block: export blk_{get,put}_queue()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / blk-core.c
blob3b3affd0885ba84d85527217a1a86bd5f3daa11e
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
34 #include "blk.h"
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
40 static int __make_request(struct request_queue *q, struct bio *bio);
43 * For the allocated request tables
45 static struct kmem_cache *request_cachep;
48 * For queue allocation
50 struct kmem_cache *blk_requestq_cachep;
53 * Controlling structure to kblockd
55 static struct workqueue_struct *kblockd_workqueue;
57 static void drive_stat_acct(struct request *rq, int new_io)
59 struct hd_struct *part;
60 int rw = rq_data_dir(rq);
61 int cpu;
63 if (!blk_do_io_stat(rq))
64 return;
66 cpu = part_stat_lock();
67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
69 if (!new_io)
70 part_stat_inc(cpu, part, merges[rw]);
71 else {
72 part_round_stats(cpu, part);
73 part_inc_in_flight(part, rw);
76 part_stat_unlock();
79 void blk_queue_congestion_threshold(struct request_queue *q)
81 int nr;
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
85 nr = q->nr_requests;
86 q->nr_congestion_on = nr;
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 if (nr < 1)
90 nr = 1;
91 q->nr_congestion_off = nr;
94 /**
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96 * @bdev: device
98 * Locates the passed device's request queue and returns the address of its
99 * backing_dev_info
101 * Will return NULL if the request queue cannot be located.
103 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
105 struct backing_dev_info *ret = NULL;
106 struct request_queue *q = bdev_get_queue(bdev);
108 if (q)
109 ret = &q->backing_dev_info;
110 return ret;
112 EXPORT_SYMBOL(blk_get_backing_dev_info);
114 void blk_rq_init(struct request_queue *q, struct request *rq)
116 memset(rq, 0, sizeof(*rq));
118 INIT_LIST_HEAD(&rq->queuelist);
119 INIT_LIST_HEAD(&rq->timeout_list);
120 rq->cpu = -1;
121 rq->q = q;
122 rq->__sector = (sector_t) -1;
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
125 rq->cmd = rq->__cmd;
126 rq->cmd_len = BLK_MAX_CDB;
127 rq->tag = -1;
128 rq->ref_count = 1;
129 rq->start_time = jiffies;
130 set_start_time_ns(rq);
132 EXPORT_SYMBOL(blk_rq_init);
134 static void req_bio_endio(struct request *rq, struct bio *bio,
135 unsigned int nbytes, int error)
137 struct request_queue *q = rq->q;
139 if (&q->bar_rq != rq) {
140 if (error)
141 clear_bit(BIO_UPTODATE, &bio->bi_flags);
142 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
143 error = -EIO;
145 if (unlikely(nbytes > bio->bi_size)) {
146 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
147 __func__, nbytes, bio->bi_size);
148 nbytes = bio->bi_size;
151 if (unlikely(rq->cmd_flags & REQ_QUIET))
152 set_bit(BIO_QUIET, &bio->bi_flags);
154 bio->bi_size -= nbytes;
155 bio->bi_sector += (nbytes >> 9);
157 if (bio_integrity(bio))
158 bio_integrity_advance(bio, nbytes);
160 if (bio->bi_size == 0)
161 bio_endio(bio, error);
162 } else {
165 * Okay, this is the barrier request in progress, just
166 * record the error;
168 if (error && !q->orderr)
169 q->orderr = error;
173 void blk_dump_rq_flags(struct request *rq, char *msg)
175 int bit;
177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 rq->cmd_flags);
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
187 if (blk_pc_request(rq)) {
188 printk(KERN_INFO " cdb: ");
189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
190 printk("%02x ", rq->cmd[bit]);
191 printk("\n");
194 EXPORT_SYMBOL(blk_dump_rq_flags);
197 * "plug" the device if there are no outstanding requests: this will
198 * force the transfer to start only after we have put all the requests
199 * on the list.
201 * This is called with interrupts off and no requests on the queue and
202 * with the queue lock held.
204 void blk_plug_device(struct request_queue *q)
206 WARN_ON(!irqs_disabled());
209 * don't plug a stopped queue, it must be paired with blk_start_queue()
210 * which will restart the queueing
212 if (blk_queue_stopped(q))
213 return;
215 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
216 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
217 trace_block_plug(q);
220 EXPORT_SYMBOL(blk_plug_device);
223 * blk_plug_device_unlocked - plug a device without queue lock held
224 * @q: The &struct request_queue to plug
226 * Description:
227 * Like @blk_plug_device(), but grabs the queue lock and disables
228 * interrupts.
230 void blk_plug_device_unlocked(struct request_queue *q)
232 unsigned long flags;
234 spin_lock_irqsave(q->queue_lock, flags);
235 blk_plug_device(q);
236 spin_unlock_irqrestore(q->queue_lock, flags);
238 EXPORT_SYMBOL(blk_plug_device_unlocked);
241 * remove the queue from the plugged list, if present. called with
242 * queue lock held and interrupts disabled.
244 int blk_remove_plug(struct request_queue *q)
246 WARN_ON(!irqs_disabled());
248 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
249 return 0;
251 del_timer(&q->unplug_timer);
252 return 1;
254 EXPORT_SYMBOL(blk_remove_plug);
257 * remove the plug and let it rip..
259 void __generic_unplug_device(struct request_queue *q)
261 if (unlikely(blk_queue_stopped(q)))
262 return;
263 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
264 return;
266 q->request_fn(q);
270 * generic_unplug_device - fire a request queue
271 * @q: The &struct request_queue in question
273 * Description:
274 * Linux uses plugging to build bigger requests queues before letting
275 * the device have at them. If a queue is plugged, the I/O scheduler
276 * is still adding and merging requests on the queue. Once the queue
277 * gets unplugged, the request_fn defined for the queue is invoked and
278 * transfers started.
280 void generic_unplug_device(struct request_queue *q)
282 if (blk_queue_plugged(q)) {
283 spin_lock_irq(q->queue_lock);
284 __generic_unplug_device(q);
285 spin_unlock_irq(q->queue_lock);
288 EXPORT_SYMBOL(generic_unplug_device);
290 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
291 struct page *page)
293 struct request_queue *q = bdi->unplug_io_data;
295 blk_unplug(q);
298 void blk_unplug_work(struct work_struct *work)
300 struct request_queue *q =
301 container_of(work, struct request_queue, unplug_work);
303 trace_block_unplug_io(q);
304 q->unplug_fn(q);
307 void blk_unplug_timeout(unsigned long data)
309 struct request_queue *q = (struct request_queue *)data;
311 trace_block_unplug_timer(q);
312 kblockd_schedule_work(q, &q->unplug_work);
314 EXPORT_SYMBOL(blk_put_queue);
316 void blk_unplug(struct request_queue *q)
319 * devices don't necessarily have an ->unplug_fn defined
321 if (q->unplug_fn) {
322 trace_block_unplug_io(q);
323 q->unplug_fn(q);
326 EXPORT_SYMBOL(blk_unplug);
329 * blk_start_queue - restart a previously stopped queue
330 * @q: The &struct request_queue in question
332 * Description:
333 * blk_start_queue() will clear the stop flag on the queue, and call
334 * the request_fn for the queue if it was in a stopped state when
335 * entered. Also see blk_stop_queue(). Queue lock must be held.
337 void blk_start_queue(struct request_queue *q)
339 WARN_ON(!irqs_disabled());
341 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
342 __blk_run_queue(q);
344 EXPORT_SYMBOL(blk_start_queue);
347 * blk_stop_queue - stop a queue
348 * @q: The &struct request_queue in question
350 * Description:
351 * The Linux block layer assumes that a block driver will consume all
352 * entries on the request queue when the request_fn strategy is called.
353 * Often this will not happen, because of hardware limitations (queue
354 * depth settings). If a device driver gets a 'queue full' response,
355 * or if it simply chooses not to queue more I/O at one point, it can
356 * call this function to prevent the request_fn from being called until
357 * the driver has signalled it's ready to go again. This happens by calling
358 * blk_start_queue() to restart queue operations. Queue lock must be held.
360 void blk_stop_queue(struct request_queue *q)
362 blk_remove_plug(q);
363 queue_flag_set(QUEUE_FLAG_STOPPED, q);
365 EXPORT_SYMBOL(blk_stop_queue);
368 * blk_sync_queue - cancel any pending callbacks on a queue
369 * @q: the queue
371 * Description:
372 * The block layer may perform asynchronous callback activity
373 * on a queue, such as calling the unplug function after a timeout.
374 * A block device may call blk_sync_queue to ensure that any
375 * such activity is cancelled, thus allowing it to release resources
376 * that the callbacks might use. The caller must already have made sure
377 * that its ->make_request_fn will not re-add plugging prior to calling
378 * this function.
381 void blk_sync_queue(struct request_queue *q)
383 del_timer_sync(&q->unplug_timer);
384 del_timer_sync(&q->timeout);
385 cancel_work_sync(&q->unplug_work);
387 EXPORT_SYMBOL(blk_sync_queue);
390 * __blk_run_queue - run a single device queue
391 * @q: The queue to run
393 * Description:
394 * See @blk_run_queue. This variant must be called with the queue lock
395 * held and interrupts disabled.
398 void __blk_run_queue(struct request_queue *q)
400 blk_remove_plug(q);
402 if (unlikely(blk_queue_stopped(q)))
403 return;
405 if (elv_queue_empty(q))
406 return;
409 * Only recurse once to avoid overrunning the stack, let the unplug
410 * handling reinvoke the handler shortly if we already got there.
412 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
413 q->request_fn(q);
414 queue_flag_clear(QUEUE_FLAG_REENTER, q);
415 } else {
416 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
417 kblockd_schedule_work(q, &q->unplug_work);
420 EXPORT_SYMBOL(__blk_run_queue);
423 * blk_run_queue - run a single device queue
424 * @q: The queue to run
426 * Description:
427 * Invoke request handling on this queue, if it has pending work to do.
428 * May be used to restart queueing when a request has completed.
430 void blk_run_queue(struct request_queue *q)
432 unsigned long flags;
434 spin_lock_irqsave(q->queue_lock, flags);
435 __blk_run_queue(q);
436 spin_unlock_irqrestore(q->queue_lock, flags);
438 EXPORT_SYMBOL(blk_run_queue);
440 void blk_put_queue(struct request_queue *q)
442 kobject_put(&q->kobj);
445 void blk_cleanup_queue(struct request_queue *q)
448 * We know we have process context here, so we can be a little
449 * cautious and ensure that pending block actions on this device
450 * are done before moving on. Going into this function, we should
451 * not have processes doing IO to this device.
453 blk_sync_queue(q);
455 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
456 mutex_lock(&q->sysfs_lock);
457 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
458 mutex_unlock(&q->sysfs_lock);
460 if (q->elevator)
461 elevator_exit(q->elevator);
463 blk_put_queue(q);
465 EXPORT_SYMBOL(blk_cleanup_queue);
467 static int blk_init_free_list(struct request_queue *q)
469 struct request_list *rl = &q->rq;
471 if (unlikely(rl->rq_pool))
472 return 0;
474 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
475 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
476 rl->elvpriv = 0;
477 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
478 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
480 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
481 mempool_free_slab, request_cachep, q->node);
483 if (!rl->rq_pool)
484 return -ENOMEM;
486 return 0;
489 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
491 return blk_alloc_queue_node(gfp_mask, -1);
493 EXPORT_SYMBOL(blk_alloc_queue);
495 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
497 struct request_queue *q;
498 int err;
500 q = kmem_cache_alloc_node(blk_requestq_cachep,
501 gfp_mask | __GFP_ZERO, node_id);
502 if (!q)
503 return NULL;
505 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
506 q->backing_dev_info.unplug_io_data = q;
507 q->backing_dev_info.ra_pages =
508 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
509 q->backing_dev_info.state = 0;
510 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
511 q->backing_dev_info.name = "block";
513 err = bdi_init(&q->backing_dev_info);
514 if (err) {
515 kmem_cache_free(blk_requestq_cachep, q);
516 return NULL;
519 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
520 laptop_mode_timer_fn, (unsigned long) q);
521 init_timer(&q->unplug_timer);
522 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
523 INIT_LIST_HEAD(&q->timeout_list);
524 INIT_WORK(&q->unplug_work, blk_unplug_work);
526 kobject_init(&q->kobj, &blk_queue_ktype);
528 mutex_init(&q->sysfs_lock);
529 spin_lock_init(&q->__queue_lock);
531 return q;
533 EXPORT_SYMBOL(blk_alloc_queue_node);
536 * blk_init_queue - prepare a request queue for use with a block device
537 * @rfn: The function to be called to process requests that have been
538 * placed on the queue.
539 * @lock: Request queue spin lock
541 * Description:
542 * If a block device wishes to use the standard request handling procedures,
543 * which sorts requests and coalesces adjacent requests, then it must
544 * call blk_init_queue(). The function @rfn will be called when there
545 * are requests on the queue that need to be processed. If the device
546 * supports plugging, then @rfn may not be called immediately when requests
547 * are available on the queue, but may be called at some time later instead.
548 * Plugged queues are generally unplugged when a buffer belonging to one
549 * of the requests on the queue is needed, or due to memory pressure.
551 * @rfn is not required, or even expected, to remove all requests off the
552 * queue, but only as many as it can handle at a time. If it does leave
553 * requests on the queue, it is responsible for arranging that the requests
554 * get dealt with eventually.
556 * The queue spin lock must be held while manipulating the requests on the
557 * request queue; this lock will be taken also from interrupt context, so irq
558 * disabling is needed for it.
560 * Function returns a pointer to the initialized request queue, or %NULL if
561 * it didn't succeed.
563 * Note:
564 * blk_init_queue() must be paired with a blk_cleanup_queue() call
565 * when the block device is deactivated (such as at module unload).
568 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
570 return blk_init_queue_node(rfn, lock, -1);
572 EXPORT_SYMBOL(blk_init_queue);
574 struct request_queue *
575 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
577 struct request_queue *uninit_q, *q;
579 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
580 if (!uninit_q)
581 return NULL;
583 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
584 if (!q)
585 blk_cleanup_queue(uninit_q);
587 return q;
589 EXPORT_SYMBOL(blk_init_queue_node);
591 struct request_queue *
592 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
593 spinlock_t *lock)
595 return blk_init_allocated_queue_node(q, rfn, lock, -1);
597 EXPORT_SYMBOL(blk_init_allocated_queue);
599 struct request_queue *
600 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
601 spinlock_t *lock, int node_id)
603 if (!q)
604 return NULL;
606 q->node = node_id;
607 if (blk_init_free_list(q))
608 return NULL;
610 q->request_fn = rfn;
611 q->prep_rq_fn = NULL;
612 q->unplug_fn = generic_unplug_device;
613 q->queue_flags = QUEUE_FLAG_DEFAULT;
614 q->queue_lock = lock;
617 * This also sets hw/phys segments, boundary and size
619 blk_queue_make_request(q, __make_request);
621 q->sg_reserved_size = INT_MAX;
624 * all done
626 if (!elevator_init(q, NULL)) {
627 blk_queue_congestion_threshold(q);
628 return q;
631 return NULL;
633 EXPORT_SYMBOL(blk_init_allocated_queue_node);
635 int blk_get_queue(struct request_queue *q)
637 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
638 kobject_get(&q->kobj);
639 return 0;
642 return 1;
644 EXPORT_SYMBOL(blk_get_queue);
646 static inline void blk_free_request(struct request_queue *q, struct request *rq)
648 if (rq->cmd_flags & REQ_ELVPRIV)
649 elv_put_request(q, rq);
650 mempool_free(rq, q->rq.rq_pool);
653 static struct request *
654 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
656 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
658 if (!rq)
659 return NULL;
661 blk_rq_init(q, rq);
663 rq->cmd_flags = flags | REQ_ALLOCED;
665 if (priv) {
666 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
667 mempool_free(rq, q->rq.rq_pool);
668 return NULL;
670 rq->cmd_flags |= REQ_ELVPRIV;
673 return rq;
677 * ioc_batching returns true if the ioc is a valid batching request and
678 * should be given priority access to a request.
680 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
682 if (!ioc)
683 return 0;
686 * Make sure the process is able to allocate at least 1 request
687 * even if the batch times out, otherwise we could theoretically
688 * lose wakeups.
690 return ioc->nr_batch_requests == q->nr_batching ||
691 (ioc->nr_batch_requests > 0
692 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
696 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
697 * will cause the process to be a "batcher" on all queues in the system. This
698 * is the behaviour we want though - once it gets a wakeup it should be given
699 * a nice run.
701 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
703 if (!ioc || ioc_batching(q, ioc))
704 return;
706 ioc->nr_batch_requests = q->nr_batching;
707 ioc->last_waited = jiffies;
710 static void __freed_request(struct request_queue *q, int sync)
712 struct request_list *rl = &q->rq;
714 if (rl->count[sync] < queue_congestion_off_threshold(q))
715 blk_clear_queue_congested(q, sync);
717 if (rl->count[sync] + 1 <= q->nr_requests) {
718 if (waitqueue_active(&rl->wait[sync]))
719 wake_up(&rl->wait[sync]);
721 blk_clear_queue_full(q, sync);
726 * A request has just been released. Account for it, update the full and
727 * congestion status, wake up any waiters. Called under q->queue_lock.
729 static void freed_request(struct request_queue *q, int sync, int priv)
731 struct request_list *rl = &q->rq;
733 rl->count[sync]--;
734 if (priv)
735 rl->elvpriv--;
737 __freed_request(q, sync);
739 if (unlikely(rl->starved[sync ^ 1]))
740 __freed_request(q, sync ^ 1);
744 * Get a free request, queue_lock must be held.
745 * Returns NULL on failure, with queue_lock held.
746 * Returns !NULL on success, with queue_lock *not held*.
748 static struct request *get_request(struct request_queue *q, int rw_flags,
749 struct bio *bio, gfp_t gfp_mask)
751 struct request *rq = NULL;
752 struct request_list *rl = &q->rq;
753 struct io_context *ioc = NULL;
754 const bool is_sync = rw_is_sync(rw_flags) != 0;
755 int may_queue, priv;
757 may_queue = elv_may_queue(q, rw_flags);
758 if (may_queue == ELV_MQUEUE_NO)
759 goto rq_starved;
761 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
762 if (rl->count[is_sync]+1 >= q->nr_requests) {
763 ioc = current_io_context(GFP_ATOMIC, q->node);
765 * The queue will fill after this allocation, so set
766 * it as full, and mark this process as "batching".
767 * This process will be allowed to complete a batch of
768 * requests, others will be blocked.
770 if (!blk_queue_full(q, is_sync)) {
771 ioc_set_batching(q, ioc);
772 blk_set_queue_full(q, is_sync);
773 } else {
774 if (may_queue != ELV_MQUEUE_MUST
775 && !ioc_batching(q, ioc)) {
777 * The queue is full and the allocating
778 * process is not a "batcher", and not
779 * exempted by the IO scheduler
781 goto out;
785 blk_set_queue_congested(q, is_sync);
789 * Only allow batching queuers to allocate up to 50% over the defined
790 * limit of requests, otherwise we could have thousands of requests
791 * allocated with any setting of ->nr_requests
793 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
794 goto out;
796 rl->count[is_sync]++;
797 rl->starved[is_sync] = 0;
799 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
800 if (priv)
801 rl->elvpriv++;
803 if (blk_queue_io_stat(q))
804 rw_flags |= REQ_IO_STAT;
805 spin_unlock_irq(q->queue_lock);
807 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
808 if (unlikely(!rq)) {
810 * Allocation failed presumably due to memory. Undo anything
811 * we might have messed up.
813 * Allocating task should really be put onto the front of the
814 * wait queue, but this is pretty rare.
816 spin_lock_irq(q->queue_lock);
817 freed_request(q, is_sync, priv);
820 * in the very unlikely event that allocation failed and no
821 * requests for this direction was pending, mark us starved
822 * so that freeing of a request in the other direction will
823 * notice us. another possible fix would be to split the
824 * rq mempool into READ and WRITE
826 rq_starved:
827 if (unlikely(rl->count[is_sync] == 0))
828 rl->starved[is_sync] = 1;
830 goto out;
834 * ioc may be NULL here, and ioc_batching will be false. That's
835 * OK, if the queue is under the request limit then requests need
836 * not count toward the nr_batch_requests limit. There will always
837 * be some limit enforced by BLK_BATCH_TIME.
839 if (ioc_batching(q, ioc))
840 ioc->nr_batch_requests--;
842 trace_block_getrq(q, bio, rw_flags & 1);
843 out:
844 return rq;
848 * No available requests for this queue, unplug the device and wait for some
849 * requests to become available.
851 * Called with q->queue_lock held, and returns with it unlocked.
853 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
854 struct bio *bio)
856 const bool is_sync = rw_is_sync(rw_flags) != 0;
857 struct request *rq;
859 rq = get_request(q, rw_flags, bio, GFP_NOIO);
860 while (!rq) {
861 DEFINE_WAIT(wait);
862 struct io_context *ioc;
863 struct request_list *rl = &q->rq;
865 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
866 TASK_UNINTERRUPTIBLE);
868 trace_block_sleeprq(q, bio, rw_flags & 1);
870 __generic_unplug_device(q);
871 spin_unlock_irq(q->queue_lock);
872 io_schedule();
875 * After sleeping, we become a "batching" process and
876 * will be able to allocate at least one request, and
877 * up to a big batch of them for a small period time.
878 * See ioc_batching, ioc_set_batching
880 ioc = current_io_context(GFP_NOIO, q->node);
881 ioc_set_batching(q, ioc);
883 spin_lock_irq(q->queue_lock);
884 finish_wait(&rl->wait[is_sync], &wait);
886 rq = get_request(q, rw_flags, bio, GFP_NOIO);
889 return rq;
892 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
894 struct request *rq;
896 BUG_ON(rw != READ && rw != WRITE);
898 spin_lock_irq(q->queue_lock);
899 if (gfp_mask & __GFP_WAIT) {
900 rq = get_request_wait(q, rw, NULL);
901 } else {
902 rq = get_request(q, rw, NULL, gfp_mask);
903 if (!rq)
904 spin_unlock_irq(q->queue_lock);
906 /* q->queue_lock is unlocked at this point */
908 return rq;
910 EXPORT_SYMBOL(blk_get_request);
913 * blk_make_request - given a bio, allocate a corresponding struct request.
914 * @q: target request queue
915 * @bio: The bio describing the memory mappings that will be submitted for IO.
916 * It may be a chained-bio properly constructed by block/bio layer.
917 * @gfp_mask: gfp flags to be used for memory allocation
919 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
920 * type commands. Where the struct request needs to be farther initialized by
921 * the caller. It is passed a &struct bio, which describes the memory info of
922 * the I/O transfer.
924 * The caller of blk_make_request must make sure that bi_io_vec
925 * are set to describe the memory buffers. That bio_data_dir() will return
926 * the needed direction of the request. (And all bio's in the passed bio-chain
927 * are properly set accordingly)
929 * If called under none-sleepable conditions, mapped bio buffers must not
930 * need bouncing, by calling the appropriate masked or flagged allocator,
931 * suitable for the target device. Otherwise the call to blk_queue_bounce will
932 * BUG.
934 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
935 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
936 * anything but the first bio in the chain. Otherwise you risk waiting for IO
937 * completion of a bio that hasn't been submitted yet, thus resulting in a
938 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
939 * of bio_alloc(), as that avoids the mempool deadlock.
940 * If possible a big IO should be split into smaller parts when allocation
941 * fails. Partial allocation should not be an error, or you risk a live-lock.
943 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
944 gfp_t gfp_mask)
946 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
948 if (unlikely(!rq))
949 return ERR_PTR(-ENOMEM);
951 for_each_bio(bio) {
952 struct bio *bounce_bio = bio;
953 int ret;
955 blk_queue_bounce(q, &bounce_bio);
956 ret = blk_rq_append_bio(q, rq, bounce_bio);
957 if (unlikely(ret)) {
958 blk_put_request(rq);
959 return ERR_PTR(ret);
963 return rq;
965 EXPORT_SYMBOL(blk_make_request);
968 * blk_requeue_request - put a request back on queue
969 * @q: request queue where request should be inserted
970 * @rq: request to be inserted
972 * Description:
973 * Drivers often keep queueing requests until the hardware cannot accept
974 * more, when that condition happens we need to put the request back
975 * on the queue. Must be called with queue lock held.
977 void blk_requeue_request(struct request_queue *q, struct request *rq)
979 blk_delete_timer(rq);
980 blk_clear_rq_complete(rq);
981 trace_block_rq_requeue(q, rq);
983 if (blk_rq_tagged(rq))
984 blk_queue_end_tag(q, rq);
986 BUG_ON(blk_queued_rq(rq));
988 elv_requeue_request(q, rq);
990 EXPORT_SYMBOL(blk_requeue_request);
993 * blk_insert_request - insert a special request into a request queue
994 * @q: request queue where request should be inserted
995 * @rq: request to be inserted
996 * @at_head: insert request at head or tail of queue
997 * @data: private data
999 * Description:
1000 * Many block devices need to execute commands asynchronously, so they don't
1001 * block the whole kernel from preemption during request execution. This is
1002 * accomplished normally by inserting aritficial requests tagged as
1003 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1004 * be scheduled for actual execution by the request queue.
1006 * We have the option of inserting the head or the tail of the queue.
1007 * Typically we use the tail for new ioctls and so forth. We use the head
1008 * of the queue for things like a QUEUE_FULL message from a device, or a
1009 * host that is unable to accept a particular command.
1011 void blk_insert_request(struct request_queue *q, struct request *rq,
1012 int at_head, void *data)
1014 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1015 unsigned long flags;
1018 * tell I/O scheduler that this isn't a regular read/write (ie it
1019 * must not attempt merges on this) and that it acts as a soft
1020 * barrier
1022 rq->cmd_type = REQ_TYPE_SPECIAL;
1024 rq->special = data;
1026 spin_lock_irqsave(q->queue_lock, flags);
1029 * If command is tagged, release the tag
1031 if (blk_rq_tagged(rq))
1032 blk_queue_end_tag(q, rq);
1034 drive_stat_acct(rq, 1);
1035 __elv_add_request(q, rq, where, 0);
1036 __blk_run_queue(q);
1037 spin_unlock_irqrestore(q->queue_lock, flags);
1039 EXPORT_SYMBOL(blk_insert_request);
1042 * add-request adds a request to the linked list.
1043 * queue lock is held and interrupts disabled, as we muck with the
1044 * request queue list.
1046 static inline void add_request(struct request_queue *q, struct request *req)
1048 drive_stat_acct(req, 1);
1051 * elevator indicated where it wants this request to be
1052 * inserted at elevator_merge time
1054 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1057 static void part_round_stats_single(int cpu, struct hd_struct *part,
1058 unsigned long now)
1060 if (now == part->stamp)
1061 return;
1063 if (part_in_flight(part)) {
1064 __part_stat_add(cpu, part, time_in_queue,
1065 part_in_flight(part) * (now - part->stamp));
1066 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1068 part->stamp = now;
1072 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1073 * @cpu: cpu number for stats access
1074 * @part: target partition
1076 * The average IO queue length and utilisation statistics are maintained
1077 * by observing the current state of the queue length and the amount of
1078 * time it has been in this state for.
1080 * Normally, that accounting is done on IO completion, but that can result
1081 * in more than a second's worth of IO being accounted for within any one
1082 * second, leading to >100% utilisation. To deal with that, we call this
1083 * function to do a round-off before returning the results when reading
1084 * /proc/diskstats. This accounts immediately for all queue usage up to
1085 * the current jiffies and restarts the counters again.
1087 void part_round_stats(int cpu, struct hd_struct *part)
1089 unsigned long now = jiffies;
1091 if (part->partno)
1092 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1093 part_round_stats_single(cpu, part, now);
1095 EXPORT_SYMBOL_GPL(part_round_stats);
1098 * queue lock must be held
1100 void __blk_put_request(struct request_queue *q, struct request *req)
1102 if (unlikely(!q))
1103 return;
1104 if (unlikely(--req->ref_count))
1105 return;
1107 elv_completed_request(q, req);
1109 /* this is a bio leak */
1110 WARN_ON(req->bio != NULL);
1113 * Request may not have originated from ll_rw_blk. if not,
1114 * it didn't come out of our reserved rq pools
1116 if (req->cmd_flags & REQ_ALLOCED) {
1117 int is_sync = rq_is_sync(req) != 0;
1118 int priv = req->cmd_flags & REQ_ELVPRIV;
1120 BUG_ON(!list_empty(&req->queuelist));
1121 BUG_ON(!hlist_unhashed(&req->hash));
1123 blk_free_request(q, req);
1124 freed_request(q, is_sync, priv);
1127 EXPORT_SYMBOL_GPL(__blk_put_request);
1129 void blk_put_request(struct request *req)
1131 unsigned long flags;
1132 struct request_queue *q = req->q;
1134 spin_lock_irqsave(q->queue_lock, flags);
1135 __blk_put_request(q, req);
1136 spin_unlock_irqrestore(q->queue_lock, flags);
1138 EXPORT_SYMBOL(blk_put_request);
1140 void init_request_from_bio(struct request *req, struct bio *bio)
1142 req->cpu = bio->bi_comp_cpu;
1143 req->cmd_type = REQ_TYPE_FS;
1146 * Inherit FAILFAST from bio (for read-ahead, and explicit
1147 * FAILFAST). FAILFAST flags are identical for req and bio.
1149 if (bio_rw_flagged(bio, BIO_RW_AHEAD))
1150 req->cmd_flags |= REQ_FAILFAST_MASK;
1151 else
1152 req->cmd_flags |= bio->bi_rw & REQ_FAILFAST_MASK;
1154 if (bio_rw_flagged(bio, BIO_RW_DISCARD))
1155 req->cmd_flags |= REQ_DISCARD;
1156 if (bio_rw_flagged(bio, BIO_RW_BARRIER))
1157 req->cmd_flags |= REQ_HARDBARRIER;
1158 if (bio_rw_flagged(bio, BIO_RW_SYNCIO))
1159 req->cmd_flags |= REQ_RW_SYNC;
1160 if (bio_rw_flagged(bio, BIO_RW_META))
1161 req->cmd_flags |= REQ_RW_META;
1162 if (bio_rw_flagged(bio, BIO_RW_NOIDLE))
1163 req->cmd_flags |= REQ_NOIDLE;
1165 req->errors = 0;
1166 req->__sector = bio->bi_sector;
1167 req->ioprio = bio_prio(bio);
1168 blk_rq_bio_prep(req->q, req, bio);
1172 * Only disabling plugging for non-rotational devices if it does tagging
1173 * as well, otherwise we do need the proper merging
1175 static inline bool queue_should_plug(struct request_queue *q)
1177 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1180 static int __make_request(struct request_queue *q, struct bio *bio)
1182 struct request *req;
1183 int el_ret;
1184 unsigned int bytes = bio->bi_size;
1185 const unsigned short prio = bio_prio(bio);
1186 const bool sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
1187 const bool unplug = bio_rw_flagged(bio, BIO_RW_UNPLUG);
1188 const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1189 int rw_flags;
1191 if (bio_rw_flagged(bio, BIO_RW_BARRIER) &&
1192 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1193 bio_endio(bio, -EOPNOTSUPP);
1194 return 0;
1197 * low level driver can indicate that it wants pages above a
1198 * certain limit bounced to low memory (ie for highmem, or even
1199 * ISA dma in theory)
1201 blk_queue_bounce(q, &bio);
1203 spin_lock_irq(q->queue_lock);
1205 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)) || elv_queue_empty(q))
1206 goto get_rq;
1208 el_ret = elv_merge(q, &req, bio);
1209 switch (el_ret) {
1210 case ELEVATOR_BACK_MERGE:
1211 BUG_ON(!rq_mergeable(req));
1213 if (!ll_back_merge_fn(q, req, bio))
1214 break;
1216 trace_block_bio_backmerge(q, bio);
1218 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1219 blk_rq_set_mixed_merge(req);
1221 req->biotail->bi_next = bio;
1222 req->biotail = bio;
1223 req->__data_len += bytes;
1224 req->ioprio = ioprio_best(req->ioprio, prio);
1225 if (!blk_rq_cpu_valid(req))
1226 req->cpu = bio->bi_comp_cpu;
1227 drive_stat_acct(req, 0);
1228 elv_bio_merged(q, req, bio);
1229 if (!attempt_back_merge(q, req))
1230 elv_merged_request(q, req, el_ret);
1231 goto out;
1233 case ELEVATOR_FRONT_MERGE:
1234 BUG_ON(!rq_mergeable(req));
1236 if (!ll_front_merge_fn(q, req, bio))
1237 break;
1239 trace_block_bio_frontmerge(q, bio);
1241 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1242 blk_rq_set_mixed_merge(req);
1243 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1244 req->cmd_flags |= ff;
1247 bio->bi_next = req->bio;
1248 req->bio = bio;
1251 * may not be valid. if the low level driver said
1252 * it didn't need a bounce buffer then it better
1253 * not touch req->buffer either...
1255 req->buffer = bio_data(bio);
1256 req->__sector = bio->bi_sector;
1257 req->__data_len += bytes;
1258 req->ioprio = ioprio_best(req->ioprio, prio);
1259 if (!blk_rq_cpu_valid(req))
1260 req->cpu = bio->bi_comp_cpu;
1261 drive_stat_acct(req, 0);
1262 elv_bio_merged(q, req, bio);
1263 if (!attempt_front_merge(q, req))
1264 elv_merged_request(q, req, el_ret);
1265 goto out;
1267 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1268 default:
1272 get_rq:
1274 * This sync check and mask will be re-done in init_request_from_bio(),
1275 * but we need to set it earlier to expose the sync flag to the
1276 * rq allocator and io schedulers.
1278 rw_flags = bio_data_dir(bio);
1279 if (sync)
1280 rw_flags |= REQ_RW_SYNC;
1283 * Grab a free request. This is might sleep but can not fail.
1284 * Returns with the queue unlocked.
1286 req = get_request_wait(q, rw_flags, bio);
1289 * After dropping the lock and possibly sleeping here, our request
1290 * may now be mergeable after it had proven unmergeable (above).
1291 * We don't worry about that case for efficiency. It won't happen
1292 * often, and the elevators are able to handle it.
1294 init_request_from_bio(req, bio);
1296 spin_lock_irq(q->queue_lock);
1297 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1298 bio_flagged(bio, BIO_CPU_AFFINE))
1299 req->cpu = blk_cpu_to_group(smp_processor_id());
1300 if (queue_should_plug(q) && elv_queue_empty(q))
1301 blk_plug_device(q);
1302 add_request(q, req);
1303 out:
1304 if (unplug || !queue_should_plug(q))
1305 __generic_unplug_device(q);
1306 spin_unlock_irq(q->queue_lock);
1307 return 0;
1311 * If bio->bi_dev is a partition, remap the location
1313 static inline void blk_partition_remap(struct bio *bio)
1315 struct block_device *bdev = bio->bi_bdev;
1317 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1318 struct hd_struct *p = bdev->bd_part;
1320 bio->bi_sector += p->start_sect;
1321 bio->bi_bdev = bdev->bd_contains;
1323 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1324 bdev->bd_dev,
1325 bio->bi_sector - p->start_sect);
1329 static void handle_bad_sector(struct bio *bio)
1331 char b[BDEVNAME_SIZE];
1333 printk(KERN_INFO "attempt to access beyond end of device\n");
1334 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1335 bdevname(bio->bi_bdev, b),
1336 bio->bi_rw,
1337 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1338 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1340 set_bit(BIO_EOF, &bio->bi_flags);
1343 #ifdef CONFIG_FAIL_MAKE_REQUEST
1345 static DECLARE_FAULT_ATTR(fail_make_request);
1347 static int __init setup_fail_make_request(char *str)
1349 return setup_fault_attr(&fail_make_request, str);
1351 __setup("fail_make_request=", setup_fail_make_request);
1353 static int should_fail_request(struct bio *bio)
1355 struct hd_struct *part = bio->bi_bdev->bd_part;
1357 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1358 return should_fail(&fail_make_request, bio->bi_size);
1360 return 0;
1363 static int __init fail_make_request_debugfs(void)
1365 return init_fault_attr_dentries(&fail_make_request,
1366 "fail_make_request");
1369 late_initcall(fail_make_request_debugfs);
1371 #else /* CONFIG_FAIL_MAKE_REQUEST */
1373 static inline int should_fail_request(struct bio *bio)
1375 return 0;
1378 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1381 * Check whether this bio extends beyond the end of the device.
1383 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1385 sector_t maxsector;
1387 if (!nr_sectors)
1388 return 0;
1390 /* Test device or partition size, when known. */
1391 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1392 if (maxsector) {
1393 sector_t sector = bio->bi_sector;
1395 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1397 * This may well happen - the kernel calls bread()
1398 * without checking the size of the device, e.g., when
1399 * mounting a device.
1401 handle_bad_sector(bio);
1402 return 1;
1406 return 0;
1410 * generic_make_request - hand a buffer to its device driver for I/O
1411 * @bio: The bio describing the location in memory and on the device.
1413 * generic_make_request() is used to make I/O requests of block
1414 * devices. It is passed a &struct bio, which describes the I/O that needs
1415 * to be done.
1417 * generic_make_request() does not return any status. The
1418 * success/failure status of the request, along with notification of
1419 * completion, is delivered asynchronously through the bio->bi_end_io
1420 * function described (one day) else where.
1422 * The caller of generic_make_request must make sure that bi_io_vec
1423 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1424 * set to describe the device address, and the
1425 * bi_end_io and optionally bi_private are set to describe how
1426 * completion notification should be signaled.
1428 * generic_make_request and the drivers it calls may use bi_next if this
1429 * bio happens to be merged with someone else, and may change bi_dev and
1430 * bi_sector for remaps as it sees fit. So the values of these fields
1431 * should NOT be depended on after the call to generic_make_request.
1433 static inline void __generic_make_request(struct bio *bio)
1435 struct request_queue *q;
1436 sector_t old_sector;
1437 int ret, nr_sectors = bio_sectors(bio);
1438 dev_t old_dev;
1439 int err = -EIO;
1441 might_sleep();
1443 if (bio_check_eod(bio, nr_sectors))
1444 goto end_io;
1447 * Resolve the mapping until finished. (drivers are
1448 * still free to implement/resolve their own stacking
1449 * by explicitly returning 0)
1451 * NOTE: we don't repeat the blk_size check for each new device.
1452 * Stacking drivers are expected to know what they are doing.
1454 old_sector = -1;
1455 old_dev = 0;
1456 do {
1457 char b[BDEVNAME_SIZE];
1459 q = bdev_get_queue(bio->bi_bdev);
1460 if (unlikely(!q)) {
1461 printk(KERN_ERR
1462 "generic_make_request: Trying to access "
1463 "nonexistent block-device %s (%Lu)\n",
1464 bdevname(bio->bi_bdev, b),
1465 (long long) bio->bi_sector);
1466 goto end_io;
1469 if (unlikely(!bio_rw_flagged(bio, BIO_RW_DISCARD) &&
1470 nr_sectors > queue_max_hw_sectors(q))) {
1471 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1472 bdevname(bio->bi_bdev, b),
1473 bio_sectors(bio),
1474 queue_max_hw_sectors(q));
1475 goto end_io;
1478 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1479 goto end_io;
1481 if (should_fail_request(bio))
1482 goto end_io;
1485 * If this device has partitions, remap block n
1486 * of partition p to block n+start(p) of the disk.
1488 blk_partition_remap(bio);
1490 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1491 goto end_io;
1493 if (old_sector != -1)
1494 trace_block_remap(q, bio, old_dev, old_sector);
1496 old_sector = bio->bi_sector;
1497 old_dev = bio->bi_bdev->bd_dev;
1499 if (bio_check_eod(bio, nr_sectors))
1500 goto end_io;
1502 if (bio_rw_flagged(bio, BIO_RW_DISCARD) &&
1503 !blk_queue_discard(q)) {
1504 err = -EOPNOTSUPP;
1505 goto end_io;
1508 trace_block_bio_queue(q, bio);
1510 ret = q->make_request_fn(q, bio);
1511 } while (ret);
1513 return;
1515 end_io:
1516 bio_endio(bio, err);
1520 * We only want one ->make_request_fn to be active at a time,
1521 * else stack usage with stacked devices could be a problem.
1522 * So use current->bio_list to keep a list of requests
1523 * submited by a make_request_fn function.
1524 * current->bio_list is also used as a flag to say if
1525 * generic_make_request is currently active in this task or not.
1526 * If it is NULL, then no make_request is active. If it is non-NULL,
1527 * then a make_request is active, and new requests should be added
1528 * at the tail
1530 void generic_make_request(struct bio *bio)
1532 struct bio_list bio_list_on_stack;
1534 if (current->bio_list) {
1535 /* make_request is active */
1536 bio_list_add(current->bio_list, bio);
1537 return;
1539 /* following loop may be a bit non-obvious, and so deserves some
1540 * explanation.
1541 * Before entering the loop, bio->bi_next is NULL (as all callers
1542 * ensure that) so we have a list with a single bio.
1543 * We pretend that we have just taken it off a longer list, so
1544 * we assign bio_list to a pointer to the bio_list_on_stack,
1545 * thus initialising the bio_list of new bios to be
1546 * added. __generic_make_request may indeed add some more bios
1547 * through a recursive call to generic_make_request. If it
1548 * did, we find a non-NULL value in bio_list and re-enter the loop
1549 * from the top. In this case we really did just take the bio
1550 * of the top of the list (no pretending) and so remove it from
1551 * bio_list, and call into __generic_make_request again.
1553 * The loop was structured like this to make only one call to
1554 * __generic_make_request (which is important as it is large and
1555 * inlined) and to keep the structure simple.
1557 BUG_ON(bio->bi_next);
1558 bio_list_init(&bio_list_on_stack);
1559 current->bio_list = &bio_list_on_stack;
1560 do {
1561 __generic_make_request(bio);
1562 bio = bio_list_pop(current->bio_list);
1563 } while (bio);
1564 current->bio_list = NULL; /* deactivate */
1566 EXPORT_SYMBOL(generic_make_request);
1569 * submit_bio - submit a bio to the block device layer for I/O
1570 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1571 * @bio: The &struct bio which describes the I/O
1573 * submit_bio() is very similar in purpose to generic_make_request(), and
1574 * uses that function to do most of the work. Both are fairly rough
1575 * interfaces; @bio must be presetup and ready for I/O.
1578 void submit_bio(int rw, struct bio *bio)
1580 int count = bio_sectors(bio);
1582 bio->bi_rw |= rw;
1585 * If it's a regular read/write or a barrier with data attached,
1586 * go through the normal accounting stuff before submission.
1588 if (bio_has_data(bio) && !(rw & (1 << BIO_RW_DISCARD))) {
1589 if (rw & WRITE) {
1590 count_vm_events(PGPGOUT, count);
1591 } else {
1592 task_io_account_read(bio->bi_size);
1593 count_vm_events(PGPGIN, count);
1596 if (unlikely(block_dump)) {
1597 char b[BDEVNAME_SIZE];
1598 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1599 current->comm, task_pid_nr(current),
1600 (rw & WRITE) ? "WRITE" : "READ",
1601 (unsigned long long)bio->bi_sector,
1602 bdevname(bio->bi_bdev, b));
1606 generic_make_request(bio);
1608 EXPORT_SYMBOL(submit_bio);
1611 * blk_rq_check_limits - Helper function to check a request for the queue limit
1612 * @q: the queue
1613 * @rq: the request being checked
1615 * Description:
1616 * @rq may have been made based on weaker limitations of upper-level queues
1617 * in request stacking drivers, and it may violate the limitation of @q.
1618 * Since the block layer and the underlying device driver trust @rq
1619 * after it is inserted to @q, it should be checked against @q before
1620 * the insertion using this generic function.
1622 * This function should also be useful for request stacking drivers
1623 * in some cases below, so export this fuction.
1624 * Request stacking drivers like request-based dm may change the queue
1625 * limits while requests are in the queue (e.g. dm's table swapping).
1626 * Such request stacking drivers should check those requests agaist
1627 * the new queue limits again when they dispatch those requests,
1628 * although such checkings are also done against the old queue limits
1629 * when submitting requests.
1631 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1633 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1634 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1635 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1636 return -EIO;
1640 * queue's settings related to segment counting like q->bounce_pfn
1641 * may differ from that of other stacking queues.
1642 * Recalculate it to check the request correctly on this queue's
1643 * limitation.
1645 blk_recalc_rq_segments(rq);
1646 if (rq->nr_phys_segments > queue_max_segments(q)) {
1647 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1648 return -EIO;
1651 return 0;
1653 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1656 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1657 * @q: the queue to submit the request
1658 * @rq: the request being queued
1660 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1662 unsigned long flags;
1664 if (blk_rq_check_limits(q, rq))
1665 return -EIO;
1667 #ifdef CONFIG_FAIL_MAKE_REQUEST
1668 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1669 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1670 return -EIO;
1671 #endif
1673 spin_lock_irqsave(q->queue_lock, flags);
1676 * Submitting request must be dequeued before calling this function
1677 * because it will be linked to another request_queue
1679 BUG_ON(blk_queued_rq(rq));
1681 drive_stat_acct(rq, 1);
1682 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1684 spin_unlock_irqrestore(q->queue_lock, flags);
1686 return 0;
1688 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1691 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1692 * @rq: request to examine
1694 * Description:
1695 * A request could be merge of IOs which require different failure
1696 * handling. This function determines the number of bytes which
1697 * can be failed from the beginning of the request without
1698 * crossing into area which need to be retried further.
1700 * Return:
1701 * The number of bytes to fail.
1703 * Context:
1704 * queue_lock must be held.
1706 unsigned int blk_rq_err_bytes(const struct request *rq)
1708 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1709 unsigned int bytes = 0;
1710 struct bio *bio;
1712 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1713 return blk_rq_bytes(rq);
1716 * Currently the only 'mixing' which can happen is between
1717 * different fastfail types. We can safely fail portions
1718 * which have all the failfast bits that the first one has -
1719 * the ones which are at least as eager to fail as the first
1720 * one.
1722 for (bio = rq->bio; bio; bio = bio->bi_next) {
1723 if ((bio->bi_rw & ff) != ff)
1724 break;
1725 bytes += bio->bi_size;
1728 /* this could lead to infinite loop */
1729 BUG_ON(blk_rq_bytes(rq) && !bytes);
1730 return bytes;
1732 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1734 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1736 if (blk_do_io_stat(req)) {
1737 const int rw = rq_data_dir(req);
1738 struct hd_struct *part;
1739 int cpu;
1741 cpu = part_stat_lock();
1742 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1743 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1744 part_stat_unlock();
1748 static void blk_account_io_done(struct request *req)
1751 * Account IO completion. bar_rq isn't accounted as a normal
1752 * IO on queueing nor completion. Accounting the containing
1753 * request is enough.
1755 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
1756 unsigned long duration = jiffies - req->start_time;
1757 const int rw = rq_data_dir(req);
1758 struct hd_struct *part;
1759 int cpu;
1761 cpu = part_stat_lock();
1762 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1764 part_stat_inc(cpu, part, ios[rw]);
1765 part_stat_add(cpu, part, ticks[rw], duration);
1766 part_round_stats(cpu, part);
1767 part_dec_in_flight(part, rw);
1769 part_stat_unlock();
1774 * blk_peek_request - peek at the top of a request queue
1775 * @q: request queue to peek at
1777 * Description:
1778 * Return the request at the top of @q. The returned request
1779 * should be started using blk_start_request() before LLD starts
1780 * processing it.
1782 * Return:
1783 * Pointer to the request at the top of @q if available. Null
1784 * otherwise.
1786 * Context:
1787 * queue_lock must be held.
1789 struct request *blk_peek_request(struct request_queue *q)
1791 struct request *rq;
1792 int ret;
1794 while ((rq = __elv_next_request(q)) != NULL) {
1795 if (!(rq->cmd_flags & REQ_STARTED)) {
1797 * This is the first time the device driver
1798 * sees this request (possibly after
1799 * requeueing). Notify IO scheduler.
1801 if (blk_sorted_rq(rq))
1802 elv_activate_rq(q, rq);
1805 * just mark as started even if we don't start
1806 * it, a request that has been delayed should
1807 * not be passed by new incoming requests
1809 rq->cmd_flags |= REQ_STARTED;
1810 trace_block_rq_issue(q, rq);
1813 if (!q->boundary_rq || q->boundary_rq == rq) {
1814 q->end_sector = rq_end_sector(rq);
1815 q->boundary_rq = NULL;
1818 if (rq->cmd_flags & REQ_DONTPREP)
1819 break;
1821 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1823 * make sure space for the drain appears we
1824 * know we can do this because max_hw_segments
1825 * has been adjusted to be one fewer than the
1826 * device can handle
1828 rq->nr_phys_segments++;
1831 if (!q->prep_rq_fn)
1832 break;
1834 ret = q->prep_rq_fn(q, rq);
1835 if (ret == BLKPREP_OK) {
1836 break;
1837 } else if (ret == BLKPREP_DEFER) {
1839 * the request may have been (partially) prepped.
1840 * we need to keep this request in the front to
1841 * avoid resource deadlock. REQ_STARTED will
1842 * prevent other fs requests from passing this one.
1844 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1845 !(rq->cmd_flags & REQ_DONTPREP)) {
1847 * remove the space for the drain we added
1848 * so that we don't add it again
1850 --rq->nr_phys_segments;
1853 rq = NULL;
1854 break;
1855 } else if (ret == BLKPREP_KILL) {
1856 rq->cmd_flags |= REQ_QUIET;
1858 * Mark this request as started so we don't trigger
1859 * any debug logic in the end I/O path.
1861 blk_start_request(rq);
1862 __blk_end_request_all(rq, -EIO);
1863 } else {
1864 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1865 break;
1869 return rq;
1871 EXPORT_SYMBOL(blk_peek_request);
1873 void blk_dequeue_request(struct request *rq)
1875 struct request_queue *q = rq->q;
1877 BUG_ON(list_empty(&rq->queuelist));
1878 BUG_ON(ELV_ON_HASH(rq));
1880 list_del_init(&rq->queuelist);
1883 * the time frame between a request being removed from the lists
1884 * and to it is freed is accounted as io that is in progress at
1885 * the driver side.
1887 if (blk_account_rq(rq)) {
1888 q->in_flight[rq_is_sync(rq)]++;
1889 set_io_start_time_ns(rq);
1894 * blk_start_request - start request processing on the driver
1895 * @req: request to dequeue
1897 * Description:
1898 * Dequeue @req and start timeout timer on it. This hands off the
1899 * request to the driver.
1901 * Block internal functions which don't want to start timer should
1902 * call blk_dequeue_request().
1904 * Context:
1905 * queue_lock must be held.
1907 void blk_start_request(struct request *req)
1909 blk_dequeue_request(req);
1912 * We are now handing the request to the hardware, initialize
1913 * resid_len to full count and add the timeout handler.
1915 req->resid_len = blk_rq_bytes(req);
1916 if (unlikely(blk_bidi_rq(req)))
1917 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1919 blk_add_timer(req);
1921 EXPORT_SYMBOL(blk_start_request);
1924 * blk_fetch_request - fetch a request from a request queue
1925 * @q: request queue to fetch a request from
1927 * Description:
1928 * Return the request at the top of @q. The request is started on
1929 * return and LLD can start processing it immediately.
1931 * Return:
1932 * Pointer to the request at the top of @q if available. Null
1933 * otherwise.
1935 * Context:
1936 * queue_lock must be held.
1938 struct request *blk_fetch_request(struct request_queue *q)
1940 struct request *rq;
1942 rq = blk_peek_request(q);
1943 if (rq)
1944 blk_start_request(rq);
1945 return rq;
1947 EXPORT_SYMBOL(blk_fetch_request);
1950 * blk_update_request - Special helper function for request stacking drivers
1951 * @req: the request being processed
1952 * @error: %0 for success, < %0 for error
1953 * @nr_bytes: number of bytes to complete @req
1955 * Description:
1956 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1957 * the request structure even if @req doesn't have leftover.
1958 * If @req has leftover, sets it up for the next range of segments.
1960 * This special helper function is only for request stacking drivers
1961 * (e.g. request-based dm) so that they can handle partial completion.
1962 * Actual device drivers should use blk_end_request instead.
1964 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1965 * %false return from this function.
1967 * Return:
1968 * %false - this request doesn't have any more data
1969 * %true - this request has more data
1971 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1973 int total_bytes, bio_nbytes, next_idx = 0;
1974 struct bio *bio;
1976 if (!req->bio)
1977 return false;
1979 trace_block_rq_complete(req->q, req);
1982 * For fs requests, rq is just carrier of independent bio's
1983 * and each partial completion should be handled separately.
1984 * Reset per-request error on each partial completion.
1986 * TODO: tj: This is too subtle. It would be better to let
1987 * low level drivers do what they see fit.
1989 if (blk_fs_request(req))
1990 req->errors = 0;
1992 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1993 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1994 req->rq_disk ? req->rq_disk->disk_name : "?",
1995 (unsigned long long)blk_rq_pos(req));
1998 blk_account_io_completion(req, nr_bytes);
2000 total_bytes = bio_nbytes = 0;
2001 while ((bio = req->bio) != NULL) {
2002 int nbytes;
2004 if (nr_bytes >= bio->bi_size) {
2005 req->bio = bio->bi_next;
2006 nbytes = bio->bi_size;
2007 req_bio_endio(req, bio, nbytes, error);
2008 next_idx = 0;
2009 bio_nbytes = 0;
2010 } else {
2011 int idx = bio->bi_idx + next_idx;
2013 if (unlikely(idx >= bio->bi_vcnt)) {
2014 blk_dump_rq_flags(req, "__end_that");
2015 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2016 __func__, idx, bio->bi_vcnt);
2017 break;
2020 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2021 BIO_BUG_ON(nbytes > bio->bi_size);
2024 * not a complete bvec done
2026 if (unlikely(nbytes > nr_bytes)) {
2027 bio_nbytes += nr_bytes;
2028 total_bytes += nr_bytes;
2029 break;
2033 * advance to the next vector
2035 next_idx++;
2036 bio_nbytes += nbytes;
2039 total_bytes += nbytes;
2040 nr_bytes -= nbytes;
2042 bio = req->bio;
2043 if (bio) {
2045 * end more in this run, or just return 'not-done'
2047 if (unlikely(nr_bytes <= 0))
2048 break;
2053 * completely done
2055 if (!req->bio) {
2057 * Reset counters so that the request stacking driver
2058 * can find how many bytes remain in the request
2059 * later.
2061 req->__data_len = 0;
2062 return false;
2066 * if the request wasn't completed, update state
2068 if (bio_nbytes) {
2069 req_bio_endio(req, bio, bio_nbytes, error);
2070 bio->bi_idx += next_idx;
2071 bio_iovec(bio)->bv_offset += nr_bytes;
2072 bio_iovec(bio)->bv_len -= nr_bytes;
2075 req->__data_len -= total_bytes;
2076 req->buffer = bio_data(req->bio);
2078 /* update sector only for requests with clear definition of sector */
2079 if (blk_fs_request(req) || blk_discard_rq(req))
2080 req->__sector += total_bytes >> 9;
2082 /* mixed attributes always follow the first bio */
2083 if (req->cmd_flags & REQ_MIXED_MERGE) {
2084 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2085 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2089 * If total number of sectors is less than the first segment
2090 * size, something has gone terribly wrong.
2092 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2093 printk(KERN_ERR "blk: request botched\n");
2094 req->__data_len = blk_rq_cur_bytes(req);
2097 /* recalculate the number of segments */
2098 blk_recalc_rq_segments(req);
2100 return true;
2102 EXPORT_SYMBOL_GPL(blk_update_request);
2104 static bool blk_update_bidi_request(struct request *rq, int error,
2105 unsigned int nr_bytes,
2106 unsigned int bidi_bytes)
2108 if (blk_update_request(rq, error, nr_bytes))
2109 return true;
2111 /* Bidi request must be completed as a whole */
2112 if (unlikely(blk_bidi_rq(rq)) &&
2113 blk_update_request(rq->next_rq, error, bidi_bytes))
2114 return true;
2116 add_disk_randomness(rq->rq_disk);
2118 return false;
2122 * queue lock must be held
2124 static void blk_finish_request(struct request *req, int error)
2126 if (blk_rq_tagged(req))
2127 blk_queue_end_tag(req->q, req);
2129 BUG_ON(blk_queued_rq(req));
2131 if (unlikely(laptop_mode) && blk_fs_request(req))
2132 laptop_io_completion(&req->q->backing_dev_info);
2134 blk_delete_timer(req);
2136 blk_account_io_done(req);
2138 if (req->end_io)
2139 req->end_io(req, error);
2140 else {
2141 if (blk_bidi_rq(req))
2142 __blk_put_request(req->next_rq->q, req->next_rq);
2144 __blk_put_request(req->q, req);
2149 * blk_end_bidi_request - Complete a bidi request
2150 * @rq: the request to complete
2151 * @error: %0 for success, < %0 for error
2152 * @nr_bytes: number of bytes to complete @rq
2153 * @bidi_bytes: number of bytes to complete @rq->next_rq
2155 * Description:
2156 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2157 * Drivers that supports bidi can safely call this member for any
2158 * type of request, bidi or uni. In the later case @bidi_bytes is
2159 * just ignored.
2161 * Return:
2162 * %false - we are done with this request
2163 * %true - still buffers pending for this request
2165 static bool blk_end_bidi_request(struct request *rq, int error,
2166 unsigned int nr_bytes, unsigned int bidi_bytes)
2168 struct request_queue *q = rq->q;
2169 unsigned long flags;
2171 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2172 return true;
2174 spin_lock_irqsave(q->queue_lock, flags);
2175 blk_finish_request(rq, error);
2176 spin_unlock_irqrestore(q->queue_lock, flags);
2178 return false;
2182 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2183 * @rq: the request to complete
2184 * @error: %0 for success, < %0 for error
2185 * @nr_bytes: number of bytes to complete @rq
2186 * @bidi_bytes: number of bytes to complete @rq->next_rq
2188 * Description:
2189 * Identical to blk_end_bidi_request() except that queue lock is
2190 * assumed to be locked on entry and remains so on return.
2192 * Return:
2193 * %false - we are done with this request
2194 * %true - still buffers pending for this request
2196 static bool __blk_end_bidi_request(struct request *rq, int error,
2197 unsigned int nr_bytes, unsigned int bidi_bytes)
2199 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2200 return true;
2202 blk_finish_request(rq, error);
2204 return false;
2208 * blk_end_request - Helper function for drivers to complete the request.
2209 * @rq: the request being processed
2210 * @error: %0 for success, < %0 for error
2211 * @nr_bytes: number of bytes to complete
2213 * Description:
2214 * Ends I/O on a number of bytes attached to @rq.
2215 * If @rq has leftover, sets it up for the next range of segments.
2217 * Return:
2218 * %false - we are done with this request
2219 * %true - still buffers pending for this request
2221 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2223 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2225 EXPORT_SYMBOL(blk_end_request);
2228 * blk_end_request_all - Helper function for drives to finish the request.
2229 * @rq: the request to finish
2230 * @error: %0 for success, < %0 for error
2232 * Description:
2233 * Completely finish @rq.
2235 void blk_end_request_all(struct request *rq, int error)
2237 bool pending;
2238 unsigned int bidi_bytes = 0;
2240 if (unlikely(blk_bidi_rq(rq)))
2241 bidi_bytes = blk_rq_bytes(rq->next_rq);
2243 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2244 BUG_ON(pending);
2246 EXPORT_SYMBOL(blk_end_request_all);
2249 * blk_end_request_cur - Helper function to finish the current request chunk.
2250 * @rq: the request to finish the current chunk for
2251 * @error: %0 for success, < %0 for error
2253 * Description:
2254 * Complete the current consecutively mapped chunk from @rq.
2256 * Return:
2257 * %false - we are done with this request
2258 * %true - still buffers pending for this request
2260 bool blk_end_request_cur(struct request *rq, int error)
2262 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2264 EXPORT_SYMBOL(blk_end_request_cur);
2267 * blk_end_request_err - Finish a request till the next failure boundary.
2268 * @rq: the request to finish till the next failure boundary for
2269 * @error: must be negative errno
2271 * Description:
2272 * Complete @rq till the next failure boundary.
2274 * Return:
2275 * %false - we are done with this request
2276 * %true - still buffers pending for this request
2278 bool blk_end_request_err(struct request *rq, int error)
2280 WARN_ON(error >= 0);
2281 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2283 EXPORT_SYMBOL_GPL(blk_end_request_err);
2286 * __blk_end_request - Helper function for drivers to complete the request.
2287 * @rq: the request being processed
2288 * @error: %0 for success, < %0 for error
2289 * @nr_bytes: number of bytes to complete
2291 * Description:
2292 * Must be called with queue lock held unlike blk_end_request().
2294 * Return:
2295 * %false - we are done with this request
2296 * %true - still buffers pending for this request
2298 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2300 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2302 EXPORT_SYMBOL(__blk_end_request);
2305 * __blk_end_request_all - Helper function for drives to finish the request.
2306 * @rq: the request to finish
2307 * @error: %0 for success, < %0 for error
2309 * Description:
2310 * Completely finish @rq. Must be called with queue lock held.
2312 void __blk_end_request_all(struct request *rq, int error)
2314 bool pending;
2315 unsigned int bidi_bytes = 0;
2317 if (unlikely(blk_bidi_rq(rq)))
2318 bidi_bytes = blk_rq_bytes(rq->next_rq);
2320 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2321 BUG_ON(pending);
2323 EXPORT_SYMBOL(__blk_end_request_all);
2326 * __blk_end_request_cur - Helper function to finish the current request chunk.
2327 * @rq: the request to finish the current chunk for
2328 * @error: %0 for success, < %0 for error
2330 * Description:
2331 * Complete the current consecutively mapped chunk from @rq. Must
2332 * be called with queue lock held.
2334 * Return:
2335 * %false - we are done with this request
2336 * %true - still buffers pending for this request
2338 bool __blk_end_request_cur(struct request *rq, int error)
2340 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2342 EXPORT_SYMBOL(__blk_end_request_cur);
2345 * __blk_end_request_err - Finish a request till the next failure boundary.
2346 * @rq: the request to finish till the next failure boundary for
2347 * @error: must be negative errno
2349 * Description:
2350 * Complete @rq till the next failure boundary. Must be called
2351 * with queue lock held.
2353 * Return:
2354 * %false - we are done with this request
2355 * %true - still buffers pending for this request
2357 bool __blk_end_request_err(struct request *rq, int error)
2359 WARN_ON(error >= 0);
2360 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2362 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2364 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2365 struct bio *bio)
2367 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2368 rq->cmd_flags |= bio->bi_rw & REQ_RW;
2370 if (bio_has_data(bio)) {
2371 rq->nr_phys_segments = bio_phys_segments(q, bio);
2372 rq->buffer = bio_data(bio);
2374 rq->__data_len = bio->bi_size;
2375 rq->bio = rq->biotail = bio;
2377 if (bio->bi_bdev)
2378 rq->rq_disk = bio->bi_bdev->bd_disk;
2381 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2383 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2384 * @rq: the request to be flushed
2386 * Description:
2387 * Flush all pages in @rq.
2389 void rq_flush_dcache_pages(struct request *rq)
2391 struct req_iterator iter;
2392 struct bio_vec *bvec;
2394 rq_for_each_segment(bvec, rq, iter)
2395 flush_dcache_page(bvec->bv_page);
2397 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2398 #endif
2401 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2402 * @q : the queue of the device being checked
2404 * Description:
2405 * Check if underlying low-level drivers of a device are busy.
2406 * If the drivers want to export their busy state, they must set own
2407 * exporting function using blk_queue_lld_busy() first.
2409 * Basically, this function is used only by request stacking drivers
2410 * to stop dispatching requests to underlying devices when underlying
2411 * devices are busy. This behavior helps more I/O merging on the queue
2412 * of the request stacking driver and prevents I/O throughput regression
2413 * on burst I/O load.
2415 * Return:
2416 * 0 - Not busy (The request stacking driver should dispatch request)
2417 * 1 - Busy (The request stacking driver should stop dispatching request)
2419 int blk_lld_busy(struct request_queue *q)
2421 if (q->lld_busy_fn)
2422 return q->lld_busy_fn(q);
2424 return 0;
2426 EXPORT_SYMBOL_GPL(blk_lld_busy);
2429 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2430 * @rq: the clone request to be cleaned up
2432 * Description:
2433 * Free all bios in @rq for a cloned request.
2435 void blk_rq_unprep_clone(struct request *rq)
2437 struct bio *bio;
2439 while ((bio = rq->bio) != NULL) {
2440 rq->bio = bio->bi_next;
2442 bio_put(bio);
2445 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2448 * Copy attributes of the original request to the clone request.
2449 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2451 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2453 dst->cpu = src->cpu;
2454 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2455 dst->cmd_type = src->cmd_type;
2456 dst->__sector = blk_rq_pos(src);
2457 dst->__data_len = blk_rq_bytes(src);
2458 dst->nr_phys_segments = src->nr_phys_segments;
2459 dst->ioprio = src->ioprio;
2460 dst->extra_len = src->extra_len;
2464 * blk_rq_prep_clone - Helper function to setup clone request
2465 * @rq: the request to be setup
2466 * @rq_src: original request to be cloned
2467 * @bs: bio_set that bios for clone are allocated from
2468 * @gfp_mask: memory allocation mask for bio
2469 * @bio_ctr: setup function to be called for each clone bio.
2470 * Returns %0 for success, non %0 for failure.
2471 * @data: private data to be passed to @bio_ctr
2473 * Description:
2474 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2475 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2476 * are not copied, and copying such parts is the caller's responsibility.
2477 * Also, pages which the original bios are pointing to are not copied
2478 * and the cloned bios just point same pages.
2479 * So cloned bios must be completed before original bios, which means
2480 * the caller must complete @rq before @rq_src.
2482 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2483 struct bio_set *bs, gfp_t gfp_mask,
2484 int (*bio_ctr)(struct bio *, struct bio *, void *),
2485 void *data)
2487 struct bio *bio, *bio_src;
2489 if (!bs)
2490 bs = fs_bio_set;
2492 blk_rq_init(NULL, rq);
2494 __rq_for_each_bio(bio_src, rq_src) {
2495 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2496 if (!bio)
2497 goto free_and_out;
2499 __bio_clone(bio, bio_src);
2501 if (bio_integrity(bio_src) &&
2502 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2503 goto free_and_out;
2505 if (bio_ctr && bio_ctr(bio, bio_src, data))
2506 goto free_and_out;
2508 if (rq->bio) {
2509 rq->biotail->bi_next = bio;
2510 rq->biotail = bio;
2511 } else
2512 rq->bio = rq->biotail = bio;
2515 __blk_rq_prep_clone(rq, rq_src);
2517 return 0;
2519 free_and_out:
2520 if (bio)
2521 bio_free(bio, bs);
2522 blk_rq_unprep_clone(rq);
2524 return -ENOMEM;
2526 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2528 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2530 return queue_work(kblockd_workqueue, work);
2532 EXPORT_SYMBOL(kblockd_schedule_work);
2534 int __init blk_dev_init(void)
2536 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2537 sizeof(((struct request *)0)->cmd_flags));
2539 kblockd_workqueue = create_workqueue("kblockd");
2540 if (!kblockd_workqueue)
2541 panic("Failed to create kblockd\n");
2543 request_cachep = kmem_cache_create("blkdev_requests",
2544 sizeof(struct request), 0, SLAB_PANIC, NULL);
2546 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2547 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2549 return 0;