KVM: x86: Reset tsc_timestamp on TSC writes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / kmod.c
blobd2060784087291f38bad1c0a71443adce9197656
1 /*
2 kmod, the new module loader (replaces kerneld)
3 Kirk Petersen
5 Reorganized not to be a daemon by Adam Richter, with guidance
6 from Greg Zornetzer.
8 Modified to avoid chroot and file sharing problems.
9 Mikael Pettersson
11 Limit the concurrent number of kmod modprobes to catch loops from
12 "modprobe needs a service that is in a module".
13 Keith Owens <kaos@ocs.com.au> December 1999
15 Unblock all signals when we exec a usermode process.
16 Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
18 call_usermodehelper wait flag, and remove exec_usermodehelper.
19 Rusty Russell <rusty@rustcorp.com.au> Jan 2003
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/workqueue.h>
31 #include <linux/security.h>
32 #include <linux/mount.h>
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/resource.h>
36 #include <linux/notifier.h>
37 #include <linux/suspend.h>
38 #include <asm/uaccess.h>
40 #include <trace/events/module.h>
42 extern int max_threads;
44 static struct workqueue_struct *khelper_wq;
46 #ifdef CONFIG_MODULES
49 modprobe_path is set via /proc/sys.
51 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
53 /**
54 * __request_module - try to load a kernel module
55 * @wait: wait (or not) for the operation to complete
56 * @fmt: printf style format string for the name of the module
57 * @...: arguments as specified in the format string
59 * Load a module using the user mode module loader. The function returns
60 * zero on success or a negative errno code on failure. Note that a
61 * successful module load does not mean the module did not then unload
62 * and exit on an error of its own. Callers must check that the service
63 * they requested is now available not blindly invoke it.
65 * If module auto-loading support is disabled then this function
66 * becomes a no-operation.
68 int __request_module(bool wait, const char *fmt, ...)
70 va_list args;
71 char module_name[MODULE_NAME_LEN];
72 unsigned int max_modprobes;
73 int ret;
74 char *argv[] = { modprobe_path, "-q", "--", module_name, NULL };
75 static char *envp[] = { "HOME=/",
76 "TERM=linux",
77 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
78 NULL };
79 static atomic_t kmod_concurrent = ATOMIC_INIT(0);
80 #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
81 static int kmod_loop_msg;
83 ret = security_kernel_module_request();
84 if (ret)
85 return ret;
87 va_start(args, fmt);
88 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
89 va_end(args);
90 if (ret >= MODULE_NAME_LEN)
91 return -ENAMETOOLONG;
93 /* If modprobe needs a service that is in a module, we get a recursive
94 * loop. Limit the number of running kmod threads to max_threads/2 or
95 * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method
96 * would be to run the parents of this process, counting how many times
97 * kmod was invoked. That would mean accessing the internals of the
98 * process tables to get the command line, proc_pid_cmdline is static
99 * and it is not worth changing the proc code just to handle this case.
100 * KAO.
102 * "trace the ppid" is simple, but will fail if someone's
103 * parent exits. I think this is as good as it gets. --RR
105 max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
106 atomic_inc(&kmod_concurrent);
107 if (atomic_read(&kmod_concurrent) > max_modprobes) {
108 /* We may be blaming an innocent here, but unlikely */
109 if (kmod_loop_msg < 5) {
110 printk(KERN_ERR
111 "request_module: runaway loop modprobe %s\n",
112 module_name);
113 kmod_loop_msg++;
115 atomic_dec(&kmod_concurrent);
116 return -ENOMEM;
119 trace_module_request(module_name, wait, _RET_IP_);
121 ret = call_usermodehelper(modprobe_path, argv, envp,
122 wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
123 atomic_dec(&kmod_concurrent);
124 return ret;
126 EXPORT_SYMBOL(__request_module);
127 #endif /* CONFIG_MODULES */
129 struct subprocess_info {
130 struct work_struct work;
131 struct completion *complete;
132 struct cred *cred;
133 char *path;
134 char **argv;
135 char **envp;
136 enum umh_wait wait;
137 int retval;
138 struct file *stdin;
139 void (*cleanup)(char **argv, char **envp);
143 * This is the task which runs the usermode application
145 static int ____call_usermodehelper(void *data)
147 struct subprocess_info *sub_info = data;
148 int retval;
150 BUG_ON(atomic_read(&sub_info->cred->usage) != 1);
152 /* Unblock all signals */
153 spin_lock_irq(&current->sighand->siglock);
154 flush_signal_handlers(current, 1);
155 sigemptyset(&current->blocked);
156 recalc_sigpending();
157 spin_unlock_irq(&current->sighand->siglock);
159 /* Install the credentials */
160 commit_creds(sub_info->cred);
161 sub_info->cred = NULL;
163 /* Install input pipe when needed */
164 if (sub_info->stdin) {
165 struct files_struct *f = current->files;
166 struct fdtable *fdt;
167 /* no races because files should be private here */
168 sys_close(0);
169 fd_install(0, sub_info->stdin);
170 spin_lock(&f->file_lock);
171 fdt = files_fdtable(f);
172 FD_SET(0, fdt->open_fds);
173 FD_CLR(0, fdt->close_on_exec);
174 spin_unlock(&f->file_lock);
176 /* and disallow core files too */
177 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){0, 0};
180 /* We can run anywhere, unlike our parent keventd(). */
181 set_cpus_allowed_ptr(current, cpu_all_mask);
184 * Our parent is keventd, which runs with elevated scheduling priority.
185 * Avoid propagating that into the userspace child.
187 set_user_nice(current, 0);
189 retval = kernel_execve(sub_info->path, sub_info->argv, sub_info->envp);
191 /* Exec failed? */
192 sub_info->retval = retval;
193 do_exit(0);
196 void call_usermodehelper_freeinfo(struct subprocess_info *info)
198 if (info->cleanup)
199 (*info->cleanup)(info->argv, info->envp);
200 if (info->cred)
201 put_cred(info->cred);
202 kfree(info);
204 EXPORT_SYMBOL(call_usermodehelper_freeinfo);
206 /* Keventd can't block, but this (a child) can. */
207 static int wait_for_helper(void *data)
209 struct subprocess_info *sub_info = data;
210 pid_t pid;
212 /* Install a handler: if SIGCLD isn't handled sys_wait4 won't
213 * populate the status, but will return -ECHILD. */
214 allow_signal(SIGCHLD);
216 pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
217 if (pid < 0) {
218 sub_info->retval = pid;
219 } else {
220 int ret;
223 * Normally it is bogus to call wait4() from in-kernel because
224 * wait4() wants to write the exit code to a userspace address.
225 * But wait_for_helper() always runs as keventd, and put_user()
226 * to a kernel address works OK for kernel threads, due to their
227 * having an mm_segment_t which spans the entire address space.
229 * Thus the __user pointer cast is valid here.
231 sys_wait4(pid, (int __user *)&ret, 0, NULL);
234 * If ret is 0, either ____call_usermodehelper failed and the
235 * real error code is already in sub_info->retval or
236 * sub_info->retval is 0 anyway, so don't mess with it then.
238 if (ret)
239 sub_info->retval = ret;
242 if (sub_info->wait == UMH_NO_WAIT)
243 call_usermodehelper_freeinfo(sub_info);
244 else
245 complete(sub_info->complete);
246 return 0;
249 /* This is run by khelper thread */
250 static void __call_usermodehelper(struct work_struct *work)
252 struct subprocess_info *sub_info =
253 container_of(work, struct subprocess_info, work);
254 pid_t pid;
255 enum umh_wait wait = sub_info->wait;
257 BUG_ON(atomic_read(&sub_info->cred->usage) != 1);
259 /* CLONE_VFORK: wait until the usermode helper has execve'd
260 * successfully We need the data structures to stay around
261 * until that is done. */
262 if (wait == UMH_WAIT_PROC || wait == UMH_NO_WAIT)
263 pid = kernel_thread(wait_for_helper, sub_info,
264 CLONE_FS | CLONE_FILES | SIGCHLD);
265 else
266 pid = kernel_thread(____call_usermodehelper, sub_info,
267 CLONE_VFORK | SIGCHLD);
269 switch (wait) {
270 case UMH_NO_WAIT:
271 break;
273 case UMH_WAIT_PROC:
274 if (pid > 0)
275 break;
276 sub_info->retval = pid;
277 /* FALLTHROUGH */
279 case UMH_WAIT_EXEC:
280 complete(sub_info->complete);
284 #ifdef CONFIG_PM_SLEEP
286 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
287 * (used for preventing user land processes from being created after the user
288 * land has been frozen during a system-wide hibernation or suspend operation).
290 static int usermodehelper_disabled;
292 /* Number of helpers running */
293 static atomic_t running_helpers = ATOMIC_INIT(0);
296 * Wait queue head used by usermodehelper_pm_callback() to wait for all running
297 * helpers to finish.
299 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
302 * Time to wait for running_helpers to become zero before the setting of
303 * usermodehelper_disabled in usermodehelper_pm_callback() fails
305 #define RUNNING_HELPERS_TIMEOUT (5 * HZ)
308 * usermodehelper_disable - prevent new helpers from being started
310 int usermodehelper_disable(void)
312 long retval;
314 usermodehelper_disabled = 1;
315 smp_mb();
317 * From now on call_usermodehelper_exec() won't start any new
318 * helpers, so it is sufficient if running_helpers turns out to
319 * be zero at one point (it may be increased later, but that
320 * doesn't matter).
322 retval = wait_event_timeout(running_helpers_waitq,
323 atomic_read(&running_helpers) == 0,
324 RUNNING_HELPERS_TIMEOUT);
325 if (retval)
326 return 0;
328 usermodehelper_disabled = 0;
329 return -EAGAIN;
333 * usermodehelper_enable - allow new helpers to be started again
335 void usermodehelper_enable(void)
337 usermodehelper_disabled = 0;
340 static void helper_lock(void)
342 atomic_inc(&running_helpers);
343 smp_mb__after_atomic_inc();
346 static void helper_unlock(void)
348 if (atomic_dec_and_test(&running_helpers))
349 wake_up(&running_helpers_waitq);
351 #else /* CONFIG_PM_SLEEP */
352 #define usermodehelper_disabled 0
354 static inline void helper_lock(void) {}
355 static inline void helper_unlock(void) {}
356 #endif /* CONFIG_PM_SLEEP */
359 * call_usermodehelper_setup - prepare to call a usermode helper
360 * @path: path to usermode executable
361 * @argv: arg vector for process
362 * @envp: environment for process
363 * @gfp_mask: gfp mask for memory allocation
365 * Returns either %NULL on allocation failure, or a subprocess_info
366 * structure. This should be passed to call_usermodehelper_exec to
367 * exec the process and free the structure.
369 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
370 char **envp, gfp_t gfp_mask)
372 struct subprocess_info *sub_info;
373 sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
374 if (!sub_info)
375 goto out;
377 INIT_WORK(&sub_info->work, __call_usermodehelper);
378 sub_info->path = path;
379 sub_info->argv = argv;
380 sub_info->envp = envp;
381 sub_info->cred = prepare_usermodehelper_creds();
382 if (!sub_info->cred) {
383 kfree(sub_info);
384 return NULL;
387 out:
388 return sub_info;
390 EXPORT_SYMBOL(call_usermodehelper_setup);
393 * call_usermodehelper_setkeys - set the session keys for usermode helper
394 * @info: a subprocess_info returned by call_usermodehelper_setup
395 * @session_keyring: the session keyring for the process
397 void call_usermodehelper_setkeys(struct subprocess_info *info,
398 struct key *session_keyring)
400 #ifdef CONFIG_KEYS
401 struct thread_group_cred *tgcred = info->cred->tgcred;
402 key_put(tgcred->session_keyring);
403 tgcred->session_keyring = key_get(session_keyring);
404 #else
405 BUG();
406 #endif
408 EXPORT_SYMBOL(call_usermodehelper_setkeys);
411 * call_usermodehelper_setcleanup - set a cleanup function
412 * @info: a subprocess_info returned by call_usermodehelper_setup
413 * @cleanup: a cleanup function
415 * The cleanup function is just befor ethe subprocess_info is about to
416 * be freed. This can be used for freeing the argv and envp. The
417 * Function must be runnable in either a process context or the
418 * context in which call_usermodehelper_exec is called.
420 void call_usermodehelper_setcleanup(struct subprocess_info *info,
421 void (*cleanup)(char **argv, char **envp))
423 info->cleanup = cleanup;
425 EXPORT_SYMBOL(call_usermodehelper_setcleanup);
428 * call_usermodehelper_stdinpipe - set up a pipe to be used for stdin
429 * @sub_info: a subprocess_info returned by call_usermodehelper_setup
430 * @filp: set to the write-end of a pipe
432 * This constructs a pipe, and sets the read end to be the stdin of the
433 * subprocess, and returns the write-end in *@filp.
435 int call_usermodehelper_stdinpipe(struct subprocess_info *sub_info,
436 struct file **filp)
438 struct file *f;
440 f = create_write_pipe(0);
441 if (IS_ERR(f))
442 return PTR_ERR(f);
443 *filp = f;
445 f = create_read_pipe(f, 0);
446 if (IS_ERR(f)) {
447 free_write_pipe(*filp);
448 return PTR_ERR(f);
450 sub_info->stdin = f;
452 return 0;
454 EXPORT_SYMBOL(call_usermodehelper_stdinpipe);
457 * call_usermodehelper_exec - start a usermode application
458 * @sub_info: information about the subprocessa
459 * @wait: wait for the application to finish and return status.
460 * when -1 don't wait at all, but you get no useful error back when
461 * the program couldn't be exec'ed. This makes it safe to call
462 * from interrupt context.
464 * Runs a user-space application. The application is started
465 * asynchronously if wait is not set, and runs as a child of keventd.
466 * (ie. it runs with full root capabilities).
468 int call_usermodehelper_exec(struct subprocess_info *sub_info,
469 enum umh_wait wait)
471 DECLARE_COMPLETION_ONSTACK(done);
472 int retval = 0;
474 BUG_ON(atomic_read(&sub_info->cred->usage) != 1);
475 validate_creds(sub_info->cred);
477 helper_lock();
478 if (sub_info->path[0] == '\0')
479 goto out;
481 if (!khelper_wq || usermodehelper_disabled) {
482 retval = -EBUSY;
483 goto out;
486 sub_info->complete = &done;
487 sub_info->wait = wait;
489 queue_work(khelper_wq, &sub_info->work);
490 if (wait == UMH_NO_WAIT) /* task has freed sub_info */
491 goto unlock;
492 wait_for_completion(&done);
493 retval = sub_info->retval;
495 out:
496 call_usermodehelper_freeinfo(sub_info);
497 unlock:
498 helper_unlock();
499 return retval;
501 EXPORT_SYMBOL(call_usermodehelper_exec);
504 * call_usermodehelper_pipe - call a usermode helper process with a pipe stdin
505 * @path: path to usermode executable
506 * @argv: arg vector for process
507 * @envp: environment for process
508 * @filp: set to the write-end of a pipe
510 * This is a simple wrapper which executes a usermode-helper function
511 * with a pipe as stdin. It is implemented entirely in terms of
512 * lower-level call_usermodehelper_* functions.
514 int call_usermodehelper_pipe(char *path, char **argv, char **envp,
515 struct file **filp)
517 struct subprocess_info *sub_info;
518 int ret;
520 sub_info = call_usermodehelper_setup(path, argv, envp, GFP_KERNEL);
521 if (sub_info == NULL)
522 return -ENOMEM;
524 ret = call_usermodehelper_stdinpipe(sub_info, filp);
525 if (ret < 0)
526 goto out;
528 return call_usermodehelper_exec(sub_info, UMH_WAIT_EXEC);
530 out:
531 call_usermodehelper_freeinfo(sub_info);
532 return ret;
534 EXPORT_SYMBOL(call_usermodehelper_pipe);
536 void __init usermodehelper_init(void)
538 khelper_wq = create_singlethread_workqueue("khelper");
539 BUG_ON(!khelper_wq);