr_failed_migrations_running);
2924 return 0;
2928 * Aggressive migration if:
2929 * 1) task is cache cold, or
2930 * 2) too many balance attempts have failed.
2933 if (!task_hot(p, rq->clock, sd) ||
2934 sd->nr_balance_failed > sd->cache_nice_tries) {
2935 #ifdef CONFIG_SCHEDSTATS
2936 if (task_hot(p, rq->clock, sd)) {
2937 schedstat_inc(sd, lb_hot_gained[idle]);
2938 schedstat_inc(p, se.nr_forced_migrations);
2940 #endif
2941 return 1;
2944 if (task_hot(p, rq->clock, sd)) {
2945 schedstat_inc(p, se.nr_failed_migrations_hot);
2946 return 0;
2948 return 1;
2951 static unsigned long
2952 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2953 unsigned long max_load_move, struct sched_domain *sd,
2954 enum cpu_idle_type idle, int *all_pinned,
2955 int *this_best_prio, struct rq_iterator *iterator)
2957 int loops = 0, pulled = 0, pinned = 0;
2958 struct task_struct *p;
2959 long rem_load_move = max_load_move;
2961 if (max_load_move == 0)
2962 goto out;
2964 pinned = 1;
2967 * Start the load-balancing iterator:
2969 p = iterator->start(iterator->arg);
2970 next:
2971 if (!p || loops++ > sysctl_sched_nr_migrate)
2972 goto out;
2974 if ((p->se.load.weight >> 1) > rem_load_move ||
2975 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2976 p = iterator->next(iterator->arg);
2977 goto next;
2980 pull_task(busiest, p, this_rq, this_cpu);
2981 pulled++;
2982 rem_load_move -= p->se.load.weight;
2985 * We only want to steal up to the prescribed amount of weighted load.
2987 if (rem_load_move > 0) {
2988 if (p->prio < *this_best_prio)
2989 *this_best_prio = p->prio;
2990 p = iterator->next(iterator->arg);
2991 goto next;
2993 out:
2995 * Right now, this is one of only two places pull_task() is called,
2996 * so we can safely collect pull_task() stats here rather than
2997 * inside pull_task().
2999 schedstat_add(sd, lb_gained[idle], pulled);
3001 if (all_pinned)
3002 *all_pinned = pinned;
3004 return max_load_move - rem_load_move;
3008 * move_tasks tries to move up to max_load_move weighted load from busiest to
3009 * this_rq, as part of a balancing operation within domain "sd".
3010 * Returns 1 if successful and 0 otherwise.
3012 * Called with both runqueues locked.
3014 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3015 unsigned long max_load_move,
3016 struct sched_domain *sd, enum cpu_idle_type idle,
3017 int *all_pinned)
3019 const struct sched_class *class = sched_class_highest;
3020 unsigned long total_load_moved = 0;
3021 int this_best_prio = this_rq->curr->prio;
3023 do {
3024 total_load_moved +=
3025 class->load_balance(this_rq, this_cpu, busiest,
3026 max_load_move - total_load_moved,
3027 sd, idle, all_pinned, &this_best_prio);
3028 class = class->next;
3030 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3031 break;
3033 } while (class && max_load_move > total_load_moved);
3035 return total_load_moved > 0;
3038 static int
3039 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3040 struct sched_domain *sd, enum cpu_idle_type idle,
3041 struct rq_iterator *iterator)
3043 struct task_struct *p = iterator->start(iterator->arg);
3044 int pinned = 0;
3046 while (p) {
3047 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3048 pull_task(busiest, p, this_rq, this_cpu);
3050 * Right now, this is only the second place pull_task()
3051 * is called, so we can safely collect pull_task()
3052 * stats here rather than inside pull_task().
3054 schedstat_inc(sd, lb_gained[idle]);
3056 return 1;
3058 p = iterator->next(iterator->arg);
3061 return 0;
3065 * move_one_task tries to move exactly one task from busiest to this_rq, as
3066 * part of active balancing operations within "domain".
3067 * Returns 1 if successful and 0 otherwise.
3069 * Called with both runqueues locked.
3071 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3072 struct sched_domain *sd, enum cpu_idle_type idle)
3074 const struct sched_class *class;
3076 for (class = sched_class_highest; class; class = class->next)
3077 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3078 return 1;
3080 return 0;
3084 * find_busiest_group finds and returns the busiest CPU group within the
3085 * domain. It calculates and returns the amount of weighted load which
3086 * should be moved to restore balance via the imbalance parameter.
3088 static struct sched_group *
3089 find_busiest_group(struct sched_domain *sd, int this_cpu,
3090 unsigned long *imbalance, enum cpu_idle_type idle,
3091 int *sd_idle, const cpumask_t *cpus, int *balance)
3093 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3094 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3095 unsigned long max_pull;
3096 unsigned long busiest_load_per_task, busiest_nr_running;
3097 unsigned long this_load_per_task, this_nr_running;
3098 int load_idx, group_imb = 0;
3099 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3100 int power_savings_balance = 1;
3101 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3102 unsigned long min_nr_running = ULONG_MAX;
3103 struct sched_group *group_min = NULL, *group_leader = NULL;
3104 #endif
3106 max_load = this_load = total_load = total_pwr = 0;
3107 busiest_load_per_task = busiest_nr_running = 0;
3108 this_load_per_task = this_nr_running = 0;
3110 if (idle == CPU_NOT_IDLE)
3111 load_idx = sd->busy_idx;
3112 else if (idle == CPU_NEWLY_IDLE)
3113 load_idx = sd->newidle_idx;
3114 else
3115 load_idx = sd->idle_idx;
3117 do {
3118 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3119 int local_group;
3120 int i;
3121 int __group_imb = 0;
3122 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3123 unsigned long sum_nr_running, sum_weighted_load;
3124 unsigned long sum_avg_load_per_task;
3125 unsigned long avg_load_per_task;
3127 local_group = cpu_isset(this_cpu, group->cpumask);
3129 if (local_group)
3130 balance_cpu = first_cpu(group->cpumask);
3132 /* Tally up the load of all CPUs in the group */
3133 sum_weighted_load = sum_nr_running = avg_load = 0;
3134 sum_avg_load_per_task = avg_load_per_task = 0;
3136 max_cpu_load = 0;
3137 min_cpu_load = ~0UL;
3139 for_each_cpu_mask_nr(i, group->cpumask) {
3140 struct rq *rq;
3142 if (!cpu_isset(i, *cpus))
3143 continue;
3145 rq = cpu_rq(i);
3147 if (*sd_idle && rq->nr_running)
3148 *sd_idle = 0;
3150 /* Bias balancing toward cpus of our domain */
3151 if (local_group) {
3152 if (idle_cpu(i) && !first_idle_cpu) {
3153 first_idle_cpu = 1;
3154 balance_cpu = i;
3157 load = target_load(i, load_idx);
3158 } else {
3159 load = source_load(i, load_idx);
3160 if (load > max_cpu_load)
3161 max_cpu_load = load;
3162 if (min_cpu_load > load)
3163 min_cpu_load = load;
3166 avg_load += load;
3167 sum_nr_running += rq->nr_running;
3168 sum_weighted_load += weighted_cpuload(i);
3170 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3174 * First idle cpu or the first cpu(busiest) in this sched group
3175 * is eligible for doing load balancing at this and above
3176 * domains. In the newly idle case, we will allow all the cpu's
3177 * to do the newly idle load balance.
3179 if (idle != CPU_NEWLY_IDLE && local_group &&
3180 balance_cpu != this_cpu && balance) {
3181 *balance = 0;
3182 goto ret;
3185 total_load += avg_load;
3186 total_pwr += group->__cpu_power;
3188 /* Adjust by relative CPU power of the group */
3189 avg_load = sg_div_cpu_power(group,
3190 avg_load * SCHED_LOAD_SCALE);
3194 * Consider the group unbalanced when the imbalance is larger
3195 * than the average weight of two tasks.
3197 * APZ: with cgroup the avg task weight can vary wildly and
3198 * might not be a suitable number - should we keep a
3199 * normalized nr_running number somewhere that negates
3200 * the hierarchy?
3202 avg_load_per_task = sg_div_cpu_power(group,
3203 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3205 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3206 __group_imb = 1;
3208 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3210 if (local_group) {
3211 this_load = avg_load;
3212 this = group;
3213 this_nr_running = sum_nr_running;
3214 this_load_per_task = sum_weighted_load;
3215 } else if (avg_load > max_load &&
3216 (sum_nr_running > group_capacity || __group_imb)) {
3217 max_load = avg_load;
3218 busiest = group;
3219 busiest_nr_running = sum_nr_running;
3220 busiest_load_per_task = sum_weighted_load;
3221 group_imb = __group_imb;
3224 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3226 * Busy processors will not participate in power savings
3227 * balance.
3229 if (idle == CPU_NOT_IDLE ||
3230 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3231 goto group_next;
3234 * If the local group is idle or completely loaded
3235 * no need to do power savings balance at this domain
3237 if (local_group && (this_nr_running >= group_capacity ||
3238 !this_nr_running))
3239 power_savings_balance = 0;
3242 * If a group is already running at full capacity or idle,
3243 * don't include that group in power savings calculations
3245 if (!power_savings_balance || sum_nr_running >= group_capacity
3246 || !sum_nr_running)
3247 goto group_next;
3250 * Calculate the group which has the least non-idle load.
3251 * This is the group from where we need to pick up the load
3252 * for saving power
3254 if ((sum_nr_running < min_nr_running) ||
3255 (sum_nr_running == min_nr_running &&
3256 first_cpu(group->cpumask) <
3257 first_cpu(group_min->cpumask))) {
3258 group_min = group;
3259 min_nr_running = sum_nr_running;
3260 min_load_per_task = sum_weighted_load /
3261 sum_nr_running;
3265 * Calculate the group which is almost near its
3266 * capacity but still has some space to pick up some load
3267 * from other group and save more power
3269 if (sum_nr_running <= group_capacity - 1) {
3270 if (sum_nr_running > leader_nr_running ||
3271 (sum_nr_running == leader_nr_running &&
3272 first_cpu(group->cpumask) >
3273 first_cpu(group_leader->cpumask))) {
3274 group_leader = group;
3275 leader_nr_running = sum_nr_running;
3278 group_next:
3279 #endif
3280 group = group->next;
3281 } while (group != sd->groups);
3283 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3284 goto out_balanced;
3286 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3288 if (this_load >= avg_load ||
3289 100*max_load <= sd->imbalance_pct*this_load)
3290 goto out_balanced;
3292 busiest_load_per_task /= busiest_nr_running;
3293 if (group_imb)
3294 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3297 * We're trying to get all the cpus to the average_load, so we don't
3298 * want to push ourselves above the average load, nor do we wish to
3299 * reduce the max loaded cpu below the average load, as either of these
3300 * actions would just result in more rebalancing later, and ping-pong
3301 * tasks around. Thus we look for the minimum possible imbalance.
3302 * Negative imbalances (*we* are more loaded than anyone else) will
3303 * be counted as no imbalance for these purposes -- we can't fix that
3304 * by pulling tasks to us. Be careful of negative numbers as they'll
3305 * appear as very large values with unsigned longs.
3307 if (max_load <= busiest_load_per_task)
3308 goto out_balanced;
3311 * In the presence of smp nice balancing, certain scenarios can have
3312 * max load less than avg load(as we skip the groups at or below
3313 * its cpu_power, while calculating max_load..)
3315 if (max_load < avg_load) {
3316 *imbalance = 0;
3317 goto small_imbalance;
3320 /* Don't want to pull so many tasks that a group would go idle */
3321 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3323 /* How much load to actually move to equalise the imbalance */
3324 *imbalance = min(max_pull * busiest->__cpu_power,
3325 (avg_load - this_load) * this->__cpu_power)
3326 / SCHED_LOAD_SCALE;
3329 * if *imbalance is less than the average load per runnable task
3330 * there is no gaurantee that any tasks will be moved so we'll have
3331 * a think about bumping its value to force at least one task to be
3332 * moved
3334 if (*imbalance < busiest_load_per_task) {
3335 unsigned long tmp, pwr_now, pwr_move;
3336 unsigned int imbn;
3338 small_imbalance:
3339 pwr_move = pwr_now = 0;
3340 imbn = 2;
3341 if (this_nr_running) {
3342 this_load_per_task /= this_nr_running;
3343 if (busiest_load_per_task > this_load_per_task)
3344 imbn = 1;
3345 } else
3346 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3348 if (max_load - this_load + busiest_load_per_task >=
3349 busiest_load_per_task * imbn) {
3350 *imbalance = busiest_load_per_task;
3351 return busiest;
3355 * OK, we don't have enough imbalance to justify moving tasks,
3356 * however we may be able to increase total CPU power used by
3357 * moving them.
3360 pwr_now += busiest->__cpu_power *
3361 min(busiest_load_per_task, max_load);
3362 pwr_now += this->__cpu_power *
3363 min(this_load_per_task, this_load);
3364 pwr_now /= SCHED_LOAD_SCALE;
3366 /* Amount of load we'd subtract */
3367 tmp = sg_div_cpu_power(busiest,
3368 busiest_load_per_task * SCHED_LOAD_SCALE);
3369 if (max_load > tmp)
3370 pwr_move += busiest->__cpu_power *
3371 min(busiest_load_per_task, max_load - tmp);
3373 /* Amount of load we'd add */
3374 if (max_load * busiest->__cpu_power <
3375 busiest_load_per_task * SCHED_LOAD_SCALE)
3376 tmp = sg_div_cpu_power(this,
3377 max_load * busiest->__cpu_power);
3378 else
3379 tmp = sg_div_cpu_power(this,
3380 busiest_load_per_task * SCHED_LOAD_SCALE);
3381 pwr_move += this->__cpu_power *
3382 min(this_load_per_task, this_load + tmp);
3383 pwr_move /= SCHED_LOAD_SCALE;
3385 /* Move if we gain throughput */
3386 if (pwr_move > pwr_now)
3387 *imbalance = busiest_load_per_task;
3390 return busiest;
3392 out_balanced:
3393 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3394 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3395 goto ret;
3397 if (this == group_leader && group_leader != group_min) {
3398 *imbalance = min_load_per_task;
3399 return group_min;
3401 #endif
3402 ret:
3403 *imbalance = 0;
3404 return NULL;
3408 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3410 static struct rq *
3411 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3412 unsigned long imbalance, const cpumask_t *cpus)
3414 struct rq *busiest = NULL, *rq;
3415 unsigned long max_load = 0;
3416 int i;
3418 for_each_cpu_mask_nr(i, group->cpumask) {
3419 unsigned long wl;
3421 if (!cpu_isset(i, *cpus))
3422 continue;
3424 rq = cpu_rq(i);
3425 wl = weighted_cpuload(i);
3427 if (rq->nr_running == 1 && wl > imbalance)
3428 continue;
3430 if (wl > max_load) {
3431 max_load = wl;
3432 busiest = rq;
3436 return busiest;
3440 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3441 * so long as it is large enough.
3443 #define MAX_PINNED_INTERVAL 512
3446 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3447 * tasks if there is an imbalance.
3449 static int load_balance(int this_cpu, struct rq *this_rq,
3450 struct sched_domain *sd, enum cpu_idle_type idle,
3451 int *balance, cpumask_t *cpus)
3453 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3454 struct sched_group *group;
3455 unsigned long imbalance;
3456 struct rq *busiest;
3457 unsigned long flags;
3459 cpus_setall(*cpus);
3462 * When power savings policy is enabled for the parent domain, idle
3463 * sibling can pick up load irrespective of busy siblings. In this case,
3464 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3465 * portraying it as CPU_NOT_IDLE.
3467 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3468 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3469 sd_idle = 1;
3471 schedstat_inc(sd, lb_count[idle]);
3473 redo:
3474 update_shares(sd);
3475 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3476 cpus, balance);
3478 if (*balance == 0)
3479 goto out_balanced;
3481 if (!group) {
3482 schedstat_inc(sd, lb_nobusyg[idle]);
3483 goto out_balanced;
3486 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3487 if (!busiest) {
3488 schedstat_inc(sd, lb_nobusyq[idle]);
3489 goto out_balanced;
3492 BUG_ON(busiest == this_rq);
3494 schedstat_add(sd, lb_imbalance[idle], imbalance);
3496 ld_moved = 0;
3497 if (busiest->nr_running > 1) {
3499 * Attempt to move tasks. If find_busiest_group has found
3500 * an imbalance but busiest->nr_running <= 1, the group is
3501 * still unbalanced. ld_moved simply stays zero, so it is
3502 * correctly treated as an imbalance.
3504 local_irq_save(flags);
3505 double_rq_lock(this_rq, busiest);
3506 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3507 imbalance, sd, idle, &all_pinned);
3508 double_rq_unlock(this_rq, busiest);
3509 local_irq_restore(flags);
3512 * some other cpu did the load balance for us.
3514 if (ld_moved && this_cpu != smp_processor_id())
3515 resched_cpu(this_cpu);
3517 /* All tasks on this runqueue were pinned by CPU affinity */
3518 if (unlikely(all_pinned)) {
3519 cpu_clear(cpu_of(busiest), *cpus);
3520 if (!cpus_empty(*cpus))
3521 goto redo;
3522 goto out_balanced;
3526 if (!ld_moved) {
3527 schedstat_inc(sd, lb_failed[idle]);
3528 sd->nr_balance_failed++;
3530 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3532 spin_lock_irqsave(&busiest->lock, flags);
3534 /* don't kick the migration_thread, if the curr
3535 * task on busiest cpu can't be moved to this_cpu
3537 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3538 spin_unlock_irqrestore(&busiest->lock, flags);
3539 all_pinned = 1;
3540 goto out_one_pinned;
3543 if (!busiest->active_balance) {
3544 busiest->active_balance = 1;
3545 busiest->push_cpu = this_cpu;
3546 active_balance = 1;
3548 spin_unlock_irqrestore(&busiest->lock, flags);
3549 if (active_balance)
3550 wake_up_process(busiest->migration_thread);
3553 * We've kicked active balancing, reset the failure
3554 * counter.
3556 sd->nr_balance_failed = sd->cache_nice_tries+1;
3558 } else
3559 sd->nr_balance_failed = 0;
3561 if (likely(!active_balance)) {
3562 /* We were unbalanced, so reset the balancing interval */
3563 sd->balance_interval = sd->min_interval;
3564 } else {
3566 * If we've begun active balancing, start to back off. This
3567 * case may not be covered by the all_pinned logic if there
3568 * is only 1 task on the busy runqueue (because we don't call
3569 * move_tasks).
3571 if (sd->balance_interval < sd->max_interval)
3572 sd->balance_interval *= 2;
3575 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3576 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3577 ld_moved = -1;
3579 goto out;
3581 out_balanced:
3582 schedstat_inc(sd, lb_balanced[idle]);
3584 sd->nr_balance_failed = 0;
3586 out_one_pinned:
3587 /* tune up the balancing interval */
3588 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3589 (sd->balance_interval < sd->max_interval))
3590 sd->balance_interval *= 2;
3592 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3593 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3594 ld_moved = -1;
3595 else
3596 ld_moved = 0;
3597 out:
3598 if (ld_moved)
3599 update_shares(sd);
3600 return ld_moved;
3604 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3605 * tasks if there is an imbalance.
3607 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3608 * this_rq is locked.
3610 static int
3611 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3612 cpumask_t *cpus)
3614 struct sched_group *group;
3615 struct rq *busiest = NULL;
3616 unsigned long imbalance;
3617 int ld_moved = 0;
3618 int sd_idle = 0;
3619 int all_pinned = 0;
3621 cpus_setall(*cpus);
3624 * When power savings policy is enabled for the parent domain, idle
3625 * sibling can pick up load irrespective of busy siblings. In this case,
3626 * let the state of idle sibling percolate up as IDLE, instead of
3627 * portraying it as CPU_NOT_IDLE.
3629 if (sd->flags & SD_SHARE_CPUPOWER &&
3630 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3631 sd_idle = 1;
3633 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3634 redo:
3635 update_shares_locked(this_rq, sd);
3636 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3637 &sd_idle, cpus, NULL);
3638 if (!group) {
3639 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3640 goto out_balanced;
3643 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3644 if (!busiest) {
3645 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3646 goto out_balanced;
3649 BUG_ON(busiest == this_rq);
3651 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3653 ld_moved = 0;
3654 if (busiest->nr_running > 1) {
3655 /* Attempt to move tasks */
3656 double_lock_balance(this_rq, busiest);
3657 /* this_rq->clock is already updated */
3658 update_rq_clock(busiest);
3659 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3660 imbalance, sd, CPU_NEWLY_IDLE,
3661 &all_pinned);
3662 double_unlock_balance(this_rq, busiest);
3664 if (unlikely(all_pinned)) {
3665 cpu_clear(cpu_of(busiest), *cpus);
3666 if (!cpus_empty(*cpus))
3667 goto redo;
3671 if (!ld_moved) {
3672 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3673 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3674 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3675 return -1;
3676 } else
3677 sd->nr_balance_failed = 0;
3679 update_shares_locked(this_rq, sd);
3680 return ld_moved;
3682 out_balanced:
3683 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3684 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3685 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3686 return -1;
3687 sd->nr_balance_failed = 0;
3689 return 0;
3693 * idle_balance is called by schedule() if this_cpu is about to become
3694 * idle. Attempts to pull tasks from other CPUs.
3696 static void idle_balance(int this_cpu, struct rq *this_rq)
3698 struct sched_domain *sd;
3699 int pulled_task = -1;
3700 unsigned long next_balance = jiffies + HZ;
3701 cpumask_t tmpmask;
3703 for_each_domain(this_cpu, sd) {
3704 unsigned long interval;
3706 if (!(sd->flags & SD_LOAD_BALANCE))
3707 continue;
3709 if (sd->flags & SD_BALANCE_NEWIDLE)
3710 /* If we've pulled tasks over stop searching: */
3711 pulled_task = load_balance_newidle(this_cpu, this_rq,
3712 sd, &tmpmask);
3714 interval = msecs_to_jiffies(sd->balance_interval);
3715 if (time_after(next_balance, sd->last_balance + interval))
3716 next_balance = sd->last_balance + interval;
3717 if (pulled_task)
3718 break;
3720 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3722 * We are going idle. next_balance may be set based on
3723 * a busy processor. So reset next_balance.
3725 this_rq->next_balance = next_balance;
3730 * active_load_balance is run by migration threads. It pushes running tasks
3731 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3732 * running on each physical CPU where possible, and avoids physical /
3733 * logical imbalances.
3735 * Called with busiest_rq locked.
3737 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3739 int target_cpu = busiest_rq->push_cpu;
3740 struct sched_domain *sd;
3741 struct rq *target_rq;
3743 /* Is there any task to move? */
3744 if (busiest_rq->nr_running <= 1)
3745 return;
3747 target_rq = cpu_rq(target_cpu);
3750 * This condition is "impossible", if it occurs
3751 * we need to fix it. Originally reported by
3752 * Bjorn Helgaas on a 128-cpu setup.
3754 BUG_ON(busiest_rq == target_rq);
3756 /* move a task from busiest_rq to target_rq */
3757 double_lock_balance(busiest_rq, target_rq);
3758 update_rq_clock(busiest_rq);
3759 update_rq_clock(target_rq);
3761 /* Search for an sd spanning us and the target CPU. */
3762 for_each_domain(target_cpu, sd) {
3763 if ((sd->flags & SD_LOAD_BALANCE) &&
3764 cpu_isset(busiest_cpu, sd->span))
3765 break;
3768 if (likely(sd)) {
3769 schedstat_inc(sd, alb_count);
3771 if (move_one_task(target_rq, target_cpu, busiest_rq,
3772 sd, CPU_IDLE))
3773 schedstat_inc(sd, alb_pushed);
3774 else
3775 schedstat_inc(sd, alb_failed);
3777 double_unlock_balance(busiest_rq, target_rq);
3780 #ifdef CONFIG_NO_HZ
3781 static struct {
3782 atomic_t load_balancer;
3783 cpumask_t cpu_mask;
3784 } nohz ____cacheline_aligned = {
3785 .load_balancer = ATOMIC_INIT(-1),
3786 .cpu_mask = CPU_MASK_NONE,
3790 * This routine will try to nominate the ilb (idle load balancing)
3791 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3792 * load balancing on behalf of all those cpus. If all the cpus in the system
3793 * go into this tickless mode, then there will be no ilb owner (as there is
3794 * no need for one) and all the cpus will sleep till the next wakeup event
3795 * arrives...
3797 * For the ilb owner, tick is not stopped. And this tick will be used
3798 * for idle load balancing. ilb owner will still be part of
3799 * nohz.cpu_mask..
3801 * While stopping the tick, this cpu will become the ilb owner if there
3802 * is no other owner. And will be the owner till that cpu becomes busy
3803 * or if all cpus in the system stop their ticks at which point
3804 * there is no need for ilb owner.
3806 * When the ilb owner becomes busy, it nominates another owner, during the
3807 * next busy scheduler_tick()
3809 int select_nohz_load_balancer(int stop_tick)
3811 int cpu = smp_processor_id();
3813 if (stop_tick) {
3814 cpu_set(cpu, nohz.cpu_mask);
3815 cpu_rq(cpu)->in_nohz_recently = 1;
3818 * If we are going offline and still the leader, give up!
3820 if (!cpu_active(cpu) &&
3821 atomic_read(&nohz.load_balancer) == cpu) {
3822 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3823 BUG();
3824 return 0;
3827 /* time for ilb owner also to sleep */
3828 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3829 if (atomic_read(&nohz.load_balancer) == cpu)
3830 atomic_set(&nohz.load_balancer, -1);
3831 return 0;
3834 if (atomic_read(&nohz.load_balancer) == -1) {
3835 /* make me the ilb owner */
3836 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3837 return 1;
3838 } else if (atomic_read(&nohz.load_balancer) == cpu)
3839 return 1;
3840 } else {
3841 if (!cpu_isset(cpu, nohz.cpu_mask))
3842 return 0;
3844 cpu_clear(cpu, nohz.cpu_mask);
3846 if (atomic_read(&nohz.load_balancer) == cpu)
3847 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3848 BUG();
3850 return 0;
3852 #endif
3854 static DEFINE_SPINLOCK(balancing);
3857 * It checks each scheduling domain to see if it is due to be balanced,
3858 * and initiates a balancing operation if so.
3860 * Balancing parameters are set up in arch_init_sched_domains.
3862 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3864 int balance = 1;
3865 struct rq *rq = cpu_rq(cpu);
3866 unsigned long interval;
3867 struct sched_domain *sd;
3868 /* Earliest time when we have to do rebalance again */
3869 unsigned long next_balance = jiffies + 60*HZ;
3870 int update_next_balance = 0;
3871 int need_serialize;
3872 cpumask_t tmp;
3874 for_each_domain(cpu, sd) {
3875 if (!(sd->flags & SD_LOAD_BALANCE))
3876 continue;
3878 interval = sd->balance_interval;
3879 if (idle != CPU_IDLE)
3880 interval *= sd->busy_factor;
3882 /* scale ms to jiffies */
3883 interval = msecs_to_jiffies(interval);
3884 if (unlikely(!interval))
3885 interval = 1;
3886 if (interval > HZ*NR_CPUS/10)
3887 interval = HZ*NR_CPUS/10;
3889 need_serialize = sd->flags & SD_SERIALIZE;
3891 if (need_serialize) {
3892 if (!spin_trylock(&balancing))
3893 goto out;
3896 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3897 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3899 * We've pulled tasks over so either we're no
3900 * longer idle, or one of our SMT siblings is
3901 * not idle.
3903 idle = CPU_NOT_IDLE;
3905 sd->last_balance = jiffies;
3907 if (need_serialize)
3908 spin_unlock(&balancing);
3909 out:
3910 if (time_after(next_balance, sd->last_balance + interval)) {
3911 next_balance = sd->last_balance + interval;
3912 update_next_balance = 1;
3916 * Stop the load balance at this level. There is another
3917 * CPU in our sched group which is doing load balancing more
3918 * actively.
3920 if (!balance)
3921 break;
3925 * next_balance will be updated only when there is a need.
3926 * When the cpu is attached to null domain for ex, it will not be
3927 * updated.
3929 if (likely(update_next_balance))
3930 rq->next_balance = next_balance;
3934 * run_rebalance_domains is triggered when needed from the scheduler tick.
3935 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3936 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3938 static void run_rebalance_domains(struct softirq_action *h)
3940 int this_cpu = smp_processor_id();
3941 struct rq *this_rq = cpu_rq(this_cpu);
3942 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3943 CPU_IDLE : CPU_NOT_IDLE;
3945 rebalance_domains(this_cpu, idle);
3947 #ifdef CONFIG_NO_HZ
3949 * If this cpu is the owner for idle load balancing, then do the
3950 * balancing on behalf of the other idle cpus whose ticks are
3951 * stopped.
3953 if (this_rq->idle_at_tick &&
3954 atomic_read(&nohz.load_balancer) == this_cpu) {
3955 cpumask_t cpus = nohz.cpu_mask;
3956 struct rq *rq;
3957 int balance_cpu;
3959 cpu_clear(this_cpu, cpus);
3960 for_each_cpu_mask_nr(balance_cpu, cpus) {
3962 * If this cpu gets work to do, stop the load balancing
3963 * work being done for other cpus. Next load
3964 * balancing owner will pick it up.
3966 if (need_resched())
3967 break;
3969 rebalance_domains(balance_cpu, CPU_IDLE);
3971 rq = cpu_rq(balance_cpu);
3972 if (time_after(this_rq->next_balance, rq->next_balance))
3973 this_rq->next_balance = rq->next_balance;
3976 #endif
3980 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3982 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3983 * idle load balancing owner or decide to stop the periodic load balancing,
3984 * if the whole system is idle.
3986 static inline void trigger_load_balance(struct rq *rq, int cpu)
3988 #ifdef CONFIG_NO_HZ
3990 * If we were in the nohz mode recently and busy at the current
3991 * scheduler tick, then check if we need to nominate new idle
3992 * load balancer.
3994 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3995 rq->in_nohz_recently = 0;
3997 if (atomic_read(&nohz.load_balancer) == cpu) {
3998 cpu_clear(cpu, nohz.cpu_mask);
3999 atomic_set(&nohz.load_balancer, -1);
4002 if (atomic_read(&nohz.load_balancer) == -1) {
4004 * simple selection for now: Nominate the
4005 * first cpu in the nohz list to be the next
4006 * ilb owner.
4008 * TBD: Traverse the sched domains and nominate
4009 * the nearest cpu in the nohz.cpu_mask.
4011 int ilb = first_cpu(nohz.cpu_mask);
4013 if (ilb < nr_cpu_ids)
4014 resched_cpu(ilb);
4019 * If this cpu is idle and doing idle load balancing for all the
4020 * cpus with ticks stopped, is it time for that to stop?
4022 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4023 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4024 resched_cpu(cpu);
4025 return;
4029 * If this cpu is idle and the idle load balancing is done by
4030 * someone else, then no need raise the SCHED_SOFTIRQ
4032 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4033 cpu_isset(cpu, nohz.cpu_mask))
4034 return;
4035 #endif
4036 if (time_after_eq(jiffies, rq->next_balance))
4037 raise_softirq(SCHED_SOFTIRQ);
4040 #else /* CONFIG_SMP */
4043 * on UP we do not need to balance between CPUs:
4045 static inline void idle_balance(int cpu, struct rq *rq)
4049 #endif
4051 DEFINE_PER_CPU(struct kernel_stat, kstat);
4053 EXPORT_PER_CPU_SYMBOL(kstat);
4056 * Return any ns on the sched_clock that have not yet been banked in
4057 * @p in case that task is currently running.
4059 unsigned long long task_delta_exec(struct task_struct *p)
4061 unsigned long flags;
4062 struct rq *rq;
4063 u64 ns = 0;
4065 rq = task_rq_lock(p, &flags);
4067 if (task_current(rq, p)) {
4068 u64 delta_exec;
4070 update_rq_clock(rq);
4071 delta_exec = rq->clock - p->se.exec_start;
4072 if ((s64)delta_exec > 0)
4073 ns = delta_exec;
4076 task_rq_unlock(rq, &flags);
4078 return ns;
4082 * Account user cpu time to a process.
4083 * @p: the process that the cpu time gets accounted to
4084 * @cputime: the cpu time spent in user space since the last update
4086 void account_user_time(struct task_struct *p, cputime_t cputime)
4088 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4089 cputime64_t tmp;
4091 p->utime = cputime_add(p->utime, cputime);
4092 account_group_user_time(p, cputime);
4094 /* Add user time to cpustat. */
4095 tmp = cputime_to_cputime64(cputime);
4096 if (TASK_NICE(p) > 0)
4097 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4098 else
4099 cpustat->user = cputime64_add(cpustat->user, tmp);
4100 /* Account for user time used */
4101 acct_update_integrals(p);
4105 * Account guest cpu time to a process.
4106 * @p: the process that the cpu time gets accounted to
4107 * @cputime: the cpu time spent in virtual machine since the last update
4109 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4111 cputime64_t tmp;
4112 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4114 tmp = cputime_to_cputime64(cputime);
4116 p->utime = cputime_add(p->utime, cputime);
4117 account_group_user_time(p, cputime);
4118 p->gtime = cputime_add(p->gtime, cputime);
4120 cpustat->user = cputime64_add(cpustat->user, tmp);
4121 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4125 * Account scaled user cpu time to a process.
4126 * @p: the process that the cpu time gets accounted to
4127 * @cputime: the cpu time spent in user space since the last update
4129 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4131 p->utimescaled = cputime_add(p->utimescaled, cputime);
4135 * Account system cpu time to a process.
4136 * @p: the process that the cpu time gets accounted to
4137 * @hardirq_offset: the offset to subtract from hardirq_count()
4138 * @cputime: the cpu time spent in kernel space since the last update
4140 void account_system_time(struct task_struct *p, int hardirq_offset,
4141 cputime_t cputime)
4143 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4144 struct rq *rq = this_rq();
4145 cputime64_t tmp;
4147 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4148 account_guest_time(p, cputime);
4149 return;
4152 p->stime = cputime_add(p->stime, cputime);
4153 account_group_system_time(p, cputime);
4155 /* Add system time to cpustat. */
4156 tmp = cputime_to_cputime64(cputime);
4157 if (hardirq_count() - hardirq_offset)
4158 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4159 else if (softirq_count())
4160 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4161 else if (p != rq->idle)
4162 cpustat->system = cputime64_add(cpustat->system, tmp);
4163 else if (atomic_read(&rq->nr_iowait) > 0)
4164 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4165 else
4166 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4167 /* Account for system time used */
4168 acct_update_integrals(p);
4172 * Account scaled system cpu time to a process.
4173 * @p: the process that the cpu time gets accounted to
4174 * @hardirq_offset: the offset to subtract from hardirq_count()
4175 * @cputime: the cpu time spent in kernel space since the last update
4177 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4179 p->stimescaled = cputime_add(p->stimescaled, cputime);
4183 * Account for involuntary wait time.
4184 * @p: the process from which the cpu time has been stolen
4185 * @steal: the cpu time spent in involuntary wait
4187 void account_steal_time(struct task_struct *p, cputime_t steal)
4189 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4190 cputime64_t tmp = cputime_to_cputime64(steal);
4191 struct rq *rq = this_rq();
4193 if (p == rq->idle) {
4194 p->stime = cputime_add(p->stime, steal);
4195 account_group_system_time(p, steal);
4196 if (atomic_read(&rq->nr_iowait) > 0)
4197 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4198 else
4199 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4200 } else
4201 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4205 * Use precise platform statistics if available:
4207 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4208 cputime_t task_utime(struct task_struct *p)
4210 return p->utime;
4213 cputime_t task_stime(struct task_struct *p)
4215 return p->stime;
4217 #else
4218 cputime_t task_utime(struct task_struct *p)
4220 clock_t utime = cputime_to_clock_t(p->utime),
4221 total = utime + cputime_to_clock_t(p->stime);
4222 u64 temp;
4225 * Use CFS's precise accounting:
4227 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4229 if (total) {
4230 temp *= utime;
4231 do_div(temp, total);
4233 utime = (clock_t)temp;
4235 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4236 return p->prev_utime;
4239 cputime_t task_stime(struct task_struct *p)
4241 clock_t stime;
4244 * Use CFS's precise accounting. (we subtract utime from
4245 * the total, to make sure the total observed by userspace
4246 * grows monotonically - apps rely on that):
4248 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4249 cputime_to_clock_t(task_utime(p));
4251 if (stime >= 0)
4252 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4254 return p->prev_stime;
4256 #endif
4258 inline cputime_t task_gtime(struct task_struct *p)
4260 return p->gtime;
4264 * This function gets called by the timer code, with HZ frequency.
4265 * We call it with interrupts disabled.
4267 * It also gets called by the fork code, when changing the parent's
4268 * timeslices.
4270 void scheduler_tick(void)
4272 int cpu = smp_processor_id();
4273 struct rq *rq = cpu_rq(cpu);
4274 struct task_struct *curr = rq->curr;
4276 sched_clock_tick();
4278 spin_lock(&rq->lock);
4279 update_rq_clock(rq);
4280 update_cpu_load(rq);
4281 curr->sched_class->task_tick(rq, curr, 0);
4282 spin_unlock(&rq->lock);
4284 #ifdef CONFIG_SMP
4285 rq->idle_at_tick = idle_cpu(cpu);
4286 trigger_load_balance(rq, cpu);
4287 #endif
4290 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4291 defined(CONFIG_PREEMPT_TRACER))
4293 static inline unsigned long get_parent_ip(unsigned long addr)
4295 if (in_lock_functions(addr)) {
4296 addr = CALLER_ADDR2;
4297 if (in_lock_functions(addr))
4298 addr = CALLER_ADDR3;
4300 return addr;
4303 void __kprobes add_preempt_count(int val)
4305 #ifdef CONFIG_DEBUG_PREEMPT
4307 * Underflow?
4309 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4310 return;
4311 #endif
4312 preempt_count() += val;
4313 #ifdef CONFIG_DEBUG_PREEMPT
4315 * Spinlock count overflowing soon?
4317 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4318 PREEMPT_MASK - 10);
4319 #endif
4320 if (preempt_count() == val)
4321 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4323 EXPORT_SYMBOL(add_preempt_count);
4325 void __kprobes sub_preempt_count(int val)
4327 #ifdef CONFIG_DEBUG_PREEMPT
4329 * Underflow?
4331 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4332 return;
4334 * Is the spinlock portion underflowing?
4336 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4337 !(preempt_count() & PREEMPT_MASK)))
4338 return;
4339 #endif
4341 if (preempt_count() == val)
4342 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4343 preempt_count() -= val;
4345 EXPORT_SYMBOL(sub_preempt_count);
4347 #endif
4350 * Print scheduling while atomic bug:
4352 static noinline void __schedule_bug(struct task_struct *prev)
4354 struct pt_regs *regs = get_irq_regs();
4356 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4357 prev->comm, prev->pid, preempt_count());
4359 debug_show_held_locks(prev);
4360 print_modules();
4361 if (irqs_disabled())
4362 print_irqtrace_events(prev);
4364 if (regs)
4365 show_regs(regs);
4366 else
4367 dump_stack();
4371 * Various schedule()-time debugging checks and statistics:
4373 static inline void schedule_debug(struct task_struct *prev)
4376 * Test if we are atomic. Since do_exit() needs to call into
4377 * schedule() atomically, we ignore that path for now.
4378 * Otherwise, whine if we are scheduling when we should not be.
4380 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4381 __schedule_bug(prev);
4383 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4385 schedstat_inc(this_rq(), sched_count);
4386 #ifdef CONFIG_SCHEDSTATS
4387 if (unlikely(prev->lock_depth >= 0)) {
4388 schedstat_inc(this_rq(), bkl_count);
4389 schedstat_inc(prev, sched_info.bkl_count);
4391 #endif
4395 * Pick up the highest-prio task:
4397 static inline struct task_struct *
4398 pick_next_task(struct rq *rq, struct task_struct *prev)
4400 const struct sched_class *class;
4401 struct task_struct *p;
4404 * Optimization: we know that if all tasks are in
4405 * the fair class we can call that function directly:
4407 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4408 p = fair_sched_class.pick_next_task(rq);
4409 if (likely(p))
4410 return p;
4413 class = sched_class_highest;
4414 for ( ; ; ) {
4415 p = class->pick_next_task(rq);
4416 if (p)
4417 return p;
4419 * Will never be NULL as the idle class always
4420 * returns a non-NULL p:
4422 class = class->next;
4427 * schedule() is the main scheduler function.
4429 asmlinkage void __sched schedule(void)
4431 struct task_struct *prev, *next;
4432 unsigned long *switch_count;
4433 struct rq *rq;
4434 int cpu;
4436 need_resched:
4437 preempt_disable();
4438 cpu = smp_processor_id();
4439 rq = cpu_rq(cpu);
4440 rcu_qsctr_inc(cpu);
4441 prev = rq->curr;
4442 switch_count = &prev->nivcsw;
4444 release_kernel_lock(prev);
4445 need_resched_nonpreemptible:
4447 schedule_debug(prev);
4449 if (sched_feat(HRTICK))
4450 hrtick_clear(rq);
4452 spin_lock_irq(&rq->lock);
4453 update_rq_clock(rq);
4454 clear_tsk_need_resched(prev);
4456 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4457 if (unlikely(signal_pending_state(prev->state, prev)))
4458 prev->state = TASK_RUNNING;
4459 else
4460 deactivate_task(rq, prev, 1);
4461 switch_count = &prev->nvcsw;
4464 #ifdef CONFIG_SMP
4465 if (prev->sched_class->pre_schedule)
4466 prev->sched_class->pre_schedule(rq, prev);
4467 #endif
4469 if (unlikely(!rq->nr_running))
4470 idle_balance(cpu, rq);
4472 prev->sched_class->put_prev_task(rq, prev);
4473 next = pick_next_task(rq, prev);
4475 if (likely(prev != next)) {
4476 sched_info_switch(prev, next);
4478 rq->nr_switches++;
4479 rq->curr = next;
4480 ++*switch_count;
4482 context_switch(rq, prev, next); /* unlocks the rq */
4484 * the context switch might have flipped the stack from under
4485 * us, hence refresh the local variables.
4487 cpu = smp_processor_id();
4488 rq = cpu_rq(cpu);
4489 } else
4490 spin_unlock_irq(&rq->lock);
4492 if (unlikely(reacquire_kernel_lock(current) < 0))
4493 goto need_resched_nonpreemptible;
4495 preempt_enable_no_resched();
4496 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4497 goto need_resched;
4499 EXPORT_SYMBOL(schedule);
4501 #ifdef CONFIG_PREEMPT
4503 * this is the entry point to schedule() from in-kernel preemption
4504 * off of preempt_enable. Kernel preemptions off return from interrupt
4505 * occur there and call schedule directly.
4507 asmlinkage void __sched preempt_schedule(void)
4509 struct thread_info *ti = current_thread_info();
4512 * If there is a non-zero preempt_count or interrupts are disabled,
4513 * we do not want to preempt the current task. Just return..
4515 if (likely(ti->preempt_count || irqs_disabled()))
4516 return;
4518 do {
4519 add_preempt_count(PREEMPT_ACTIVE);
4520 schedule();
4521 sub_preempt_count(PREEMPT_ACTIVE);
4524 * Check again in case we missed a preemption opportunity
4525 * between schedule and now.
4527 barrier();
4528 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4530 EXPORT_SYMBOL(preempt_schedule);
4533 * this is the entry point to schedule() from kernel preemption
4534 * off of irq context.
4535 * Note, that this is called and return with irqs disabled. This will
4536 * protect us against recursive calling from irq.
4538 asmlinkage void __sched preempt_schedule_irq(void)
4540 struct thread_info *ti = current_thread_info();
4542 /* Catch callers which need to be fixed */
4543 BUG_ON(ti->preempt_count || !irqs_disabled());
4545 do {
4546 add_preempt_count(PREEMPT_ACTIVE);
4547 local_irq_enable();
4548 schedule();
4549 local_irq_disable();
4550 sub_preempt_count(PREEMPT_ACTIVE);
4553 * Check again in case we missed a preemption opportunity
4554 * between schedule and now.
4556 barrier();
4557 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4560 #endif /* CONFIG_PREEMPT */
4562 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4563 void *key)
4565 return try_to_wake_up(curr->private, mode, sync);
4567 EXPORT_SYMBOL(default_wake_function);
4570 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4571 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4572 * number) then we wake all the non-exclusive tasks and one exclusive task.
4574 * There are circumstances in which we can try to wake a task which has already
4575 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4576 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4578 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4579 int nr_exclusive, int sync, void *key)
4581 wait_queue_t *curr, *next;
4583 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4584 unsigned flags = curr->flags;
4586 if (curr->func(curr, mode, sync, key) &&
4587 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4588 break;
4593 * __wake_up - wake up threads blocked on a waitqueue.
4594 * @q: the waitqueue
4595 * @mode: which threads
4596 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4597 * @key: is directly passed to the wakeup function
4599 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4600 int nr_exclusive, void *key)
4602 unsigned long flags;
4604 spin_lock_irqsave(&q->lock, flags);
4605 __wake_up_common(q, mode, nr_exclusive, 0, key);
4606 spin_unlock_irqrestore(&q->lock, flags);
4608 EXPORT_SYMBOL(__wake_up);
4611 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4613 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4615 __wake_up_common(q, mode, 1, 0, NULL);
4619 * __wake_up_sync - wake up threads blocked on a waitqueue.
4620 * @q: the waitqueue
4621 * @mode: which threads
4622 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4624 * The sync wakeup differs that the waker knows that it will schedule
4625 * away soon, so while the target thread will be woken up, it will not
4626 * be migrated to another CPU - ie. the two threads are 'synchronized'
4627 * with each other. This can prevent needless bouncing between CPUs.
4629 * On UP it can prevent extra preemption.
4631 void
4632 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4634 unsigned long flags;
4635 int sync = 1;
4637 if (unlikely(!q))
4638 return;
4640 if (unlikely(!nr_exclusive))
4641 sync = 0;
4643 spin_lock_irqsave(&q->lock, flags);
4644 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4645 spin_unlock_irqrestore(&q->lock, flags);
4647 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4650 * complete: - signals a single thread waiting on this completion
4651 * @x: holds the state of this particular completion
4653 * This will wake up a single thread waiting on this completion. Threads will be
4654 * awakened in the same order in which they were queued.
4656 * See also complete_all(), wait_for_completion() and related routines.
4658 void complete(struct completion *x)
4660 unsigned long flags;
4662 spin_lock_irqsave(&x->wait.lock, flags);
4663 x->done++;
4664 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4665 spin_unlock_irqrestore(&x->wait.lock, flags);
4667 EXPORT_SYMBOL(complete);
4670 * complete_all: - signals all threads waiting on this completion
4671 * @x: holds the state of this particular completion
4673 * This will wake up all threads waiting on this particular completion event.
4675 void complete_all(struct completion *x)
4677 unsigned long flags;
4679 spin_lock_irqsave(&x->wait.lock, flags);
4680 x->done += UINT_MAX/2;
4681 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4682 spin_unlock_irqrestore(&x->wait.lock, flags);
4684 EXPORT_SYMBOL(complete_all);
4686 static inline long __sched
4687 do_wait_for_common(struct completion *x, long timeout, int state)
4689 if (!x->done) {
4690 DECLARE_WAITQUEUE(wait, current);
4692 wait.flags |= WQ_FLAG_EXCLUSIVE;
4693 __add_wait_queue_tail(&x->wait, &wait);
4694 do {
4695 if (signal_pending_state(state, current)) {
4696 timeout = -ERESTARTSYS;
4697 break;
4699 __set_current_state(state);
4700 spin_unlock_irq(&x->wait.lock);
4701 timeout = schedule_timeout(timeout);
4702 spin_lock_irq(&x->wait.lock);
4703 } while (!x->done && timeout);
4704 __remove_wait_queue(&x->wait, &wait);
4705 if (!x->done)
4706 return timeout;
4708 x->done--;
4709 return timeout ?: 1;
4712 static long __sched
4713 wait_for_common(struct completion *x, long timeout, int state)
4715 might_sleep();
4717 spin_lock_irq(&x->wait.lock);
4718 timeout = do_wait_for_common(x, timeout, state);
4719 spin_unlock_irq(&x->wait.lock);
4720 return timeout;
4724 * wait_for_completion: - waits for completion of a task
4725 * @x: holds the state of this particular completion
4727 * This waits to be signaled for completion of a specific task. It is NOT
4728 * interruptible and there is no timeout.
4730 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4731 * and interrupt capability. Also see complete().
4733 void __sched wait_for_completion(struct completion *x)
4735 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4737 EXPORT_SYMBOL(wait_for_completion);
4740 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4741 * @x: holds the state of this particular completion
4742 * @timeout: timeout value in jiffies
4744 * This waits for either a completion of a specific task to be signaled or for a
4745 * specified timeout to expire. The timeout is in jiffies. It is not
4746 * interruptible.
4748 unsigned long __sched
4749 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4751 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4753 EXPORT_SYMBOL(wait_for_completion_timeout);
4756 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4757 * @x: holds the state of this particular completion
4759 * This waits for completion of a specific task to be signaled. It is
4760 * interruptible.
4762 int __sched wait_for_completion_interruptible(struct completion *x)
4764 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4765 if (t == -ERESTARTSYS)
4766 return t;
4767 return 0;
4769 EXPORT_SYMBOL(wait_for_completion_interruptible);
4772 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4773 * @x: holds the state of this particular completion
4774 * @timeout: timeout value in jiffies
4776 * This waits for either a completion of a specific task to be signaled or for a
4777 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4779 unsigned long __sched
4780 wait_for_completion_interruptible_timeout(struct completion *x,
4781 unsigned long timeout)
4783 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4785 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4788 * wait_for_completion_killable: - waits for completion of a task (killable)
4789 * @x: holds the state of this particular completion
4791 * This waits to be signaled for completion of a specific task. It can be
4792 * interrupted by a kill signal.
4794 int __sched wait_for_completion_killable(struct completion *x)
4796 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4797 if (t == -ERESTARTSYS)
4798 return t;
4799 return 0;
4801 EXPORT_SYMBOL(wait_for_completion_killable);
4804 * try_wait_for_completion - try to decrement a completion without blocking
4805 * @x: completion structure
4807 * Returns: 0 if a decrement cannot be done without blocking
4808 * 1 if a decrement succeeded.
4810 * If a completion is being used as a counting completion,
4811 * attempt to decrement the counter without blocking. This
4812 * enables us to avoid waiting if the resource the completion
4813 * is protecting is not available.
4815 bool try_wait_for_completion(struct completion *x)
4817 int ret = 1;
4819 spin_lock_irq(&x->wait.lock);
4820 if (!x->done)
4821 ret = 0;
4822 else
4823 x->done--;
4824 spin_unlock_irq(&x->wait.lock);
4825 return ret;
4827 EXPORT_SYMBOL(try_wait_for_completion);
4830 * completion_done - Test to see if a completion has any waiters
4831 * @x: completion structure
4833 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4834 * 1 if there are no waiters.
4837 bool completion_done(struct completion *x)
4839 int ret = 1;
4841 spin_lock_irq(&x->wait.lock);
4842 if (!x->done)
4843 ret = 0;
4844 spin_unlock_irq(&x->wait.lock);
4845 return ret;
4847 EXPORT_SYMBOL(completion_done);
4849 static long __sched
4850 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4852 unsigned long flags;
4853 wait_queue_t wait;
4855 init_waitqueue_entry(&wait, current);
4857 __set_current_state(state);
4859 spin_lock_irqsave(&q->lock, flags);
4860 __add_wait_queue(q, &wait);
4861 spin_unlock(&q->lock);
4862 timeout = schedule_timeout(timeout);
4863 spin_lock_irq(&q->lock);
4864 __remove_wait_queue(q, &wait);
4865 spin_unlock_irqrestore(&q->lock, flags);
4867 return timeout;
4870 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4872 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4874 EXPORT_SYMBOL(interruptible_sleep_on);
4876 long __sched
4877 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4879 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4881 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4883 void __sched sleep_on(wait_queue_head_t *q)
4885 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4887 EXPORT_SYMBOL(sleep_on);
4889 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4891 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4893 EXPORT_SYMBOL(sleep_on_timeout);
4895 #ifdef CONFIG_RT_MUTEXES
4898 * rt_mutex_setprio - set the current priority of a task
4899 * @p: task
4900 * @prio: prio value (kernel-internal form)
4902 * This function changes the 'effective' priority of a task. It does
4903 * not touch ->normal_prio like __setscheduler().
4905 * Used by the rt_mutex code to implement priority inheritance logic.
4907 void rt_mutex_setprio(struct task_struct *p, int prio)
4909 unsigned long flags;
4910 int oldprio, on_rq, running;
4911 struct rq *rq;
4912 const struct sched_class *prev_class = p->sched_class;
4914 BUG_ON(prio < 0 || prio > MAX_PRIO);
4916 rq = task_rq_lock(p, &flags);
4917 update_rq_clock(rq);
4919 oldprio = p->prio;
4920 on_rq = p->se.on_rq;
4921 running = task_current(rq, p);
4922 if (on_rq)
4923 dequeue_task(rq, p, 0);
4924 if (running)
4925 p->sched_class->put_prev_task(rq, p);
4927 if (rt_prio(prio))
4928 p->sched_class = &rt_sched_class;
4929 else
4930 p->sched_class = &fair_sched_class;
4932 p->prio = prio;
4934 if (running)
4935 p->sched_class->set_curr_task(rq);
4936 if (on_rq) {
4937 enqueue_task(rq, p, 0);
4939 check_class_changed(rq, p, prev_class, oldprio, running);
4941 task_rq_unlock(rq, &flags);
4944 #endif
4946 void set_user_nice(struct task_struct *p, long nice)
4948 int old_prio, delta, on_rq;
4949 unsigned long flags;
4950 struct rq *rq;
4952 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4953 return;
4955 * We have to be careful, if called from sys_setpriority(),
4956 * the task might be in the middle of scheduling on another CPU.
4958 rq = task_rq_lock(p, &flags);
4959 update_rq_clock(rq);
4961 * The RT priorities are set via sched_setscheduler(), but we still
4962 * allow the 'normal' nice value to be set - but as expected
4963 * it wont have any effect on scheduling until the task is
4964 * SCHED_FIFO/SCHED_RR:
4966 if (task_has_rt_policy(p)) {
4967 p->static_prio = NICE_TO_PRIO(nice);
4968 goto out_unlock;
4970 on_rq = p->se.on_rq;
4971 if (on_rq)
4972 dequeue_task(rq, p, 0);
4974 p->static_prio = NICE_TO_PRIO(nice);
4975 set_load_weight(p);
4976 old_prio = p->prio;
4977 p->prio = effective_prio(p);
4978 delta = p->prio - old_prio;
4980 if (on_rq) {
4981 enqueue_task(rq, p, 0);
4983 * If the task increased its priority or is running and
4984 * lowered its priority, then reschedule its CPU:
4986 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4987 resched_task(rq->curr);
4989 out_unlock:
4990 task_rq_unlock(rq, &flags);
4992 EXPORT_SYMBOL(set_user_nice);
4995 * can_nice - check if a task can reduce its nice value
4996 * @p: task
4997 * @nice: nice value
4999 int can_nice(const struct task_struct *p, const int nice)
5001 /* convert nice value [19,-20] to rlimit style value [1,40] */
5002 int nice_rlim = 20 - nice;
5004 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5005 capable(CAP_SYS_NICE));
5008 #ifdef __ARCH_WANT_SYS_NICE
5011 * sys_nice - change the priority of the current process.
5012 * @increment: priority increment
5014 * sys_setpriority is a more generic, but much slower function that
5015 * does similar things.
5017 asmlinkage long sys_nice(int increment)
5019 long nice, retval;
5022 * Setpriority might change our priority at the same moment.
5023 * We don't have to worry. Conceptually one call occurs first
5024 * and we have a single winner.
5026 if (increment < -40)
5027 increment = -40;
5028 if (increment > 40)
5029 increment = 40;
5031 nice = PRIO_TO_NICE(current->static_prio) + increment;
5032 if (nice < -20)
5033 nice = -20;
5034 if (nice > 19)
5035 nice = 19;
5037 if (increment < 0 && !can_nice(current, nice))
5038 return -EPERM;
5040 retval = security_task_setnice(current, nice);
5041 if (retval)
5042 return retval;
5044 set_user_nice(current, nice);
5045 return 0;
5048 #endif
5051 * task_prio - return the priority value of a given task.
5052 * @p: the task in question.
5054 * This is the priority value as seen by users in /proc.
5055 * RT tasks are offset by -200. Normal tasks are centered
5056 * around 0, value goes from -16 to +15.
5058 int task_prio(const struct task_struct *p)
5060 return p->prio - MAX_RT_PRIO;
5064 * task_nice - return the nice value of a given task.
5065 * @p: the task in question.
5067 int task_nice(const struct task_struct *p)
5069 return TASK_NICE(p);
5071 EXPORT_SYMBOL(task_nice);
5074 * idle_cpu - is a given cpu idle currently?
5075 * @cpu: the processor in question.
5077 int idle_cpu(int cpu)
5079 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5083 * idle_task - return the idle task for a given cpu.
5084 * @cpu: the processor in question.
5086 struct task_struct *idle_task(int cpu)
5088 return cpu_rq(cpu)->idle;
5092 * find_process_by_pid - find a process with a matching PID value.
5093 * @pid: the pid in question.
5095 static struct task_struct *find_process_by_pid(pid_t pid)
5097 return pid ? find_task_by_vpid(pid) : current;
5100 /* Actually do priority change: must hold rq lock. */
5101 static void
5102 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5104 BUG_ON(p->se.on_rq);
5106 p->policy = policy;
5107 switch (p->policy) {
5108 case SCHED_NORMAL:
5109 case SCHED_BATCH:
5110 case SCHED_IDLE:
5111 p->sched_class = &fair_sched_class;
5112 break;
5113 case SCHED_FIFO:
5114 case SCHED_RR:
5115 p->sched_class = &rt_sched_class;
5116 break;
5119 p->rt_priority = prio;
5120 p->normal_prio = normal_prio(p);
5121 /* we are holding p->pi_lock already */
5122 p->prio = rt_mutex_getprio(p);
5123 set_load_weight(p);
5126 static int __sched_setscheduler(struct task_struct *p, int policy,
5127 struct sched_param *param, bool user)
5129 int retval, oldprio, oldpolicy = -1, on_rq, running;
5130 unsigned long flags;
5131 const struct sched_class *prev_class = p->sched_class;
5132 struct rq *rq;
5134 /* may grab non-irq protected spin_locks */
5135 BUG_ON(in_interrupt());
5136 recheck:
5137 /* double check policy once rq lock held */
5138 if (policy < 0)
5139 policy = oldpolicy = p->policy;
5140 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5141 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5142 policy != SCHED_IDLE)
5143 return -EINVAL;
5145 * Valid priorities for SCHED_FIFO and SCHED_RR are
5146 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5147 * SCHED_BATCH and SCHED_IDLE is 0.
5149 if (param->sched_priority < 0 ||
5150 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5151 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5152 return -EINVAL;
5153 if (rt_policy(policy) != (param->sched_priority != 0))
5154 return -EINVAL;
5157 * Allow unprivileged RT tasks to decrease priority:
5159 if (user && !capable(CAP_SYS_NICE)) {
5160 if (rt_policy(policy)) {
5161 unsigned long rlim_rtprio;
5163 if (!lock_task_sighand(p, &flags))
5164 return -ESRCH;
5165 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5166 unlock_task_sighand(p, &flags);
5168 /* can't set/change the rt policy */
5169 if (policy != p->policy && !rlim_rtprio)
5170 return -EPERM;
5172 /* can't increase priority */
5173 if (param->sched_priority > p->rt_priority &&
5174 param->sched_priority > rlim_rtprio)
5175 return -EPERM;
5178 * Like positive nice levels, dont allow tasks to
5179 * move out of SCHED_IDLE either:
5181 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5182 return -EPERM;
5184 /* can't change other user's priorities */
5185 if ((current->euid != p->euid) &&
5186 (current->euid != p->uid))
5187 return -EPERM;
5190 if (user) {
5191 #ifdef CONFIG_RT_GROUP_SCHED
5193 * Do not allow realtime tasks into groups that have no runtime
5194 * assigned.
5196 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5197 task_group(p)->rt_bandwidth.rt_runtime == 0)
5198 return -EPERM;
5199 #endif
5201 retval = security_task_setscheduler(p, policy, param);
5202 if (retval)
5203 return retval;
5207 * make sure no PI-waiters arrive (or leave) while we are
5208 * changing the priority of the task:
5210 spin_lock_irqsave(&p->pi_lock, flags);
5212 * To be able to change p->policy safely, the apropriate
5213 * runqueue lock must be held.
5215 rq = __task_rq_lock(p);
5216 /* recheck policy now with rq lock held */
5217 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5218 policy = oldpolicy = -1;
5219 __task_rq_unlock(rq);
5220 spin_unlock_irqrestore(&p->pi_lock, flags);
5221 goto recheck;
5223 update_rq_clock(rq);
5224 on_rq = p->se.on_rq;
5225 running = task_current(rq, p);
5226 if (on_rq)
5227 deactivate_task(rq, p, 0);
5228 if (running)
5229 p->sched_class->put_prev_task(rq, p);
5231 oldprio = p->prio;
5232 __setscheduler(rq, p, policy, param->sched_priority);
5234 if (running)
5235 p->sched_class->set_curr_task(rq);
5236 if (on_rq) {
5237 activate_task(rq, p, 0);
5239 check_class_changed(rq, p, prev_class, oldprio, running);
5241 __task_rq_unlock(rq);
5242 spin_unlock_irqrestore(&p->pi_lock, flags);
5244 rt_mutex_adjust_pi(p);
5246 return 0;
5250 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5251 * @p: the task in question.
5252 * @policy: new policy.
5253 * @param: structure containing the new RT priority.
5255 * NOTE that the task may be already dead.
5257 int sched_setscheduler(struct task_struct *p, int policy,
5258 struct sched_param *param)
5260 return __sched_setscheduler(p, policy, param, true);
5262 EXPORT_SYMBOL_GPL(sched_setscheduler);
5265 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5266 * @p: the task in question.
5267 * @policy: new policy.
5268 * @param: structure containing the new RT priority.
5270 * Just like sched_setscheduler, only don't bother checking if the
5271 * current context has permission. For example, this is needed in
5272 * stop_machine(): we create temporary high priority worker threads,
5273 * but our caller might not have that capability.
5275 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5276 struct sched_param *param)
5278 return __sched_setscheduler(p, policy, param, false);
5281 static int
5282 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5284 struct sched_param lparam;
5285 struct task_struct *p;
5286 int retval;
5288 if (!param || pid < 0)
5289 return -EINVAL;
5290 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5291 return -EFAULT;
5293 rcu_read_lock();
5294 retval = -ESRCH;
5295 p = find_process_by_pid(pid);
5296 if (p != NULL)
5297 retval = sched_setscheduler(p, policy, &lparam);
5298 rcu_read_unlock();
5300 return retval;
5304 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5305 * @pid: the pid in question.
5306 * @policy: new policy.
5307 * @param: structure containing the new RT priority.
5309 asmlinkage long
5310 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5312 /* negative values for policy are not valid */
5313 if (policy < 0)
5314 return -EINVAL;
5316 return do_sched_setscheduler(pid, policy, param);
5320 * sys_sched_setparam - set/change the RT priority of a thread
5321 * @pid: the pid in question.
5322 * @param: structure containing the new RT priority.
5324 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5326 return do_sched_setscheduler(pid, -1, param);
5330 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5331 * @pid: the pid in question.
5333 asmlinkage long sys_sched_getscheduler(pid_t pid)
5335 struct task_struct *p;
5336 int retval;
5338 if (pid < 0)
5339 return -EINVAL;
5341 retval = -ESRCH;
5342 read_lock(&tasklist_lock);
5343 p = find_process_by_pid(pid);
5344 if (p) {
5345 retval = security_task_getscheduler(p);
5346 if (!retval)
5347 retval = p->policy;
5349 read_unlock(&tasklist_lock);
5350 return retval;
5354 * sys_sched_getscheduler - get the RT priority of a thread
5355 * @pid: the pid in question.
5356 * @param: structure containing the RT priority.
5358 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5360 struct sched_param lp;
5361 struct task_struct *p;
5362 int retval;
5364 if (!param || pid < 0)
5365 return -EINVAL;
5367 read_lock(&tasklist_lock);
5368 p = find_process_by_pid(pid);
5369 retval = -ESRCH;
5370 if (!p)
5371 goto out_unlock;
5373 retval = security_task_getscheduler(p);
5374 if (retval)
5375 goto out_unlock;
5377 lp.sched_priority = p->rt_priority;
5378 read_unlock(&tasklist_lock);
5381 * This one might sleep, we cannot do it with a spinlock held ...
5383 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5385 return retval;
5387 out_unlock:
5388 read_unlock(&tasklist_lock);
5389 return retval;
5392 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5394 cpumask_t cpus_allowed;
5395 cpumask_t new_mask = *in_mask;
5396 struct task_struct *p;
5397 int retval;
5399 get_online_cpus();
5400 read_lock(&tasklist_lock);
5402 p = find_process_by_pid(pid);
5403 if (!p) {
5404 read_unlock(&tasklist_lock);
5405 put_online_cpus();
5406 return -ESRCH;
5410 * It is not safe to call set_cpus_allowed with the
5411 * tasklist_lock held. We will bump the task_struct's
5412 * usage count and then drop tasklist_lock.
5414 get_task_struct(p);
5415 read_unlock(&tasklist_lock);
5417 retval = -EPERM;
5418 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5419 !capable(CAP_SYS_NICE))
5420 goto out_unlock;
5422 retval = security_task_setscheduler(p, 0, NULL);
5423 if (retval)
5424 goto out_unlock;
5426 cpuset_cpus_allowed(p, &cpus_allowed);
5427 cpus_and(new_mask, new_mask, cpus_allowed);
5428 again:
5429 retval = set_cpus_allowed_ptr(p, &new_mask);
5431 if (!retval) {
5432 cpuset_cpus_allowed(p, &cpus_allowed);
5433 if (!cpus_subset(new_mask, cpus_allowed)) {
5435 * We must have raced with a concurrent cpuset
5436 * update. Just reset the cpus_allowed to the
5437 * cpuset's cpus_allowed
5439 new_mask = cpus_allowed;
5440 goto again;
5443 out_unlock:
5444 put_task_struct(p);
5445 put_online_cpus();
5446 return retval;
5449 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5450 cpumask_t *new_mask)
5452 if (len < sizeof(cpumask_t)) {
5453 memset(new_mask, 0, sizeof(cpumask_t));
5454 } else if (len > sizeof(cpumask_t)) {
5455 len = sizeof(cpumask_t);
5457 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5461 * sys_sched_setaffinity - set the cpu affinity of a process
5462 * @pid: pid of the process
5463 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5464 * @user_mask_ptr: user-space pointer to the new cpu mask
5466 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5467 unsigned long __user *user_mask_ptr)
5469 cpumask_t new_mask;
5470 int retval;
5472 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5473 if (retval)
5474 return retval;
5476 return sched_setaffinity(pid, &new_mask);
5479 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5481 struct task_struct *p;
5482 int retval;
5484 get_online_cpus();
5485 read_lock(&tasklist_lock);
5487 retval = -ESRCH;
5488 p = find_process_by_pid(pid);
5489 if (!p)
5490 goto out_unlock;
5492 retval = security_task_getscheduler(p);
5493 if (retval)
5494 goto out_unlock;
5496 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5498 out_unlock:
5499 read_unlock(&tasklist_lock);
5500 put_online_cpus();
5502 return retval;
5506 * sys_sched_getaffinity - get the cpu affinity of a process
5507 * @pid: pid of the process
5508 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5509 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5511 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5512 unsigned long __user *user_mask_ptr)
5514 int ret;
5515 cpumask_t mask;
5517 if (len < sizeof(cpumask_t))
5518 return -EINVAL;
5520 ret = sched_getaffinity(pid, &mask);
5521 if (ret < 0)
5522 return ret;
5524 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5525 return -EFAULT;
5527 return sizeof(cpumask_t);
5531 * sys_sched_yield - yield the current processor to other threads.
5533 * This function yields the current CPU to other tasks. If there are no
5534 * other threads running on this CPU then this function will return.
5536 asmlinkage long sys_sched_yield(void)
5538 struct rq *rq = this_rq_lock();
5540 schedstat_inc(rq, yld_count);
5541 current->sched_class->yield_task(rq);
5544 * Since we are going to call schedule() anyway, there's
5545 * no need to preempt or enable interrupts:
5547 __release(rq->lock);
5548 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5549 _raw_spin_unlock(&rq->lock);
5550 preempt_enable_no_resched();
5552 schedule();
5554 return 0;
5557 static void __cond_resched(void)
5559 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5560 __might_sleep(__FILE__, __LINE__);
5561 #endif
5563 * The BKS might be reacquired before we have dropped
5564 * PREEMPT_ACTIVE, which could trigger a second
5565 * cond_resched() call.
5567 do {
5568 add_preempt_count(PREEMPT_ACTIVE);
5569 schedule();
5570 sub_preempt_count(PREEMPT_ACTIVE);
5571 } while (need_resched());
5574 int __sched _cond_resched(void)
5576 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5577 system_state == SYSTEM_RUNNING) {
5578 __cond_resched();
5579 return 1;
5581 return 0;
5583 EXPORT_SYMBOL(_cond_resched);
5586 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5587 * call schedule, and on return reacquire the lock.
5589 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5590 * operations here to prevent schedule() from being called twice (once via
5591 * spin_unlock(), once by hand).
5593 int cond_resched_lock(spinlock_t *lock)
5595 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5596 int ret = 0;
5598 if (spin_needbreak(lock) || resched) {
5599 spin_unlock(lock);
5600 if (resched && need_resched())
5601 __cond_resched();
5602 else
5603 cpu_relax();
5604 ret = 1;
5605 spin_lock(lock);
5607 return ret;
5609 EXPORT_SYMBOL(cond_resched_lock);
5611 int __sched cond_resched_softirq(void)
5613 BUG_ON(!in_softirq());
5615 if (need_resched() && system_state == SYSTEM_RUNNING) {
5616 local_bh_enable();
5617 __cond_resched();
5618 local_bh_disable();
5619 return 1;
5621 return 0;
5623 EXPORT_SYMBOL(cond_resched_softirq);
5626 * yield - yield the current processor to other threads.
5628 * This is a shortcut for kernel-space yielding - it marks the
5629 * thread runnable and calls sys_sched_yield().
5631 void __sched yield(void)
5633 set_current_state(TASK_RUNNING);
5634 sys_sched_yield();
5636 EXPORT_SYMBOL(yield);
5639 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5640 * that process accounting knows that this is a task in IO wait state.
5642 * But don't do that if it is a deliberate, throttling IO wait (this task
5643 * has set its backing_dev_info: the queue against which it should throttle)
5645 void __sched io_schedule(void)
5647 struct rq *rq = &__raw_get_cpu_var(runqueues);
5649 delayacct_blkio_start();
5650 atomic_inc(&rq->nr_iowait);
5651 schedule();
5652 atomic_dec(&rq->nr_iowait);
5653 delayacct_blkio_end();
5655 EXPORT_SYMBOL(io_schedule);
5657 long __sched io_schedule_timeout(long timeout)
5659 struct rq *rq = &__raw_get_cpu_var(runqueues);
5660 long ret;
5662 delayacct_blkio_start();
5663 atomic_inc(&rq->nr_iowait);
5664 ret = schedule_timeout(timeout);
5665 atomic_dec(&rq->nr_iowait);
5666 delayacct_blkio_end();
5667 return ret;
5671 * sys_sched_get_priority_max - return maximum RT priority.
5672 * @policy: scheduling class.
5674 * this syscall returns the maximum rt_priority that can be used
5675 * by a given scheduling class.
5677 asmlinkage long sys_sched_get_priority_max(int policy)
5679 int ret = -EINVAL;
5681 switch (policy) {
5682 case SCHED_FIFO:
5683 case SCHED_RR:
5684 ret = MAX_USER_RT_PRIO-1;
5685 break;
5686 case SCHED_NORMAL:
5687 case SCHED_BATCH:
5688 case SCHED_IDLE:
5689 ret = 0;
5690 break;
5692 return ret;
5696 * sys_sched_get_priority_min - return minimum RT priority.
5697 * @policy: scheduling class.
5699 * this syscall returns the minimum rt_priority that can be used
5700 * by a given scheduling class.
5702 asmlinkage long sys_sched_get_priority_min(int policy)
5704 int ret = -EINVAL;
5706 switch (policy) {
5707 case SCHED_FIFO:
5708 case SCHED_RR:
5709 ret = 1;
5710 break;
5711 case SCHED_NORMAL:
5712 case SCHED_BATCH:
5713 case SCHED_IDLE:
5714 ret = 0;
5716 return ret;
5720 * sys_sched_rr_get_interval - return the default timeslice of a process.
5721 * @pid: pid of the process.
5722 * @interval: userspace pointer to the timeslice value.
5724 * this syscall writes the default timeslice value of a given process
5725 * into the user-space timespec buffer. A value of '0' means infinity.
5727 asmlinkage
5728 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5730 struct task_struct *p;
5731 unsigned int time_slice;
5732 int retval;
5733 struct timespec t;
5735 if (pid < 0)
5736 return -EINVAL;
5738 retval = -ESRCH;
5739 read_lock(&tasklist_lock);
5740 p = find_process_by_pid(pid);
5741 if (!p)
5742 goto out_unlock;
5744 retval = security_task_getscheduler(p);
5745 if (retval)
5746 goto out_unlock;
5749 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5750 * tasks that are on an otherwise idle runqueue:
5752 time_slice = 0;
5753 if (p->policy == SCHED_RR) {
5754 time_slice = DEF_TIMESLICE;
5755 } else if (p->policy != SCHED_FIFO) {
5756 struct sched_entity *se = &p->se;
5757 unsigned long flags;
5758 struct rq *rq;
5760 rq = task_rq_lock(p, &flags);
5761 if (rq->cfs.load.weight)
5762 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5763 task_rq_unlock(rq, &flags);
5765 read_unlock(&tasklist_lock);
5766 jiffies_to_timespec(time_slice, &t);
5767 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5768 return retval;
5770 out_unlock:
5771 read_unlock(&tasklist_lock);
5772 return retval;
5775 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5777 void sched_show_task(struct task_struct *p)
5779 unsigned long free = 0;
5780 unsigned state;
5782 state = p->state ? __ffs(p->state) + 1 : 0;
5783 printk(KERN_INFO "%-13.13s %c", p->comm,
5784 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5785 #if BITS_PER_LONG == 32
5786 if (state == TASK_RUNNING)
5787 printk(KERN_CONT " running ");
5788 else
5789 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5790 #else
5791 if (state == TASK_RUNNING)
5792 printk(KERN_CONT " running task ");
5793 else
5794 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5795 #endif
5796 #ifdef CONFIG_DEBUG_STACK_USAGE
5798 unsigned long *n = end_of_stack(p);
5799 while (!*n)
5800 n++;
5801 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5803 #endif
5804 printk(KERN_CONT "%5lu %5d %6d\n", free,
5805 task_pid_nr(p), task_pid_nr(p->real_parent));
5807 show_stack(p, NULL);
5810 void show_state_filter(unsigned long state_filter)
5812 struct task_struct *g, *p;
5814 #if BITS_PER_LONG == 32
5815 printk(KERN_INFO
5816 " task PC stack pid father\n");
5817 #else
5818 printk(KERN_INFO
5819 " task PC stack pid father\n");
5820 #endif
5821 read_lock(&tasklist_lock);
5822 do_each_thread(g, p) {
5824 * reset the NMI-timeout, listing all files on a slow
5825 * console might take alot of time:
5827 touch_nmi_watchdog();
5828 if (!state_filter || (p->state & state_filter))
5829 sched_show_task(p);
5830 } while_each_thread(g, p);
5832 touch_all_softlockup_watchdogs();
5834 #ifdef CONFIG_SCHED_DEBUG
5835 sysrq_sched_debug_show();
5836 #endif
5837 read_unlock(&tasklist_lock);
5839 * Only show locks if all tasks are dumped:
5841 if (state_filter == -1)
5842 debug_show_all_locks();
5845 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5847 idle->sched_class = &idle_sched_class;
5851 * init_idle - set up an idle thread for a given CPU
5852 * @idle: task in question
5853 * @cpu: cpu the idle task belongs to
5855 * NOTE: this function does not set the idle thread's NEED_RESCHED
5856 * flag, to make booting more robust.
5858 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5860 struct rq *rq = cpu_rq(cpu);
5861 unsigned long flags;
5863 __sched_fork(idle);
5864 idle->se.exec_start = sched_clock();
5866 idle->prio = idle->normal_prio = MAX_PRIO;
5867 idle->cpus_allowed = cpumask_of_cpu(cpu);
5868 __set_task_cpu(idle, cpu);
5870 spin_lock_irqsave(&rq->lock, flags);
5871 rq->curr = rq->idle = idle;
5872 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5873 idle->oncpu = 1;
5874 #endif
5875 spin_unlock_irqrestore(&rq->lock, flags);
5877 /* Set the preempt count _outside_ the spinlocks! */
5878 #if defined(CONFIG_PREEMPT)
5879 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5880 #else
5881 task_thread_info(idle)->preempt_count = 0;
5882 #endif
5884 * The idle tasks have their own, simple scheduling class:
5886 idle->sched_class = &idle_sched_class;
5890 * In a system that switches off the HZ timer nohz_cpu_mask
5891 * indicates which cpus entered this state. This is used
5892 * in the rcu update to wait only for active cpus. For system
5893 * which do not switch off the HZ timer nohz_cpu_mask should
5894 * always be CPU_MASK_NONE.
5896 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5899 * Increase the granularity value when there are more CPUs,
5900 * because with more CPUs the 'effective latency' as visible
5901 * to users decreases. But the relationship is not linear,
5902 * so pick a second-best guess by going with the log2 of the
5903 * number of CPUs.
5905 * This idea comes from the SD scheduler of Con Kolivas:
5907 static inline void sched_init_granularity(void)
5909 unsigned int factor = 1 + ilog2(num_online_cpus());
5910 const unsigned long limit = 200000000;
5912 sysctl_sched_min_granularity *= factor;
5913 if (sysctl_sched_min_granularity > limit)
5914 sysctl_sched_min_granularity = limit;
5916 sysctl_sched_latency *= factor;
5917 if (sysctl_sched_latency > limit)
5918 sysctl_sched_latency = limit;
5920 sysctl_sched_wakeup_granularity *= factor;
5922 sysctl_sched_shares_ratelimit *= factor;
5925 #ifdef CONFIG_SMP
5927 * This is how migration works:
5929 * 1) we queue a struct migration_req structure in the source CPU's
5930 * runqueue and wake up that CPU's migration thread.
5931 * 2) we down() the locked semaphore => thread blocks.
5932 * 3) migration thread wakes up (implicitly it forces the migrated
5933 * thread off the CPU)
5934 * 4) it gets the migration request and checks whether the migrated
5935 * task is still in the wrong runqueue.
5936 * 5) if it's in the wrong runqueue then the migration thread removes
5937 * it and puts it into the right queue.
5938 * 6) migration thread up()s the semaphore.
5939 * 7) we wake up and the migration is done.
5943 * Change a given task's CPU affinity. Migrate the thread to a
5944 * proper CPU and schedule it away if the CPU it's executing on
5945 * is removed from the allowed bitmask.
5947 * NOTE: the caller must have a valid reference to the task, the
5948 * task must not exit() & deallocate itself prematurely. The
5949 * call is not atomic; no spinlocks may be held.
5951 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5953 struct migration_req req;
5954 unsigned long flags;
5955 struct rq *rq;
5956 int ret = 0;
5958 rq = task_rq_lock(p, &flags);
5959 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5960 ret = -EINVAL;
5961 goto out;
5964 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5965 !cpus_equal(p->cpus_allowed, *new_mask))) {
5966 ret = -EINVAL;
5967 goto out;
5970 if (p->sched_class->set_cpus_allowed)
5971 p->sched_class->set_cpus_allowed(p, new_mask);
5972 else {
5973 p->cpus_allowed = *new_mask;
5974 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5977 /* Can the task run on the task's current CPU? If so, we're done */
5978 if (cpu_isset(task_cpu(p), *new_mask))
5979 goto out;
5981 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5982 /* Need help from migration thread: drop lock and wait. */
5983 task_rq_unlock(rq, &flags);
5984 wake_up_process(rq->migration_thread);
5985 wait_for_completion(&req.done);
5986 tlb_migrate_finish(p->mm);
5987 return 0;
5989 out:
5990 task_rq_unlock(rq, &flags);
5992 return ret;
5994 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5997 * Move (not current) task off this cpu, onto dest cpu. We're doing
5998 * this because either it can't run here any more (set_cpus_allowed()
5999 * away from this CPU, or CPU going down), or because we're
6000 * attempting to rebalance this task on exec (sched_exec).
6002 * So we race with normal scheduler movements, but that's OK, as long
6003 * as the task is no longer on this CPU.
6005 * Returns non-zero if task was successfully migrated.
6007 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6009 struct rq *rq_dest, *rq_src;
6010 int ret = 0, on_rq;
6012 if (unlikely(!cpu_active(dest_cpu)))
6013 return ret;
6015 rq_src = cpu_rq(src_cpu);
6016 rq_dest = cpu_rq(dest_cpu);
6018 double_rq_lock(rq_src, rq_dest);
6019 /* Already moved. */
6020 if (task_cpu(p) != src_cpu)
6021 goto done;
6022 /* Affinity changed (again). */
6023 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6024 goto fail;
6026 on_rq = p->se.on_rq;
6027 if (on_rq)
6028 deactivate_task(rq_src, p, 0);
6030 set_task_cpu(p, dest_cpu);
6031 if (on_rq) {
6032 activate_task(rq_dest, p, 0);
6033 check_preempt_curr(rq_dest, p, 0);
6035 done:
6036 ret = 1;
6037 fail:
6038 double_rq_unlock(rq_src, rq_dest);
6039 return ret;
6043 * migration_thread - this is a highprio system thread that performs
6044 * thread migration by bumping thread off CPU then 'pushing' onto
6045 * another runqueue.
6047 static int migration_thread(void *data)
6049 int cpu = (long)data;
6050 struct rq *rq;
6052 rq = cpu_rq(cpu);
6053 BUG_ON(rq->migration_thread != current);
6055 set_current_state(TASK_INTERRUPTIBLE);
6056 while (!kthread_should_stop()) {
6057 struct migration_req *req;
6058 struct list_head *head;
6060 spin_lock_irq(&rq->lock);
6062 if (cpu_is_offline(cpu)) {
6063 spin_unlock_irq(&rq->lock);
6064 goto wait_to_die;
6067 if (rq->active_balance) {
6068 active_load_balance(rq, cpu);
6069 rq->active_balance = 0;
6072 head = &rq->migration_queue;
6074 if (list_empty(head)) {
6075 spin_unlock_irq(&rq->lock);
6076 schedule();
6077 set_current_state(TASK_INTERRUPTIBLE);
6078 continue;
6080 req = list_entry(head->next, struct migration_req, list);
6081 list_del_init(head->next);
6083 spin_unlock(&rq->lock);
6084 __migrate_task(req->task, cpu, req->dest_cpu);
6085 local_irq_enable();
6087 complete(&req->done);
6089 __set_current_state(TASK_RUNNING);
6090 return 0;
6092 wait_to_die:
6093 /* Wait for kthread_stop */
6094 set_current_state(TASK_INTERRUPTIBLE);
6095 while (!kthread_should_stop()) {
6096 schedule();
6097 set_current_state(TASK_INTERRUPTIBLE);
6099 __set_current_state(TASK_RUNNING);
6100 return 0;
6103 #ifdef CONFIG_HOTPLUG_CPU
6105 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6107 int ret;
6109 local_irq_disable();
6110 ret = __migrate_task(p, src_cpu, dest_cpu);
6111 local_irq_enable();
6112 return ret;
6116 * Figure out where task on dead CPU should go, use force if necessary.
6117 * NOTE: interrupts should be disabled by the caller
6119 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6121 unsigned long flags;
6122 cpumask_t mask;
6123 struct rq *rq;
6124 int dest_cpu;
6126 do {
6127 /* On same node? */
6128 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6129 cpus_and(mask, mask, p->cpus_allowed);
6130 dest_cpu = any_online_cpu(mask);
6132 /* On any allowed CPU? */
6133 if (dest_cpu >= nr_cpu_ids)
6134 dest_cpu = any_online_cpu(p->cpus_allowed);
6136 /* No more Mr. Nice Guy. */
6137 if (dest_cpu >= nr_cpu_ids) {
6138 cpumask_t cpus_allowed;
6140 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6142 * Try to stay on the same cpuset, where the
6143 * current cpuset may be a subset of all cpus.
6144 * The cpuset_cpus_allowed_locked() variant of
6145 * cpuset_cpus_allowed() will not block. It must be
6146 * called within calls to cpuset_lock/cpuset_unlock.
6148 rq = task_rq_lock(p, &flags);
6149 p->cpus_allowed = cpus_allowed;
6150 dest_cpu = any_online_cpu(p->cpus_allowed);
6151 task_rq_unlock(rq, &flags);
6154 * Don't tell them about moving exiting tasks or
6155 * kernel threads (both mm NULL), since they never
6156 * leave kernel.
6158 if (p->mm && printk_ratelimit()) {
6159 printk(KERN_INFO "process %d (%s) no "
6160 "longer affine to cpu%d\n",
6161 task_pid_nr(p), p->comm, dead_cpu);
6164 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6168 * While a dead CPU has no uninterruptible tasks queued at this point,
6169 * it might still have a nonzero ->nr_uninterruptible counter, because
6170 * for performance reasons the counter is not stricly tracking tasks to
6171 * their home CPUs. So we just add the counter to another CPU's counter,
6172 * to keep the global sum constant after CPU-down:
6174 static void migrate_nr_uninterruptible(struct rq *rq_src)
6176 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6177 unsigned long flags;
6179 local_irq_save(flags);
6180 double_rq_lock(rq_src, rq_dest);
6181 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6182 rq_src->nr_uninterruptible = 0;
6183 double_rq_unlock(rq_src, rq_dest);
6184 local_irq_restore(flags);
6187 /* Run through task list and migrate tasks from the dead cpu. */
6188 static void migrate_live_tasks(int src_cpu)
6190 struct task_struct *p, *t;
6192 read_lock(&tasklist_lock);
6194 do_each_thread(t, p) {
6195 if (p == current)
6196 continue;
6198 if (task_cpu(p) == src_cpu)
6199 move_task_off_dead_cpu(src_cpu, p);
6200 } while_each_thread(t, p);
6202 read_unlock(&tasklist_lock);
6206 * Schedules idle task to be the next runnable task on current CPU.
6207 * It does so by boosting its priority to highest possible.
6208 * Used by CPU offline code.
6210 void sched_idle_next(void)
6212 int this_cpu = smp_processor_id();
6213 struct rq *rq = cpu_rq(this_cpu);
6214 struct task_struct *p = rq->idle;
6215 unsigned long flags;
6217 /* cpu has to be offline */
6218 BUG_ON(cpu_online(this_cpu));
6221 * Strictly not necessary since rest of the CPUs are stopped by now
6222 * and interrupts disabled on the current cpu.
6224 spin_lock_irqsave(&rq->lock, flags);
6226 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6228 update_rq_clock(rq);
6229 activate_task(rq, p, 0);
6231 spin_unlock_irqrestore(&rq->lock, flags);
6235 * Ensures that the idle task is using init_mm right before its cpu goes
6236 * offline.
6238 void idle_task_exit(void)
6240 struct mm_struct *mm = current->active_mm;
6242 BUG_ON(cpu_online(smp_processor_id()));
6244 if (mm != &init_mm)
6245 switch_mm(mm, &init_mm, current);
6246 mmdrop(mm);
6249 /* called under rq->lock with disabled interrupts */
6250 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6252 struct rq *rq = cpu_rq(dead_cpu);
6254 /* Must be exiting, otherwise would be on tasklist. */
6255 BUG_ON(!p->exit_state);
6257 /* Cannot have done final schedule yet: would have vanished. */
6258 BUG_ON(p->state == TASK_DEAD);
6260 get_task_struct(p);
6263 * Drop lock around migration; if someone else moves it,
6264 * that's OK. No task can be added to this CPU, so iteration is
6265 * fine.
6267 spin_unlock_irq(&rq->lock);
6268 move_task_off_dead_cpu(dead_cpu, p);
6269 spin_lock_irq(&rq->lock);
6271 put_task_struct(p);
6274 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6275 static void migrate_dead_tasks(unsigned int dead_cpu)
6277 struct rq *rq = cpu_rq(dead_cpu);
6278 struct task_struct *next;
6280 for ( ; ; ) {
6281 if (!rq->nr_running)
6282 break;
6283 update_rq_clock(rq);
6284 next = pick_next_task(rq, rq->curr);
6285 if (!next)
6286 break;
6287 next->sched_class->put_prev_task(rq, next);
6288 migrate_dead(dead_cpu, next);
6292 #endif /* CONFIG_HOTPLUG_CPU */
6294 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6296 static struct ctl_table sd_ctl_dir[] = {
6298 .procname = "sched_domain",
6299 .mode = 0555,
6301 {0, },
6304 static struct ctl_table sd_ctl_root[] = {
6306 .ctl_name = CTL_KERN,
6307 .procname = "kernel",
6308 .mode = 0555,
6309 .child = sd_ctl_dir,
6311 {0, },
6314 static struct ctl_table *sd_alloc_ctl_entry(int n)
6316 struct ctl_table *entry =
6317 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6319 return entry;
6322 static void sd_free_ctl_entry(struct ctl_table **tablep)
6324 struct ctl_table *entry;
6327 * In the intermediate directories, both the child directory and
6328 * procname are dynamically allocated and could fail but the mode
6329 * will always be set. In the lowest directory the names are
6330 * static strings and all have proc handlers.
6332 for (entry = *tablep; entry->mode; entry++) {
6333 if (entry->child)
6334 sd_free_ctl_entry(&entry->child);
6335 if (entry->proc_handler == NULL)
6336 kfree(entry->procname);
6339 kfree(*tablep);
6340 *tablep = NULL;
6343 static void
6344 set_table_entry(struct ctl_table *entry,
6345 const char *procname, void *data, int maxlen,
6346 mode_t mode, proc_handler *proc_handler)
6348 entry->procname = procname;
6349 entry->data = data;
6350 entry->maxlen = maxlen;
6351 entry->mode = mode;
6352 entry->proc_handler = proc_handler;
6355 static struct ctl_table *
6356 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6358 struct ctl_table *table = sd_alloc_ctl_entry(13);
6360 if (table == NULL)
6361 return NULL;
6363 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6364 sizeof(long), 0644, proc_doulongvec_minmax);
6365 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6366 sizeof(long), 0644, proc_doulongvec_minmax);
6367 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6368 sizeof(int), 0644, proc_dointvec_minmax);
6369 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6370 sizeof(int), 0644, proc_dointvec_minmax);
6371 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6372 sizeof(int), 0644, proc_dointvec_minmax);
6373 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6374 sizeof(int), 0644, proc_dointvec_minmax);
6375 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6376 sizeof(int), 0644, proc_dointvec_minmax);
6377 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6378 sizeof(int), 0644, proc_dointvec_minmax);
6379 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6380 sizeof(int), 0644, proc_dointvec_minmax);
6381 set_table_entry(&table[9], "cache_nice_tries",
6382 &sd->cache_nice_tries,
6383 sizeof(int), 0644, proc_dointvec_minmax);
6384 set_table_entry(&table[10], "flags", &sd->flags,
6385 sizeof(int), 0644, proc_dointvec_minmax);
6386 set_table_entry(&table[11], "name", sd->name,
6387 CORENAME_MAX_SIZE, 0444, proc_dostring);
6388 /* &table[12] is terminator */
6390 return table;
6393 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6395 struct ctl_table *entry, *table;
6396 struct sched_domain *sd;
6397 int domain_num = 0, i;
6398 char buf[32];
6400 for_each_domain(cpu, sd)
6401 domain_num++;
6402 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6403 if (table == NULL)
6404 return NULL;
6406 i = 0;
6407 for_each_domain(cpu, sd) {
6408 snprintf(buf, 32, "domain%d", i);
6409 entry->procname = kstrdup(buf, GFP_KERNEL);
6410 entry->mode = 0555;
6411 entry->child = sd_alloc_ctl_domain_table(sd);
6412 entry++;
6413 i++;
6415 return table;
6418 static struct ctl_table_header *sd_sysctl_header;
6419 static void register_sched_domain_sysctl(void)
6421 int i, cpu_num = num_online_cpus();
6422 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6423 char buf[32];
6425 WARN_ON(sd_ctl_dir[0].child);
6426 sd_ctl_dir[0].child = entry;
6428 if (entry == NULL)
6429 return;
6431 for_each_online_cpu(i) {
6432 snprintf(buf, 32, "cpu%d", i);
6433 entry->procname = kstrdup(buf, GFP_KERNEL);
6434 entry->mode = 0555;
6435 entry->child = sd_alloc_ctl_cpu_table(i);
6436 entry++;
6439 WARN_ON(sd_sysctl_header);
6440 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6443 /* may be called multiple times per register */
6444 static void unregister_sched_domain_sysctl(void)
6446 if (sd_sysctl_header)
6447 unregister_sysctl_table(sd_sysctl_header);
6448 sd_sysctl_header = NULL;
6449 if (sd_ctl_dir[0].child)
6450 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6452 #else
6453 static void register_sched_domain_sysctl(void)
6456 static void unregister_sched_domain_sysctl(void)
6459 #endif
6461 static void set_rq_online(struct rq *rq)
6463 if (!rq->online) {
6464 const struct sched_class *class;
6466 cpu_set(rq->cpu, rq->rd->online);
6467 rq->online = 1;
6469 for_each_class(class) {
6470 if (class->rq_online)
6471 class->rq_online(rq);
6476 static void set_rq_offline(struct rq *rq)
6478 if (rq->online) {
6479 const struct sched_class *class;
6481 for_each_class(class) {
6482 if (class->rq_offline)
6483 class->rq_offline(rq);
6486 cpu_clear(rq->cpu, rq->rd->online);
6487 rq->online = 0;
6492 * migration_call - callback that gets triggered when a CPU is added.
6493 * Here we can start up the necessary migration thread for the new CPU.
6495 static int __cpuinit
6496 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6498 struct task_struct *p;
6499 int cpu = (long)hcpu;
6500 unsigned long flags;
6501 struct rq *rq;
6503 switch (action) {
6505 case CPU_UP_PREPARE:
6506 case CPU_UP_PREPARE_FROZEN:
6507 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6508 if (IS_ERR(p))
6509 return NOTIFY_BAD;
6510 kthread_bind(p, cpu);
6511 /* Must be high prio: stop_machine expects to yield to it. */
6512 rq = task_rq_lock(p, &flags);
6513 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6514 task_rq_unlock(rq, &flags);
6515 cpu_rq(cpu)->migration_thread = p;
6516 break;
6518 case CPU_ONLINE:
6519 case CPU_ONLINE_FROZEN:
6520 /* Strictly unnecessary, as first user will wake it. */
6521 wake_up_process(cpu_rq(cpu)->migration_thread);
6523 /* Update our root-domain */
6524 rq = cpu_rq(cpu);
6525 spin_lock_irqsave(&rq->lock, flags);
6526 if (rq->rd) {
6527 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6529 set_rq_online(rq);
6531 spin_unlock_irqrestore(&rq->lock, flags);
6532 break;
6534 #ifdef CONFIG_HOTPLUG_CPU
6535 case CPU_UP_CANCELED:
6536 case CPU_UP_CANCELED_FROZEN:
6537 if (!cpu_rq(cpu)->migration_thread)
6538 break;
6539 /* Unbind it from offline cpu so it can run. Fall thru. */
6540 kthread_bind(cpu_rq(cpu)->migration_thread,
6541 any_online_cpu(cpu_online_map));
6542 kthread_stop(cpu_rq(cpu)->migration_thread);
6543 cpu_rq(cpu)->migration_thread = NULL;
6544 break;
6546 case CPU_DEAD:
6547 case CPU_DEAD_FROZEN:
6548 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6549 migrate_live_tasks(cpu);
6550 rq = cpu_rq(cpu);
6551 kthread_stop(rq->migration_thread);
6552 rq->migration_thread = NULL;
6553 /* Idle task back to normal (off runqueue, low prio) */
6554 spin_lock_irq(&rq->lock);
6555 update_rq_clock(rq);
6556 deactivate_task(rq, rq->idle, 0);
6557 rq->idle->static_prio = MAX_PRIO;
6558 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6559 rq->idle->sched_class = &idle_sched_class;
6560 migrate_dead_tasks(cpu);
6561 spin_unlock_irq(&rq->lock);
6562 cpuset_unlock();
6563 migrate_nr_uninterruptible(rq);
6564 BUG_ON(rq->nr_running != 0);
6567 * No need to migrate the tasks: it was best-effort if
6568 * they didn't take sched_hotcpu_mutex. Just wake up
6569 * the requestors.
6571 spin_lock_irq(&rq->lock);
6572 while (!list_empty(&rq->migration_queue)) {
6573 struct migration_req *req;
6575 req = list_entry(rq->migration_queue.next,
6576 struct migration_req, list);
6577 list_del_init(&req->list);
6578 complete(&req->done);
6580 spin_unlock_irq(&rq->lock);
6581 break;
6583 case CPU_DYING:
6584 case CPU_DYING_FROZEN:
6585 /* Update our root-domain */
6586 rq = cpu_rq(cpu);
6587 spin_lock_irqsave(&rq->lock, flags);
6588 if (rq->rd) {
6589 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6590 set_rq_offline(rq);
6592 spin_unlock_irqrestore(&rq->lock, flags);
6593 break;
6594 #endif
6596 return NOTIFY_OK;
6599 /* Register at highest priority so that task migration (migrate_all_tasks)
6600 * happens before everything else.
6602 static struct notifier_block __cpuinitdata migration_notifier = {
6603 .notifier_call = migration_call,
6604 .priority = 10
6607 static int __init migration_init(void)
6609 void *cpu = (void *)(long)smp_processor_id();
6610 int err;
6612 /* Start one for the boot CPU: */
6613 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6614 BUG_ON(err == NOTIFY_BAD);
6615 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6616 register_cpu_notifier(&migration_notifier);
6618 return err;
6620 early_initcall(migration_init);
6621 #endif
6623 #ifdef CONFIG_SMP
6625 #ifdef CONFIG_SCHED_DEBUG
6627 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6629 switch (lvl) {
6630 case SD_LV_NONE:
6631 return "NONE";
6632 case SD_LV_SIBLING:
6633 return "SIBLING";
6634 case SD_LV_MC:
6635 return "MC";
6636 case SD_LV_CPU:
6637 return "CPU";
6638 case SD_LV_NODE:
6639 return "NODE";
6640 case SD_LV_ALLNODES:
6641 return "ALLNODES";
6642 case SD_LV_MAX:
6643 return "MAX";
6646 return "MAX";
6649 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6650 cpumask_t *groupmask)
6652 struct sched_group *group = sd->groups;
6653 char str[256];
6655 cpulist_scnprintf(str, sizeof(str), sd->span);
6656 cpus_clear(*groupmask);
6658 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6660 if (!(sd->flags & SD_LOAD_BALANCE)) {
6661 printk("does not load-balance\n");
6662 if (sd->parent)
6663 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6664 " has parent");
6665 return -1;
6668 printk(KERN_CONT "span %s level %s\n",
6669 str, sd_level_to_string(sd->level));
6671 if (!cpu_isset(cpu, sd->span)) {
6672 printk(KERN_ERR "ERROR: domain->span does not contain "
6673 "CPU%d\n", cpu);
6675 if (!cpu_isset(cpu, group->cpumask)) {
6676 printk(KERN_ERR "ERROR: domain->groups does not contain"
6677 " CPU%d\n", cpu);
6680 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6681 do {
6682 if (!group) {
6683 printk("\n");
6684 printk(KERN_ERR "ERROR: group is NULL\n");
6685 break;
6688 if (!group->__cpu_power) {
6689 printk(KERN_CONT "\n");
6690 printk(KERN_ERR "ERROR: domain->cpu_power not "
6691 "set\n");
6692 break;
6695 if (!cpus_weight(group->cpumask)) {
6696 printk(KERN_CONT "\n");
6697 printk(KERN_ERR "ERROR: empty group\n");
6698 break;
6701 if (cpus_intersects(*groupmask, group->cpumask)) {
6702 printk(KERN_CONT "\n");
6703 printk(KERN_ERR "ERROR: repeated CPUs\n");
6704 break;
6707 cpus_or(*groupmask, *groupmask, group->cpumask);
6709 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6710 printk(KERN_CONT " %s", str);
6712 group = group->next;
6713 } while (group != sd->groups);
6714 printk(KERN_CONT "\n");
6716 if (!cpus_equal(sd->span, *groupmask))
6717 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6719 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6720 printk(KERN_ERR "ERROR: parent span is not a superset "
6721 "of domain->span\n");
6722 return 0;
6725 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6727 cpumask_t *groupmask;
6728 int level = 0;
6730 if (!sd) {
6731 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6732 return;
6735 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6737 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6738 if (!groupmask) {
6739 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6740 return;
6743 for (;;) {
6744 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6745 break;
6746 level++;
6747 sd = sd->parent;
6748 if (!sd)
6749 break;
6751 kfree(groupmask);
6753 #else /* !CONFIG_SCHED_DEBUG */
6754 # define sched_domain_debug(sd, cpu) do { } while (0)
6755 #endif /* CONFIG_SCHED_DEBUG */
6757 static int sd_degenerate(struct sched_domain *sd)
6759 if (cpus_weight(sd->span) == 1)
6760 return 1;
6762 /* Following flags need at least 2 groups */
6763 if (sd->flags & (SD_LOAD_BALANCE |
6764 SD_BALANCE_NEWIDLE |
6765 SD_BALANCE_FORK |
6766 SD_BALANCE_EXEC |
6767 SD_SHARE_CPUPOWER |
6768 SD_SHARE_PKG_RESOURCES)) {
6769 if (sd->groups != sd->groups->next)
6770 return 0;
6773 /* Following flags don't use groups */
6774 if (sd->flags & (SD_WAKE_IDLE |
6775 SD_WAKE_AFFINE |
6776 SD_WAKE_BALANCE))
6777 return 0;
6779 return 1;
6782 static int
6783 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6785 unsigned long cflags = sd->flags, pflags = parent->flags;
6787 if (sd_degenerate(parent))
6788 return 1;
6790 if (!cpus_equal(sd->span, parent->span))
6791 return 0;
6793 /* Does parent contain flags not in child? */
6794 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6795 if (cflags & SD_WAKE_AFFINE)
6796 pflags &= ~SD_WAKE_BALANCE;
6797 /* Flags needing groups don't count if only 1 group in parent */
6798 if (parent->groups == parent->groups->next) {
6799 pflags &= ~(SD_LOAD_BALANCE |
6800 SD_BALANCE_NEWIDLE |
6801 SD_BALANCE_FORK |
6802 SD_BALANCE_EXEC |
6803 SD_SHARE_CPUPOWER |
6804 SD_SHARE_PKG_RESOURCES);
6806 if (~cflags & pflags)
6807 return 0;
6809 return 1;
6812 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6814 unsigned long flags;
6816 spin_lock_irqsave(&rq->lock, flags);
6818 if (rq->rd) {
6819 struct root_domain *old_rd = rq->rd;
6821 if (cpu_isset(rq->cpu, old_rd->online))
6822 set_rq_offline(rq);
6824 cpu_clear(rq->cpu, old_rd->span);
6826 if (atomic_dec_and_test(&old_rd->refcount))
6827 kfree(old_rd);
6830 atomic_inc(&rd->refcount);
6831 rq->rd = rd;
6833 cpu_set(rq->cpu, rd->span);
6834 if (cpu_isset(rq->cpu, cpu_online_map))
6835 set_rq_online(rq);
6837 spin_unlock_irqrestore(&rq->lock, flags);
6840 static void init_rootdomain(struct root_domain *rd)
6842 memset(rd, 0, sizeof(*rd));
6844 cpus_clear(rd->span);
6845 cpus_clear(rd->online);
6847 cpupri_init(&rd->cpupri);
6850 static void init_defrootdomain(void)
6852 init_rootdomain(&def_root_domain);
6853 atomic_set(&def_root_domain.refcount, 1);
6856 static struct root_domain *alloc_rootdomain(void)
6858 struct root_domain *rd;
6860 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6861 if (!rd)
6862 return NULL;
6864 init_rootdomain(rd);
6866 return rd;
6870 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6871 * hold the hotplug lock.
6873 static void
6874 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6876 struct rq *rq = cpu_rq(cpu);
6877 struct sched_domain *tmp;
6879 /* Remove the sched domains which do not contribute to scheduling. */
6880 for (tmp = sd; tmp; ) {
6881 struct sched_domain *parent = tmp->parent;
6882 if (!parent)
6883 break;
6885 if (sd_parent_degenerate(tmp, parent)) {
6886 tmp->parent = parent->parent;
6887 if (parent->parent)
6888 parent->parent->child = tmp;
6889 } else
6890 tmp = tmp->parent;
6893 if (sd && sd_degenerate(sd)) {
6894 sd = sd->parent;
6895 if (sd)
6896 sd->child = NULL;
6899 sched_domain_debug(sd, cpu);
6901 rq_attach_root(rq, rd);
6902 rcu_assign_pointer(rq->sd, sd);
6905 /* cpus with isolated domains */
6906 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6908 /* Setup the mask of cpus configured for isolated domains */
6909 static int __init isolated_cpu_setup(char *str)
6911 static int __initdata ints[NR_CPUS];
6912 int i;
6914 str = get_options(str, ARRAY_SIZE(ints), ints);
6915 cpus_clear(cpu_isolated_map);
6916 for (i = 1; i <= ints[0]; i++)
6917 if (ints[i] < NR_CPUS)
6918 cpu_set(ints[i], cpu_isolated_map);
6919 return 1;
6922 __setup("isolcpus=", isolated_cpu_setup);
6925 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6926 * to a function which identifies what group(along with sched group) a CPU
6927 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6928 * (due to the fact that we keep track of groups covered with a cpumask_t).
6930 * init_sched_build_groups will build a circular linked list of the groups
6931 * covered by the given span, and will set each group's ->cpumask correctly,
6932 * and ->cpu_power to 0.
6934 static void
6935 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6936 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6937 struct sched_group **sg,
6938 cpumask_t *tmpmask),
6939 cpumask_t *covered, cpumask_t *tmpmask)
6941 struct sched_group *first = NULL, *last = NULL;
6942 int i;
6944 cpus_clear(*covered);
6946 for_each_cpu_mask_nr(i, *span) {
6947 struct sched_group *sg;
6948 int group = group_fn(i, cpu_map, &sg, tmpmask);
6949 int j;
6951 if (cpu_isset(i, *covered))
6952 continue;
6954 cpus_clear(sg->cpumask);
6955 sg->__cpu_power = 0;
6957 for_each_cpu_mask_nr(j, *span) {
6958 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6959 continue;
6961 cpu_set(j, *covered);
6962 cpu_set(j, sg->cpumask);
6964 if (!first)
6965 first = sg;
6966 if (last)
6967 last->next = sg;
6968 last = sg;
6970 last->next = first;
6973 #define SD_NODES_PER_DOMAIN 16
6975 #ifdef CONFIG_NUMA
6978 * find_next_best_node - find the next node to include in a sched_domain
6979 * @node: node whose sched_domain we're building
6980 * @used_nodes: nodes already in the sched_domain
6982 * Find the next node to include in a given scheduling domain. Simply
6983 * finds the closest node not already in the @used_nodes map.
6985 * Should use nodemask_t.
6987 static int find_next_best_node(int node, nodemask_t *used_nodes)
6989 int i, n, val, min_val, best_node = 0;
6991 min_val = INT_MAX;
6993 for (i = 0; i < nr_node_ids; i++) {
6994 /* Start at @node */
6995 n = (node + i) % nr_node_ids;
6997 if (!nr_cpus_node(n))
6998 continue;
7000 /* Skip already used nodes */
7001 if (node_isset(n, *used_nodes))
7002 continue;
7004 /* Simple min distance search */
7005 val = node_distance(node, n);
7007 if (val < min_val) {
7008 min_val = val;
7009 best_node = n;
7013 node_set(best_node, *used_nodes);
7014 return best_node;
7018 * sched_domain_node_span - get a cpumask for a node's sched_domain
7019 * @node: node whose cpumask we're constructing
7020 * @span: resulting cpumask
7022 * Given a node, construct a good cpumask for its sched_domain to span. It
7023 * should be one that prevents unnecessary balancing, but also spreads tasks
7024 * out optimally.
7026 static void sched_domain_node_span(int node, cpumask_t *span)
7028 nodemask_t used_nodes;
7029 node_to_cpumask_ptr(nodemask, node);
7030 int i;
7032 cpus_clear(*span);
7033 nodes_clear(used_nodes);
7035 cpus_or(*span, *span, *nodemask);
7036 node_set(node, used_nodes);
7038 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7039 int next_node = find_next_best_node(node, &used_nodes);
7041 node_to_cpumask_ptr_next(nodemask, next_node);
7042 cpus_or(*span, *span, *nodemask);
7045 #endif /* CONFIG_NUMA */
7047 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7050 * SMT sched-domains:
7052 #ifdef CONFIG_SCHED_SMT
7053 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7054 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7056 static int
7057 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7058 cpumask_t *unused)
7060 if (sg)
7061 *sg = &per_cpu(sched_group_cpus, cpu);
7062 return cpu;
7064 #endif /* CONFIG_SCHED_SMT */
7067 * multi-core sched-domains:
7069 #ifdef CONFIG_SCHED_MC
7070 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7071 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7072 #endif /* CONFIG_SCHED_MC */
7074 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7075 static int
7076 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7077 cpumask_t *mask)
7079 int group;
7081 *mask = per_cpu(cpu_sibling_map, cpu);
7082 cpus_and(*mask, *mask, *cpu_map);
7083 group = first_cpu(*mask);
7084 if (sg)
7085 *sg = &per_cpu(sched_group_core, group);
7086 return group;
7088 #elif defined(CONFIG_SCHED_MC)
7089 static int
7090 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7091 cpumask_t *unused)
7093 if (sg)
7094 *sg = &per_cpu(sched_group_core, cpu);
7095 return cpu;
7097 #endif
7099 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7100 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7102 static int
7103 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7104 cpumask_t *mask)
7106 int group;
7107 #ifdef CONFIG_SCHED_MC
7108 *mask = cpu_coregroup_map(cpu);
7109 cpus_and(*mask, *mask, *cpu_map);
7110 group = first_cpu(*mask);
7111 #elif defined(CONFIG_SCHED_SMT)
7112 *mask = per_cpu(cpu_sibling_map, cpu);
7113 cpus_and(*mask, *mask, *cpu_map);
7114 group = first_cpu(*mask);
7115 #else
7116 group = cpu;
7117 #endif
7118 if (sg)
7119 *sg = &per_cpu(sched_group_phys, group);
7120 return group;
7123 #ifdef CONFIG_NUMA
7125 * The init_sched_build_groups can't handle what we want to do with node
7126 * groups, so roll our own. Now each node has its own list of groups which
7127 * gets dynamically allocated.
7129 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7130 static struct sched_group ***sched_group_nodes_bycpu;
7132 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7133 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7135 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7136 struct sched_group **sg, cpumask_t *nodemask)
7138 int group;
7140 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7141 cpus_and(*nodemask, *nodemask, *cpu_map);
7142 group = first_cpu(*nodemask);
7144 if (sg)
7145 *sg = &per_cpu(sched_group_allnodes, group);
7146 return group;
7149 static void init_numa_sched_groups_power(struct sched_group *group_head)
7151 struct sched_group *sg = group_head;
7152 int j;
7154 if (!sg)
7155 return;
7156 do {
7157 for_each_cpu_mask_nr(j, sg->cpumask) {
7158 struct sched_domain *sd;
7160 sd = &per_cpu(phys_domains, j);
7161 if (j != first_cpu(sd->groups->cpumask)) {
7163 * Only add "power" once for each
7164 * physical package.
7166 continue;
7169 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7171 sg = sg->next;
7172 } while (sg != group_head);
7174 #endif /* CONFIG_NUMA */
7176 #ifdef CONFIG_NUMA
7177 /* Free memory allocated for various sched_group structures */
7178 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7180 int cpu, i;
7182 for_each_cpu_mask_nr(cpu, *cpu_map) {
7183 struct sched_group **sched_group_nodes
7184 = sched_group_nodes_bycpu[cpu];
7186 if (!sched_group_nodes)
7187 continue;
7189 for (i = 0; i < nr_node_ids; i++) {
7190 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7192 *nodemask = node_to_cpumask(i);
7193 cpus_and(*nodemask, *nodemask, *cpu_map);
7194 if (cpus_empty(*nodemask))
7195 continue;
7197 if (sg == NULL)
7198 continue;
7199 sg = sg->next;
7200 next_sg:
7201 oldsg = sg;
7202 sg = sg->next;
7203 kfree(oldsg);
7204 if (oldsg != sched_group_nodes[i])
7205 goto next_sg;
7207 kfree(sched_group_nodes);
7208 sched_group_nodes_bycpu[cpu] = NULL;
7211 #else /* !CONFIG_NUMA */
7212 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7215 #endif /* CONFIG_NUMA */
7218 * Initialize sched groups cpu_power.
7220 * cpu_power indicates the capacity of sched group, which is used while
7221 * distributing the load between different sched groups in a sched domain.
7222 * Typically cpu_power for all the groups in a sched domain will be same unless
7223 * there are asymmetries in the topology. If there are asymmetries, group
7224 * having more cpu_power will pickup more load compared to the group having
7225 * less cpu_power.
7227 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7228 * the maximum number of tasks a group can handle in the presence of other idle
7229 * or lightly loaded groups in the same sched domain.
7231 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7233 struct sched_domain *child;
7234 struct sched_group *group;
7236 WARN_ON(!sd || !sd->groups);
7238 if (cpu != first_cpu(sd->groups->cpumask))
7239 return;
7241 child = sd->child;
7243 sd->groups->__cpu_power = 0;
7246 * For perf policy, if the groups in child domain share resources
7247 * (for example cores sharing some portions of the cache hierarchy
7248 * or SMT), then set this domain groups cpu_power such that each group
7249 * can handle only one task, when there are other idle groups in the
7250 * same sched domain.
7252 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7253 (child->flags &
7254 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7255 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7256 return;
7260 * add cpu_power of each child group to this groups cpu_power
7262 group = child->groups;
7263 do {
7264 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7265 group = group->next;
7266 } while (group != child->groups);
7270 * Initializers for schedule domains
7271 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7274 #ifdef CONFIG_SCHED_DEBUG
7275 # define SD_INIT_NAME(sd, type) sd->name = #type
7276 #else
7277 # define SD_INIT_NAME(sd, type) do { } while (0)
7278 #endif
7280 #define SD_INIT(sd, type) sd_init_##type(sd)
7282 #define SD_INIT_FUNC(type) \
7283 static noinline void sd_init_##type(struct sched_domain *sd) \
7285 memset(sd, 0, sizeof(*sd)); \
7286 *sd = SD_##type##_INIT; \
7287 sd->level = SD_LV_##type; \
7288 SD_INIT_NAME(sd, type); \
7291 SD_INIT_FUNC(CPU)
7292 #ifdef CONFIG_NUMA
7293 SD_INIT_FUNC(ALLNODES)
7294 SD_INIT_FUNC(NODE)
7295 #endif
7296 #ifdef CONFIG_SCHED_SMT
7297 SD_INIT_FUNC(SIBLING)
7298 #endif
7299 #ifdef CONFIG_SCHED_MC
7300 SD_INIT_FUNC(MC)
7301 #endif
7304 * To minimize stack usage kmalloc room for cpumasks and share the
7305 * space as the usage in build_sched_domains() dictates. Used only
7306 * if the amount of space is significant.
7308 struct allmasks {
7309 cpumask_t tmpmask; /* make this one first */
7310 union {
7311 cpumask_t nodemask;
7312 cpumask_t this_sibling_map;
7313 cpumask_t this_core_map;
7315 cpumask_t send_covered;
7317 #ifdef CONFIG_NUMA
7318 cpumask_t domainspan;
7319 cpumask_t covered;
7320 cpumask_t notcovered;
7321 #endif
7324 #if NR_CPUS > 128
7325 #define SCHED_CPUMASK_ALLOC 1
7326 #define SCHED_CPUMASK_FREE(v) kfree(v)
7327 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7328 #else
7329 #define SCHED_CPUMASK_ALLOC 0
7330 #define SCHED_CPUMASK_FREE(v)
7331 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7332 #endif
7334 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7335 ((unsigned long)(a) + offsetof(struct allmasks, v))
7337 static int default_relax_domain_level = -1;
7339 static int __init setup_relax_domain_level(char *str)
7341 unsigned long val;
7343 val = simple_strtoul(str, NULL, 0);
7344 if (val < SD_LV_MAX)
7345 default_relax_domain_level = val;
7347 return 1;
7349 __setup("relax_domain_level=", setup_relax_domain_level);
7351 static void set_domain_attribute(struct sched_domain *sd,
7352 struct sched_domain_attr *attr)
7354 int request;
7356 if (!attr || attr->relax_domain_level < 0) {
7357 if (default_relax_domain_level < 0)
7358 return;
7359 else
7360 request = default_relax_domain_level;
7361 } else
7362 request = attr->relax_domain_level;
7363 if (request < sd->level) {
7364 /* turn off idle balance on this domain */
7365 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7366 } else {
7367 /* turn on idle balance on this domain */
7368 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7373 * Build sched domains for a given set of cpus and attach the sched domains
7374 * to the individual cpus
7376 static int __build_sched_domains(const cpumask_t *cpu_map,
7377 struct sched_domain_attr *attr)
7379 int i;
7380 struct root_domain *rd;
7381 SCHED_CPUMASK_DECLARE(allmasks);
7382 cpumask_t *tmpmask;
7383 #ifdef CONFIG_NUMA
7384 struct sched_group **sched_group_nodes = NULL;
7385 int sd_allnodes = 0;
7388 * Allocate the per-node list of sched groups
7390 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7391 GFP_KERNEL);
7392 if (!sched_group_nodes) {
7393 printk(KERN_WARNING "Can not alloc sched group node list\n");
7394 return -ENOMEM;
7396 #endif
7398 rd = alloc_rootdomain();
7399 if (!rd) {
7400 printk(KERN_WARNING "Cannot alloc root domain\n");
7401 #ifdef CONFIG_NUMA
7402 kfree(sched_group_nodes);
7403 #endif
7404 return -ENOMEM;
7407 #if SCHED_CPUMASK_ALLOC
7408 /* get space for all scratch cpumask variables */
7409 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7410 if (!allmasks) {
7411 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7412 kfree(rd);
7413 #ifdef CONFIG_NUMA
7414 kfree(sched_group_nodes);
7415 #endif
7416 return -ENOMEM;
7418 #endif
7419 tmpmask = (cpumask_t *)allmasks;
7422 #ifdef CONFIG_NUMA
7423 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7424 #endif
7427 * Set up domains for cpus specified by the cpu_map.
7429 for_each_cpu_mask_nr(i, *cpu_map) {
7430 struct sched_domain *sd = NULL, *p;
7431 SCHED_CPUMASK_VAR(nodemask, allmasks);
7433 *nodemask = node_to_cpumask(cpu_to_node(i));
7434 cpus_and(*nodemask, *nodemask, *cpu_map);
7436 #ifdef CONFIG_NUMA
7437 if (cpus_weight(*cpu_map) >
7438 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7439 sd = &per_cpu(allnodes_domains, i);
7440 SD_INIT(sd, ALLNODES);
7441 set_domain_attribute(sd, attr);
7442 sd->span = *cpu_map;
7443 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7444 p = sd;
7445 sd_allnodes = 1;
7446 } else
7447 p = NULL;
7449 sd = &per_cpu(node_domains, i);
7450 SD_INIT(sd, NODE);
7451 set_domain_attribute(sd, attr);
7452 sched_domain_node_span(cpu_to_node(i), &sd->span);
7453 sd->parent = p;
7454 if (p)
7455 p->child = sd;
7456 cpus_and(sd->span, sd->span, *cpu_map);
7457 #endif
7459 p = sd;
7460 sd = &per_cpu(phys_domains, i);
7461 SD_INIT(sd, CPU);
7462 set_domain_attribute(sd, attr);
7463 sd->span = *nodemask;
7464 sd->parent = p;
7465 if (p)
7466 p->child = sd;
7467 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7469 #ifdef CONFIG_SCHED_MC
7470 p = sd;
7471 sd = &per_cpu(core_domains, i);
7472 SD_INIT(sd, MC);
7473 set_domain_attribute(sd, attr);
7474 sd->span = cpu_coregroup_map(i);
7475 cpus_and(sd->span, sd->span, *cpu_map);
7476 sd->parent = p;
7477 p->child = sd;
7478 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7479 #endif
7481 #ifdef CONFIG_SCHED_SMT
7482 p = sd;
7483 sd = &per_cpu(cpu_domains, i);
7484 SD_INIT(sd, SIBLING);
7485 set_domain_attribute(sd, attr);
7486 sd->span = per_cpu(cpu_sibling_map, i);
7487 cpus_and(sd->span, sd->span, *cpu_map);
7488 sd->parent = p;
7489 p->child = sd;
7490 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7491 #endif
7494 #ifdef CONFIG_SCHED_SMT
7495 /* Set up CPU (sibling) groups */
7496 for_each_cpu_mask_nr(i, *cpu_map) {
7497 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7498 SCHED_CPUMASK_VAR(send_covered, allmasks);
7500 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7501 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7502 if (i != first_cpu(*this_sibling_map))
7503 continue;
7505 init_sched_build_groups(this_sibling_map, cpu_map,
7506 &cpu_to_cpu_group,
7507 send_covered, tmpmask);
7509 #endif
7511 #ifdef CONFIG_SCHED_MC
7512 /* Set up multi-core groups */
7513 for_each_cpu_mask_nr(i, *cpu_map) {
7514 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7515 SCHED_CPUMASK_VAR(send_covered, allmasks);
7517 *this_core_map = cpu_coregroup_map(i);
7518 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7519 if (i != first_cpu(*this_core_map))
7520 continue;
7522 init_sched_build_groups(this_core_map, cpu_map,
7523 &cpu_to_core_group,
7524 send_covered, tmpmask);
7526 #endif
7528 /* Set up physical groups */
7529 for (i = 0; i < nr_node_ids; i++) {
7530 SCHED_CPUMASK_VAR(nodemask, allmasks);
7531 SCHED_CPUMASK_VAR(send_covered, allmasks);
7533 *nodemask = node_to_cpumask(i);
7534 cpus_and(*nodemask, *nodemask, *cpu_map);
7535 if (cpus_empty(*nodemask))
7536 continue;
7538 init_sched_build_groups(nodemask, cpu_map,
7539 &cpu_to_phys_group,
7540 send_covered, tmpmask);
7543 #ifdef CONFIG_NUMA
7544 /* Set up node groups */
7545 if (sd_allnodes) {
7546 SCHED_CPUMASK_VAR(send_covered, allmasks);
7548 init_sched_build_groups(cpu_map, cpu_map,
7549 &cpu_to_allnodes_group,
7550 send_covered, tmpmask);
7553 for (i = 0; i < nr_node_ids; i++) {
7554 /* Set up node groups */
7555 struct sched_group *sg, *prev;
7556 SCHED_CPUMASK_VAR(nodemask, allmasks);
7557 SCHED_CPUMASK_VAR(domainspan, allmasks);
7558 SCHED_CPUMASK_VAR(covered, allmasks);
7559 int j;
7561 *nodemask = node_to_cpumask(i);
7562 cpus_clear(*covered);
7564 cpus_and(*nodemask, *nodemask, *cpu_map);
7565 if (cpus_empty(*nodemask)) {
7566 sched_group_nodes[i] = NULL;
7567 continue;
7570 sched_domain_node_span(i, domainspan);
7571 cpus_and(*domainspan, *domainspan, *cpu_map);
7573 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7574 if (!sg) {
7575 printk(KERN_WARNING "Can not alloc domain group for "
7576 "node %d\n", i);
7577 goto error;
7579 sched_group_nodes[i] = sg;
7580 for_each_cpu_mask_nr(j, *nodemask) {
7581 struct sched_domain *sd;
7583 sd = &per_cpu(node_domains, j);
7584 sd->groups = sg;
7586 sg->__cpu_power = 0;
7587 sg->cpumask = *nodemask;
7588 sg->next = sg;
7589 cpus_or(*covered, *covered, *nodemask);
7590 prev = sg;
7592 for (j = 0; j < nr_node_ids; j++) {
7593 SCHED_CPUMASK_VAR(notcovered, allmasks);
7594 int n = (i + j) % nr_node_ids;
7595 node_to_cpumask_ptr(pnodemask, n);
7597 cpus_complement(*notcovered, *covered);
7598 cpus_and(*tmpmask, *notcovered, *cpu_map);
7599 cpus_and(*tmpmask, *tmpmask, *domainspan);
7600 if (cpus_empty(*tmpmask))
7601 break;
7603 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7604 if (cpus_empty(*tmpmask))
7605 continue;
7607 sg = kmalloc_node(sizeof(struct sched_group),
7608 GFP_KERNEL, i);
7609 if (!sg) {
7610 printk(KERN_WARNING
7611 "Can not alloc domain group for node %d\n", j);
7612 goto error;
7614 sg->__cpu_power = 0;
7615 sg->cpumask = *tmpmask;
7616 sg->next = prev->next;
7617 cpus_or(*covered, *covered, *tmpmask);
7618 prev->next = sg;
7619 prev = sg;
7622 #endif
7624 /* Calculate CPU power for physical packages and nodes */
7625 #ifdef CONFIG_SCHED_SMT
7626 for_each_cpu_mask_nr(i, *cpu_map) {
7627 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7629 init_sched_groups_power(i, sd);
7631 #endif
7632 #ifdef CONFIG_SCHED_MC
7633 for_each_cpu_mask_nr(i, *cpu_map) {
7634 struct sched_domain *sd = &per_cpu(core_domains, i);
7636 init_sched_groups_power(i, sd);
7638 #endif
7640 for_each_cpu_mask_nr(i, *cpu_map) {
7641 struct sched_domain *sd = &per_cpu(phys_domains, i);
7643 init_sched_groups_power(i, sd);
7646 #ifdef CONFIG_NUMA
7647 for (i = 0; i < nr_node_ids; i++)
7648 init_numa_sched_groups_power(sched_group_nodes[i]);
7650 if (sd_allnodes) {
7651 struct sched_group *sg;
7653 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7654 tmpmask);
7655 init_numa_sched_groups_power(sg);
7657 #endif
7659 /* Attach the domains */
7660 for_each_cpu_mask_nr(i, *cpu_map) {
7661 struct sched_domain *sd;
7662 #ifdef CONFIG_SCHED_SMT
7663 sd = &per_cpu(cpu_domains, i);
7664 #elif defined(CONFIG_SCHED_MC)
7665 sd = &per_cpu(core_domains, i);
7666 #else
7667 sd = &per_cpu(phys_domains, i);
7668 #endif
7669 cpu_attach_domain(sd, rd, i);
7672 SCHED_CPUMASK_FREE((void *)allmasks);
7673 return 0;
7675 #ifdef CONFIG_NUMA
7676 error:
7677 free_sched_groups(cpu_map, tmpmask);
7678 SCHED_CPUMASK_FREE((void *)allmasks);
7679 kfree(rd);
7680 return -ENOMEM;
7681 #endif
7684 static int build_sched_domains(const cpumask_t *cpu_map)
7686 return __build_sched_domains(cpu_map, NULL);
7689 static cpumask_t *doms_cur; /* current sched domains */
7690 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7691 static struct sched_domain_attr *dattr_cur;
7692 /* attribues of custom domains in 'doms_cur' */
7695 * Special case: If a kmalloc of a doms_cur partition (array of
7696 * cpumask_t) fails, then fallback to a single sched domain,
7697 * as determined by the single cpumask_t fallback_doms.
7699 static cpumask_t fallback_doms;
7701 void __attribute__((weak)) arch_update_cpu_topology(void)
7706 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7707 * For now this just excludes isolated cpus, but could be used to
7708 * exclude other special cases in the future.
7710 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7712 int err;
7714 arch_update_cpu_topology();
7715 ndoms_cur = 1;
7716 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7717 if (!doms_cur)
7718 doms_cur = &fallback_doms;
7719 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7720 dattr_cur = NULL;
7721 err = build_sched_domains(doms_cur);
7722 register_sched_domain_sysctl();
7724 return err;
7727 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7728 cpumask_t *tmpmask)
7730 free_sched_groups(cpu_map, tmpmask);
7734 * Detach sched domains from a group of cpus specified in cpu_map
7735 * These cpus will now be attached to the NULL domain
7737 static void detach_destroy_domains(const cpumask_t *cpu_map)
7739 cpumask_t tmpmask;
7740 int i;
7742 unregister_sched_domain_sysctl();
7744 for_each_cpu_mask_nr(i, *cpu_map)
7745 cpu_attach_domain(NULL, &def_root_domain, i);
7746 synchronize_sched();
7747 arch_destroy_sched_domains(cpu_map, &tmpmask);
7750 /* handle null as "default" */
7751 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7752 struct sched_domain_attr *new, int idx_new)
7754 struct sched_domain_attr tmp;
7756 /* fast path */
7757 if (!new && !cur)
7758 return 1;
7760 tmp = SD_ATTR_INIT;
7761 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7762 new ? (new + idx_new) : &tmp,
7763 sizeof(struct sched_domain_attr));
7767 * Partition sched domains as specified by the 'ndoms_new'
7768 * cpumasks in the array doms_new[] of cpumasks. This compares
7769 * doms_new[] to the current sched domain partitioning, doms_cur[].
7770 * It destroys each deleted domain and builds each new domain.
7772 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7773 * The masks don't intersect (don't overlap.) We should setup one
7774 * sched domain for each mask. CPUs not in any of the cpumasks will
7775 * not be load balanced. If the same cpumask appears both in the
7776 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7777 * it as it is.
7779 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7780 * ownership of it and will kfree it when done with it. If the caller
7781 * failed the kmalloc call, then it can pass in doms_new == NULL,
7782 * and partition_sched_domains() will fallback to the single partition
7783 * 'fallback_doms', it also forces the domains to be rebuilt.
7785 * If doms_new==NULL it will be replaced with cpu_online_map.
7786 * ndoms_new==0 is a special case for destroying existing domains.
7787 * It will not create the default domain.
7789 * Call with hotplug lock held
7791 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7792 struct sched_domain_attr *dattr_new)
7794 int i, j, n;
7796 mutex_lock(&sched_domains_mutex);
7798 /* always unregister in case we don't destroy any domains */
7799 unregister_sched_domain_sysctl();
7801 n = doms_new ? ndoms_new : 0;
7803 /* Destroy deleted domains */
7804 for (i = 0; i < ndoms_cur; i++) {
7805 for (j = 0; j < n; j++) {
7806 if (cpus_equal(doms_cur[i], doms_new[j])
7807 && dattrs_equal(dattr_cur, i, dattr_new, j))
7808 goto match1;
7810 /* no match - a current sched domain not in new doms_new[] */
7811 detach_destroy_domains(doms_cur + i);
7812 match1:
7816 if (doms_new == NULL) {
7817 ndoms_cur = 0;
7818 doms_new = &fallback_doms;
7819 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7820 dattr_new = NULL;
7823 /* Build new domains */
7824 for (i = 0; i < ndoms_new; i++) {
7825 for (j = 0; j < ndoms_cur; j++) {
7826 if (cpus_equal(doms_new[i], doms_cur[j])
7827 && dattrs_equal(dattr_new, i, dattr_cur, j))
7828 goto match2;
7830 /* no match - add a new doms_new */
7831 __build_sched_domains(doms_new + i,
7832 dattr_new ? dattr_new + i : NULL);
7833 match2:
7837 /* Remember the new sched domains */
7838 if (doms_cur != &fallback_doms)
7839 kfree(doms_cur);
7840 kfree(dattr_cur); /* kfree(NULL) is safe */
7841 doms_cur = doms_new;
7842 dattr_cur = dattr_new;
7843 ndoms_cur = ndoms_new;
7845 register_sched_domain_sysctl();
7847 mutex_unlock(&sched_domains_mutex);
7850 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7851 int arch_reinit_sched_domains(void)
7853 get_online_cpus();
7855 /* Destroy domains first to force the rebuild */
7856 partition_sched_domains(0, NULL, NULL);
7858 rebuild_sched_domains();
7859 put_online_cpus();
7861 return 0;
7864 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7866 int ret;
7868 if (buf[0] != '0' && buf[0] != '1')
7869 return -EINVAL;
7871 if (smt)
7872 sched_smt_power_savings = (buf[0] == '1');
7873 else
7874 sched_mc_power_savings = (buf[0] == '1');
7876 ret = arch_reinit_sched_domains();
7878 return ret ? ret : count;
7881 #ifdef CONFIG_SCHED_MC
7882 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7883 char *page)
7885 return sprintf(page, "%u\n", sched_mc_power_savings);
7887 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7888 const char *buf, size_t count)
7890 return sched_power_savings_store(buf, count, 0);
7892 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7893 sched_mc_power_savings_show,
7894 sched_mc_power_savings_store);
7895 #endif
7897 #ifdef CONFIG_SCHED_SMT
7898 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7899 char *page)
7901 return sprintf(page, "%u\n", sched_smt_power_savings);
7903 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7904 const char *buf, size_t count)
7906 return sched_power_savings_store(buf, count, 1);
7908 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7909 sched_smt_power_savings_show,
7910 sched_smt_power_savings_store);
7911 #endif
7913 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7915 int err = 0;
7917 #ifdef CONFIG_SCHED_SMT
7918 if (smt_capable())
7919 err = sysfs_create_file(&cls->kset.kobj,
7920 &attr_sched_smt_power_savings.attr);
7921 #endif
7922 #ifdef CONFIG_SCHED_MC
7923 if (!err && mc_capable())
7924 err = sysfs_create_file(&cls->kset.kobj,
7925 &attr_sched_mc_power_savings.attr);
7926 #endif
7927 return err;
7929 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7931 #ifndef CONFIG_CPUSETS
7933 * Add online and remove offline CPUs from the scheduler domains.
7934 * When cpusets are enabled they take over this function.
7936 static int update_sched_domains(struct notifier_block *nfb,
7937 unsigned long action, void *hcpu)
7939 switch (action) {
7940 case CPU_ONLINE:
7941 case CPU_ONLINE_FROZEN:
7942 case CPU_DEAD:
7943 case CPU_DEAD_FROZEN:
7944 partition_sched_domains(1, NULL, NULL);
7945 return NOTIFY_OK;
7947 default:
7948 return NOTIFY_DONE;
7951 #endif
7953 static int update_runtime(struct notifier_block *nfb,
7954 unsigned long action, void *hcpu)
7956 int cpu = (int)(long)hcpu;
7958 switch (action) {
7959 case CPU_DOWN_PREPARE:
7960 case CPU_DOWN_PREPARE_FROZEN:
7961 disable_runtime(cpu_rq(cpu));
7962 return NOTIFY_OK;
7964 case CPU_DOWN_FAILED:
7965 case CPU_DOWN_FAILED_FROZEN:
7966 case CPU_ONLINE:
7967 case CPU_ONLINE_FROZEN:
7968 enable_runtime(cpu_rq(cpu));
7969 return NOTIFY_OK;
7971 default:
7972 return NOTIFY_DONE;
7976 void __init sched_init_smp(void)
7978 cpumask_t non_isolated_cpus;
7980 #if defined(CONFIG_NUMA)
7981 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7982 GFP_KERNEL);
7983 BUG_ON(sched_group_nodes_bycpu == NULL);
7984 #endif
7985 get_online_cpus();
7986 mutex_lock(&sched_domains_mutex);
7987 arch_init_sched_domains(&cpu_online_map);
7988 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7989 if (cpus_empty(non_isolated_cpus))
7990 cpu_set(smp_processor_id(), non_isolated_cpus);
7991 mutex_unlock(&sched_domains_mutex);
7992 put_online_cpus();
7994 #ifndef CONFIG_CPUSETS
7995 /* XXX: Theoretical race here - CPU may be hotplugged now */
7996 hotcpu_notifier(update_sched_domains, 0);
7997 #endif
7999 /* RT runtime code needs to handle some hotplug events */
8000 hotcpu_notifier(update_runtime, 0);
8002 init_hrtick();
8004 /* Move init over to a non-isolated CPU */
8005 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8006 BUG();
8007 sched_init_granularity();
8009 #else
8010 void __init sched_init_smp(void)
8012 sched_init_granularity();
8014 #endif /* CONFIG_SMP */
8016 int in_sched_functions(unsigned long addr)
8018 return in_lock_functions(addr) ||
8019 (addr >= (unsigned long)__sched_text_start
8020 && addr < (unsigned long)__sched_text_end);
8023 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8025 cfs_rq->tasks_timeline = RB_ROOT;
8026 INIT_LIST_HEAD(&cfs_rq->tasks);
8027 #ifdef CONFIG_FAIR_GROUP_SCHED
8028 cfs_rq->rq = rq;
8029 #endif
8030 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8033 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8035 struct rt_prio_array *array;
8036 int i;
8038 array = &rt_rq->active;
8039 for (i = 0; i < MAX_RT_PRIO; i++) {
8040 INIT_LIST_HEAD(array->queue + i);
8041 __clear_bit(i, array->bitmap);
8043 /* delimiter for bitsearch: */
8044 __set_bit(MAX_RT_PRIO, array->bitmap);
8046 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8047 rt_rq->highest_prio = MAX_RT_PRIO;
8048 #endif
8049 #ifdef CONFIG_SMP
8050 rt_rq->rt_nr_migratory = 0;
8051 rt_rq->overloaded = 0;
8052 #endif
8054 rt_rq->rt_time = 0;
8055 rt_rq->rt_throttled = 0;
8056 rt_rq->rt_runtime = 0;
8057 spin_lock_init(&rt_rq->rt_runtime_lock);
8059 #ifdef CONFIG_RT_GROUP_SCHED
8060 rt_rq->rt_nr_boosted = 0;
8061 rt_rq->rq = rq;
8062 #endif
8065 #ifdef CONFIG_FAIR_GROUP_SCHED
8066 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8067 struct sched_entity *se, int cpu, int add,
8068 struct sched_entity *parent)
8070 struct rq *rq = cpu_rq(cpu);
8071 tg->cfs_rq[cpu] = cfs_rq;
8072 init_cfs_rq(cfs_rq, rq);
8073 cfs_rq->tg = tg;
8074 if (add)
8075 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8077 tg->se[cpu] = se;
8078 /* se could be NULL for init_task_group */
8079 if (!se)
8080 return;
8082 if (!parent)
8083 se->cfs_rq = &rq->cfs;
8084 else
8085 se->cfs_rq = parent->my_q;
8087 se->my_q = cfs_rq;
8088 se->load.weight = tg->shares;
8089 se->load.inv_weight = 0;
8090 se->parent = parent;
8092 #endif
8094 #ifdef CONFIG_RT_GROUP_SCHED
8095 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8096 struct sched_rt_entity *rt_se, int cpu, int add,
8097 struct sched_rt_entity *parent)
8099 struct rq *rq = cpu_rq(cpu);
8101 tg->rt_rq[cpu] = rt_rq;
8102 init_rt_rq(rt_rq, rq);
8103 rt_rq->tg = tg;
8104 rt_rq->rt_se = rt_se;
8105 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8106 if (add)
8107 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8109 tg->rt_se[cpu] = rt_se;
8110 if (!rt_se)
8111 return;
8113 if (!parent)
8114 rt_se->rt_rq = &rq->rt;
8115 else
8116 rt_se->rt_rq = parent->my_q;
8118 rt_se->my_q = rt_rq;
8119 rt_se->parent = parent;
8120 INIT_LIST_HEAD(&rt_se->run_list);
8122 #endif
8124 void __init sched_init(void)
8126 int i, j;
8127 unsigned long alloc_size = 0, ptr;
8129 #ifdef CONFIG_FAIR_GROUP_SCHED
8130 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8131 #endif
8132 #ifdef CONFIG_RT_GROUP_SCHED
8133 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8134 #endif
8135 #ifdef CONFIG_USER_SCHED
8136 alloc_size *= 2;
8137 #endif
8139 * As sched_init() is called before page_alloc is setup,
8140 * we use alloc_bootmem().
8142 if (alloc_size) {
8143 ptr = (unsigned long)alloc_bootmem(alloc_size);
8145 #ifdef CONFIG_FAIR_GROUP_SCHED
8146 init_task_group.se = (struct sched_entity **)ptr;
8147 ptr += nr_cpu_ids * sizeof(void **);
8149 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8150 ptr += nr_cpu_ids * sizeof(void **);
8152 #ifdef CONFIG_USER_SCHED
8153 root_task_group.se = (struct sched_entity **)ptr;
8154 ptr += nr_cpu_ids * sizeof(void **);
8156 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8157 ptr += nr_cpu_ids * sizeof(void **);
8158 #endif /* CONFIG_USER_SCHED */
8159 #endif /* CONFIG_FAIR_GROUP_SCHED */
8160 #ifdef CONFIG_RT_GROUP_SCHED
8161 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8162 ptr += nr_cpu_ids * sizeof(void **);
8164 init_task_group.rt_rq = (struct rt_rq **)ptr;
8165 ptr += nr_cpu_ids * sizeof(void **);
8167 #ifdef CONFIG_USER_SCHED
8168 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8169 ptr += nr_cpu_ids * sizeof(void **);
8171 root_task_group.rt_rq = (struct rt_rq **)ptr;
8172 ptr += nr_cpu_ids * sizeof(void **);
8173 #endif /* CONFIG_USER_SCHED */
8174 #endif /* CONFIG_RT_GROUP_SCHED */
8177 #ifdef CONFIG_SMP
8178 init_defrootdomain();
8179 #endif
8181 init_rt_bandwidth(&def_rt_bandwidth,
8182 global_rt_period(), global_rt_runtime());
8184 #ifdef CONFIG_RT_GROUP_SCHED
8185 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8186 global_rt_period(), global_rt_runtime());
8187 #ifdef CONFIG_USER_SCHED
8188 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8189 global_rt_period(), RUNTIME_INF);
8190 #endif /* CONFIG_USER_SCHED */
8191 #endif /* CONFIG_RT_GROUP_SCHED */
8193 #ifdef CONFIG_GROUP_SCHED
8194 list_add(&init_task_group.list, &task_groups);
8195 INIT_LIST_HEAD(&init_task_group.children);
8197 #ifdef CONFIG_USER_SCHED
8198 INIT_LIST_HEAD(&root_task_group.children);
8199 init_task_group.parent = &root_task_group;
8200 list_add(&init_task_group.siblings, &root_task_group.children);
8201 #endif /* CONFIG_USER_SCHED */
8202 #endif /* CONFIG_GROUP_SCHED */
8204 for_each_possible_cpu(i) {
8205 struct rq *rq;
8207 rq = cpu_rq(i);
8208 spin_lock_init(&rq->lock);
8209 rq->nr_running = 0;
8210 init_cfs_rq(&rq->cfs, rq);
8211 init_rt_rq(&rq->rt, rq);
8212 #ifdef CONFIG_FAIR_GROUP_SCHED
8213 init_task_group.shares = init_task_group_load;
8214 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8215 #ifdef CONFIG_CGROUP_SCHED
8217 * How much cpu bandwidth does init_task_group get?
8219 * In case of task-groups formed thr' the cgroup filesystem, it
8220 * gets 100% of the cpu resources in the system. This overall
8221 * system cpu resource is divided among the tasks of
8222 * init_task_group and its child task-groups in a fair manner,
8223 * based on each entity's (task or task-group's) weight
8224 * (se->load.weight).
8226 * In other words, if init_task_group has 10 tasks of weight
8227 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8228 * then A0's share of the cpu resource is:
8230 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8232 * We achieve this by letting init_task_group's tasks sit
8233 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8235 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8236 #elif defined CONFIG_USER_SCHED
8237 root_task_group.shares = NICE_0_LOAD;
8238 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8240 * In case of task-groups formed thr' the user id of tasks,
8241 * init_task_group represents tasks belonging to root user.
8242 * Hence it forms a sibling of all subsequent groups formed.
8243 * In this case, init_task_group gets only a fraction of overall
8244 * system cpu resource, based on the weight assigned to root
8245 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8246 * by letting tasks of init_task_group sit in a separate cfs_rq
8247 * (init_cfs_rq) and having one entity represent this group of
8248 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8250 init_tg_cfs_entry(&init_task_group,
8251 &per_cpu(init_cfs_rq, i),
8252 &per_cpu(init_sched_entity, i), i, 1,
8253 root_task_group.se[i]);
8255 #endif
8256 #endif /* CONFIG_FAIR_GROUP_SCHED */
8258 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8259 #ifdef CONFIG_RT_GROUP_SCHED
8260 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8261 #ifdef CONFIG_CGROUP_SCHED
8262 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8263 #elif defined CONFIG_USER_SCHED
8264 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8265 init_tg_rt_entry(&init_task_group,
8266 &per_cpu(init_rt_rq, i),
8267 &per_cpu(init_sched_rt_entity, i), i, 1,
8268 root_task_group.rt_se[i]);
8269 #endif
8270 #endif
8272 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8273 rq->cpu_load[j] = 0;
8274 #ifdef CONFIG_SMP
8275 rq->sd = NULL;
8276 rq->rd = NULL;
8277 rq->active_balance = 0;
8278 rq->next_balance = jiffies;
8279 rq->push_cpu = 0;
8280 rq->cpu = i;
8281 rq->online = 0;
8282 rq->migration_thread = NULL;
8283 INIT_LIST_HEAD(&rq->migration_queue);
8284 rq_attach_root(rq, &def_root_domain);
8285 #endif
8286 init_rq_hrtick(rq);
8287 atomic_set(&rq->nr_iowait, 0);
8290 set_load_weight(&init_task);
8292 #ifdef CONFIG_PREEMPT_NOTIFIERS
8293 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8294 #endif
8296 #ifdef CONFIG_SMP
8297 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8298 #endif
8300 #ifdef CONFIG_RT_MUTEXES
8301 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8302 #endif
8305 * The boot idle thread does lazy MMU switching as well:
8307 atomic_inc(&init_mm.mm_count);
8308 enter_lazy_tlb(&init_mm, current);
8311 * Make us the idle thread. Technically, schedule() should not be
8312 * called from this thread, however somewhere below it might be,
8313 * but because we are the idle thread, we just pick up running again
8314 * when this runqueue becomes "idle".
8316 init_idle(current, smp_processor_id());
8318 * During early bootup we pretend to be a normal task:
8320 current->sched_class = &fair_sched_class;
8322 scheduler_running = 1;
8325 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8326 void __might_sleep(char *file, int line)
8328 #ifdef in_atomic
8329 static unsigned long prev_jiffy; /* ratelimiting */
8331 if ((!in_atomic() && !irqs_disabled()) ||
8332 system_state != SYSTEM_RUNNING || oops_in_progress)
8333 return;
8334 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8335 return;
8336 prev_jiffy = jiffies;
8338 printk(KERN_ERR
8339 "BUG: sleeping function called from invalid context at %s:%d\n",
8340 file, line);
8341 printk(KERN_ERR
8342 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8343 in_atomic(), irqs_disabled(),
8344 current->pid, current->comm);
8346 debug_show_held_locks(current);
8347 if (irqs_disabled())
8348 print_irqtrace_events(current);
8349 dump_stack();
8350 #endif
8352 EXPORT_SYMBOL(__might_sleep);
8353 #endif
8355 #ifdef CONFIG_MAGIC_SYSRQ
8356 static void normalize_task(struct rq *rq, struct task_struct *p)
8358 int on_rq;
8360 update_rq_clock(rq);
8361 on_rq = p->se.on_rq;
8362 if (on_rq)
8363 deactivate_task(rq, p, 0);
8364 __setscheduler(rq, p, SCHED_NORMAL, 0);
8365 if (on_rq) {
8366 activate_task(rq, p, 0);
8367 resched_task(rq->curr);
8371 void normalize_rt_tasks(void)
8373 struct task_struct *g, *p;
8374 unsigned long flags;
8375 struct rq *rq;
8377 read_lock_irqsave(&tasklist_lock, flags);
8378 do_each_thread(g, p) {
8380 * Only normalize user tasks:
8382 if (!p->mm)
8383 continue;
8385 p->se.exec_start = 0;
8386 #ifdef CONFIG_SCHEDSTATS
8387 p->se.wait_start = 0;
8388 p->se.sleep_start = 0;
8389 p->se.block_start = 0;
8390 #endif
8392 if (!rt_task(p)) {
8394 * Renice negative nice level userspace
8395 * tasks back to 0:
8397 if (TASK_NICE(p) < 0 && p->mm)
8398 set_user_nice(p, 0);
8399 continue;
8402 spin_lock(&p->pi_lock);
8403 rq = __task_rq_lock(p);
8405 normalize_task(rq, p);
8407 __task_rq_unlock(rq);
8408 spin_unlock(&p->pi_lock);
8409 } while_each_thread(g, p);
8411 read_unlock_irqrestore(&tasklist_lock, flags);
8414 #endif /* CONFIG_MAGIC_SYSRQ */
8416 #ifdef CONFIG_IA64
8418 * These functions are only useful for the IA64 MCA handling.
8420 * They can only be called when the whole system has been
8421 * stopped - every CPU needs to be quiescent, and no scheduling
8422 * activity can take place. Using them for anything else would
8423 * be a serious bug, and as a result, they aren't even visible
8424 * under any other configuration.
8428 * curr_task - return the current task for a given cpu.
8429 * @cpu: the processor in question.
8431 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8433 struct task_struct *curr_task(int cpu)
8435 return cpu_curr(cpu);
8439 * set_curr_task - set the current task for a given cpu.
8440 * @cpu: the processor in question.
8441 * @p: the task pointer to set.
8443 * Description: This function must only be used when non-maskable interrupts
8444 * are serviced on a separate stack. It allows the architecture to switch the
8445 * notion of the current task on a cpu in a non-blocking manner. This function
8446 * must be called with all CPU's synchronized, and interrupts disabled, the
8447 * and caller must save the original value of the current task (see
8448 * curr_task() above) and restore that value before reenabling interrupts and
8449 * re-starting the system.
8451 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8453 void set_curr_task(int cpu, struct task_struct *p)
8455 cpu_curr(cpu) = p;
8458 #endif
8460 #ifdef CONFIG_FAIR_GROUP_SCHED
8461 static void free_fair_sched_group(struct task_group *tg)
8463 int i;
8465 for_each_possible_cpu(i) {
8466 if (tg->cfs_rq)
8467 kfree(tg->cfs_rq[i]);
8468 if (tg->se)
8469 kfree(tg->se[i]);
8472 kfree(tg->cfs_rq);
8473 kfree(tg->se);
8476 static
8477 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8479 struct cfs_rq *cfs_rq;
8480 struct sched_entity *se, *parent_se;
8481 struct rq *rq;
8482 int i;
8484 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8485 if (!tg->cfs_rq)
8486 goto err;
8487 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8488 if (!tg->se)
8489 goto err;
8491 tg->shares = NICE_0_LOAD;
8493 for_each_possible_cpu(i) {
8494 rq = cpu_rq(i);
8496 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8497 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8498 if (!cfs_rq)
8499 goto err;
8501 se = kmalloc_node(sizeof(struct sched_entity),
8502 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8503 if (!se)
8504 goto err;
8506 parent_se = parent ? parent->se[i] : NULL;
8507 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8510 return 1;
8512 err:
8513 return 0;
8516 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8518 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8519 &cpu_rq(cpu)->leaf_cfs_rq_list);
8522 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8524 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8526 #else /* !CONFG_FAIR_GROUP_SCHED */
8527 static inline void free_fair_sched_group(struct task_group *tg)
8531 static inline
8532 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8534 return 1;
8537 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8541 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8544 #endif /* CONFIG_FAIR_GROUP_SCHED */
8546 #ifdef CONFIG_RT_GROUP_SCHED
8547 static void free_rt_sched_group(struct task_group *tg)
8549 int i;
8551 destroy_rt_bandwidth(&tg->rt_bandwidth);
8553 for_each_possible_cpu(i) {
8554 if (tg->rt_rq)
8555 kfree(tg->rt_rq[i]);
8556 if (tg->rt_se)
8557 kfree(tg->rt_se[i]);
8560 kfree(tg->rt_rq);
8561 kfree(tg->rt_se);
8564 static
8565 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8567 struct rt_rq *rt_rq;
8568 struct sched_rt_entity *rt_se, *parent_se;
8569 struct rq *rq;
8570 int i;
8572 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8573 if (!tg->rt_rq)
8574 goto err;
8575 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8576 if (!tg->rt_se)
8577 goto err;
8579 init_rt_bandwidth(&tg->rt_bandwidth,
8580 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8582 for_each_possible_cpu(i) {
8583 rq = cpu_rq(i);
8585 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8586 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8587 if (!rt_rq)
8588 goto err;
8590 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8591 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8592 if (!rt_se)
8593 goto err;
8595 parent_se = parent ? parent->rt_se[i] : NULL;
8596 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8599 return 1;
8601 err:
8602 return 0;
8605 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8607 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8608 &cpu_rq(cpu)->leaf_rt_rq_list);
8611 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8613 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8615 #else /* !CONFIG_RT_GROUP_SCHED */
8616 static inline void free_rt_sched_group(struct task_group *tg)
8620 static inline
8621 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8623 return 1;
8626 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8630 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8633 #endif /* CONFIG_RT_GROUP_SCHED */
8635 #ifdef CONFIG_GROUP_SCHED
8636 static void free_sched_group(struct task_group *tg)
8638 free_fair_sched_group(tg);
8639 free_rt_sched_group(tg);
8640 kfree(tg);
8643 /* allocate runqueue etc for a new task group */
8644 struct task_group *sched_create_group(struct task_group *parent)
8646 struct task_group *tg;
8647 unsigned long flags;
8648 int i;
8650 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8651 if (!tg)
8652 return ERR_PTR(-ENOMEM);
8654 if (!alloc_fair_sched_group(tg, parent))
8655 goto err;
8657 if (!alloc_rt_sched_group(tg, parent))
8658 goto err;
8660 spin_lock_irqsave(&task_group_lock, flags);
8661 for_each_possible_cpu(i) {
8662 register_fair_sched_group(tg, i);
8663 register_rt_sched_group(tg, i);
8665 list_add_rcu(&tg->list, &task_groups);
8667 WARN_ON(!parent); /* root should already exist */
8669 tg->parent = parent;
8670 INIT_LIST_HEAD(&tg->children);
8671 list_add_rcu(&tg->siblings, &parent->children);
8672 spin_unlock_irqrestore(&task_group_lock, flags);
8674 return tg;
8676 err:
8677 free_sched_group(tg);
8678 return ERR_PTR(-ENOMEM);
8681 /* rcu callback to free various structures associated with a task group */
8682 static void free_sched_group_rcu(struct rcu_head *rhp)
8684 /* now it should be safe to free those cfs_rqs */
8685 free_sched_group(container_of(rhp, struct task_group, rcu));
8688 /* Destroy runqueue etc associated with a task group */
8689 void sched_destroy_group(struct task_group *tg)
8691 unsigned long flags;
8692 int i;
8694 spin_lock_irqsave(&task_group_lock, flags);
8695 for_each_possible_cpu(i) {
8696 unregister_fair_sched_group(tg, i);
8697 unregister_rt_sched_group(tg, i);
8699 list_del_rcu(&tg->list);
8700 list_del_rcu(&tg->siblings);
8701 spin_unlock_irqrestore(&task_group_lock, flags);
8703 /* wait for possible concurrent references to cfs_rqs complete */
8704 call_rcu(&tg->rcu, free_sched_group_rcu);
8707 /* change task's runqueue when it moves between groups.
8708 * The caller of this function should have put the task in its new group
8709 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8710 * reflect its new group.
8712 void sched_move_task(struct task_struct *tsk)
8714 int on_rq, running;
8715 unsigned long flags;
8716 struct rq *rq;
8718 rq = task_rq_lock(tsk, &flags);
8720 update_rq_clock(rq);
8722 running = task_current(rq, tsk);
8723 on_rq = tsk->se.on_rq;
8725 if (on_rq)
8726 dequeue_task(rq, tsk, 0);
8727 if (unlikely(running))
8728 tsk->sched_class->put_prev_task(rq, tsk);
8730 set_task_rq(tsk, task_cpu(tsk));
8732 #ifdef CONFIG_FAIR_GROUP_SCHED
8733 if (tsk->sched_class->moved_group)
8734 tsk->sched_class->moved_group(tsk);
8735 #endif
8737 if (unlikely(running))
8738 tsk->sched_class->set_curr_task(rq);
8739 if (on_rq)
8740 enqueue_task(rq, tsk, 0);
8742 task_rq_unlock(rq, &flags);
8744 #endif /* CONFIG_GROUP_SCHED */
8746 #ifdef CONFIG_FAIR_GROUP_SCHED
8747 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8749 struct cfs_rq *cfs_rq = se->cfs_rq;
8750 int on_rq;
8752 on_rq = se->on_rq;
8753 if (on_rq)
8754 dequeue_entity(cfs_rq, se, 0);
8756 se->load.weight = shares;
8757 se->load.inv_weight = 0;
8759 if (on_rq)
8760 enqueue_entity(cfs_rq, se, 0);
8763 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8765 struct cfs_rq *cfs_rq = se->cfs_rq;
8766 struct rq *rq = cfs_rq->rq;
8767 unsigned long flags;
8769 spin_lock_irqsave(&rq->lock, flags);
8770 __set_se_shares(se, shares);
8771 spin_unlock_irqrestore(&rq->lock, flags);
8774 static DEFINE_MUTEX(shares_mutex);
8776 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8778 int i;
8779 unsigned long flags;
8782 * We can't change the weight of the root cgroup.
8784 if (!tg->se[0])
8785 return -EINVAL;
8787 if (shares < MIN_SHARES)
8788 shares = MIN_SHARES;
8789 else if (shares > MAX_SHARES)
8790 shares = MAX_SHARES;
8792 mutex_lock(&shares_mutex);
8793 if (tg->shares == shares)
8794 goto done;
8796 spin_lock_irqsave(&task_group_lock, flags);
8797 for_each_possible_cpu(i)
8798 unregister_fair_sched_group(tg, i);
8799 list_del_rcu(&tg->siblings);
8800 spin_unlock_irqrestore(&task_group_lock, flags);
8802 /* wait for any ongoing reference to this group to finish */
8803 synchronize_sched();
8806 * Now we are free to modify the group's share on each cpu
8807 * w/o tripping rebalance_share or load_balance_fair.
8809 tg->shares = shares;
8810 for_each_possible_cpu(i) {
8812 * force a rebalance
8814 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8815 set_se_shares(tg->se[i], shares);
8819 * Enable load balance activity on this group, by inserting it back on
8820 * each cpu's rq->leaf_cfs_rq_list.
8822 spin_lock_irqsave(&task_group_lock, flags);
8823 for_each_possible_cpu(i)
8824 register_fair_sched_group(tg, i);
8825 list_add_rcu(&tg->siblings, &tg->parent->children);
8826 spin_unlock_irqrestore(&task_group_lock, flags);
8827 done:
8828 mutex_unlock(&shares_mutex);
8829 return 0;
8832 unsigned long sched_group_shares(struct task_group *tg)
8834 return tg->shares;
8836 #endif
8838 #ifdef CONFIG_RT_GROUP_SCHED
8840 * Ensure that the real time constraints are schedulable.
8842 static DEFINE_MUTEX(rt_constraints_mutex);
8844 static unsigned long to_ratio(u64 period, u64 runtime)
8846 if (runtime == RUNTIME_INF)
8847 return 1ULL << 20;
8849 return div64_u64(runtime << 20, period);
8852 /* Must be called with tasklist_lock held */
8853 static inline int tg_has_rt_tasks(struct task_group *tg)
8855 struct task_struct *g, *p;
8857 do_each_thread(g, p) {
8858 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8859 return 1;
8860 } while_each_thread(g, p);
8862 return 0;
8865 struct rt_schedulable_data {
8866 struct task_group *tg;
8867 u64 rt_period;
8868 u64 rt_runtime;
8871 static int tg_schedulable(struct task_group *tg, void *data)
8873 struct rt_schedulable_data *d = data;
8874 struct task_group *child;
8875 unsigned long total, sum = 0;
8876 u64 period, runtime;
8878 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8879 runtime = tg->rt_bandwidth.rt_runtime;
8881 if (tg == d->tg) {
8882 period = d->rt_period;
8883 runtime = d->rt_runtime;
8887 * Cannot have more runtime than the period.
8889 if (runtime > period && runtime != RUNTIME_INF)
8890 return -EINVAL;
8893 * Ensure we don't starve existing RT tasks.
8895 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8896 return -EBUSY;
8898 total = to_ratio(period, runtime);
8901 * Nobody can have more than the global setting allows.
8903 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8904 return -EINVAL;
8907 * The sum of our children's runtime should not exceed our own.
8909 list_for_each_entry_rcu(child, &tg->children, siblings) {
8910 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8911 runtime = child->rt_bandwidth.rt_runtime;
8913 if (child == d->tg) {
8914 period = d->rt_period;
8915 runtime = d->rt_runtime;
8918 sum += to_ratio(period, runtime);
8921 if (sum > total)
8922 return -EINVAL;
8924 return 0;
8927 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8929 struct rt_schedulable_data data = {
8930 .tg = tg,
8931 .rt_period = period,
8932 .rt_runtime = runtime,
8935 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8938 static int tg_set_bandwidth(struct task_group *tg,
8939 u64 rt_period, u64 rt_runtime)
8941 int i, err = 0;
8943 mutex_lock(&rt_constraints_mutex);
8944 read_lock(&tasklist_lock);
8945 err = __rt_schedulable(tg, rt_period, rt_runtime);
8946 if (err)
8947 goto unlock;
8949 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8950 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8951 tg->rt_bandwidth.rt_runtime = rt_runtime;
8953 for_each_possible_cpu(i) {
8954 struct rt_rq *rt_rq = tg->rt_rq[i];
8956 spin_lock(&rt_rq->rt_runtime_lock);
8957 rt_rq->rt_runtime = rt_runtime;
8958 spin_unlock(&rt_rq->rt_runtime_lock);
8960 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8961 unlock:
8962 read_unlock(&tasklist_lock);
8963 mutex_unlock(&rt_constraints_mutex);
8965 return err;
8968 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8970 u64 rt_runtime, rt_period;
8972 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8973 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8974 if (rt_runtime_us < 0)
8975 rt_runtime = RUNTIME_INF;
8977 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8980 long sched_group_rt_runtime(struct task_group *tg)
8982 u64 rt_runtime_us;
8984 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8985 return -1;
8987 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8988 do_div(rt_runtime_us, NSEC_PER_USEC);
8989 return rt_runtime_us;
8992 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8994 u64 rt_runtime, rt_period;
8996 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8997 rt_runtime = tg->rt_bandwidth.rt_runtime;
8999 if (rt_period == 0)
9000 return -EINVAL;
9002 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9005 long sched_group_rt_period(struct task_group *tg)
9007 u64 rt_period_us;
9009 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9010 do_div(rt_period_us, NSEC_PER_USEC);
9011 return rt_period_us;
9014 static int sched_rt_global_constraints(void)
9016 u64 runtime, period;
9017 int ret = 0;
9019 if (sysctl_sched_rt_period <= 0)
9020 return -EINVAL;
9022 runtime = global_rt_runtime();
9023 period = global_rt_period();
9026 * Sanity check on the sysctl variables.
9028 if (runtime > period && runtime != RUNTIME_INF)
9029 return -EINVAL;
9031 mutex_lock(&rt_constraints_mutex);
9032 read_lock(&tasklist_lock);
9033 ret = __rt_schedulable(NULL, 0, 0);
9034 read_unlock(&tasklist_lock);
9035 mutex_unlock(&rt_constraints_mutex);
9037 return ret;
9039 #else /* !CONFIG_RT_GROUP_SCHED */
9040 static int sched_rt_global_constraints(void)
9042 unsigned long flags;
9043 int i;
9045 if (sysctl_sched_rt_period <= 0)
9046 return -EINVAL;
9048 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9049 for_each_possible_cpu(i) {
9050 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9052 spin_lock(&rt_rq->rt_runtime_lock);
9053 rt_rq->rt_runtime = global_rt_runtime();
9054 spin_unlock(&rt_rq->rt_runtime_lock);
9056 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9058 return 0;
9060 #endif /* CONFIG_RT_GROUP_SCHED */
9062 int sched_rt_handler(struct ctl_table *table, int write,
9063 struct file *filp, void __user *buffer, size_t *lenp,
9064 loff_t *ppos)
9066 int ret;
9067 int old_period, old_runtime;
9068 static DEFINE_MUTEX(mutex);
9070 mutex_lock(&mutex);
9071 old_period = sysctl_sched_rt_period;
9072 old_runtime = sysctl_sched_rt_runtime;
9074 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9076 if (!ret && write) {
9077 ret = sched_rt_global_constraints();
9078 if (ret) {
9079 sysctl_sched_rt_period = old_period;
9080 sysctl_sched_rt_runtime = old_runtime;
9081 } else {
9082 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9083 def_rt_bandwidth.rt_period =
9084 ns_to_ktime(global_rt_period());
9087 mutex_unlock(&mutex);
9089 return ret;
9092 #ifdef CONFIG_CGROUP_SCHED
9094 /* return corresponding task_group object of a cgroup */
9095 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9097 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9098 struct task_group, css);
9101 static struct cgroup_subsys_state *
9102 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9104 struct task_group *tg, *parent;
9106 if (!cgrp->parent) {
9107 /* This is early initialization for the top cgroup */
9108 return &init_task_group.css;
9111 parent = cgroup_tg(cgrp->parent);
9112 tg = sched_create_group(parent);
9113 if (IS_ERR(tg))
9114 return ERR_PTR(-ENOMEM);
9116 return &tg->css;
9119 static void
9120 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9122 struct task_group *tg = cgroup_tg(cgrp);
9124 sched_destroy_group(tg);
9127 static int
9128 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9129 struct task_struct *tsk)
9131 #ifdef CONFIG_RT_GROUP_SCHED
9132 /* Don't accept realtime tasks when there is no way for them to run */
9133 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9134 return -EINVAL;
9135 #else
9136 /* We don't support RT-tasks being in separate groups */
9137 if (tsk->sched_class != &fair_sched_class)
9138 return -EINVAL;
9139 #endif
9141 return 0;
9144 static void
9145 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9146 struct cgroup *old_cont, struct task_struct *tsk)
9148 sched_move_task(tsk);
9151 #ifdef CONFIG_FAIR_GROUP_SCHED
9152 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9153 u64 shareval)
9155 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9158 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9160 struct task_group *tg = cgroup_tg(cgrp);
9162 return (u64) tg->shares;
9164 #endif /* CONFIG_FAIR_GROUP_SCHED */
9166 #ifdef CONFIG_RT_GROUP_SCHED
9167 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9168 s64 val)
9170 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9173 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9175 return sched_group_rt_runtime(cgroup_tg(cgrp));
9178 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9179 u64 rt_period_us)
9181 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9184 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9186 return sched_group_rt_period(cgroup_tg(cgrp));
9188 #endif /* CONFIG_RT_GROUP_SCHED */
9190 static struct cftype cpu_files[] = {
9191 #ifdef CONFIG_FAIR_GROUP_SCHED
9193 .name = "shares",
9194 .read_u64 = cpu_shares_read_u64,
9195 .write_u64 = cpu_shares_write_u64,
9197 #endif
9198 #ifdef CONFIG_RT_GROUP_SCHED
9200 .name = "rt_runtime_us",
9201 .read_s64 = cpu_rt_runtime_read,
9202 .write_s64 = cpu_rt_runtime_write,
9205 .name = "rt_period_us",
9206 .read_u64 = cpu_rt_period_read_uint,
9207 .write_u64 = cpu_rt_period_write_uint,
9209 #endif
9212 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9214 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9217 struct cgroup_subsys cpu_cgroup_subsys = {
9218 .name = "cpu",
9219 .create = cpu_cgroup_create,
9220 .destroy = cpu_cgroup_destroy,
9221 .can_attach = cpu_cgroup_can_attach,
9222 .attach = cpu_cgroup_attach,
9223 .populate = cpu_cgroup_populate,
9224 .subsys_id = cpu_cgroup_subsys_id,
9225 .early_init = 1,
9228 #endif /* CONFIG_CGROUP_SCHED */
9230 #ifdef CONFIG_CGROUP_CPUACCT
9233 * CPU accounting code for task groups.
9235 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9236 * (balbir@in.ibm.com).
9239 /* track cpu usage of a group of tasks */
9240 struct cpuacct {
9241 struct cgroup_subsys_state css;
9242 /* cpuusage holds pointer to a u64-type object on every cpu */
9243 u64 *cpuusage;
9246 struct cgroup_subsys cpuacct_subsys;
9248 /* return cpu accounting group corresponding to this container */
9249 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9251 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9252 struct cpuacct, css);
9255 /* return cpu accounting group to which this task belongs */
9256 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9258 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9259 struct cpuacct, css);
9262 /* create a new cpu accounting group */
9263 static struct cgroup_subsys_state *cpuacct_create(
9264 struct cgroup_subsys *ss, struct cgroup *cgrp)
9266 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9268 if (!ca)
9269 return ERR_PTR(-ENOMEM);
9271 ca->cpuusage = alloc_percpu(u64);
9272 if (!ca->cpuusage) {
9273 kfree(ca);
9274 return ERR_PTR(-ENOMEM);
9277 return &ca->css;
9280 /* destroy an existing cpu accounting group */
9281 static void
9282 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9284 struct cpuacct *ca = cgroup_ca(cgrp);
9286 free_percpu(ca->cpuusage);
9287 kfree(ca);
9290 /* return total cpu usage (in nanoseconds) of a group */
9291 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9293 struct cpuacct *ca = cgroup_ca(cgrp);
9294 u64 totalcpuusage = 0;
9295 int i;
9297 for_each_possible_cpu(i) {
9298 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9301 * Take rq->lock to make 64-bit addition safe on 32-bit
9302 * platforms.
9304 spin_lock_irq(&cpu_rq(i)->lock);
9305 totalcpuusage += *cpuusage;
9306 spin_unlock_irq(&cpu_rq(i)->lock);
9309 return totalcpuusage;
9312 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9313 u64 reset)
9315 struct cpuacct *ca = cgroup_ca(cgrp);
9316 int err = 0;
9317 int i;
9319 if (reset) {
9320 err = -EINVAL;
9321 goto out;
9324 for_each_possible_cpu(i) {
9325 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9327 spin_lock_irq(&cpu_rq(i)->lock);
9328 *cpuusage = 0;
9329 spin_unlock_irq(&cpu_rq(i)->lock);
9331 out:
9332 return err;
9335 static struct cftype files[] = {
9337 .name = "usage",
9338 .read_u64 = cpuusage_read,
9339 .write_u64 = cpuusage_write,
9343 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9345 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9349 * charge this task's execution time to its accounting group.
9351 * called with rq->lock held.
9353 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9355 struct cpuacct *ca;
9357 if (!cpuacct_subsys.active)
9358 return;
9360 ca = task_ca(tsk);
9361 if (ca) {
9362 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9364 *cpuusage += cputime;
9368 struct cgroup_subsys cpuacct_subsys = {
9369 .name = "cpuacct",
9370 .create = cpuacct_create,
9371 .destroy = cpuacct_destroy,
9372 .populate = cpuacct_populate,
9373 .subsys_id = cpuacct_subsys_id,
9375 #endif /* CONFIG_CGROUP_CPUACCT */