drm/i915: add accounting for mappable objects in gtt v2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blob2eceb24bf54b952c34ed9307e7ab86e76719e8ab
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment, bool mappable);
55 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
59 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
61 static int
62 i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
65 static void
66 i915_gem_object_put_pages(struct drm_gem_object *obj);
68 static LIST_HEAD(shrink_list);
69 static DEFINE_SPINLOCK(shrink_list_lock);
71 /* some bookkeeping */
72 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
79 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
86 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87 struct drm_gem_object *obj)
89 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
90 dev_priv->mm.gtt_count++;
91 dev_priv->mm.gtt_memory += obj->size;
92 if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
93 dev_priv->mm.mappable_gtt_used +=
94 min_t(size_t, obj->size,
95 dev_priv->mm.gtt_mappable_end
96 - obj_priv->gtt_offset);
100 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
101 struct drm_gem_object *obj)
103 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
104 dev_priv->mm.gtt_count--;
105 dev_priv->mm.gtt_memory -= obj->size;
106 if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
107 dev_priv->mm.mappable_gtt_used -=
108 min_t(size_t, obj->size,
109 dev_priv->mm.gtt_mappable_end
110 - obj_priv->gtt_offset);
115 * Update the mappable working set counters. Call _only_ when there is a change
116 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
117 * @mappable: new state the changed mappable flag (either pin_ or fault_).
119 static void
120 i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
121 struct drm_gem_object *obj,
122 bool mappable)
124 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
126 if (mappable) {
127 if (obj_priv->pin_mappable && obj_priv->fault_mappable)
128 /* Combined state was already mappable. */
129 return;
130 dev_priv->mm.gtt_mappable_count++;
131 dev_priv->mm.gtt_mappable_memory += obj->size;
132 } else {
133 if (obj_priv->pin_mappable || obj_priv->fault_mappable)
134 /* Combined state still mappable. */
135 return;
136 dev_priv->mm.gtt_mappable_count--;
137 dev_priv->mm.gtt_mappable_memory -= obj->size;
141 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
142 struct drm_gem_object *obj,
143 bool mappable)
145 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
146 dev_priv->mm.pin_count++;
147 dev_priv->mm.pin_memory += obj->size;
148 if (mappable) {
149 obj_priv->pin_mappable = true;
150 i915_gem_info_update_mappable(dev_priv, obj, true);
154 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
155 struct drm_gem_object *obj)
157 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
158 dev_priv->mm.pin_count--;
159 dev_priv->mm.pin_memory -= obj->size;
160 if (obj_priv->pin_mappable) {
161 obj_priv->pin_mappable = false;
162 i915_gem_info_update_mappable(dev_priv, obj, false);
167 i915_gem_check_is_wedged(struct drm_device *dev)
169 struct drm_i915_private *dev_priv = dev->dev_private;
170 struct completion *x = &dev_priv->error_completion;
171 unsigned long flags;
172 int ret;
174 if (!atomic_read(&dev_priv->mm.wedged))
175 return 0;
177 ret = wait_for_completion_interruptible(x);
178 if (ret)
179 return ret;
181 /* Success, we reset the GPU! */
182 if (!atomic_read(&dev_priv->mm.wedged))
183 return 0;
185 /* GPU is hung, bump the completion count to account for
186 * the token we just consumed so that we never hit zero and
187 * end up waiting upon a subsequent completion event that
188 * will never happen.
190 spin_lock_irqsave(&x->wait.lock, flags);
191 x->done++;
192 spin_unlock_irqrestore(&x->wait.lock, flags);
193 return -EIO;
196 static int i915_mutex_lock_interruptible(struct drm_device *dev)
198 struct drm_i915_private *dev_priv = dev->dev_private;
199 int ret;
201 ret = i915_gem_check_is_wedged(dev);
202 if (ret)
203 return ret;
205 ret = mutex_lock_interruptible(&dev->struct_mutex);
206 if (ret)
207 return ret;
209 if (atomic_read(&dev_priv->mm.wedged)) {
210 mutex_unlock(&dev->struct_mutex);
211 return -EAGAIN;
214 WARN_ON(i915_verify_lists(dev));
215 return 0;
218 static inline bool
219 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
221 return obj_priv->gtt_space &&
222 !obj_priv->active &&
223 obj_priv->pin_count == 0;
226 int i915_gem_do_init(struct drm_device *dev,
227 unsigned long start,
228 unsigned long mappable_end,
229 unsigned long end)
231 drm_i915_private_t *dev_priv = dev->dev_private;
233 if (start >= end ||
234 (start & (PAGE_SIZE - 1)) != 0 ||
235 (end & (PAGE_SIZE - 1)) != 0) {
236 return -EINVAL;
239 drm_mm_init(&dev_priv->mm.gtt_space, start,
240 end - start);
242 dev_priv->mm.gtt_total = end - start;
243 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
244 dev_priv->mm.gtt_mappable_end = mappable_end;
246 return 0;
250 i915_gem_init_ioctl(struct drm_device *dev, void *data,
251 struct drm_file *file_priv)
253 struct drm_i915_gem_init *args = data;
254 int ret;
256 mutex_lock(&dev->struct_mutex);
257 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
258 mutex_unlock(&dev->struct_mutex);
260 return ret;
264 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
265 struct drm_file *file_priv)
267 struct drm_i915_private *dev_priv = dev->dev_private;
268 struct drm_i915_gem_get_aperture *args = data;
270 if (!(dev->driver->driver_features & DRIVER_GEM))
271 return -ENODEV;
273 mutex_lock(&dev->struct_mutex);
274 args->aper_size = dev_priv->mm.gtt_total;
275 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
276 mutex_unlock(&dev->struct_mutex);
278 return 0;
283 * Creates a new mm object and returns a handle to it.
286 i915_gem_create_ioctl(struct drm_device *dev, void *data,
287 struct drm_file *file_priv)
289 struct drm_i915_gem_create *args = data;
290 struct drm_gem_object *obj;
291 int ret;
292 u32 handle;
294 args->size = roundup(args->size, PAGE_SIZE);
296 /* Allocate the new object */
297 obj = i915_gem_alloc_object(dev, args->size);
298 if (obj == NULL)
299 return -ENOMEM;
301 ret = drm_gem_handle_create(file_priv, obj, &handle);
302 if (ret) {
303 drm_gem_object_release(obj);
304 i915_gem_info_remove_obj(dev->dev_private, obj->size);
305 kfree(obj);
306 return ret;
309 /* drop reference from allocate - handle holds it now */
310 drm_gem_object_unreference(obj);
311 trace_i915_gem_object_create(obj);
313 args->handle = handle;
314 return 0;
317 static bool
318 i915_gem_object_cpu_accessible(struct drm_i915_gem_object *obj)
320 struct drm_device *dev = obj->base.dev;
321 drm_i915_private_t *dev_priv = dev->dev_private;
323 return obj->gtt_space == NULL ||
324 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
327 static inline int
328 fast_shmem_read(struct page **pages,
329 loff_t page_base, int page_offset,
330 char __user *data,
331 int length)
333 char *vaddr;
334 int ret;
336 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
337 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
338 kunmap_atomic(vaddr);
340 return ret;
343 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
345 drm_i915_private_t *dev_priv = obj->dev->dev_private;
346 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
348 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
349 obj_priv->tiling_mode != I915_TILING_NONE;
352 static inline void
353 slow_shmem_copy(struct page *dst_page,
354 int dst_offset,
355 struct page *src_page,
356 int src_offset,
357 int length)
359 char *dst_vaddr, *src_vaddr;
361 dst_vaddr = kmap(dst_page);
362 src_vaddr = kmap(src_page);
364 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
366 kunmap(src_page);
367 kunmap(dst_page);
370 static inline void
371 slow_shmem_bit17_copy(struct page *gpu_page,
372 int gpu_offset,
373 struct page *cpu_page,
374 int cpu_offset,
375 int length,
376 int is_read)
378 char *gpu_vaddr, *cpu_vaddr;
380 /* Use the unswizzled path if this page isn't affected. */
381 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
382 if (is_read)
383 return slow_shmem_copy(cpu_page, cpu_offset,
384 gpu_page, gpu_offset, length);
385 else
386 return slow_shmem_copy(gpu_page, gpu_offset,
387 cpu_page, cpu_offset, length);
390 gpu_vaddr = kmap(gpu_page);
391 cpu_vaddr = kmap(cpu_page);
393 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
394 * XORing with the other bits (A9 for Y, A9 and A10 for X)
396 while (length > 0) {
397 int cacheline_end = ALIGN(gpu_offset + 1, 64);
398 int this_length = min(cacheline_end - gpu_offset, length);
399 int swizzled_gpu_offset = gpu_offset ^ 64;
401 if (is_read) {
402 memcpy(cpu_vaddr + cpu_offset,
403 gpu_vaddr + swizzled_gpu_offset,
404 this_length);
405 } else {
406 memcpy(gpu_vaddr + swizzled_gpu_offset,
407 cpu_vaddr + cpu_offset,
408 this_length);
410 cpu_offset += this_length;
411 gpu_offset += this_length;
412 length -= this_length;
415 kunmap(cpu_page);
416 kunmap(gpu_page);
420 * This is the fast shmem pread path, which attempts to copy_from_user directly
421 * from the backing pages of the object to the user's address space. On a
422 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
424 static int
425 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
426 struct drm_i915_gem_pread *args,
427 struct drm_file *file_priv)
429 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
430 ssize_t remain;
431 loff_t offset, page_base;
432 char __user *user_data;
433 int page_offset, page_length;
435 user_data = (char __user *) (uintptr_t) args->data_ptr;
436 remain = args->size;
438 obj_priv = to_intel_bo(obj);
439 offset = args->offset;
441 while (remain > 0) {
442 /* Operation in this page
444 * page_base = page offset within aperture
445 * page_offset = offset within page
446 * page_length = bytes to copy for this page
448 page_base = (offset & ~(PAGE_SIZE-1));
449 page_offset = offset & (PAGE_SIZE-1);
450 page_length = remain;
451 if ((page_offset + remain) > PAGE_SIZE)
452 page_length = PAGE_SIZE - page_offset;
454 if (fast_shmem_read(obj_priv->pages,
455 page_base, page_offset,
456 user_data, page_length))
457 return -EFAULT;
459 remain -= page_length;
460 user_data += page_length;
461 offset += page_length;
464 return 0;
467 static int
468 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
470 int ret;
472 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
474 /* If we've insufficient memory to map in the pages, attempt
475 * to make some space by throwing out some old buffers.
477 if (ret == -ENOMEM) {
478 struct drm_device *dev = obj->dev;
480 ret = i915_gem_evict_something(dev, obj->size,
481 i915_gem_get_gtt_alignment(obj),
482 false);
483 if (ret)
484 return ret;
486 ret = i915_gem_object_get_pages(obj, 0);
489 return ret;
493 * This is the fallback shmem pread path, which allocates temporary storage
494 * in kernel space to copy_to_user into outside of the struct_mutex, so we
495 * can copy out of the object's backing pages while holding the struct mutex
496 * and not take page faults.
498 static int
499 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
500 struct drm_i915_gem_pread *args,
501 struct drm_file *file_priv)
503 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
504 struct mm_struct *mm = current->mm;
505 struct page **user_pages;
506 ssize_t remain;
507 loff_t offset, pinned_pages, i;
508 loff_t first_data_page, last_data_page, num_pages;
509 int shmem_page_index, shmem_page_offset;
510 int data_page_index, data_page_offset;
511 int page_length;
512 int ret;
513 uint64_t data_ptr = args->data_ptr;
514 int do_bit17_swizzling;
516 remain = args->size;
518 /* Pin the user pages containing the data. We can't fault while
519 * holding the struct mutex, yet we want to hold it while
520 * dereferencing the user data.
522 first_data_page = data_ptr / PAGE_SIZE;
523 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
524 num_pages = last_data_page - first_data_page + 1;
526 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
527 if (user_pages == NULL)
528 return -ENOMEM;
530 mutex_unlock(&dev->struct_mutex);
531 down_read(&mm->mmap_sem);
532 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
533 num_pages, 1, 0, user_pages, NULL);
534 up_read(&mm->mmap_sem);
535 mutex_lock(&dev->struct_mutex);
536 if (pinned_pages < num_pages) {
537 ret = -EFAULT;
538 goto out;
541 ret = i915_gem_object_set_cpu_read_domain_range(obj,
542 args->offset,
543 args->size);
544 if (ret)
545 goto out;
547 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
549 obj_priv = to_intel_bo(obj);
550 offset = args->offset;
552 while (remain > 0) {
553 /* Operation in this page
555 * shmem_page_index = page number within shmem file
556 * shmem_page_offset = offset within page in shmem file
557 * data_page_index = page number in get_user_pages return
558 * data_page_offset = offset with data_page_index page.
559 * page_length = bytes to copy for this page
561 shmem_page_index = offset / PAGE_SIZE;
562 shmem_page_offset = offset & ~PAGE_MASK;
563 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
564 data_page_offset = data_ptr & ~PAGE_MASK;
566 page_length = remain;
567 if ((shmem_page_offset + page_length) > PAGE_SIZE)
568 page_length = PAGE_SIZE - shmem_page_offset;
569 if ((data_page_offset + page_length) > PAGE_SIZE)
570 page_length = PAGE_SIZE - data_page_offset;
572 if (do_bit17_swizzling) {
573 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
574 shmem_page_offset,
575 user_pages[data_page_index],
576 data_page_offset,
577 page_length,
579 } else {
580 slow_shmem_copy(user_pages[data_page_index],
581 data_page_offset,
582 obj_priv->pages[shmem_page_index],
583 shmem_page_offset,
584 page_length);
587 remain -= page_length;
588 data_ptr += page_length;
589 offset += page_length;
592 out:
593 for (i = 0; i < pinned_pages; i++) {
594 SetPageDirty(user_pages[i]);
595 page_cache_release(user_pages[i]);
597 drm_free_large(user_pages);
599 return ret;
603 * Reads data from the object referenced by handle.
605 * On error, the contents of *data are undefined.
608 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
609 struct drm_file *file_priv)
611 struct drm_i915_gem_pread *args = data;
612 struct drm_gem_object *obj;
613 struct drm_i915_gem_object *obj_priv;
614 int ret = 0;
616 ret = i915_mutex_lock_interruptible(dev);
617 if (ret)
618 return ret;
620 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
621 if (obj == NULL) {
622 ret = -ENOENT;
623 goto unlock;
625 obj_priv = to_intel_bo(obj);
627 /* Bounds check source. */
628 if (args->offset > obj->size || args->size > obj->size - args->offset) {
629 ret = -EINVAL;
630 goto out;
633 if (args->size == 0)
634 goto out;
636 if (!access_ok(VERIFY_WRITE,
637 (char __user *)(uintptr_t)args->data_ptr,
638 args->size)) {
639 ret = -EFAULT;
640 goto out;
643 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
644 args->size);
645 if (ret) {
646 ret = -EFAULT;
647 goto out;
650 ret = i915_gem_object_get_pages_or_evict(obj);
651 if (ret)
652 goto out;
654 ret = i915_gem_object_set_cpu_read_domain_range(obj,
655 args->offset,
656 args->size);
657 if (ret)
658 goto out_put;
660 ret = -EFAULT;
661 if (!i915_gem_object_needs_bit17_swizzle(obj))
662 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
663 if (ret == -EFAULT)
664 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
666 out_put:
667 i915_gem_object_put_pages(obj);
668 out:
669 drm_gem_object_unreference(obj);
670 unlock:
671 mutex_unlock(&dev->struct_mutex);
672 return ret;
675 /* This is the fast write path which cannot handle
676 * page faults in the source data
679 static inline int
680 fast_user_write(struct io_mapping *mapping,
681 loff_t page_base, int page_offset,
682 char __user *user_data,
683 int length)
685 char *vaddr_atomic;
686 unsigned long unwritten;
688 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
689 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
690 user_data, length);
691 io_mapping_unmap_atomic(vaddr_atomic);
692 return unwritten;
695 /* Here's the write path which can sleep for
696 * page faults
699 static inline void
700 slow_kernel_write(struct io_mapping *mapping,
701 loff_t gtt_base, int gtt_offset,
702 struct page *user_page, int user_offset,
703 int length)
705 char __iomem *dst_vaddr;
706 char *src_vaddr;
708 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
709 src_vaddr = kmap(user_page);
711 memcpy_toio(dst_vaddr + gtt_offset,
712 src_vaddr + user_offset,
713 length);
715 kunmap(user_page);
716 io_mapping_unmap(dst_vaddr);
719 static inline int
720 fast_shmem_write(struct page **pages,
721 loff_t page_base, int page_offset,
722 char __user *data,
723 int length)
725 char *vaddr;
726 int ret;
728 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
729 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
730 kunmap_atomic(vaddr);
732 return ret;
736 * This is the fast pwrite path, where we copy the data directly from the
737 * user into the GTT, uncached.
739 static int
740 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
741 struct drm_i915_gem_pwrite *args,
742 struct drm_file *file_priv)
744 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
745 drm_i915_private_t *dev_priv = dev->dev_private;
746 ssize_t remain;
747 loff_t offset, page_base;
748 char __user *user_data;
749 int page_offset, page_length;
751 user_data = (char __user *) (uintptr_t) args->data_ptr;
752 remain = args->size;
754 obj_priv = to_intel_bo(obj);
755 offset = obj_priv->gtt_offset + args->offset;
757 while (remain > 0) {
758 /* Operation in this page
760 * page_base = page offset within aperture
761 * page_offset = offset within page
762 * page_length = bytes to copy for this page
764 page_base = (offset & ~(PAGE_SIZE-1));
765 page_offset = offset & (PAGE_SIZE-1);
766 page_length = remain;
767 if ((page_offset + remain) > PAGE_SIZE)
768 page_length = PAGE_SIZE - page_offset;
770 /* If we get a fault while copying data, then (presumably) our
771 * source page isn't available. Return the error and we'll
772 * retry in the slow path.
774 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
775 page_offset, user_data, page_length))
777 return -EFAULT;
779 remain -= page_length;
780 user_data += page_length;
781 offset += page_length;
784 return 0;
788 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
789 * the memory and maps it using kmap_atomic for copying.
791 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
792 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
794 static int
795 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
796 struct drm_i915_gem_pwrite *args,
797 struct drm_file *file_priv)
799 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
800 drm_i915_private_t *dev_priv = dev->dev_private;
801 ssize_t remain;
802 loff_t gtt_page_base, offset;
803 loff_t first_data_page, last_data_page, num_pages;
804 loff_t pinned_pages, i;
805 struct page **user_pages;
806 struct mm_struct *mm = current->mm;
807 int gtt_page_offset, data_page_offset, data_page_index, page_length;
808 int ret;
809 uint64_t data_ptr = args->data_ptr;
811 remain = args->size;
813 /* Pin the user pages containing the data. We can't fault while
814 * holding the struct mutex, and all of the pwrite implementations
815 * want to hold it while dereferencing the user data.
817 first_data_page = data_ptr / PAGE_SIZE;
818 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
819 num_pages = last_data_page - first_data_page + 1;
821 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
822 if (user_pages == NULL)
823 return -ENOMEM;
825 mutex_unlock(&dev->struct_mutex);
826 down_read(&mm->mmap_sem);
827 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
828 num_pages, 0, 0, user_pages, NULL);
829 up_read(&mm->mmap_sem);
830 mutex_lock(&dev->struct_mutex);
831 if (pinned_pages < num_pages) {
832 ret = -EFAULT;
833 goto out_unpin_pages;
836 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
837 if (ret)
838 goto out_unpin_pages;
840 obj_priv = to_intel_bo(obj);
841 offset = obj_priv->gtt_offset + args->offset;
843 while (remain > 0) {
844 /* Operation in this page
846 * gtt_page_base = page offset within aperture
847 * gtt_page_offset = offset within page in aperture
848 * data_page_index = page number in get_user_pages return
849 * data_page_offset = offset with data_page_index page.
850 * page_length = bytes to copy for this page
852 gtt_page_base = offset & PAGE_MASK;
853 gtt_page_offset = offset & ~PAGE_MASK;
854 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
855 data_page_offset = data_ptr & ~PAGE_MASK;
857 page_length = remain;
858 if ((gtt_page_offset + page_length) > PAGE_SIZE)
859 page_length = PAGE_SIZE - gtt_page_offset;
860 if ((data_page_offset + page_length) > PAGE_SIZE)
861 page_length = PAGE_SIZE - data_page_offset;
863 slow_kernel_write(dev_priv->mm.gtt_mapping,
864 gtt_page_base, gtt_page_offset,
865 user_pages[data_page_index],
866 data_page_offset,
867 page_length);
869 remain -= page_length;
870 offset += page_length;
871 data_ptr += page_length;
874 out_unpin_pages:
875 for (i = 0; i < pinned_pages; i++)
876 page_cache_release(user_pages[i]);
877 drm_free_large(user_pages);
879 return ret;
883 * This is the fast shmem pwrite path, which attempts to directly
884 * copy_from_user into the kmapped pages backing the object.
886 static int
887 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
888 struct drm_i915_gem_pwrite *args,
889 struct drm_file *file_priv)
891 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
892 ssize_t remain;
893 loff_t offset, page_base;
894 char __user *user_data;
895 int page_offset, page_length;
897 user_data = (char __user *) (uintptr_t) args->data_ptr;
898 remain = args->size;
900 obj_priv = to_intel_bo(obj);
901 offset = args->offset;
902 obj_priv->dirty = 1;
904 while (remain > 0) {
905 /* Operation in this page
907 * page_base = page offset within aperture
908 * page_offset = offset within page
909 * page_length = bytes to copy for this page
911 page_base = (offset & ~(PAGE_SIZE-1));
912 page_offset = offset & (PAGE_SIZE-1);
913 page_length = remain;
914 if ((page_offset + remain) > PAGE_SIZE)
915 page_length = PAGE_SIZE - page_offset;
917 if (fast_shmem_write(obj_priv->pages,
918 page_base, page_offset,
919 user_data, page_length))
920 return -EFAULT;
922 remain -= page_length;
923 user_data += page_length;
924 offset += page_length;
927 return 0;
931 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
932 * the memory and maps it using kmap_atomic for copying.
934 * This avoids taking mmap_sem for faulting on the user's address while the
935 * struct_mutex is held.
937 static int
938 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
939 struct drm_i915_gem_pwrite *args,
940 struct drm_file *file_priv)
942 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
943 struct mm_struct *mm = current->mm;
944 struct page **user_pages;
945 ssize_t remain;
946 loff_t offset, pinned_pages, i;
947 loff_t first_data_page, last_data_page, num_pages;
948 int shmem_page_index, shmem_page_offset;
949 int data_page_index, data_page_offset;
950 int page_length;
951 int ret;
952 uint64_t data_ptr = args->data_ptr;
953 int do_bit17_swizzling;
955 remain = args->size;
957 /* Pin the user pages containing the data. We can't fault while
958 * holding the struct mutex, and all of the pwrite implementations
959 * want to hold it while dereferencing the user data.
961 first_data_page = data_ptr / PAGE_SIZE;
962 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
963 num_pages = last_data_page - first_data_page + 1;
965 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
966 if (user_pages == NULL)
967 return -ENOMEM;
969 mutex_unlock(&dev->struct_mutex);
970 down_read(&mm->mmap_sem);
971 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
972 num_pages, 0, 0, user_pages, NULL);
973 up_read(&mm->mmap_sem);
974 mutex_lock(&dev->struct_mutex);
975 if (pinned_pages < num_pages) {
976 ret = -EFAULT;
977 goto out;
980 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
981 if (ret)
982 goto out;
984 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
986 obj_priv = to_intel_bo(obj);
987 offset = args->offset;
988 obj_priv->dirty = 1;
990 while (remain > 0) {
991 /* Operation in this page
993 * shmem_page_index = page number within shmem file
994 * shmem_page_offset = offset within page in shmem file
995 * data_page_index = page number in get_user_pages return
996 * data_page_offset = offset with data_page_index page.
997 * page_length = bytes to copy for this page
999 shmem_page_index = offset / PAGE_SIZE;
1000 shmem_page_offset = offset & ~PAGE_MASK;
1001 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
1002 data_page_offset = data_ptr & ~PAGE_MASK;
1004 page_length = remain;
1005 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1006 page_length = PAGE_SIZE - shmem_page_offset;
1007 if ((data_page_offset + page_length) > PAGE_SIZE)
1008 page_length = PAGE_SIZE - data_page_offset;
1010 if (do_bit17_swizzling) {
1011 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
1012 shmem_page_offset,
1013 user_pages[data_page_index],
1014 data_page_offset,
1015 page_length,
1017 } else {
1018 slow_shmem_copy(obj_priv->pages[shmem_page_index],
1019 shmem_page_offset,
1020 user_pages[data_page_index],
1021 data_page_offset,
1022 page_length);
1025 remain -= page_length;
1026 data_ptr += page_length;
1027 offset += page_length;
1030 out:
1031 for (i = 0; i < pinned_pages; i++)
1032 page_cache_release(user_pages[i]);
1033 drm_free_large(user_pages);
1035 return ret;
1039 * Writes data to the object referenced by handle.
1041 * On error, the contents of the buffer that were to be modified are undefined.
1044 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1045 struct drm_file *file)
1047 struct drm_i915_gem_pwrite *args = data;
1048 struct drm_gem_object *obj;
1049 struct drm_i915_gem_object *obj_priv;
1050 int ret = 0;
1052 ret = i915_mutex_lock_interruptible(dev);
1053 if (ret)
1054 return ret;
1056 obj = drm_gem_object_lookup(dev, file, args->handle);
1057 if (obj == NULL) {
1058 ret = -ENOENT;
1059 goto unlock;
1061 obj_priv = to_intel_bo(obj);
1064 /* Bounds check destination. */
1065 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1066 ret = -EINVAL;
1067 goto out;
1070 if (args->size == 0)
1071 goto out;
1073 if (!access_ok(VERIFY_READ,
1074 (char __user *)(uintptr_t)args->data_ptr,
1075 args->size)) {
1076 ret = -EFAULT;
1077 goto out;
1080 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1081 args->size);
1082 if (ret) {
1083 ret = -EFAULT;
1084 goto out;
1087 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1088 * it would end up going through the fenced access, and we'll get
1089 * different detiling behavior between reading and writing.
1090 * pread/pwrite currently are reading and writing from the CPU
1091 * perspective, requiring manual detiling by the client.
1093 if (obj_priv->phys_obj)
1094 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1095 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1096 obj_priv->gtt_space &&
1097 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1098 ret = i915_gem_object_pin(obj, 0, true);
1099 if (ret)
1100 goto out;
1102 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1103 if (ret)
1104 goto out_unpin;
1106 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1107 if (ret == -EFAULT)
1108 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1110 out_unpin:
1111 i915_gem_object_unpin(obj);
1112 } else {
1113 ret = i915_gem_object_get_pages_or_evict(obj);
1114 if (ret)
1115 goto out;
1117 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1118 if (ret)
1119 goto out_put;
1121 ret = -EFAULT;
1122 if (!i915_gem_object_needs_bit17_swizzle(obj))
1123 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1124 if (ret == -EFAULT)
1125 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1127 out_put:
1128 i915_gem_object_put_pages(obj);
1131 out:
1132 drm_gem_object_unreference(obj);
1133 unlock:
1134 mutex_unlock(&dev->struct_mutex);
1135 return ret;
1139 * Called when user space prepares to use an object with the CPU, either
1140 * through the mmap ioctl's mapping or a GTT mapping.
1143 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1144 struct drm_file *file_priv)
1146 struct drm_i915_private *dev_priv = dev->dev_private;
1147 struct drm_i915_gem_set_domain *args = data;
1148 struct drm_gem_object *obj;
1149 struct drm_i915_gem_object *obj_priv;
1150 uint32_t read_domains = args->read_domains;
1151 uint32_t write_domain = args->write_domain;
1152 int ret;
1154 if (!(dev->driver->driver_features & DRIVER_GEM))
1155 return -ENODEV;
1157 /* Only handle setting domains to types used by the CPU. */
1158 if (write_domain & I915_GEM_GPU_DOMAINS)
1159 return -EINVAL;
1161 if (read_domains & I915_GEM_GPU_DOMAINS)
1162 return -EINVAL;
1164 /* Having something in the write domain implies it's in the read
1165 * domain, and only that read domain. Enforce that in the request.
1167 if (write_domain != 0 && read_domains != write_domain)
1168 return -EINVAL;
1170 ret = i915_mutex_lock_interruptible(dev);
1171 if (ret)
1172 return ret;
1174 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1175 if (obj == NULL) {
1176 ret = -ENOENT;
1177 goto unlock;
1179 obj_priv = to_intel_bo(obj);
1181 intel_mark_busy(dev, obj);
1183 if (read_domains & I915_GEM_DOMAIN_GTT) {
1184 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1186 /* Update the LRU on the fence for the CPU access that's
1187 * about to occur.
1189 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1190 struct drm_i915_fence_reg *reg =
1191 &dev_priv->fence_regs[obj_priv->fence_reg];
1192 list_move_tail(&reg->lru_list,
1193 &dev_priv->mm.fence_list);
1196 /* Silently promote "you're not bound, there was nothing to do"
1197 * to success, since the client was just asking us to
1198 * make sure everything was done.
1200 if (ret == -EINVAL)
1201 ret = 0;
1202 } else {
1203 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1206 /* Maintain LRU order of "inactive" objects */
1207 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1208 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1210 drm_gem_object_unreference(obj);
1211 unlock:
1212 mutex_unlock(&dev->struct_mutex);
1213 return ret;
1217 * Called when user space has done writes to this buffer
1220 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1221 struct drm_file *file_priv)
1223 struct drm_i915_gem_sw_finish *args = data;
1224 struct drm_gem_object *obj;
1225 int ret = 0;
1227 if (!(dev->driver->driver_features & DRIVER_GEM))
1228 return -ENODEV;
1230 ret = i915_mutex_lock_interruptible(dev);
1231 if (ret)
1232 return ret;
1234 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1235 if (obj == NULL) {
1236 ret = -ENOENT;
1237 goto unlock;
1240 /* Pinned buffers may be scanout, so flush the cache */
1241 if (to_intel_bo(obj)->pin_count)
1242 i915_gem_object_flush_cpu_write_domain(obj);
1244 drm_gem_object_unreference(obj);
1245 unlock:
1246 mutex_unlock(&dev->struct_mutex);
1247 return ret;
1251 * Maps the contents of an object, returning the address it is mapped
1252 * into.
1254 * While the mapping holds a reference on the contents of the object, it doesn't
1255 * imply a ref on the object itself.
1258 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1259 struct drm_file *file_priv)
1261 struct drm_i915_gem_mmap *args = data;
1262 struct drm_gem_object *obj;
1263 loff_t offset;
1264 unsigned long addr;
1266 if (!(dev->driver->driver_features & DRIVER_GEM))
1267 return -ENODEV;
1269 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1270 if (obj == NULL)
1271 return -ENOENT;
1273 offset = args->offset;
1275 down_write(&current->mm->mmap_sem);
1276 addr = do_mmap(obj->filp, 0, args->size,
1277 PROT_READ | PROT_WRITE, MAP_SHARED,
1278 args->offset);
1279 up_write(&current->mm->mmap_sem);
1280 drm_gem_object_unreference_unlocked(obj);
1281 if (IS_ERR((void *)addr))
1282 return addr;
1284 args->addr_ptr = (uint64_t) addr;
1286 return 0;
1290 * i915_gem_fault - fault a page into the GTT
1291 * vma: VMA in question
1292 * vmf: fault info
1294 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1295 * from userspace. The fault handler takes care of binding the object to
1296 * the GTT (if needed), allocating and programming a fence register (again,
1297 * only if needed based on whether the old reg is still valid or the object
1298 * is tiled) and inserting a new PTE into the faulting process.
1300 * Note that the faulting process may involve evicting existing objects
1301 * from the GTT and/or fence registers to make room. So performance may
1302 * suffer if the GTT working set is large or there are few fence registers
1303 * left.
1305 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1307 struct drm_gem_object *obj = vma->vm_private_data;
1308 struct drm_device *dev = obj->dev;
1309 drm_i915_private_t *dev_priv = dev->dev_private;
1310 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1311 pgoff_t page_offset;
1312 unsigned long pfn;
1313 int ret = 0;
1314 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1316 /* We don't use vmf->pgoff since that has the fake offset */
1317 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1318 PAGE_SHIFT;
1320 /* Now bind it into the GTT if needed */
1321 mutex_lock(&dev->struct_mutex);
1322 BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
1323 if (!i915_gem_object_cpu_accessible(obj_priv))
1324 i915_gem_object_unbind(obj);
1326 if (!obj_priv->gtt_space) {
1327 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1328 if (ret)
1329 goto unlock;
1331 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1332 if (ret)
1333 goto unlock;
1336 if (!obj_priv->fault_mappable) {
1337 obj_priv->fault_mappable = true;
1338 i915_gem_info_update_mappable(dev_priv, obj, true);
1341 /* Need a new fence register? */
1342 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1343 ret = i915_gem_object_get_fence_reg(obj, true);
1344 if (ret)
1345 goto unlock;
1348 if (i915_gem_object_is_inactive(obj_priv))
1349 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1351 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1352 page_offset;
1354 /* Finally, remap it using the new GTT offset */
1355 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1356 unlock:
1357 mutex_unlock(&dev->struct_mutex);
1359 switch (ret) {
1360 case 0:
1361 case -ERESTARTSYS:
1362 return VM_FAULT_NOPAGE;
1363 case -ENOMEM:
1364 case -EAGAIN:
1365 return VM_FAULT_OOM;
1366 default:
1367 return VM_FAULT_SIGBUS;
1372 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1373 * @obj: obj in question
1375 * GEM memory mapping works by handing back to userspace a fake mmap offset
1376 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1377 * up the object based on the offset and sets up the various memory mapping
1378 * structures.
1380 * This routine allocates and attaches a fake offset for @obj.
1382 static int
1383 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1385 struct drm_device *dev = obj->dev;
1386 struct drm_gem_mm *mm = dev->mm_private;
1387 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1388 struct drm_map_list *list;
1389 struct drm_local_map *map;
1390 int ret = 0;
1392 /* Set the object up for mmap'ing */
1393 list = &obj->map_list;
1394 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1395 if (!list->map)
1396 return -ENOMEM;
1398 map = list->map;
1399 map->type = _DRM_GEM;
1400 map->size = obj->size;
1401 map->handle = obj;
1403 /* Get a DRM GEM mmap offset allocated... */
1404 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1405 obj->size / PAGE_SIZE, 0, 0);
1406 if (!list->file_offset_node) {
1407 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1408 ret = -ENOSPC;
1409 goto out_free_list;
1412 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1413 obj->size / PAGE_SIZE, 0);
1414 if (!list->file_offset_node) {
1415 ret = -ENOMEM;
1416 goto out_free_list;
1419 list->hash.key = list->file_offset_node->start;
1420 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1421 if (ret) {
1422 DRM_ERROR("failed to add to map hash\n");
1423 goto out_free_mm;
1426 /* By now we should be all set, any drm_mmap request on the offset
1427 * below will get to our mmap & fault handler */
1428 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1430 return 0;
1432 out_free_mm:
1433 drm_mm_put_block(list->file_offset_node);
1434 out_free_list:
1435 kfree(list->map);
1437 return ret;
1441 * i915_gem_release_mmap - remove physical page mappings
1442 * @obj: obj in question
1444 * Preserve the reservation of the mmapping with the DRM core code, but
1445 * relinquish ownership of the pages back to the system.
1447 * It is vital that we remove the page mapping if we have mapped a tiled
1448 * object through the GTT and then lose the fence register due to
1449 * resource pressure. Similarly if the object has been moved out of the
1450 * aperture, than pages mapped into userspace must be revoked. Removing the
1451 * mapping will then trigger a page fault on the next user access, allowing
1452 * fixup by i915_gem_fault().
1454 void
1455 i915_gem_release_mmap(struct drm_gem_object *obj)
1457 struct drm_device *dev = obj->dev;
1458 struct drm_i915_private *dev_priv = dev->dev_private;
1459 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1461 if (dev->dev_mapping)
1462 unmap_mapping_range(dev->dev_mapping,
1463 obj_priv->mmap_offset, obj->size, 1);
1465 if (obj_priv->fault_mappable) {
1466 obj_priv->fault_mappable = false;
1467 i915_gem_info_update_mappable(dev_priv, obj, false);
1471 static void
1472 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1474 struct drm_device *dev = obj->dev;
1475 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1476 struct drm_gem_mm *mm = dev->mm_private;
1477 struct drm_map_list *list;
1479 list = &obj->map_list;
1480 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1482 if (list->file_offset_node) {
1483 drm_mm_put_block(list->file_offset_node);
1484 list->file_offset_node = NULL;
1487 if (list->map) {
1488 kfree(list->map);
1489 list->map = NULL;
1492 obj_priv->mmap_offset = 0;
1496 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1497 * @obj: object to check
1499 * Return the required GTT alignment for an object, taking into account
1500 * potential fence register mapping if needed.
1502 static uint32_t
1503 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1505 struct drm_device *dev = obj->dev;
1506 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1507 int start, i;
1510 * Minimum alignment is 4k (GTT page size), but might be greater
1511 * if a fence register is needed for the object.
1513 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1514 return 4096;
1517 * Previous chips need to be aligned to the size of the smallest
1518 * fence register that can contain the object.
1520 if (INTEL_INFO(dev)->gen == 3)
1521 start = 1024*1024;
1522 else
1523 start = 512*1024;
1525 for (i = start; i < obj->size; i <<= 1)
1528 return i;
1532 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1533 * @dev: DRM device
1534 * @data: GTT mapping ioctl data
1535 * @file_priv: GEM object info
1537 * Simply returns the fake offset to userspace so it can mmap it.
1538 * The mmap call will end up in drm_gem_mmap(), which will set things
1539 * up so we can get faults in the handler above.
1541 * The fault handler will take care of binding the object into the GTT
1542 * (since it may have been evicted to make room for something), allocating
1543 * a fence register, and mapping the appropriate aperture address into
1544 * userspace.
1547 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1548 struct drm_file *file_priv)
1550 struct drm_i915_gem_mmap_gtt *args = data;
1551 struct drm_gem_object *obj;
1552 struct drm_i915_gem_object *obj_priv;
1553 int ret;
1555 if (!(dev->driver->driver_features & DRIVER_GEM))
1556 return -ENODEV;
1558 ret = i915_mutex_lock_interruptible(dev);
1559 if (ret)
1560 return ret;
1562 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1563 if (obj == NULL) {
1564 ret = -ENOENT;
1565 goto unlock;
1567 obj_priv = to_intel_bo(obj);
1569 if (obj_priv->madv != I915_MADV_WILLNEED) {
1570 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1571 ret = -EINVAL;
1572 goto out;
1575 if (!obj_priv->mmap_offset) {
1576 ret = i915_gem_create_mmap_offset(obj);
1577 if (ret)
1578 goto out;
1581 args->offset = obj_priv->mmap_offset;
1584 * Pull it into the GTT so that we have a page list (makes the
1585 * initial fault faster and any subsequent flushing possible).
1587 if (!obj_priv->agp_mem) {
1588 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1589 if (ret)
1590 goto out;
1593 out:
1594 drm_gem_object_unreference(obj);
1595 unlock:
1596 mutex_unlock(&dev->struct_mutex);
1597 return ret;
1600 static void
1601 i915_gem_object_put_pages(struct drm_gem_object *obj)
1603 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1604 int page_count = obj->size / PAGE_SIZE;
1605 int i;
1607 BUG_ON(obj_priv->pages_refcount == 0);
1608 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1610 if (--obj_priv->pages_refcount != 0)
1611 return;
1613 if (obj_priv->tiling_mode != I915_TILING_NONE)
1614 i915_gem_object_save_bit_17_swizzle(obj);
1616 if (obj_priv->madv == I915_MADV_DONTNEED)
1617 obj_priv->dirty = 0;
1619 for (i = 0; i < page_count; i++) {
1620 if (obj_priv->dirty)
1621 set_page_dirty(obj_priv->pages[i]);
1623 if (obj_priv->madv == I915_MADV_WILLNEED)
1624 mark_page_accessed(obj_priv->pages[i]);
1626 page_cache_release(obj_priv->pages[i]);
1628 obj_priv->dirty = 0;
1630 drm_free_large(obj_priv->pages);
1631 obj_priv->pages = NULL;
1634 static uint32_t
1635 i915_gem_next_request_seqno(struct drm_device *dev,
1636 struct intel_ring_buffer *ring)
1638 drm_i915_private_t *dev_priv = dev->dev_private;
1640 ring->outstanding_lazy_request = true;
1641 return dev_priv->next_seqno;
1644 static void
1645 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1646 struct intel_ring_buffer *ring)
1648 struct drm_device *dev = obj->dev;
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1651 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1653 BUG_ON(ring == NULL);
1654 obj_priv->ring = ring;
1656 /* Add a reference if we're newly entering the active list. */
1657 if (!obj_priv->active) {
1658 drm_gem_object_reference(obj);
1659 obj_priv->active = 1;
1662 /* Move from whatever list we were on to the tail of execution. */
1663 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1664 list_move_tail(&obj_priv->ring_list, &ring->active_list);
1665 obj_priv->last_rendering_seqno = seqno;
1668 static void
1669 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1671 struct drm_device *dev = obj->dev;
1672 drm_i915_private_t *dev_priv = dev->dev_private;
1673 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1675 BUG_ON(!obj_priv->active);
1676 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1677 list_del_init(&obj_priv->ring_list);
1678 obj_priv->last_rendering_seqno = 0;
1681 /* Immediately discard the backing storage */
1682 static void
1683 i915_gem_object_truncate(struct drm_gem_object *obj)
1685 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1686 struct inode *inode;
1688 /* Our goal here is to return as much of the memory as
1689 * is possible back to the system as we are called from OOM.
1690 * To do this we must instruct the shmfs to drop all of its
1691 * backing pages, *now*. Here we mirror the actions taken
1692 * when by shmem_delete_inode() to release the backing store.
1694 inode = obj->filp->f_path.dentry->d_inode;
1695 truncate_inode_pages(inode->i_mapping, 0);
1696 if (inode->i_op->truncate_range)
1697 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1699 obj_priv->madv = __I915_MADV_PURGED;
1702 static inline int
1703 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1705 return obj_priv->madv == I915_MADV_DONTNEED;
1708 static void
1709 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1711 struct drm_device *dev = obj->dev;
1712 drm_i915_private_t *dev_priv = dev->dev_private;
1713 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1715 if (obj_priv->pin_count != 0)
1716 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1717 else
1718 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1719 list_del_init(&obj_priv->ring_list);
1721 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1723 obj_priv->last_rendering_seqno = 0;
1724 obj_priv->ring = NULL;
1725 if (obj_priv->active) {
1726 obj_priv->active = 0;
1727 drm_gem_object_unreference(obj);
1729 WARN_ON(i915_verify_lists(dev));
1732 static void
1733 i915_gem_process_flushing_list(struct drm_device *dev,
1734 uint32_t flush_domains,
1735 struct intel_ring_buffer *ring)
1737 drm_i915_private_t *dev_priv = dev->dev_private;
1738 struct drm_i915_gem_object *obj_priv, *next;
1740 list_for_each_entry_safe(obj_priv, next,
1741 &ring->gpu_write_list,
1742 gpu_write_list) {
1743 struct drm_gem_object *obj = &obj_priv->base;
1745 if (obj->write_domain & flush_domains) {
1746 uint32_t old_write_domain = obj->write_domain;
1748 obj->write_domain = 0;
1749 list_del_init(&obj_priv->gpu_write_list);
1750 i915_gem_object_move_to_active(obj, ring);
1752 /* update the fence lru list */
1753 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1754 struct drm_i915_fence_reg *reg =
1755 &dev_priv->fence_regs[obj_priv->fence_reg];
1756 list_move_tail(&reg->lru_list,
1757 &dev_priv->mm.fence_list);
1760 trace_i915_gem_object_change_domain(obj,
1761 obj->read_domains,
1762 old_write_domain);
1768 i915_add_request(struct drm_device *dev,
1769 struct drm_file *file,
1770 struct drm_i915_gem_request *request,
1771 struct intel_ring_buffer *ring)
1773 drm_i915_private_t *dev_priv = dev->dev_private;
1774 struct drm_i915_file_private *file_priv = NULL;
1775 uint32_t seqno;
1776 int was_empty;
1777 int ret;
1779 BUG_ON(request == NULL);
1781 if (file != NULL)
1782 file_priv = file->driver_priv;
1784 ret = ring->add_request(ring, &seqno);
1785 if (ret)
1786 return ret;
1788 ring->outstanding_lazy_request = false;
1790 request->seqno = seqno;
1791 request->ring = ring;
1792 request->emitted_jiffies = jiffies;
1793 was_empty = list_empty(&ring->request_list);
1794 list_add_tail(&request->list, &ring->request_list);
1796 if (file_priv) {
1797 spin_lock(&file_priv->mm.lock);
1798 request->file_priv = file_priv;
1799 list_add_tail(&request->client_list,
1800 &file_priv->mm.request_list);
1801 spin_unlock(&file_priv->mm.lock);
1804 if (!dev_priv->mm.suspended) {
1805 mod_timer(&dev_priv->hangcheck_timer,
1806 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1807 if (was_empty)
1808 queue_delayed_work(dev_priv->wq,
1809 &dev_priv->mm.retire_work, HZ);
1811 return 0;
1815 * Command execution barrier
1817 * Ensures that all commands in the ring are finished
1818 * before signalling the CPU
1820 static void
1821 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1823 uint32_t flush_domains = 0;
1825 /* The sampler always gets flushed on i965 (sigh) */
1826 if (INTEL_INFO(dev)->gen >= 4)
1827 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1829 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
1832 static inline void
1833 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1835 struct drm_i915_file_private *file_priv = request->file_priv;
1837 if (!file_priv)
1838 return;
1840 spin_lock(&file_priv->mm.lock);
1841 list_del(&request->client_list);
1842 request->file_priv = NULL;
1843 spin_unlock(&file_priv->mm.lock);
1846 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1847 struct intel_ring_buffer *ring)
1849 while (!list_empty(&ring->request_list)) {
1850 struct drm_i915_gem_request *request;
1852 request = list_first_entry(&ring->request_list,
1853 struct drm_i915_gem_request,
1854 list);
1856 list_del(&request->list);
1857 i915_gem_request_remove_from_client(request);
1858 kfree(request);
1861 while (!list_empty(&ring->active_list)) {
1862 struct drm_i915_gem_object *obj_priv;
1864 obj_priv = list_first_entry(&ring->active_list,
1865 struct drm_i915_gem_object,
1866 ring_list);
1868 obj_priv->base.write_domain = 0;
1869 list_del_init(&obj_priv->gpu_write_list);
1870 i915_gem_object_move_to_inactive(&obj_priv->base);
1874 void i915_gem_reset(struct drm_device *dev)
1876 struct drm_i915_private *dev_priv = dev->dev_private;
1877 struct drm_i915_gem_object *obj_priv;
1878 int i;
1880 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1881 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1882 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1884 /* Remove anything from the flushing lists. The GPU cache is likely
1885 * to be lost on reset along with the data, so simply move the
1886 * lost bo to the inactive list.
1888 while (!list_empty(&dev_priv->mm.flushing_list)) {
1889 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1890 struct drm_i915_gem_object,
1891 mm_list);
1893 obj_priv->base.write_domain = 0;
1894 list_del_init(&obj_priv->gpu_write_list);
1895 i915_gem_object_move_to_inactive(&obj_priv->base);
1898 /* Move everything out of the GPU domains to ensure we do any
1899 * necessary invalidation upon reuse.
1901 list_for_each_entry(obj_priv,
1902 &dev_priv->mm.inactive_list,
1903 mm_list)
1905 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1908 /* The fence registers are invalidated so clear them out */
1909 for (i = 0; i < 16; i++) {
1910 struct drm_i915_fence_reg *reg;
1912 reg = &dev_priv->fence_regs[i];
1913 if (!reg->obj)
1914 continue;
1916 i915_gem_clear_fence_reg(reg->obj);
1921 * This function clears the request list as sequence numbers are passed.
1923 static void
1924 i915_gem_retire_requests_ring(struct drm_device *dev,
1925 struct intel_ring_buffer *ring)
1927 drm_i915_private_t *dev_priv = dev->dev_private;
1928 uint32_t seqno;
1930 if (!ring->status_page.page_addr ||
1931 list_empty(&ring->request_list))
1932 return;
1934 WARN_ON(i915_verify_lists(dev));
1936 seqno = ring->get_seqno(ring);
1937 while (!list_empty(&ring->request_list)) {
1938 struct drm_i915_gem_request *request;
1940 request = list_first_entry(&ring->request_list,
1941 struct drm_i915_gem_request,
1942 list);
1944 if (!i915_seqno_passed(seqno, request->seqno))
1945 break;
1947 trace_i915_gem_request_retire(dev, request->seqno);
1949 list_del(&request->list);
1950 i915_gem_request_remove_from_client(request);
1951 kfree(request);
1954 /* Move any buffers on the active list that are no longer referenced
1955 * by the ringbuffer to the flushing/inactive lists as appropriate.
1957 while (!list_empty(&ring->active_list)) {
1958 struct drm_gem_object *obj;
1959 struct drm_i915_gem_object *obj_priv;
1961 obj_priv = list_first_entry(&ring->active_list,
1962 struct drm_i915_gem_object,
1963 ring_list);
1965 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1966 break;
1968 obj = &obj_priv->base;
1969 if (obj->write_domain != 0)
1970 i915_gem_object_move_to_flushing(obj);
1971 else
1972 i915_gem_object_move_to_inactive(obj);
1975 if (unlikely (dev_priv->trace_irq_seqno &&
1976 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1977 ring->user_irq_put(ring);
1978 dev_priv->trace_irq_seqno = 0;
1981 WARN_ON(i915_verify_lists(dev));
1984 void
1985 i915_gem_retire_requests(struct drm_device *dev)
1987 drm_i915_private_t *dev_priv = dev->dev_private;
1989 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1990 struct drm_i915_gem_object *obj_priv, *tmp;
1992 /* We must be careful that during unbind() we do not
1993 * accidentally infinitely recurse into retire requests.
1994 * Currently:
1995 * retire -> free -> unbind -> wait -> retire_ring
1997 list_for_each_entry_safe(obj_priv, tmp,
1998 &dev_priv->mm.deferred_free_list,
1999 mm_list)
2000 i915_gem_free_object_tail(&obj_priv->base);
2003 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
2004 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
2005 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
2008 static void
2009 i915_gem_retire_work_handler(struct work_struct *work)
2011 drm_i915_private_t *dev_priv;
2012 struct drm_device *dev;
2014 dev_priv = container_of(work, drm_i915_private_t,
2015 mm.retire_work.work);
2016 dev = dev_priv->dev;
2018 /* Come back later if the device is busy... */
2019 if (!mutex_trylock(&dev->struct_mutex)) {
2020 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2021 return;
2024 i915_gem_retire_requests(dev);
2026 if (!dev_priv->mm.suspended &&
2027 (!list_empty(&dev_priv->render_ring.request_list) ||
2028 !list_empty(&dev_priv->bsd_ring.request_list) ||
2029 !list_empty(&dev_priv->blt_ring.request_list)))
2030 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2031 mutex_unlock(&dev->struct_mutex);
2035 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
2036 bool interruptible, struct intel_ring_buffer *ring)
2038 drm_i915_private_t *dev_priv = dev->dev_private;
2039 u32 ier;
2040 int ret = 0;
2042 BUG_ON(seqno == 0);
2044 if (atomic_read(&dev_priv->mm.wedged))
2045 return -EAGAIN;
2047 if (ring->outstanding_lazy_request) {
2048 struct drm_i915_gem_request *request;
2050 request = kzalloc(sizeof(*request), GFP_KERNEL);
2051 if (request == NULL)
2052 return -ENOMEM;
2054 ret = i915_add_request(dev, NULL, request, ring);
2055 if (ret) {
2056 kfree(request);
2057 return ret;
2060 seqno = request->seqno;
2062 BUG_ON(seqno == dev_priv->next_seqno);
2064 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2065 if (HAS_PCH_SPLIT(dev))
2066 ier = I915_READ(DEIER) | I915_READ(GTIER);
2067 else
2068 ier = I915_READ(IER);
2069 if (!ier) {
2070 DRM_ERROR("something (likely vbetool) disabled "
2071 "interrupts, re-enabling\n");
2072 i915_driver_irq_preinstall(dev);
2073 i915_driver_irq_postinstall(dev);
2076 trace_i915_gem_request_wait_begin(dev, seqno);
2078 ring->waiting_seqno = seqno;
2079 ring->user_irq_get(ring);
2080 if (interruptible)
2081 ret = wait_event_interruptible(ring->irq_queue,
2082 i915_seqno_passed(ring->get_seqno(ring), seqno)
2083 || atomic_read(&dev_priv->mm.wedged));
2084 else
2085 wait_event(ring->irq_queue,
2086 i915_seqno_passed(ring->get_seqno(ring), seqno)
2087 || atomic_read(&dev_priv->mm.wedged));
2089 ring->user_irq_put(ring);
2090 ring->waiting_seqno = 0;
2092 trace_i915_gem_request_wait_end(dev, seqno);
2094 if (atomic_read(&dev_priv->mm.wedged))
2095 ret = -EAGAIN;
2097 if (ret && ret != -ERESTARTSYS)
2098 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2099 __func__, ret, seqno, ring->get_seqno(ring),
2100 dev_priv->next_seqno);
2102 /* Directly dispatch request retiring. While we have the work queue
2103 * to handle this, the waiter on a request often wants an associated
2104 * buffer to have made it to the inactive list, and we would need
2105 * a separate wait queue to handle that.
2107 if (ret == 0)
2108 i915_gem_retire_requests_ring(dev, ring);
2110 return ret;
2114 * Waits for a sequence number to be signaled, and cleans up the
2115 * request and object lists appropriately for that event.
2117 static int
2118 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2119 struct intel_ring_buffer *ring)
2121 return i915_do_wait_request(dev, seqno, 1, ring);
2124 static void
2125 i915_gem_flush_ring(struct drm_device *dev,
2126 struct drm_file *file_priv,
2127 struct intel_ring_buffer *ring,
2128 uint32_t invalidate_domains,
2129 uint32_t flush_domains)
2131 ring->flush(ring, invalidate_domains, flush_domains);
2132 i915_gem_process_flushing_list(dev, flush_domains, ring);
2135 static void
2136 i915_gem_flush(struct drm_device *dev,
2137 struct drm_file *file_priv,
2138 uint32_t invalidate_domains,
2139 uint32_t flush_domains,
2140 uint32_t flush_rings)
2142 drm_i915_private_t *dev_priv = dev->dev_private;
2144 if (flush_domains & I915_GEM_DOMAIN_CPU)
2145 drm_agp_chipset_flush(dev);
2147 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2148 if (flush_rings & RING_RENDER)
2149 i915_gem_flush_ring(dev, file_priv,
2150 &dev_priv->render_ring,
2151 invalidate_domains, flush_domains);
2152 if (flush_rings & RING_BSD)
2153 i915_gem_flush_ring(dev, file_priv,
2154 &dev_priv->bsd_ring,
2155 invalidate_domains, flush_domains);
2156 if (flush_rings & RING_BLT)
2157 i915_gem_flush_ring(dev, file_priv,
2158 &dev_priv->blt_ring,
2159 invalidate_domains, flush_domains);
2164 * Ensures that all rendering to the object has completed and the object is
2165 * safe to unbind from the GTT or access from the CPU.
2167 static int
2168 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2169 bool interruptible)
2171 struct drm_device *dev = obj->dev;
2172 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2173 int ret;
2175 /* This function only exists to support waiting for existing rendering,
2176 * not for emitting required flushes.
2178 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2180 /* If there is rendering queued on the buffer being evicted, wait for
2181 * it.
2183 if (obj_priv->active) {
2184 ret = i915_do_wait_request(dev,
2185 obj_priv->last_rendering_seqno,
2186 interruptible,
2187 obj_priv->ring);
2188 if (ret)
2189 return ret;
2192 return 0;
2196 * Unbinds an object from the GTT aperture.
2199 i915_gem_object_unbind(struct drm_gem_object *obj)
2201 struct drm_device *dev = obj->dev;
2202 struct drm_i915_private *dev_priv = dev->dev_private;
2203 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2204 int ret = 0;
2206 if (obj_priv->gtt_space == NULL)
2207 return 0;
2209 if (obj_priv->pin_count != 0) {
2210 DRM_ERROR("Attempting to unbind pinned buffer\n");
2211 return -EINVAL;
2214 /* blow away mappings if mapped through GTT */
2215 i915_gem_release_mmap(obj);
2217 /* Move the object to the CPU domain to ensure that
2218 * any possible CPU writes while it's not in the GTT
2219 * are flushed when we go to remap it. This will
2220 * also ensure that all pending GPU writes are finished
2221 * before we unbind.
2223 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2224 if (ret == -ERESTARTSYS)
2225 return ret;
2226 /* Continue on if we fail due to EIO, the GPU is hung so we
2227 * should be safe and we need to cleanup or else we might
2228 * cause memory corruption through use-after-free.
2230 if (ret) {
2231 i915_gem_clflush_object(obj);
2232 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2235 /* release the fence reg _after_ flushing */
2236 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2237 i915_gem_clear_fence_reg(obj);
2239 drm_unbind_agp(obj_priv->agp_mem);
2240 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2242 i915_gem_object_put_pages(obj);
2243 BUG_ON(obj_priv->pages_refcount);
2245 i915_gem_info_remove_gtt(dev_priv, obj);
2246 list_del_init(&obj_priv->mm_list);
2248 drm_mm_put_block(obj_priv->gtt_space);
2249 obj_priv->gtt_space = NULL;
2250 obj_priv->gtt_offset = 0;
2252 if (i915_gem_object_is_purgeable(obj_priv))
2253 i915_gem_object_truncate(obj);
2255 trace_i915_gem_object_unbind(obj);
2257 return ret;
2260 static int i915_ring_idle(struct drm_device *dev,
2261 struct intel_ring_buffer *ring)
2263 if (list_empty(&ring->gpu_write_list))
2264 return 0;
2266 i915_gem_flush_ring(dev, NULL, ring,
2267 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2268 return i915_wait_request(dev,
2269 i915_gem_next_request_seqno(dev, ring),
2270 ring);
2274 i915_gpu_idle(struct drm_device *dev)
2276 drm_i915_private_t *dev_priv = dev->dev_private;
2277 bool lists_empty;
2278 int ret;
2280 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2281 list_empty(&dev_priv->render_ring.active_list) &&
2282 list_empty(&dev_priv->bsd_ring.active_list) &&
2283 list_empty(&dev_priv->blt_ring.active_list));
2284 if (lists_empty)
2285 return 0;
2287 /* Flush everything onto the inactive list. */
2288 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2289 if (ret)
2290 return ret;
2292 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2293 if (ret)
2294 return ret;
2296 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2297 if (ret)
2298 return ret;
2300 return 0;
2303 static int
2304 i915_gem_object_get_pages(struct drm_gem_object *obj,
2305 gfp_t gfpmask)
2307 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2308 int page_count, i;
2309 struct address_space *mapping;
2310 struct inode *inode;
2311 struct page *page;
2313 BUG_ON(obj_priv->pages_refcount
2314 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2316 if (obj_priv->pages_refcount++ != 0)
2317 return 0;
2319 /* Get the list of pages out of our struct file. They'll be pinned
2320 * at this point until we release them.
2322 page_count = obj->size / PAGE_SIZE;
2323 BUG_ON(obj_priv->pages != NULL);
2324 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2325 if (obj_priv->pages == NULL) {
2326 obj_priv->pages_refcount--;
2327 return -ENOMEM;
2330 inode = obj->filp->f_path.dentry->d_inode;
2331 mapping = inode->i_mapping;
2332 for (i = 0; i < page_count; i++) {
2333 page = read_cache_page_gfp(mapping, i,
2334 GFP_HIGHUSER |
2335 __GFP_COLD |
2336 __GFP_RECLAIMABLE |
2337 gfpmask);
2338 if (IS_ERR(page))
2339 goto err_pages;
2341 obj_priv->pages[i] = page;
2344 if (obj_priv->tiling_mode != I915_TILING_NONE)
2345 i915_gem_object_do_bit_17_swizzle(obj);
2347 return 0;
2349 err_pages:
2350 while (i--)
2351 page_cache_release(obj_priv->pages[i]);
2353 drm_free_large(obj_priv->pages);
2354 obj_priv->pages = NULL;
2355 obj_priv->pages_refcount--;
2356 return PTR_ERR(page);
2359 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2361 struct drm_gem_object *obj = reg->obj;
2362 struct drm_device *dev = obj->dev;
2363 drm_i915_private_t *dev_priv = dev->dev_private;
2364 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2365 int regnum = obj_priv->fence_reg;
2366 uint64_t val;
2368 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2369 0xfffff000) << 32;
2370 val |= obj_priv->gtt_offset & 0xfffff000;
2371 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2372 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2374 if (obj_priv->tiling_mode == I915_TILING_Y)
2375 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2376 val |= I965_FENCE_REG_VALID;
2378 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2381 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2383 struct drm_gem_object *obj = reg->obj;
2384 struct drm_device *dev = obj->dev;
2385 drm_i915_private_t *dev_priv = dev->dev_private;
2386 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2387 int regnum = obj_priv->fence_reg;
2388 uint64_t val;
2390 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2391 0xfffff000) << 32;
2392 val |= obj_priv->gtt_offset & 0xfffff000;
2393 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2394 if (obj_priv->tiling_mode == I915_TILING_Y)
2395 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2396 val |= I965_FENCE_REG_VALID;
2398 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2401 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2403 struct drm_gem_object *obj = reg->obj;
2404 struct drm_device *dev = obj->dev;
2405 drm_i915_private_t *dev_priv = dev->dev_private;
2406 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2407 int regnum = obj_priv->fence_reg;
2408 int tile_width;
2409 uint32_t fence_reg, val;
2410 uint32_t pitch_val;
2412 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2413 (obj_priv->gtt_offset & (obj->size - 1))) {
2414 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2415 __func__, obj_priv->gtt_offset, obj->size);
2416 return;
2419 if (obj_priv->tiling_mode == I915_TILING_Y &&
2420 HAS_128_BYTE_Y_TILING(dev))
2421 tile_width = 128;
2422 else
2423 tile_width = 512;
2425 /* Note: pitch better be a power of two tile widths */
2426 pitch_val = obj_priv->stride / tile_width;
2427 pitch_val = ffs(pitch_val) - 1;
2429 if (obj_priv->tiling_mode == I915_TILING_Y &&
2430 HAS_128_BYTE_Y_TILING(dev))
2431 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2432 else
2433 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2435 val = obj_priv->gtt_offset;
2436 if (obj_priv->tiling_mode == I915_TILING_Y)
2437 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2438 val |= I915_FENCE_SIZE_BITS(obj->size);
2439 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2440 val |= I830_FENCE_REG_VALID;
2442 if (regnum < 8)
2443 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2444 else
2445 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2446 I915_WRITE(fence_reg, val);
2449 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2451 struct drm_gem_object *obj = reg->obj;
2452 struct drm_device *dev = obj->dev;
2453 drm_i915_private_t *dev_priv = dev->dev_private;
2454 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2455 int regnum = obj_priv->fence_reg;
2456 uint32_t val;
2457 uint32_t pitch_val;
2458 uint32_t fence_size_bits;
2460 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2461 (obj_priv->gtt_offset & (obj->size - 1))) {
2462 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2463 __func__, obj_priv->gtt_offset);
2464 return;
2467 pitch_val = obj_priv->stride / 128;
2468 pitch_val = ffs(pitch_val) - 1;
2469 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2471 val = obj_priv->gtt_offset;
2472 if (obj_priv->tiling_mode == I915_TILING_Y)
2473 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2474 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2475 WARN_ON(fence_size_bits & ~0x00000f00);
2476 val |= fence_size_bits;
2477 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2478 val |= I830_FENCE_REG_VALID;
2480 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2483 static int i915_find_fence_reg(struct drm_device *dev,
2484 bool interruptible)
2486 struct drm_i915_fence_reg *reg = NULL;
2487 struct drm_i915_gem_object *obj_priv = NULL;
2488 struct drm_i915_private *dev_priv = dev->dev_private;
2489 struct drm_gem_object *obj = NULL;
2490 int i, avail, ret;
2492 /* First try to find a free reg */
2493 avail = 0;
2494 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2495 reg = &dev_priv->fence_regs[i];
2496 if (!reg->obj)
2497 return i;
2499 obj_priv = to_intel_bo(reg->obj);
2500 if (!obj_priv->pin_count)
2501 avail++;
2504 if (avail == 0)
2505 return -ENOSPC;
2507 /* None available, try to steal one or wait for a user to finish */
2508 i = I915_FENCE_REG_NONE;
2509 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2510 lru_list) {
2511 obj = reg->obj;
2512 obj_priv = to_intel_bo(obj);
2514 if (obj_priv->pin_count)
2515 continue;
2517 /* found one! */
2518 i = obj_priv->fence_reg;
2519 break;
2522 BUG_ON(i == I915_FENCE_REG_NONE);
2524 /* We only have a reference on obj from the active list. put_fence_reg
2525 * might drop that one, causing a use-after-free in it. So hold a
2526 * private reference to obj like the other callers of put_fence_reg
2527 * (set_tiling ioctl) do. */
2528 drm_gem_object_reference(obj);
2529 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2530 drm_gem_object_unreference(obj);
2531 if (ret != 0)
2532 return ret;
2534 return i;
2538 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2539 * @obj: object to map through a fence reg
2541 * When mapping objects through the GTT, userspace wants to be able to write
2542 * to them without having to worry about swizzling if the object is tiled.
2544 * This function walks the fence regs looking for a free one for @obj,
2545 * stealing one if it can't find any.
2547 * It then sets up the reg based on the object's properties: address, pitch
2548 * and tiling format.
2551 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2552 bool interruptible)
2554 struct drm_device *dev = obj->dev;
2555 struct drm_i915_private *dev_priv = dev->dev_private;
2556 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2557 struct drm_i915_fence_reg *reg = NULL;
2558 int ret;
2560 /* Just update our place in the LRU if our fence is getting used. */
2561 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2562 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2563 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2564 return 0;
2567 switch (obj_priv->tiling_mode) {
2568 case I915_TILING_NONE:
2569 WARN(1, "allocating a fence for non-tiled object?\n");
2570 break;
2571 case I915_TILING_X:
2572 if (!obj_priv->stride)
2573 return -EINVAL;
2574 WARN((obj_priv->stride & (512 - 1)),
2575 "object 0x%08x is X tiled but has non-512B pitch\n",
2576 obj_priv->gtt_offset);
2577 break;
2578 case I915_TILING_Y:
2579 if (!obj_priv->stride)
2580 return -EINVAL;
2581 WARN((obj_priv->stride & (128 - 1)),
2582 "object 0x%08x is Y tiled but has non-128B pitch\n",
2583 obj_priv->gtt_offset);
2584 break;
2587 ret = i915_find_fence_reg(dev, interruptible);
2588 if (ret < 0)
2589 return ret;
2591 obj_priv->fence_reg = ret;
2592 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2593 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2595 reg->obj = obj;
2597 switch (INTEL_INFO(dev)->gen) {
2598 case 6:
2599 sandybridge_write_fence_reg(reg);
2600 break;
2601 case 5:
2602 case 4:
2603 i965_write_fence_reg(reg);
2604 break;
2605 case 3:
2606 i915_write_fence_reg(reg);
2607 break;
2608 case 2:
2609 i830_write_fence_reg(reg);
2610 break;
2613 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2614 obj_priv->tiling_mode);
2616 return 0;
2620 * i915_gem_clear_fence_reg - clear out fence register info
2621 * @obj: object to clear
2623 * Zeroes out the fence register itself and clears out the associated
2624 * data structures in dev_priv and obj_priv.
2626 static void
2627 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2629 struct drm_device *dev = obj->dev;
2630 drm_i915_private_t *dev_priv = dev->dev_private;
2631 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2632 struct drm_i915_fence_reg *reg =
2633 &dev_priv->fence_regs[obj_priv->fence_reg];
2634 uint32_t fence_reg;
2636 switch (INTEL_INFO(dev)->gen) {
2637 case 6:
2638 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2639 (obj_priv->fence_reg * 8), 0);
2640 break;
2641 case 5:
2642 case 4:
2643 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2644 break;
2645 case 3:
2646 if (obj_priv->fence_reg >= 8)
2647 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2648 else
2649 case 2:
2650 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2652 I915_WRITE(fence_reg, 0);
2653 break;
2656 reg->obj = NULL;
2657 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2658 list_del_init(&reg->lru_list);
2662 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2663 * to the buffer to finish, and then resets the fence register.
2664 * @obj: tiled object holding a fence register.
2665 * @bool: whether the wait upon the fence is interruptible
2667 * Zeroes out the fence register itself and clears out the associated
2668 * data structures in dev_priv and obj_priv.
2671 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2672 bool interruptible)
2674 struct drm_device *dev = obj->dev;
2675 struct drm_i915_private *dev_priv = dev->dev_private;
2676 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2677 struct drm_i915_fence_reg *reg;
2679 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2680 return 0;
2682 /* If we've changed tiling, GTT-mappings of the object
2683 * need to re-fault to ensure that the correct fence register
2684 * setup is in place.
2686 i915_gem_release_mmap(obj);
2688 /* On the i915, GPU access to tiled buffers is via a fence,
2689 * therefore we must wait for any outstanding access to complete
2690 * before clearing the fence.
2692 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2693 if (reg->gpu) {
2694 int ret;
2696 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2697 if (ret)
2698 return ret;
2700 ret = i915_gem_object_wait_rendering(obj, interruptible);
2701 if (ret)
2702 return ret;
2704 reg->gpu = false;
2707 i915_gem_object_flush_gtt_write_domain(obj);
2708 i915_gem_clear_fence_reg(obj);
2710 return 0;
2714 * Finds free space in the GTT aperture and binds the object there.
2716 static int
2717 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
2718 unsigned alignment,
2719 bool mappable)
2721 struct drm_device *dev = obj->dev;
2722 drm_i915_private_t *dev_priv = dev->dev_private;
2723 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2724 struct drm_mm_node *free_space;
2725 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2726 int ret;
2728 if (obj_priv->madv != I915_MADV_WILLNEED) {
2729 DRM_ERROR("Attempting to bind a purgeable object\n");
2730 return -EINVAL;
2733 if (alignment == 0)
2734 alignment = i915_gem_get_gtt_alignment(obj);
2735 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2736 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2737 return -EINVAL;
2740 /* If the object is bigger than the entire aperture, reject it early
2741 * before evicting everything in a vain attempt to find space.
2743 if (obj->size >
2744 (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2745 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2746 return -E2BIG;
2749 search_free:
2750 if (mappable)
2751 free_space =
2752 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2753 obj->size, alignment, 0,
2754 dev_priv->mm.gtt_mappable_end,
2756 else
2757 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2758 obj->size, alignment, 0);
2760 if (free_space != NULL) {
2761 if (mappable)
2762 obj_priv->gtt_space =
2763 drm_mm_get_block_range_generic(free_space,
2764 obj->size,
2765 alignment, 0,
2766 dev_priv->mm.gtt_mappable_end,
2768 else
2769 obj_priv->gtt_space =
2770 drm_mm_get_block(free_space, obj->size,
2771 alignment);
2773 if (obj_priv->gtt_space == NULL) {
2774 /* If the gtt is empty and we're still having trouble
2775 * fitting our object in, we're out of memory.
2777 ret = i915_gem_evict_something(dev, obj->size, alignment,
2778 mappable);
2779 if (ret)
2780 return ret;
2782 goto search_free;
2785 ret = i915_gem_object_get_pages(obj, gfpmask);
2786 if (ret) {
2787 drm_mm_put_block(obj_priv->gtt_space);
2788 obj_priv->gtt_space = NULL;
2790 if (ret == -ENOMEM) {
2791 /* first try to clear up some space from the GTT */
2792 ret = i915_gem_evict_something(dev, obj->size,
2793 alignment, mappable);
2794 if (ret) {
2795 /* now try to shrink everyone else */
2796 if (gfpmask) {
2797 gfpmask = 0;
2798 goto search_free;
2801 return ret;
2804 goto search_free;
2807 return ret;
2810 /* Create an AGP memory structure pointing at our pages, and bind it
2811 * into the GTT.
2813 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2814 obj_priv->pages,
2815 obj->size >> PAGE_SHIFT,
2816 obj_priv->gtt_space->start,
2817 obj_priv->agp_type);
2818 if (obj_priv->agp_mem == NULL) {
2819 i915_gem_object_put_pages(obj);
2820 drm_mm_put_block(obj_priv->gtt_space);
2821 obj_priv->gtt_space = NULL;
2823 ret = i915_gem_evict_something(dev, obj->size, alignment,
2824 mappable);
2825 if (ret)
2826 return ret;
2828 goto search_free;
2831 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2833 /* keep track of bounds object by adding it to the inactive list */
2834 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2835 i915_gem_info_add_gtt(dev_priv, obj);
2837 /* Assert that the object is not currently in any GPU domain. As it
2838 * wasn't in the GTT, there shouldn't be any way it could have been in
2839 * a GPU cache
2841 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2842 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2844 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, mappable);
2846 return 0;
2849 void
2850 i915_gem_clflush_object(struct drm_gem_object *obj)
2852 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2854 /* If we don't have a page list set up, then we're not pinned
2855 * to GPU, and we can ignore the cache flush because it'll happen
2856 * again at bind time.
2858 if (obj_priv->pages == NULL)
2859 return;
2861 trace_i915_gem_object_clflush(obj);
2863 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2866 /** Flushes any GPU write domain for the object if it's dirty. */
2867 static int
2868 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2869 bool pipelined)
2871 struct drm_device *dev = obj->dev;
2872 uint32_t old_write_domain;
2874 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2875 return 0;
2877 /* Queue the GPU write cache flushing we need. */
2878 old_write_domain = obj->write_domain;
2879 i915_gem_flush_ring(dev, NULL,
2880 to_intel_bo(obj)->ring,
2881 0, obj->write_domain);
2882 BUG_ON(obj->write_domain);
2884 trace_i915_gem_object_change_domain(obj,
2885 obj->read_domains,
2886 old_write_domain);
2888 if (pipelined)
2889 return 0;
2891 return i915_gem_object_wait_rendering(obj, true);
2894 /** Flushes the GTT write domain for the object if it's dirty. */
2895 static void
2896 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2898 uint32_t old_write_domain;
2900 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2901 return;
2903 /* No actual flushing is required for the GTT write domain. Writes
2904 * to it immediately go to main memory as far as we know, so there's
2905 * no chipset flush. It also doesn't land in render cache.
2907 old_write_domain = obj->write_domain;
2908 obj->write_domain = 0;
2910 trace_i915_gem_object_change_domain(obj,
2911 obj->read_domains,
2912 old_write_domain);
2915 /** Flushes the CPU write domain for the object if it's dirty. */
2916 static void
2917 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2919 struct drm_device *dev = obj->dev;
2920 uint32_t old_write_domain;
2922 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2923 return;
2925 i915_gem_clflush_object(obj);
2926 drm_agp_chipset_flush(dev);
2927 old_write_domain = obj->write_domain;
2928 obj->write_domain = 0;
2930 trace_i915_gem_object_change_domain(obj,
2931 obj->read_domains,
2932 old_write_domain);
2936 * Moves a single object to the GTT read, and possibly write domain.
2938 * This function returns when the move is complete, including waiting on
2939 * flushes to occur.
2942 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2944 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2945 uint32_t old_write_domain, old_read_domains;
2946 int ret;
2948 /* Not valid to be called on unbound objects. */
2949 if (obj_priv->gtt_space == NULL)
2950 return -EINVAL;
2952 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2953 if (ret != 0)
2954 return ret;
2956 i915_gem_object_flush_cpu_write_domain(obj);
2958 if (write) {
2959 ret = i915_gem_object_wait_rendering(obj, true);
2960 if (ret)
2961 return ret;
2964 old_write_domain = obj->write_domain;
2965 old_read_domains = obj->read_domains;
2967 /* It should now be out of any other write domains, and we can update
2968 * the domain values for our changes.
2970 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2971 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2972 if (write) {
2973 obj->read_domains = I915_GEM_DOMAIN_GTT;
2974 obj->write_domain = I915_GEM_DOMAIN_GTT;
2975 obj_priv->dirty = 1;
2978 trace_i915_gem_object_change_domain(obj,
2979 old_read_domains,
2980 old_write_domain);
2982 return 0;
2986 * Prepare buffer for display plane. Use uninterruptible for possible flush
2987 * wait, as in modesetting process we're not supposed to be interrupted.
2990 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2991 bool pipelined)
2993 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2994 uint32_t old_read_domains;
2995 int ret;
2997 /* Not valid to be called on unbound objects. */
2998 if (obj_priv->gtt_space == NULL)
2999 return -EINVAL;
3001 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
3002 if (ret)
3003 return ret;
3005 /* Currently, we are always called from an non-interruptible context. */
3006 if (!pipelined) {
3007 ret = i915_gem_object_wait_rendering(obj, false);
3008 if (ret)
3009 return ret;
3012 i915_gem_object_flush_cpu_write_domain(obj);
3014 old_read_domains = obj->read_domains;
3015 obj->read_domains |= I915_GEM_DOMAIN_GTT;
3017 trace_i915_gem_object_change_domain(obj,
3018 old_read_domains,
3019 obj->write_domain);
3021 return 0;
3025 * Moves a single object to the CPU read, and possibly write domain.
3027 * This function returns when the move is complete, including waiting on
3028 * flushes to occur.
3030 static int
3031 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
3033 uint32_t old_write_domain, old_read_domains;
3034 int ret;
3036 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3037 if (ret != 0)
3038 return ret;
3040 i915_gem_object_flush_gtt_write_domain(obj);
3042 /* If we have a partially-valid cache of the object in the CPU,
3043 * finish invalidating it and free the per-page flags.
3045 i915_gem_object_set_to_full_cpu_read_domain(obj);
3047 if (write) {
3048 ret = i915_gem_object_wait_rendering(obj, true);
3049 if (ret)
3050 return ret;
3053 old_write_domain = obj->write_domain;
3054 old_read_domains = obj->read_domains;
3056 /* Flush the CPU cache if it's still invalid. */
3057 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3058 i915_gem_clflush_object(obj);
3060 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3063 /* It should now be out of any other write domains, and we can update
3064 * the domain values for our changes.
3066 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3068 /* If we're writing through the CPU, then the GPU read domains will
3069 * need to be invalidated at next use.
3071 if (write) {
3072 obj->read_domains = I915_GEM_DOMAIN_CPU;
3073 obj->write_domain = I915_GEM_DOMAIN_CPU;
3076 trace_i915_gem_object_change_domain(obj,
3077 old_read_domains,
3078 old_write_domain);
3080 return 0;
3084 * Set the next domain for the specified object. This
3085 * may not actually perform the necessary flushing/invaliding though,
3086 * as that may want to be batched with other set_domain operations
3088 * This is (we hope) the only really tricky part of gem. The goal
3089 * is fairly simple -- track which caches hold bits of the object
3090 * and make sure they remain coherent. A few concrete examples may
3091 * help to explain how it works. For shorthand, we use the notation
3092 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3093 * a pair of read and write domain masks.
3095 * Case 1: the batch buffer
3097 * 1. Allocated
3098 * 2. Written by CPU
3099 * 3. Mapped to GTT
3100 * 4. Read by GPU
3101 * 5. Unmapped from GTT
3102 * 6. Freed
3104 * Let's take these a step at a time
3106 * 1. Allocated
3107 * Pages allocated from the kernel may still have
3108 * cache contents, so we set them to (CPU, CPU) always.
3109 * 2. Written by CPU (using pwrite)
3110 * The pwrite function calls set_domain (CPU, CPU) and
3111 * this function does nothing (as nothing changes)
3112 * 3. Mapped by GTT
3113 * This function asserts that the object is not
3114 * currently in any GPU-based read or write domains
3115 * 4. Read by GPU
3116 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3117 * As write_domain is zero, this function adds in the
3118 * current read domains (CPU+COMMAND, 0).
3119 * flush_domains is set to CPU.
3120 * invalidate_domains is set to COMMAND
3121 * clflush is run to get data out of the CPU caches
3122 * then i915_dev_set_domain calls i915_gem_flush to
3123 * emit an MI_FLUSH and drm_agp_chipset_flush
3124 * 5. Unmapped from GTT
3125 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3126 * flush_domains and invalidate_domains end up both zero
3127 * so no flushing/invalidating happens
3128 * 6. Freed
3129 * yay, done
3131 * Case 2: The shared render buffer
3133 * 1. Allocated
3134 * 2. Mapped to GTT
3135 * 3. Read/written by GPU
3136 * 4. set_domain to (CPU,CPU)
3137 * 5. Read/written by CPU
3138 * 6. Read/written by GPU
3140 * 1. Allocated
3141 * Same as last example, (CPU, CPU)
3142 * 2. Mapped to GTT
3143 * Nothing changes (assertions find that it is not in the GPU)
3144 * 3. Read/written by GPU
3145 * execbuffer calls set_domain (RENDER, RENDER)
3146 * flush_domains gets CPU
3147 * invalidate_domains gets GPU
3148 * clflush (obj)
3149 * MI_FLUSH and drm_agp_chipset_flush
3150 * 4. set_domain (CPU, CPU)
3151 * flush_domains gets GPU
3152 * invalidate_domains gets CPU
3153 * wait_rendering (obj) to make sure all drawing is complete.
3154 * This will include an MI_FLUSH to get the data from GPU
3155 * to memory
3156 * clflush (obj) to invalidate the CPU cache
3157 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3158 * 5. Read/written by CPU
3159 * cache lines are loaded and dirtied
3160 * 6. Read written by GPU
3161 * Same as last GPU access
3163 * Case 3: The constant buffer
3165 * 1. Allocated
3166 * 2. Written by CPU
3167 * 3. Read by GPU
3168 * 4. Updated (written) by CPU again
3169 * 5. Read by GPU
3171 * 1. Allocated
3172 * (CPU, CPU)
3173 * 2. Written by CPU
3174 * (CPU, CPU)
3175 * 3. Read by GPU
3176 * (CPU+RENDER, 0)
3177 * flush_domains = CPU
3178 * invalidate_domains = RENDER
3179 * clflush (obj)
3180 * MI_FLUSH
3181 * drm_agp_chipset_flush
3182 * 4. Updated (written) by CPU again
3183 * (CPU, CPU)
3184 * flush_domains = 0 (no previous write domain)
3185 * invalidate_domains = 0 (no new read domains)
3186 * 5. Read by GPU
3187 * (CPU+RENDER, 0)
3188 * flush_domains = CPU
3189 * invalidate_domains = RENDER
3190 * clflush (obj)
3191 * MI_FLUSH
3192 * drm_agp_chipset_flush
3194 static void
3195 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3196 struct intel_ring_buffer *ring)
3198 struct drm_device *dev = obj->dev;
3199 struct drm_i915_private *dev_priv = dev->dev_private;
3200 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3201 uint32_t invalidate_domains = 0;
3202 uint32_t flush_domains = 0;
3205 * If the object isn't moving to a new write domain,
3206 * let the object stay in multiple read domains
3208 if (obj->pending_write_domain == 0)
3209 obj->pending_read_domains |= obj->read_domains;
3212 * Flush the current write domain if
3213 * the new read domains don't match. Invalidate
3214 * any read domains which differ from the old
3215 * write domain
3217 if (obj->write_domain &&
3218 obj->write_domain != obj->pending_read_domains) {
3219 flush_domains |= obj->write_domain;
3220 invalidate_domains |=
3221 obj->pending_read_domains & ~obj->write_domain;
3224 * Invalidate any read caches which may have
3225 * stale data. That is, any new read domains.
3227 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3228 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3229 i915_gem_clflush_object(obj);
3231 /* The actual obj->write_domain will be updated with
3232 * pending_write_domain after we emit the accumulated flush for all
3233 * of our domain changes in execbuffers (which clears objects'
3234 * write_domains). So if we have a current write domain that we
3235 * aren't changing, set pending_write_domain to that.
3237 if (flush_domains == 0 && obj->pending_write_domain == 0)
3238 obj->pending_write_domain = obj->write_domain;
3240 dev->invalidate_domains |= invalidate_domains;
3241 dev->flush_domains |= flush_domains;
3242 if (flush_domains & I915_GEM_GPU_DOMAINS)
3243 dev_priv->mm.flush_rings |= obj_priv->ring->id;
3244 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3245 dev_priv->mm.flush_rings |= ring->id;
3249 * Moves the object from a partially CPU read to a full one.
3251 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3252 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3254 static void
3255 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3257 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3259 if (!obj_priv->page_cpu_valid)
3260 return;
3262 /* If we're partially in the CPU read domain, finish moving it in.
3264 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3265 int i;
3267 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3268 if (obj_priv->page_cpu_valid[i])
3269 continue;
3270 drm_clflush_pages(obj_priv->pages + i, 1);
3274 /* Free the page_cpu_valid mappings which are now stale, whether
3275 * or not we've got I915_GEM_DOMAIN_CPU.
3277 kfree(obj_priv->page_cpu_valid);
3278 obj_priv->page_cpu_valid = NULL;
3282 * Set the CPU read domain on a range of the object.
3284 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3285 * not entirely valid. The page_cpu_valid member of the object flags which
3286 * pages have been flushed, and will be respected by
3287 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3288 * of the whole object.
3290 * This function returns when the move is complete, including waiting on
3291 * flushes to occur.
3293 static int
3294 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3295 uint64_t offset, uint64_t size)
3297 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3298 uint32_t old_read_domains;
3299 int i, ret;
3301 if (offset == 0 && size == obj->size)
3302 return i915_gem_object_set_to_cpu_domain(obj, 0);
3304 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3305 if (ret != 0)
3306 return ret;
3307 i915_gem_object_flush_gtt_write_domain(obj);
3309 /* If we're already fully in the CPU read domain, we're done. */
3310 if (obj_priv->page_cpu_valid == NULL &&
3311 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3312 return 0;
3314 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3315 * newly adding I915_GEM_DOMAIN_CPU
3317 if (obj_priv->page_cpu_valid == NULL) {
3318 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3319 GFP_KERNEL);
3320 if (obj_priv->page_cpu_valid == NULL)
3321 return -ENOMEM;
3322 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3323 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3325 /* Flush the cache on any pages that are still invalid from the CPU's
3326 * perspective.
3328 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3329 i++) {
3330 if (obj_priv->page_cpu_valid[i])
3331 continue;
3333 drm_clflush_pages(obj_priv->pages + i, 1);
3335 obj_priv->page_cpu_valid[i] = 1;
3338 /* It should now be out of any other write domains, and we can update
3339 * the domain values for our changes.
3341 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3343 old_read_domains = obj->read_domains;
3344 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3346 trace_i915_gem_object_change_domain(obj,
3347 old_read_domains,
3348 obj->write_domain);
3350 return 0;
3354 * Pin an object to the GTT and evaluate the relocations landing in it.
3356 static int
3357 i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3358 struct drm_file *file_priv,
3359 struct drm_i915_gem_exec_object2 *entry)
3361 struct drm_device *dev = obj->base.dev;
3362 drm_i915_private_t *dev_priv = dev->dev_private;
3363 struct drm_i915_gem_relocation_entry __user *user_relocs;
3364 struct drm_gem_object *target_obj = NULL;
3365 uint32_t target_handle = 0;
3366 int i, ret = 0;
3368 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3369 for (i = 0; i < entry->relocation_count; i++) {
3370 struct drm_i915_gem_relocation_entry reloc;
3371 uint32_t target_offset;
3373 if (__copy_from_user_inatomic(&reloc,
3374 user_relocs+i,
3375 sizeof(reloc))) {
3376 ret = -EFAULT;
3377 break;
3380 if (reloc.target_handle != target_handle) {
3381 drm_gem_object_unreference(target_obj);
3383 target_obj = drm_gem_object_lookup(dev, file_priv,
3384 reloc.target_handle);
3385 if (target_obj == NULL) {
3386 ret = -ENOENT;
3387 break;
3390 target_handle = reloc.target_handle;
3392 target_offset = to_intel_bo(target_obj)->gtt_offset;
3394 #if WATCH_RELOC
3395 DRM_INFO("%s: obj %p offset %08x target %d "
3396 "read %08x write %08x gtt %08x "
3397 "presumed %08x delta %08x\n",
3398 __func__,
3399 obj,
3400 (int) reloc.offset,
3401 (int) reloc.target_handle,
3402 (int) reloc.read_domains,
3403 (int) reloc.write_domain,
3404 (int) target_offset,
3405 (int) reloc.presumed_offset,
3406 reloc.delta);
3407 #endif
3409 /* The target buffer should have appeared before us in the
3410 * exec_object list, so it should have a GTT space bound by now.
3412 if (target_offset == 0) {
3413 DRM_ERROR("No GTT space found for object %d\n",
3414 reloc.target_handle);
3415 ret = -EINVAL;
3416 break;
3419 /* Validate that the target is in a valid r/w GPU domain */
3420 if (reloc.write_domain & (reloc.write_domain - 1)) {
3421 DRM_ERROR("reloc with multiple write domains: "
3422 "obj %p target %d offset %d "
3423 "read %08x write %08x",
3424 obj, reloc.target_handle,
3425 (int) reloc.offset,
3426 reloc.read_domains,
3427 reloc.write_domain);
3428 ret = -EINVAL;
3429 break;
3431 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3432 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3433 DRM_ERROR("reloc with read/write CPU domains: "
3434 "obj %p target %d offset %d "
3435 "read %08x write %08x",
3436 obj, reloc.target_handle,
3437 (int) reloc.offset,
3438 reloc.read_domains,
3439 reloc.write_domain);
3440 ret = -EINVAL;
3441 break;
3443 if (reloc.write_domain && target_obj->pending_write_domain &&
3444 reloc.write_domain != target_obj->pending_write_domain) {
3445 DRM_ERROR("Write domain conflict: "
3446 "obj %p target %d offset %d "
3447 "new %08x old %08x\n",
3448 obj, reloc.target_handle,
3449 (int) reloc.offset,
3450 reloc.write_domain,
3451 target_obj->pending_write_domain);
3452 ret = -EINVAL;
3453 break;
3456 target_obj->pending_read_domains |= reloc.read_domains;
3457 target_obj->pending_write_domain |= reloc.write_domain;
3459 /* If the relocation already has the right value in it, no
3460 * more work needs to be done.
3462 if (target_offset == reloc.presumed_offset)
3463 continue;
3465 /* Check that the relocation address is valid... */
3466 if (reloc.offset > obj->base.size - 4) {
3467 DRM_ERROR("Relocation beyond object bounds: "
3468 "obj %p target %d offset %d size %d.\n",
3469 obj, reloc.target_handle,
3470 (int) reloc.offset, (int) obj->base.size);
3471 ret = -EINVAL;
3472 break;
3474 if (reloc.offset & 3) {
3475 DRM_ERROR("Relocation not 4-byte aligned: "
3476 "obj %p target %d offset %d.\n",
3477 obj, reloc.target_handle,
3478 (int) reloc.offset);
3479 ret = -EINVAL;
3480 break;
3483 /* and points to somewhere within the target object. */
3484 if (reloc.delta >= target_obj->size) {
3485 DRM_ERROR("Relocation beyond target object bounds: "
3486 "obj %p target %d delta %d size %d.\n",
3487 obj, reloc.target_handle,
3488 (int) reloc.delta, (int) target_obj->size);
3489 ret = -EINVAL;
3490 break;
3493 reloc.delta += target_offset;
3494 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3495 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3496 char *vaddr;
3498 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
3499 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
3500 kunmap_atomic(vaddr);
3501 } else {
3502 uint32_t __iomem *reloc_entry;
3503 void __iomem *reloc_page;
3505 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3506 if (ret)
3507 break;
3509 /* Map the page containing the relocation we're going to perform. */
3510 reloc.offset += obj->gtt_offset;
3511 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3512 reloc.offset & PAGE_MASK);
3513 reloc_entry = (uint32_t __iomem *)
3514 (reloc_page + (reloc.offset & ~PAGE_MASK));
3515 iowrite32(reloc.delta, reloc_entry);
3516 io_mapping_unmap_atomic(reloc_page);
3519 /* and update the user's relocation entry */
3520 reloc.presumed_offset = target_offset;
3521 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3522 &reloc.presumed_offset,
3523 sizeof(reloc.presumed_offset))) {
3524 ret = -EFAULT;
3525 break;
3529 drm_gem_object_unreference(target_obj);
3530 return ret;
3533 static int
3534 i915_gem_execbuffer_pin(struct drm_device *dev,
3535 struct drm_file *file,
3536 struct drm_gem_object **object_list,
3537 struct drm_i915_gem_exec_object2 *exec_list,
3538 int count)
3540 struct drm_i915_private *dev_priv = dev->dev_private;
3541 int ret, i, retry;
3543 /* attempt to pin all of the buffers into the GTT */
3544 for (retry = 0; retry < 2; retry++) {
3545 ret = 0;
3546 for (i = 0; i < count; i++) {
3547 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3548 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3549 bool need_fence =
3550 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3551 obj->tiling_mode != I915_TILING_NONE;
3553 /* g33/pnv can't fence buffers in the unmappable part */
3554 bool need_mappable =
3555 entry->relocation_count ? true : need_fence;
3557 /* Check fence reg constraints and rebind if necessary */
3558 if (need_fence &&
3559 !i915_gem_object_fence_offset_ok(&obj->base,
3560 obj->tiling_mode)) {
3561 ret = i915_gem_object_unbind(&obj->base);
3562 if (ret)
3563 break;
3566 ret = i915_gem_object_pin(&obj->base,
3567 entry->alignment,
3568 need_mappable);
3569 if (ret)
3570 break;
3573 * Pre-965 chips need a fence register set up in order
3574 * to properly handle blits to/from tiled surfaces.
3576 if (need_fence) {
3577 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3578 if (ret) {
3579 i915_gem_object_unpin(&obj->base);
3580 break;
3583 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3586 entry->offset = obj->gtt_offset;
3589 while (i--)
3590 i915_gem_object_unpin(object_list[i]);
3592 if (ret == 0)
3593 break;
3595 if (ret != -ENOSPC || retry)
3596 return ret;
3598 ret = i915_gem_evict_everything(dev);
3599 if (ret)
3600 return ret;
3603 return 0;
3606 /* Throttle our rendering by waiting until the ring has completed our requests
3607 * emitted over 20 msec ago.
3609 * Note that if we were to use the current jiffies each time around the loop,
3610 * we wouldn't escape the function with any frames outstanding if the time to
3611 * render a frame was over 20ms.
3613 * This should get us reasonable parallelism between CPU and GPU but also
3614 * relatively low latency when blocking on a particular request to finish.
3616 static int
3617 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3619 struct drm_i915_private *dev_priv = dev->dev_private;
3620 struct drm_i915_file_private *file_priv = file->driver_priv;
3621 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3622 struct drm_i915_gem_request *request;
3623 struct intel_ring_buffer *ring = NULL;
3624 u32 seqno = 0;
3625 int ret;
3627 spin_lock(&file_priv->mm.lock);
3628 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3629 if (time_after_eq(request->emitted_jiffies, recent_enough))
3630 break;
3632 ring = request->ring;
3633 seqno = request->seqno;
3635 spin_unlock(&file_priv->mm.lock);
3637 if (seqno == 0)
3638 return 0;
3640 ret = 0;
3641 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3642 /* And wait for the seqno passing without holding any locks and
3643 * causing extra latency for others. This is safe as the irq
3644 * generation is designed to be run atomically and so is
3645 * lockless.
3647 ring->user_irq_get(ring);
3648 ret = wait_event_interruptible(ring->irq_queue,
3649 i915_seqno_passed(ring->get_seqno(ring), seqno)
3650 || atomic_read(&dev_priv->mm.wedged));
3651 ring->user_irq_put(ring);
3653 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3654 ret = -EIO;
3657 if (ret == 0)
3658 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3660 return ret;
3663 static int
3664 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3665 uint64_t exec_offset)
3667 uint32_t exec_start, exec_len;
3669 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3670 exec_len = (uint32_t) exec->batch_len;
3672 if ((exec_start | exec_len) & 0x7)
3673 return -EINVAL;
3675 if (!exec_start)
3676 return -EINVAL;
3678 return 0;
3681 static int
3682 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3683 int count)
3685 int i;
3687 for (i = 0; i < count; i++) {
3688 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3689 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3691 if (!access_ok(VERIFY_READ, ptr, length))
3692 return -EFAULT;
3694 /* we may also need to update the presumed offsets */
3695 if (!access_ok(VERIFY_WRITE, ptr, length))
3696 return -EFAULT;
3698 if (fault_in_pages_readable(ptr, length))
3699 return -EFAULT;
3702 return 0;
3705 static int
3706 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3707 struct drm_file *file,
3708 struct drm_i915_gem_execbuffer2 *args,
3709 struct drm_i915_gem_exec_object2 *exec_list)
3711 drm_i915_private_t *dev_priv = dev->dev_private;
3712 struct drm_gem_object **object_list = NULL;
3713 struct drm_gem_object *batch_obj;
3714 struct drm_clip_rect *cliprects = NULL;
3715 struct drm_i915_gem_request *request = NULL;
3716 int ret, i, flips;
3717 uint64_t exec_offset;
3719 struct intel_ring_buffer *ring = NULL;
3721 ret = i915_gem_check_is_wedged(dev);
3722 if (ret)
3723 return ret;
3725 ret = validate_exec_list(exec_list, args->buffer_count);
3726 if (ret)
3727 return ret;
3729 #if WATCH_EXEC
3730 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3731 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3732 #endif
3733 switch (args->flags & I915_EXEC_RING_MASK) {
3734 case I915_EXEC_DEFAULT:
3735 case I915_EXEC_RENDER:
3736 ring = &dev_priv->render_ring;
3737 break;
3738 case I915_EXEC_BSD:
3739 if (!HAS_BSD(dev)) {
3740 DRM_ERROR("execbuf with invalid ring (BSD)\n");
3741 return -EINVAL;
3743 ring = &dev_priv->bsd_ring;
3744 break;
3745 case I915_EXEC_BLT:
3746 if (!HAS_BLT(dev)) {
3747 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3748 return -EINVAL;
3750 ring = &dev_priv->blt_ring;
3751 break;
3752 default:
3753 DRM_ERROR("execbuf with unknown ring: %d\n",
3754 (int)(args->flags & I915_EXEC_RING_MASK));
3755 return -EINVAL;
3758 if (args->buffer_count < 1) {
3759 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3760 return -EINVAL;
3762 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3763 if (object_list == NULL) {
3764 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3765 args->buffer_count);
3766 ret = -ENOMEM;
3767 goto pre_mutex_err;
3770 if (args->num_cliprects != 0) {
3771 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3772 GFP_KERNEL);
3773 if (cliprects == NULL) {
3774 ret = -ENOMEM;
3775 goto pre_mutex_err;
3778 ret = copy_from_user(cliprects,
3779 (struct drm_clip_rect __user *)
3780 (uintptr_t) args->cliprects_ptr,
3781 sizeof(*cliprects) * args->num_cliprects);
3782 if (ret != 0) {
3783 DRM_ERROR("copy %d cliprects failed: %d\n",
3784 args->num_cliprects, ret);
3785 ret = -EFAULT;
3786 goto pre_mutex_err;
3790 request = kzalloc(sizeof(*request), GFP_KERNEL);
3791 if (request == NULL) {
3792 ret = -ENOMEM;
3793 goto pre_mutex_err;
3796 ret = i915_mutex_lock_interruptible(dev);
3797 if (ret)
3798 goto pre_mutex_err;
3800 if (dev_priv->mm.suspended) {
3801 mutex_unlock(&dev->struct_mutex);
3802 ret = -EBUSY;
3803 goto pre_mutex_err;
3806 /* Look up object handles */
3807 for (i = 0; i < args->buffer_count; i++) {
3808 struct drm_i915_gem_object *obj_priv;
3810 object_list[i] = drm_gem_object_lookup(dev, file,
3811 exec_list[i].handle);
3812 if (object_list[i] == NULL) {
3813 DRM_ERROR("Invalid object handle %d at index %d\n",
3814 exec_list[i].handle, i);
3815 /* prevent error path from reading uninitialized data */
3816 args->buffer_count = i + 1;
3817 ret = -ENOENT;
3818 goto err;
3821 obj_priv = to_intel_bo(object_list[i]);
3822 if (obj_priv->in_execbuffer) {
3823 DRM_ERROR("Object %p appears more than once in object list\n",
3824 object_list[i]);
3825 /* prevent error path from reading uninitialized data */
3826 args->buffer_count = i + 1;
3827 ret = -EINVAL;
3828 goto err;
3830 obj_priv->in_execbuffer = true;
3833 /* Move the objects en-masse into the GTT, evicting if necessary. */
3834 ret = i915_gem_execbuffer_pin(dev, file,
3835 object_list, exec_list,
3836 args->buffer_count);
3837 if (ret)
3838 goto err;
3840 /* The objects are in their final locations, apply the relocations. */
3841 for (i = 0; i < args->buffer_count; i++) {
3842 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3843 obj->base.pending_read_domains = 0;
3844 obj->base.pending_write_domain = 0;
3845 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3846 if (ret)
3847 goto err;
3850 /* Set the pending read domains for the batch buffer to COMMAND */
3851 batch_obj = object_list[args->buffer_count-1];
3852 if (batch_obj->pending_write_domain) {
3853 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3854 ret = -EINVAL;
3855 goto err;
3857 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3859 /* Sanity check the batch buffer */
3860 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3861 ret = i915_gem_check_execbuffer(args, exec_offset);
3862 if (ret != 0) {
3863 DRM_ERROR("execbuf with invalid offset/length\n");
3864 goto err;
3867 /* Zero the global flush/invalidate flags. These
3868 * will be modified as new domains are computed
3869 * for each object
3871 dev->invalidate_domains = 0;
3872 dev->flush_domains = 0;
3873 dev_priv->mm.flush_rings = 0;
3874 for (i = 0; i < args->buffer_count; i++)
3875 i915_gem_object_set_to_gpu_domain(object_list[i], ring);
3877 if (dev->invalidate_domains | dev->flush_domains) {
3878 #if WATCH_EXEC
3879 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3880 __func__,
3881 dev->invalidate_domains,
3882 dev->flush_domains);
3883 #endif
3884 i915_gem_flush(dev, file,
3885 dev->invalidate_domains,
3886 dev->flush_domains,
3887 dev_priv->mm.flush_rings);
3890 #if WATCH_COHERENCY
3891 for (i = 0; i < args->buffer_count; i++) {
3892 i915_gem_object_check_coherency(object_list[i],
3893 exec_list[i].handle);
3895 #endif
3897 #if WATCH_EXEC
3898 i915_gem_dump_object(batch_obj,
3899 args->batch_len,
3900 __func__,
3901 ~0);
3902 #endif
3904 /* Check for any pending flips. As we only maintain a flip queue depth
3905 * of 1, we can simply insert a WAIT for the next display flip prior
3906 * to executing the batch and avoid stalling the CPU.
3908 flips = 0;
3909 for (i = 0; i < args->buffer_count; i++) {
3910 if (object_list[i]->write_domain)
3911 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3913 if (flips) {
3914 int plane, flip_mask;
3916 for (plane = 0; flips >> plane; plane++) {
3917 if (((flips >> plane) & 1) == 0)
3918 continue;
3920 if (plane)
3921 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3922 else
3923 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3925 ret = intel_ring_begin(ring, 2);
3926 if (ret)
3927 goto err;
3929 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
3930 intel_ring_emit(ring, MI_NOOP);
3931 intel_ring_advance(ring);
3935 /* Exec the batchbuffer */
3936 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
3937 if (ret) {
3938 DRM_ERROR("dispatch failed %d\n", ret);
3939 goto err;
3942 for (i = 0; i < args->buffer_count; i++) {
3943 struct drm_gem_object *obj = object_list[i];
3945 obj->read_domains = obj->pending_read_domains;
3946 obj->write_domain = obj->pending_write_domain;
3948 i915_gem_object_move_to_active(obj, ring);
3949 if (obj->write_domain) {
3950 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3951 obj_priv->dirty = 1;
3952 list_move_tail(&obj_priv->gpu_write_list,
3953 &ring->gpu_write_list);
3954 intel_mark_busy(dev, obj);
3957 trace_i915_gem_object_change_domain(obj,
3958 obj->read_domains,
3959 obj->write_domain);
3963 * Ensure that the commands in the batch buffer are
3964 * finished before the interrupt fires
3966 i915_retire_commands(dev, ring);
3968 if (i915_add_request(dev, file, request, ring))
3969 ring->outstanding_lazy_request = true;
3970 else
3971 request = NULL;
3973 err:
3974 for (i = 0; i < args->buffer_count; i++) {
3975 if (object_list[i] == NULL)
3976 break;
3978 to_intel_bo(object_list[i])->in_execbuffer = false;
3979 drm_gem_object_unreference(object_list[i]);
3982 mutex_unlock(&dev->struct_mutex);
3984 pre_mutex_err:
3985 drm_free_large(object_list);
3986 kfree(cliprects);
3987 kfree(request);
3989 return ret;
3993 * Legacy execbuffer just creates an exec2 list from the original exec object
3994 * list array and passes it to the real function.
3997 i915_gem_execbuffer(struct drm_device *dev, void *data,
3998 struct drm_file *file_priv)
4000 struct drm_i915_gem_execbuffer *args = data;
4001 struct drm_i915_gem_execbuffer2 exec2;
4002 struct drm_i915_gem_exec_object *exec_list = NULL;
4003 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4004 int ret, i;
4006 #if WATCH_EXEC
4007 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4008 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4009 #endif
4011 if (args->buffer_count < 1) {
4012 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4013 return -EINVAL;
4016 /* Copy in the exec list from userland */
4017 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4018 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4019 if (exec_list == NULL || exec2_list == NULL) {
4020 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4021 args->buffer_count);
4022 drm_free_large(exec_list);
4023 drm_free_large(exec2_list);
4024 return -ENOMEM;
4026 ret = copy_from_user(exec_list,
4027 (struct drm_i915_relocation_entry __user *)
4028 (uintptr_t) args->buffers_ptr,
4029 sizeof(*exec_list) * args->buffer_count);
4030 if (ret != 0) {
4031 DRM_ERROR("copy %d exec entries failed %d\n",
4032 args->buffer_count, ret);
4033 drm_free_large(exec_list);
4034 drm_free_large(exec2_list);
4035 return -EFAULT;
4038 for (i = 0; i < args->buffer_count; i++) {
4039 exec2_list[i].handle = exec_list[i].handle;
4040 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4041 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4042 exec2_list[i].alignment = exec_list[i].alignment;
4043 exec2_list[i].offset = exec_list[i].offset;
4044 if (INTEL_INFO(dev)->gen < 4)
4045 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4046 else
4047 exec2_list[i].flags = 0;
4050 exec2.buffers_ptr = args->buffers_ptr;
4051 exec2.buffer_count = args->buffer_count;
4052 exec2.batch_start_offset = args->batch_start_offset;
4053 exec2.batch_len = args->batch_len;
4054 exec2.DR1 = args->DR1;
4055 exec2.DR4 = args->DR4;
4056 exec2.num_cliprects = args->num_cliprects;
4057 exec2.cliprects_ptr = args->cliprects_ptr;
4058 exec2.flags = I915_EXEC_RENDER;
4060 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4061 if (!ret) {
4062 /* Copy the new buffer offsets back to the user's exec list. */
4063 for (i = 0; i < args->buffer_count; i++)
4064 exec_list[i].offset = exec2_list[i].offset;
4065 /* ... and back out to userspace */
4066 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4067 (uintptr_t) args->buffers_ptr,
4068 exec_list,
4069 sizeof(*exec_list) * args->buffer_count);
4070 if (ret) {
4071 ret = -EFAULT;
4072 DRM_ERROR("failed to copy %d exec entries "
4073 "back to user (%d)\n",
4074 args->buffer_count, ret);
4078 drm_free_large(exec_list);
4079 drm_free_large(exec2_list);
4080 return ret;
4084 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4085 struct drm_file *file_priv)
4087 struct drm_i915_gem_execbuffer2 *args = data;
4088 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4089 int ret;
4091 #if WATCH_EXEC
4092 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4093 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4094 #endif
4096 if (args->buffer_count < 1) {
4097 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4098 return -EINVAL;
4101 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4102 if (exec2_list == NULL) {
4103 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4104 args->buffer_count);
4105 return -ENOMEM;
4107 ret = copy_from_user(exec2_list,
4108 (struct drm_i915_relocation_entry __user *)
4109 (uintptr_t) args->buffers_ptr,
4110 sizeof(*exec2_list) * args->buffer_count);
4111 if (ret != 0) {
4112 DRM_ERROR("copy %d exec entries failed %d\n",
4113 args->buffer_count, ret);
4114 drm_free_large(exec2_list);
4115 return -EFAULT;
4118 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4119 if (!ret) {
4120 /* Copy the new buffer offsets back to the user's exec list. */
4121 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4122 (uintptr_t) args->buffers_ptr,
4123 exec2_list,
4124 sizeof(*exec2_list) * args->buffer_count);
4125 if (ret) {
4126 ret = -EFAULT;
4127 DRM_ERROR("failed to copy %d exec entries "
4128 "back to user (%d)\n",
4129 args->buffer_count, ret);
4133 drm_free_large(exec2_list);
4134 return ret;
4138 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
4139 bool mappable)
4141 struct drm_device *dev = obj->dev;
4142 struct drm_i915_private *dev_priv = dev->dev_private;
4143 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4144 int ret;
4146 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4147 WARN_ON(i915_verify_lists(dev));
4149 if (obj_priv->gtt_space != NULL) {
4150 if (alignment == 0)
4151 alignment = i915_gem_get_gtt_alignment(obj);
4152 if (obj_priv->gtt_offset & (alignment - 1) ||
4153 (mappable && !i915_gem_object_cpu_accessible(obj_priv))) {
4154 WARN(obj_priv->pin_count,
4155 "bo is already pinned with incorrect alignment:"
4156 " offset=%x, req.alignment=%x\n",
4157 obj_priv->gtt_offset, alignment);
4158 ret = i915_gem_object_unbind(obj);
4159 if (ret)
4160 return ret;
4164 if (obj_priv->gtt_space == NULL) {
4165 ret = i915_gem_object_bind_to_gtt(obj, alignment, mappable);
4166 if (ret)
4167 return ret;
4170 obj_priv->pin_count++;
4172 /* If the object is not active and not pending a flush,
4173 * remove it from the inactive list
4175 if (obj_priv->pin_count == 1) {
4176 i915_gem_info_add_pin(dev_priv, obj, mappable);
4177 if (!obj_priv->active)
4178 list_move_tail(&obj_priv->mm_list,
4179 &dev_priv->mm.pinned_list);
4181 BUG_ON(!obj_priv->pin_mappable && mappable);
4183 WARN_ON(i915_verify_lists(dev));
4184 return 0;
4187 void
4188 i915_gem_object_unpin(struct drm_gem_object *obj)
4190 struct drm_device *dev = obj->dev;
4191 drm_i915_private_t *dev_priv = dev->dev_private;
4192 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4194 WARN_ON(i915_verify_lists(dev));
4195 obj_priv->pin_count--;
4196 BUG_ON(obj_priv->pin_count < 0);
4197 BUG_ON(obj_priv->gtt_space == NULL);
4199 /* If the object is no longer pinned, and is
4200 * neither active nor being flushed, then stick it on
4201 * the inactive list
4203 if (obj_priv->pin_count == 0) {
4204 if (!obj_priv->active)
4205 list_move_tail(&obj_priv->mm_list,
4206 &dev_priv->mm.inactive_list);
4207 i915_gem_info_remove_pin(dev_priv, obj);
4209 WARN_ON(i915_verify_lists(dev));
4213 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4214 struct drm_file *file_priv)
4216 struct drm_i915_gem_pin *args = data;
4217 struct drm_gem_object *obj;
4218 struct drm_i915_gem_object *obj_priv;
4219 int ret;
4221 ret = i915_mutex_lock_interruptible(dev);
4222 if (ret)
4223 return ret;
4225 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4226 if (obj == NULL) {
4227 ret = -ENOENT;
4228 goto unlock;
4230 obj_priv = to_intel_bo(obj);
4232 if (obj_priv->madv != I915_MADV_WILLNEED) {
4233 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4234 ret = -EINVAL;
4235 goto out;
4238 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4239 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4240 args->handle);
4241 ret = -EINVAL;
4242 goto out;
4245 obj_priv->user_pin_count++;
4246 obj_priv->pin_filp = file_priv;
4247 if (obj_priv->user_pin_count == 1) {
4248 ret = i915_gem_object_pin(obj, args->alignment, true);
4249 if (ret)
4250 goto out;
4253 /* XXX - flush the CPU caches for pinned objects
4254 * as the X server doesn't manage domains yet
4256 i915_gem_object_flush_cpu_write_domain(obj);
4257 args->offset = obj_priv->gtt_offset;
4258 out:
4259 drm_gem_object_unreference(obj);
4260 unlock:
4261 mutex_unlock(&dev->struct_mutex);
4262 return ret;
4266 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4267 struct drm_file *file_priv)
4269 struct drm_i915_gem_pin *args = data;
4270 struct drm_gem_object *obj;
4271 struct drm_i915_gem_object *obj_priv;
4272 int ret;
4274 ret = i915_mutex_lock_interruptible(dev);
4275 if (ret)
4276 return ret;
4278 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4279 if (obj == NULL) {
4280 ret = -ENOENT;
4281 goto unlock;
4283 obj_priv = to_intel_bo(obj);
4285 if (obj_priv->pin_filp != file_priv) {
4286 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4287 args->handle);
4288 ret = -EINVAL;
4289 goto out;
4291 obj_priv->user_pin_count--;
4292 if (obj_priv->user_pin_count == 0) {
4293 obj_priv->pin_filp = NULL;
4294 i915_gem_object_unpin(obj);
4297 out:
4298 drm_gem_object_unreference(obj);
4299 unlock:
4300 mutex_unlock(&dev->struct_mutex);
4301 return ret;
4305 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4306 struct drm_file *file_priv)
4308 struct drm_i915_gem_busy *args = data;
4309 struct drm_gem_object *obj;
4310 struct drm_i915_gem_object *obj_priv;
4311 int ret;
4313 ret = i915_mutex_lock_interruptible(dev);
4314 if (ret)
4315 return ret;
4317 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4318 if (obj == NULL) {
4319 ret = -ENOENT;
4320 goto unlock;
4322 obj_priv = to_intel_bo(obj);
4324 /* Count all active objects as busy, even if they are currently not used
4325 * by the gpu. Users of this interface expect objects to eventually
4326 * become non-busy without any further actions, therefore emit any
4327 * necessary flushes here.
4329 args->busy = obj_priv->active;
4330 if (args->busy) {
4331 /* Unconditionally flush objects, even when the gpu still uses this
4332 * object. Userspace calling this function indicates that it wants to
4333 * use this buffer rather sooner than later, so issuing the required
4334 * flush earlier is beneficial.
4336 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4337 i915_gem_flush_ring(dev, file_priv,
4338 obj_priv->ring,
4339 0, obj->write_domain);
4341 /* Update the active list for the hardware's current position.
4342 * Otherwise this only updates on a delayed timer or when irqs
4343 * are actually unmasked, and our working set ends up being
4344 * larger than required.
4346 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4348 args->busy = obj_priv->active;
4351 drm_gem_object_unreference(obj);
4352 unlock:
4353 mutex_unlock(&dev->struct_mutex);
4354 return ret;
4358 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4359 struct drm_file *file_priv)
4361 return i915_gem_ring_throttle(dev, file_priv);
4365 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4366 struct drm_file *file_priv)
4368 struct drm_i915_gem_madvise *args = data;
4369 struct drm_gem_object *obj;
4370 struct drm_i915_gem_object *obj_priv;
4371 int ret;
4373 switch (args->madv) {
4374 case I915_MADV_DONTNEED:
4375 case I915_MADV_WILLNEED:
4376 break;
4377 default:
4378 return -EINVAL;
4381 ret = i915_mutex_lock_interruptible(dev);
4382 if (ret)
4383 return ret;
4385 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4386 if (obj == NULL) {
4387 ret = -ENOENT;
4388 goto unlock;
4390 obj_priv = to_intel_bo(obj);
4392 if (obj_priv->pin_count) {
4393 ret = -EINVAL;
4394 goto out;
4397 if (obj_priv->madv != __I915_MADV_PURGED)
4398 obj_priv->madv = args->madv;
4400 /* if the object is no longer bound, discard its backing storage */
4401 if (i915_gem_object_is_purgeable(obj_priv) &&
4402 obj_priv->gtt_space == NULL)
4403 i915_gem_object_truncate(obj);
4405 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4407 out:
4408 drm_gem_object_unreference(obj);
4409 unlock:
4410 mutex_unlock(&dev->struct_mutex);
4411 return ret;
4414 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4415 size_t size)
4417 struct drm_i915_private *dev_priv = dev->dev_private;
4418 struct drm_i915_gem_object *obj;
4420 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4421 if (obj == NULL)
4422 return NULL;
4424 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4425 kfree(obj);
4426 return NULL;
4429 i915_gem_info_add_obj(dev_priv, size);
4431 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4432 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4434 obj->agp_type = AGP_USER_MEMORY;
4435 obj->base.driver_private = NULL;
4436 obj->fence_reg = I915_FENCE_REG_NONE;
4437 INIT_LIST_HEAD(&obj->mm_list);
4438 INIT_LIST_HEAD(&obj->ring_list);
4439 INIT_LIST_HEAD(&obj->gpu_write_list);
4440 obj->madv = I915_MADV_WILLNEED;
4442 return &obj->base;
4445 int i915_gem_init_object(struct drm_gem_object *obj)
4447 BUG();
4449 return 0;
4452 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4454 struct drm_device *dev = obj->dev;
4455 drm_i915_private_t *dev_priv = dev->dev_private;
4456 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4457 int ret;
4459 ret = i915_gem_object_unbind(obj);
4460 if (ret == -ERESTARTSYS) {
4461 list_move(&obj_priv->mm_list,
4462 &dev_priv->mm.deferred_free_list);
4463 return;
4466 if (obj_priv->mmap_offset)
4467 i915_gem_free_mmap_offset(obj);
4469 drm_gem_object_release(obj);
4470 i915_gem_info_remove_obj(dev_priv, obj->size);
4472 kfree(obj_priv->page_cpu_valid);
4473 kfree(obj_priv->bit_17);
4474 kfree(obj_priv);
4477 void i915_gem_free_object(struct drm_gem_object *obj)
4479 struct drm_device *dev = obj->dev;
4480 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4482 trace_i915_gem_object_destroy(obj);
4484 while (obj_priv->pin_count > 0)
4485 i915_gem_object_unpin(obj);
4487 if (obj_priv->phys_obj)
4488 i915_gem_detach_phys_object(dev, obj);
4490 i915_gem_free_object_tail(obj);
4494 i915_gem_idle(struct drm_device *dev)
4496 drm_i915_private_t *dev_priv = dev->dev_private;
4497 int ret;
4499 mutex_lock(&dev->struct_mutex);
4501 if (dev_priv->mm.suspended) {
4502 mutex_unlock(&dev->struct_mutex);
4503 return 0;
4506 ret = i915_gpu_idle(dev);
4507 if (ret) {
4508 mutex_unlock(&dev->struct_mutex);
4509 return ret;
4512 /* Under UMS, be paranoid and evict. */
4513 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4514 ret = i915_gem_evict_inactive(dev);
4515 if (ret) {
4516 mutex_unlock(&dev->struct_mutex);
4517 return ret;
4521 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4522 * We need to replace this with a semaphore, or something.
4523 * And not confound mm.suspended!
4525 dev_priv->mm.suspended = 1;
4526 del_timer_sync(&dev_priv->hangcheck_timer);
4528 i915_kernel_lost_context(dev);
4529 i915_gem_cleanup_ringbuffer(dev);
4531 mutex_unlock(&dev->struct_mutex);
4533 /* Cancel the retire work handler, which should be idle now. */
4534 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4536 return 0;
4540 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4541 * over cache flushing.
4543 static int
4544 i915_gem_init_pipe_control(struct drm_device *dev)
4546 drm_i915_private_t *dev_priv = dev->dev_private;
4547 struct drm_gem_object *obj;
4548 struct drm_i915_gem_object *obj_priv;
4549 int ret;
4551 obj = i915_gem_alloc_object(dev, 4096);
4552 if (obj == NULL) {
4553 DRM_ERROR("Failed to allocate seqno page\n");
4554 ret = -ENOMEM;
4555 goto err;
4557 obj_priv = to_intel_bo(obj);
4558 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4560 ret = i915_gem_object_pin(obj, 4096, true);
4561 if (ret)
4562 goto err_unref;
4564 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4565 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4566 if (dev_priv->seqno_page == NULL)
4567 goto err_unpin;
4569 dev_priv->seqno_obj = obj;
4570 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4572 return 0;
4574 err_unpin:
4575 i915_gem_object_unpin(obj);
4576 err_unref:
4577 drm_gem_object_unreference(obj);
4578 err:
4579 return ret;
4583 static void
4584 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4586 drm_i915_private_t *dev_priv = dev->dev_private;
4587 struct drm_gem_object *obj;
4588 struct drm_i915_gem_object *obj_priv;
4590 obj = dev_priv->seqno_obj;
4591 obj_priv = to_intel_bo(obj);
4592 kunmap(obj_priv->pages[0]);
4593 i915_gem_object_unpin(obj);
4594 drm_gem_object_unreference(obj);
4595 dev_priv->seqno_obj = NULL;
4597 dev_priv->seqno_page = NULL;
4601 i915_gem_init_ringbuffer(struct drm_device *dev)
4603 drm_i915_private_t *dev_priv = dev->dev_private;
4604 int ret;
4606 if (HAS_PIPE_CONTROL(dev)) {
4607 ret = i915_gem_init_pipe_control(dev);
4608 if (ret)
4609 return ret;
4612 ret = intel_init_render_ring_buffer(dev);
4613 if (ret)
4614 goto cleanup_pipe_control;
4616 if (HAS_BSD(dev)) {
4617 ret = intel_init_bsd_ring_buffer(dev);
4618 if (ret)
4619 goto cleanup_render_ring;
4622 if (HAS_BLT(dev)) {
4623 ret = intel_init_blt_ring_buffer(dev);
4624 if (ret)
4625 goto cleanup_bsd_ring;
4628 dev_priv->next_seqno = 1;
4630 return 0;
4632 cleanup_bsd_ring:
4633 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4634 cleanup_render_ring:
4635 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4636 cleanup_pipe_control:
4637 if (HAS_PIPE_CONTROL(dev))
4638 i915_gem_cleanup_pipe_control(dev);
4639 return ret;
4642 void
4643 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4645 drm_i915_private_t *dev_priv = dev->dev_private;
4647 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4648 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4649 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
4650 if (HAS_PIPE_CONTROL(dev))
4651 i915_gem_cleanup_pipe_control(dev);
4655 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4656 struct drm_file *file_priv)
4658 drm_i915_private_t *dev_priv = dev->dev_private;
4659 int ret;
4661 if (drm_core_check_feature(dev, DRIVER_MODESET))
4662 return 0;
4664 if (atomic_read(&dev_priv->mm.wedged)) {
4665 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4666 atomic_set(&dev_priv->mm.wedged, 0);
4669 mutex_lock(&dev->struct_mutex);
4670 dev_priv->mm.suspended = 0;
4672 ret = i915_gem_init_ringbuffer(dev);
4673 if (ret != 0) {
4674 mutex_unlock(&dev->struct_mutex);
4675 return ret;
4678 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4679 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4680 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4681 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4682 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4683 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4684 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4685 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4686 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4687 mutex_unlock(&dev->struct_mutex);
4689 ret = drm_irq_install(dev);
4690 if (ret)
4691 goto cleanup_ringbuffer;
4693 return 0;
4695 cleanup_ringbuffer:
4696 mutex_lock(&dev->struct_mutex);
4697 i915_gem_cleanup_ringbuffer(dev);
4698 dev_priv->mm.suspended = 1;
4699 mutex_unlock(&dev->struct_mutex);
4701 return ret;
4705 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4706 struct drm_file *file_priv)
4708 if (drm_core_check_feature(dev, DRIVER_MODESET))
4709 return 0;
4711 drm_irq_uninstall(dev);
4712 return i915_gem_idle(dev);
4715 void
4716 i915_gem_lastclose(struct drm_device *dev)
4718 int ret;
4720 if (drm_core_check_feature(dev, DRIVER_MODESET))
4721 return;
4723 ret = i915_gem_idle(dev);
4724 if (ret)
4725 DRM_ERROR("failed to idle hardware: %d\n", ret);
4728 static void
4729 init_ring_lists(struct intel_ring_buffer *ring)
4731 INIT_LIST_HEAD(&ring->active_list);
4732 INIT_LIST_HEAD(&ring->request_list);
4733 INIT_LIST_HEAD(&ring->gpu_write_list);
4736 void
4737 i915_gem_load(struct drm_device *dev)
4739 int i;
4740 drm_i915_private_t *dev_priv = dev->dev_private;
4742 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4743 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4744 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4745 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4746 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4747 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4748 init_ring_lists(&dev_priv->render_ring);
4749 init_ring_lists(&dev_priv->bsd_ring);
4750 init_ring_lists(&dev_priv->blt_ring);
4751 for (i = 0; i < 16; i++)
4752 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4753 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4754 i915_gem_retire_work_handler);
4755 init_completion(&dev_priv->error_completion);
4756 spin_lock(&shrink_list_lock);
4757 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4758 spin_unlock(&shrink_list_lock);
4760 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4761 if (IS_GEN3(dev)) {
4762 u32 tmp = I915_READ(MI_ARB_STATE);
4763 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4764 /* arb state is a masked write, so set bit + bit in mask */
4765 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4766 I915_WRITE(MI_ARB_STATE, tmp);
4770 /* Old X drivers will take 0-2 for front, back, depth buffers */
4771 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4772 dev_priv->fence_reg_start = 3;
4774 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4775 dev_priv->num_fence_regs = 16;
4776 else
4777 dev_priv->num_fence_regs = 8;
4779 /* Initialize fence registers to zero */
4780 switch (INTEL_INFO(dev)->gen) {
4781 case 6:
4782 for (i = 0; i < 16; i++)
4783 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4784 break;
4785 case 5:
4786 case 4:
4787 for (i = 0; i < 16; i++)
4788 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4789 break;
4790 case 3:
4791 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4792 for (i = 0; i < 8; i++)
4793 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4794 case 2:
4795 for (i = 0; i < 8; i++)
4796 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4797 break;
4799 i915_gem_detect_bit_6_swizzle(dev);
4800 init_waitqueue_head(&dev_priv->pending_flip_queue);
4804 * Create a physically contiguous memory object for this object
4805 * e.g. for cursor + overlay regs
4807 static int i915_gem_init_phys_object(struct drm_device *dev,
4808 int id, int size, int align)
4810 drm_i915_private_t *dev_priv = dev->dev_private;
4811 struct drm_i915_gem_phys_object *phys_obj;
4812 int ret;
4814 if (dev_priv->mm.phys_objs[id - 1] || !size)
4815 return 0;
4817 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4818 if (!phys_obj)
4819 return -ENOMEM;
4821 phys_obj->id = id;
4823 phys_obj->handle = drm_pci_alloc(dev, size, align);
4824 if (!phys_obj->handle) {
4825 ret = -ENOMEM;
4826 goto kfree_obj;
4828 #ifdef CONFIG_X86
4829 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4830 #endif
4832 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4834 return 0;
4835 kfree_obj:
4836 kfree(phys_obj);
4837 return ret;
4840 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4842 drm_i915_private_t *dev_priv = dev->dev_private;
4843 struct drm_i915_gem_phys_object *phys_obj;
4845 if (!dev_priv->mm.phys_objs[id - 1])
4846 return;
4848 phys_obj = dev_priv->mm.phys_objs[id - 1];
4849 if (phys_obj->cur_obj) {
4850 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4853 #ifdef CONFIG_X86
4854 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4855 #endif
4856 drm_pci_free(dev, phys_obj->handle);
4857 kfree(phys_obj);
4858 dev_priv->mm.phys_objs[id - 1] = NULL;
4861 void i915_gem_free_all_phys_object(struct drm_device *dev)
4863 int i;
4865 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4866 i915_gem_free_phys_object(dev, i);
4869 void i915_gem_detach_phys_object(struct drm_device *dev,
4870 struct drm_gem_object *obj)
4872 struct drm_i915_gem_object *obj_priv;
4873 int i;
4874 int ret;
4875 int page_count;
4877 obj_priv = to_intel_bo(obj);
4878 if (!obj_priv->phys_obj)
4879 return;
4881 ret = i915_gem_object_get_pages(obj, 0);
4882 if (ret)
4883 goto out;
4885 page_count = obj->size / PAGE_SIZE;
4887 for (i = 0; i < page_count; i++) {
4888 char *dst = kmap_atomic(obj_priv->pages[i]);
4889 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4891 memcpy(dst, src, PAGE_SIZE);
4892 kunmap_atomic(dst);
4894 drm_clflush_pages(obj_priv->pages, page_count);
4895 drm_agp_chipset_flush(dev);
4897 i915_gem_object_put_pages(obj);
4898 out:
4899 obj_priv->phys_obj->cur_obj = NULL;
4900 obj_priv->phys_obj = NULL;
4904 i915_gem_attach_phys_object(struct drm_device *dev,
4905 struct drm_gem_object *obj,
4906 int id,
4907 int align)
4909 drm_i915_private_t *dev_priv = dev->dev_private;
4910 struct drm_i915_gem_object *obj_priv;
4911 int ret = 0;
4912 int page_count;
4913 int i;
4915 if (id > I915_MAX_PHYS_OBJECT)
4916 return -EINVAL;
4918 obj_priv = to_intel_bo(obj);
4920 if (obj_priv->phys_obj) {
4921 if (obj_priv->phys_obj->id == id)
4922 return 0;
4923 i915_gem_detach_phys_object(dev, obj);
4926 /* create a new object */
4927 if (!dev_priv->mm.phys_objs[id - 1]) {
4928 ret = i915_gem_init_phys_object(dev, id,
4929 obj->size, align);
4930 if (ret) {
4931 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4932 goto out;
4936 /* bind to the object */
4937 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4938 obj_priv->phys_obj->cur_obj = obj;
4940 ret = i915_gem_object_get_pages(obj, 0);
4941 if (ret) {
4942 DRM_ERROR("failed to get page list\n");
4943 goto out;
4946 page_count = obj->size / PAGE_SIZE;
4948 for (i = 0; i < page_count; i++) {
4949 char *src = kmap_atomic(obj_priv->pages[i]);
4950 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4952 memcpy(dst, src, PAGE_SIZE);
4953 kunmap_atomic(src);
4956 i915_gem_object_put_pages(obj);
4958 return 0;
4959 out:
4960 return ret;
4963 static int
4964 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4965 struct drm_i915_gem_pwrite *args,
4966 struct drm_file *file_priv)
4968 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4969 void *obj_addr;
4970 int ret;
4971 char __user *user_data;
4973 user_data = (char __user *) (uintptr_t) args->data_ptr;
4974 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4976 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4977 ret = copy_from_user(obj_addr, user_data, args->size);
4978 if (ret)
4979 return -EFAULT;
4981 drm_agp_chipset_flush(dev);
4982 return 0;
4985 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4987 struct drm_i915_file_private *file_priv = file->driver_priv;
4989 /* Clean up our request list when the client is going away, so that
4990 * later retire_requests won't dereference our soon-to-be-gone
4991 * file_priv.
4993 spin_lock(&file_priv->mm.lock);
4994 while (!list_empty(&file_priv->mm.request_list)) {
4995 struct drm_i915_gem_request *request;
4997 request = list_first_entry(&file_priv->mm.request_list,
4998 struct drm_i915_gem_request,
4999 client_list);
5000 list_del(&request->client_list);
5001 request->file_priv = NULL;
5003 spin_unlock(&file_priv->mm.lock);
5006 static int
5007 i915_gpu_is_active(struct drm_device *dev)
5009 drm_i915_private_t *dev_priv = dev->dev_private;
5010 int lists_empty;
5012 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
5013 list_empty(&dev_priv->render_ring.active_list) &&
5014 list_empty(&dev_priv->bsd_ring.active_list) &&
5015 list_empty(&dev_priv->blt_ring.active_list);
5017 return !lists_empty;
5020 static int
5021 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
5023 drm_i915_private_t *dev_priv, *next_dev;
5024 struct drm_i915_gem_object *obj_priv, *next_obj;
5025 int cnt = 0;
5026 int would_deadlock = 1;
5028 /* "fast-path" to count number of available objects */
5029 if (nr_to_scan == 0) {
5030 spin_lock(&shrink_list_lock);
5031 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5032 struct drm_device *dev = dev_priv->dev;
5034 if (mutex_trylock(&dev->struct_mutex)) {
5035 list_for_each_entry(obj_priv,
5036 &dev_priv->mm.inactive_list,
5037 mm_list)
5038 cnt++;
5039 mutex_unlock(&dev->struct_mutex);
5042 spin_unlock(&shrink_list_lock);
5044 return (cnt / 100) * sysctl_vfs_cache_pressure;
5047 spin_lock(&shrink_list_lock);
5049 rescan:
5050 /* first scan for clean buffers */
5051 list_for_each_entry_safe(dev_priv, next_dev,
5052 &shrink_list, mm.shrink_list) {
5053 struct drm_device *dev = dev_priv->dev;
5055 if (! mutex_trylock(&dev->struct_mutex))
5056 continue;
5058 spin_unlock(&shrink_list_lock);
5059 i915_gem_retire_requests(dev);
5061 list_for_each_entry_safe(obj_priv, next_obj,
5062 &dev_priv->mm.inactive_list,
5063 mm_list) {
5064 if (i915_gem_object_is_purgeable(obj_priv)) {
5065 i915_gem_object_unbind(&obj_priv->base);
5066 if (--nr_to_scan <= 0)
5067 break;
5071 spin_lock(&shrink_list_lock);
5072 mutex_unlock(&dev->struct_mutex);
5074 would_deadlock = 0;
5076 if (nr_to_scan <= 0)
5077 break;
5080 /* second pass, evict/count anything still on the inactive list */
5081 list_for_each_entry_safe(dev_priv, next_dev,
5082 &shrink_list, mm.shrink_list) {
5083 struct drm_device *dev = dev_priv->dev;
5085 if (! mutex_trylock(&dev->struct_mutex))
5086 continue;
5088 spin_unlock(&shrink_list_lock);
5090 list_for_each_entry_safe(obj_priv, next_obj,
5091 &dev_priv->mm.inactive_list,
5092 mm_list) {
5093 if (nr_to_scan > 0) {
5094 i915_gem_object_unbind(&obj_priv->base);
5095 nr_to_scan--;
5096 } else
5097 cnt++;
5100 spin_lock(&shrink_list_lock);
5101 mutex_unlock(&dev->struct_mutex);
5103 would_deadlock = 0;
5106 if (nr_to_scan) {
5107 int active = 0;
5110 * We are desperate for pages, so as a last resort, wait
5111 * for the GPU to finish and discard whatever we can.
5112 * This has a dramatic impact to reduce the number of
5113 * OOM-killer events whilst running the GPU aggressively.
5115 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5116 struct drm_device *dev = dev_priv->dev;
5118 if (!mutex_trylock(&dev->struct_mutex))
5119 continue;
5121 spin_unlock(&shrink_list_lock);
5123 if (i915_gpu_is_active(dev)) {
5124 i915_gpu_idle(dev);
5125 active++;
5128 spin_lock(&shrink_list_lock);
5129 mutex_unlock(&dev->struct_mutex);
5132 if (active)
5133 goto rescan;
5136 spin_unlock(&shrink_list_lock);
5138 if (would_deadlock)
5139 return -1;
5140 else if (cnt > 0)
5141 return (cnt / 100) * sysctl_vfs_cache_pressure;
5142 else
5143 return 0;
5146 static struct shrinker shrinker = {
5147 .shrink = i915_gem_shrink,
5148 .seeks = DEFAULT_SEEKS,
5151 __init void
5152 i915_gem_shrinker_init(void)
5154 register_shrinker(&shrinker);
5157 __exit void
5158 i915_gem_shrinker_exit(void)
5160 unregister_shrinker(&shrinker);