tcp: force mss equality with the next skb too.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / tcp_input.c
blob63c3ef6d4a1c21b448739176cf31acf872efca61
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
118 /* Adapt the MSS value used to make delayed ack decision to the
119 * real world.
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
123 struct inet_connection_sock *icsk = inet_csk(sk);
124 const unsigned int lss = icsk->icsk_ack.last_seg_size;
125 unsigned int len;
127 icsk->icsk_ack.last_seg_size = 0;
129 /* skb->len may jitter because of SACKs, even if peer
130 * sends good full-sized frames.
132 len = skb_shinfo(skb)->gso_size ? : skb->len;
133 if (len >= icsk->icsk_ack.rcv_mss) {
134 icsk->icsk_ack.rcv_mss = len;
135 } else {
136 /* Otherwise, we make more careful check taking into account,
137 * that SACKs block is variable.
139 * "len" is invariant segment length, including TCP header.
141 len += skb->data - skb_transport_header(skb);
142 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143 /* If PSH is not set, packet should be
144 * full sized, provided peer TCP is not badly broken.
145 * This observation (if it is correct 8)) allows
146 * to handle super-low mtu links fairly.
148 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150 /* Subtract also invariant (if peer is RFC compliant),
151 * tcp header plus fixed timestamp option length.
152 * Resulting "len" is MSS free of SACK jitter.
154 len -= tcp_sk(sk)->tcp_header_len;
155 icsk->icsk_ack.last_seg_size = len;
156 if (len == lss) {
157 icsk->icsk_ack.rcv_mss = len;
158 return;
161 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 static void tcp_incr_quickack(struct sock *sk)
169 struct inet_connection_sock *icsk = inet_csk(sk);
170 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
172 if (quickacks == 0)
173 quickacks = 2;
174 if (quickacks > icsk->icsk_ack.quick)
175 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178 void tcp_enter_quickack_mode(struct sock *sk)
180 struct inet_connection_sock *icsk = inet_csk(sk);
181 tcp_incr_quickack(sk);
182 icsk->icsk_ack.pingpong = 0;
183 icsk->icsk_ack.ato = TCP_ATO_MIN;
186 /* Send ACKs quickly, if "quick" count is not exhausted
187 * and the session is not interactive.
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
192 const struct inet_connection_sock *icsk = inet_csk(sk);
193 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
198 if (tp->ecn_flags & TCP_ECN_OK)
199 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
204 if (tcp_hdr(skb)->cwr)
205 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
210 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
215 if (tp->ecn_flags & TCP_ECN_OK) {
216 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218 /* Funny extension: if ECT is not set on a segment,
219 * it is surely retransmit. It is not in ECN RFC,
220 * but Linux follows this rule. */
221 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222 tcp_enter_quickack_mode((struct sock *)tp);
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
228 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229 tp->ecn_flags &= ~TCP_ECN_OK;
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
234 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235 tp->ecn_flags &= ~TCP_ECN_OK;
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
240 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241 return 1;
242 return 0;
245 /* Buffer size and advertised window tuning.
247 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
250 static void tcp_fixup_sndbuf(struct sock *sk)
252 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253 sizeof(struct sk_buff);
255 if (sk->sk_sndbuf < 3 * sndmem)
256 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
261 * All tcp_full_space() is split to two parts: "network" buffer, allocated
262 * forward and advertised in receiver window (tp->rcv_wnd) and
263 * "application buffer", required to isolate scheduling/application
264 * latencies from network.
265 * window_clamp is maximal advertised window. It can be less than
266 * tcp_full_space(), in this case tcp_full_space() - window_clamp
267 * is reserved for "application" buffer. The less window_clamp is
268 * the smoother our behaviour from viewpoint of network, but the lower
269 * throughput and the higher sensitivity of the connection to losses. 8)
271 * rcv_ssthresh is more strict window_clamp used at "slow start"
272 * phase to predict further behaviour of this connection.
273 * It is used for two goals:
274 * - to enforce header prediction at sender, even when application
275 * requires some significant "application buffer". It is check #1.
276 * - to prevent pruning of receive queue because of misprediction
277 * of receiver window. Check #2.
279 * The scheme does not work when sender sends good segments opening
280 * window and then starts to feed us spaghetti. But it should work
281 * in common situations. Otherwise, we have to rely on queue collapsing.
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
287 struct tcp_sock *tp = tcp_sk(sk);
288 /* Optimize this! */
289 int truesize = tcp_win_from_space(skb->truesize) >> 1;
290 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
292 while (tp->rcv_ssthresh <= window) {
293 if (truesize <= skb->len)
294 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
296 truesize >>= 1;
297 window >>= 1;
299 return 0;
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
304 struct tcp_sock *tp = tcp_sk(sk);
306 /* Check #1 */
307 if (tp->rcv_ssthresh < tp->window_clamp &&
308 (int)tp->rcv_ssthresh < tcp_space(sk) &&
309 !tcp_memory_pressure) {
310 int incr;
312 /* Check #2. Increase window, if skb with such overhead
313 * will fit to rcvbuf in future.
315 if (tcp_win_from_space(skb->truesize) <= skb->len)
316 incr = 2 * tp->advmss;
317 else
318 incr = __tcp_grow_window(sk, skb);
320 if (incr) {
321 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322 tp->window_clamp);
323 inet_csk(sk)->icsk_ack.quick |= 1;
328 /* 3. Tuning rcvbuf, when connection enters established state. */
330 static void tcp_fixup_rcvbuf(struct sock *sk)
332 struct tcp_sock *tp = tcp_sk(sk);
333 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
335 /* Try to select rcvbuf so that 4 mss-sized segments
336 * will fit to window and corresponding skbs will fit to our rcvbuf.
337 * (was 3; 4 is minimum to allow fast retransmit to work.)
339 while (tcp_win_from_space(rcvmem) < tp->advmss)
340 rcvmem += 128;
341 if (sk->sk_rcvbuf < 4 * rcvmem)
342 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
345 /* 4. Try to fixup all. It is made immediately after connection enters
346 * established state.
348 static void tcp_init_buffer_space(struct sock *sk)
350 struct tcp_sock *tp = tcp_sk(sk);
351 int maxwin;
353 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354 tcp_fixup_rcvbuf(sk);
355 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356 tcp_fixup_sndbuf(sk);
358 tp->rcvq_space.space = tp->rcv_wnd;
360 maxwin = tcp_full_space(sk);
362 if (tp->window_clamp >= maxwin) {
363 tp->window_clamp = maxwin;
365 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366 tp->window_clamp = max(maxwin -
367 (maxwin >> sysctl_tcp_app_win),
368 4 * tp->advmss);
371 /* Force reservation of one segment. */
372 if (sysctl_tcp_app_win &&
373 tp->window_clamp > 2 * tp->advmss &&
374 tp->window_clamp + tp->advmss > maxwin)
375 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
377 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378 tp->snd_cwnd_stamp = tcp_time_stamp;
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
384 struct tcp_sock *tp = tcp_sk(sk);
385 struct inet_connection_sock *icsk = inet_csk(sk);
387 icsk->icsk_ack.quick = 0;
389 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391 !tcp_memory_pressure &&
392 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394 sysctl_tcp_rmem[2]);
396 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
400 /* Initialize RCV_MSS value.
401 * RCV_MSS is an our guess about MSS used by the peer.
402 * We haven't any direct information about the MSS.
403 * It's better to underestimate the RCV_MSS rather than overestimate.
404 * Overestimations make us ACKing less frequently than needed.
405 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
407 void tcp_initialize_rcv_mss(struct sock *sk)
409 struct tcp_sock *tp = tcp_sk(sk);
410 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
412 hint = min(hint, tp->rcv_wnd / 2);
413 hint = min(hint, TCP_MIN_RCVMSS);
414 hint = max(hint, TCP_MIN_MSS);
416 inet_csk(sk)->icsk_ack.rcv_mss = hint;
419 /* Receiver "autotuning" code.
421 * The algorithm for RTT estimation w/o timestamps is based on
422 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
425 * More detail on this code can be found at
426 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427 * though this reference is out of date. A new paper
428 * is pending.
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
432 u32 new_sample = tp->rcv_rtt_est.rtt;
433 long m = sample;
435 if (m == 0)
436 m = 1;
438 if (new_sample != 0) {
439 /* If we sample in larger samples in the non-timestamp
440 * case, we could grossly overestimate the RTT especially
441 * with chatty applications or bulk transfer apps which
442 * are stalled on filesystem I/O.
444 * Also, since we are only going for a minimum in the
445 * non-timestamp case, we do not smooth things out
446 * else with timestamps disabled convergence takes too
447 * long.
449 if (!win_dep) {
450 m -= (new_sample >> 3);
451 new_sample += m;
452 } else if (m < new_sample)
453 new_sample = m << 3;
454 } else {
455 /* No previous measure. */
456 new_sample = m << 3;
459 if (tp->rcv_rtt_est.rtt != new_sample)
460 tp->rcv_rtt_est.rtt = new_sample;
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
465 if (tp->rcv_rtt_est.time == 0)
466 goto new_measure;
467 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468 return;
469 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
471 new_measure:
472 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473 tp->rcv_rtt_est.time = tcp_time_stamp;
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477 const struct sk_buff *skb)
479 struct tcp_sock *tp = tcp_sk(sk);
480 if (tp->rx_opt.rcv_tsecr &&
481 (TCP_SKB_CB(skb)->end_seq -
482 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
487 * This function should be called every time data is copied to user space.
488 * It calculates the appropriate TCP receive buffer space.
490 void tcp_rcv_space_adjust(struct sock *sk)
492 struct tcp_sock *tp = tcp_sk(sk);
493 int time;
494 int space;
496 if (tp->rcvq_space.time == 0)
497 goto new_measure;
499 time = tcp_time_stamp - tp->rcvq_space.time;
500 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501 return;
503 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
505 space = max(tp->rcvq_space.space, space);
507 if (tp->rcvq_space.space != space) {
508 int rcvmem;
510 tp->rcvq_space.space = space;
512 if (sysctl_tcp_moderate_rcvbuf &&
513 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514 int new_clamp = space;
516 /* Receive space grows, normalize in order to
517 * take into account packet headers and sk_buff
518 * structure overhead.
520 space /= tp->advmss;
521 if (!space)
522 space = 1;
523 rcvmem = (tp->advmss + MAX_TCP_HEADER +
524 16 + sizeof(struct sk_buff));
525 while (tcp_win_from_space(rcvmem) < tp->advmss)
526 rcvmem += 128;
527 space *= rcvmem;
528 space = min(space, sysctl_tcp_rmem[2]);
529 if (space > sk->sk_rcvbuf) {
530 sk->sk_rcvbuf = space;
532 /* Make the window clamp follow along. */
533 tp->window_clamp = new_clamp;
538 new_measure:
539 tp->rcvq_space.seq = tp->copied_seq;
540 tp->rcvq_space.time = tcp_time_stamp;
543 /* There is something which you must keep in mind when you analyze the
544 * behavior of the tp->ato delayed ack timeout interval. When a
545 * connection starts up, we want to ack as quickly as possible. The
546 * problem is that "good" TCP's do slow start at the beginning of data
547 * transmission. The means that until we send the first few ACK's the
548 * sender will sit on his end and only queue most of his data, because
549 * he can only send snd_cwnd unacked packets at any given time. For
550 * each ACK we send, he increments snd_cwnd and transmits more of his
551 * queue. -DaveM
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
555 struct tcp_sock *tp = tcp_sk(sk);
556 struct inet_connection_sock *icsk = inet_csk(sk);
557 u32 now;
559 inet_csk_schedule_ack(sk);
561 tcp_measure_rcv_mss(sk, skb);
563 tcp_rcv_rtt_measure(tp);
565 now = tcp_time_stamp;
567 if (!icsk->icsk_ack.ato) {
568 /* The _first_ data packet received, initialize
569 * delayed ACK engine.
571 tcp_incr_quickack(sk);
572 icsk->icsk_ack.ato = TCP_ATO_MIN;
573 } else {
574 int m = now - icsk->icsk_ack.lrcvtime;
576 if (m <= TCP_ATO_MIN / 2) {
577 /* The fastest case is the first. */
578 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579 } else if (m < icsk->icsk_ack.ato) {
580 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581 if (icsk->icsk_ack.ato > icsk->icsk_rto)
582 icsk->icsk_ack.ato = icsk->icsk_rto;
583 } else if (m > icsk->icsk_rto) {
584 /* Too long gap. Apparently sender failed to
585 * restart window, so that we send ACKs quickly.
587 tcp_incr_quickack(sk);
588 sk_mem_reclaim(sk);
591 icsk->icsk_ack.lrcvtime = now;
593 TCP_ECN_check_ce(tp, skb);
595 if (skb->len >= 128)
596 tcp_grow_window(sk, skb);
599 static u32 tcp_rto_min(struct sock *sk)
601 struct dst_entry *dst = __sk_dst_get(sk);
602 u32 rto_min = TCP_RTO_MIN;
604 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606 return rto_min;
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610 * routine either comes from timestamps, or from segments that were
611 * known _not_ to have been retransmitted [see Karn/Partridge
612 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613 * piece by Van Jacobson.
614 * NOTE: the next three routines used to be one big routine.
615 * To save cycles in the RFC 1323 implementation it was better to break
616 * it up into three procedures. -- erics
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
620 struct tcp_sock *tp = tcp_sk(sk);
621 long m = mrtt; /* RTT */
623 /* The following amusing code comes from Jacobson's
624 * article in SIGCOMM '88. Note that rtt and mdev
625 * are scaled versions of rtt and mean deviation.
626 * This is designed to be as fast as possible
627 * m stands for "measurement".
629 * On a 1990 paper the rto value is changed to:
630 * RTO = rtt + 4 * mdev
632 * Funny. This algorithm seems to be very broken.
633 * These formulae increase RTO, when it should be decreased, increase
634 * too slowly, when it should be increased quickly, decrease too quickly
635 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636 * does not matter how to _calculate_ it. Seems, it was trap
637 * that VJ failed to avoid. 8)
639 if (m == 0)
640 m = 1;
641 if (tp->srtt != 0) {
642 m -= (tp->srtt >> 3); /* m is now error in rtt est */
643 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
644 if (m < 0) {
645 m = -m; /* m is now abs(error) */
646 m -= (tp->mdev >> 2); /* similar update on mdev */
647 /* This is similar to one of Eifel findings.
648 * Eifel blocks mdev updates when rtt decreases.
649 * This solution is a bit different: we use finer gain
650 * for mdev in this case (alpha*beta).
651 * Like Eifel it also prevents growth of rto,
652 * but also it limits too fast rto decreases,
653 * happening in pure Eifel.
655 if (m > 0)
656 m >>= 3;
657 } else {
658 m -= (tp->mdev >> 2); /* similar update on mdev */
660 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
661 if (tp->mdev > tp->mdev_max) {
662 tp->mdev_max = tp->mdev;
663 if (tp->mdev_max > tp->rttvar)
664 tp->rttvar = tp->mdev_max;
666 if (after(tp->snd_una, tp->rtt_seq)) {
667 if (tp->mdev_max < tp->rttvar)
668 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669 tp->rtt_seq = tp->snd_nxt;
670 tp->mdev_max = tcp_rto_min(sk);
672 } else {
673 /* no previous measure. */
674 tp->srtt = m << 3; /* take the measured time to be rtt */
675 tp->mdev = m << 1; /* make sure rto = 3*rtt */
676 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677 tp->rtt_seq = tp->snd_nxt;
681 /* Calculate rto without backoff. This is the second half of Van Jacobson's
682 * routine referred to above.
684 static inline void tcp_set_rto(struct sock *sk)
686 const struct tcp_sock *tp = tcp_sk(sk);
687 /* Old crap is replaced with new one. 8)
689 * More seriously:
690 * 1. If rtt variance happened to be less 50msec, it is hallucination.
691 * It cannot be less due to utterly erratic ACK generation made
692 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693 * to do with delayed acks, because at cwnd>2 true delack timeout
694 * is invisible. Actually, Linux-2.4 also generates erratic
695 * ACKs in some circumstances.
697 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
699 /* 2. Fixups made earlier cannot be right.
700 * If we do not estimate RTO correctly without them,
701 * all the algo is pure shit and should be replaced
702 * with correct one. It is exactly, which we pretend to do.
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 * guarantees that rto is higher.
709 static inline void tcp_bound_rto(struct sock *sk)
711 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
715 /* Save metrics learned by this TCP session.
716 This function is called only, when TCP finishes successfully
717 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
719 void tcp_update_metrics(struct sock *sk)
721 struct tcp_sock *tp = tcp_sk(sk);
722 struct dst_entry *dst = __sk_dst_get(sk);
724 if (sysctl_tcp_nometrics_save)
725 return;
727 dst_confirm(dst);
729 if (dst && (dst->flags & DST_HOST)) {
730 const struct inet_connection_sock *icsk = inet_csk(sk);
731 int m;
732 unsigned long rtt;
734 if (icsk->icsk_backoff || !tp->srtt) {
735 /* This session failed to estimate rtt. Why?
736 * Probably, no packets returned in time.
737 * Reset our results.
739 if (!(dst_metric_locked(dst, RTAX_RTT)))
740 dst->metrics[RTAX_RTT - 1] = 0;
741 return;
744 rtt = dst_metric_rtt(dst, RTAX_RTT);
745 m = rtt - tp->srtt;
747 /* If newly calculated rtt larger than stored one,
748 * store new one. Otherwise, use EWMA. Remember,
749 * rtt overestimation is always better than underestimation.
751 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752 if (m <= 0)
753 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754 else
755 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
758 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759 unsigned long var;
760 if (m < 0)
761 m = -m;
763 /* Scale deviation to rttvar fixed point */
764 m >>= 1;
765 if (m < tp->mdev)
766 m = tp->mdev;
768 var = dst_metric_rtt(dst, RTAX_RTTVAR);
769 if (m >= var)
770 var = m;
771 else
772 var -= (var - m) >> 2;
774 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
777 if (tp->snd_ssthresh >= 0xFFFF) {
778 /* Slow start still did not finish. */
779 if (dst_metric(dst, RTAX_SSTHRESH) &&
780 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783 if (!dst_metric_locked(dst, RTAX_CWND) &&
784 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
787 icsk->icsk_ca_state == TCP_CA_Open) {
788 /* Cong. avoidance phase, cwnd is reliable. */
789 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790 dst->metrics[RTAX_SSTHRESH-1] =
791 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792 if (!dst_metric_locked(dst, RTAX_CWND))
793 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794 } else {
795 /* Else slow start did not finish, cwnd is non-sense,
796 ssthresh may be also invalid.
798 if (!dst_metric_locked(dst, RTAX_CWND))
799 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800 if (dst_metric(dst, RTAX_SSTHRESH) &&
801 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
806 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808 tp->reordering != sysctl_tcp_reordering)
809 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
814 /* Numbers are taken from RFC3390.
816 * John Heffner states:
818 * The RFC specifies a window of no more than 4380 bytes
819 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
820 * is a bit misleading because they use a clamp at 4380 bytes
821 * rather than use a multiplier in the relevant range.
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827 if (!cwnd) {
828 if (tp->mss_cache > 1460)
829 cwnd = 2;
830 else
831 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 struct tcp_sock *tp = tcp_sk(sk);
840 const struct inet_connection_sock *icsk = inet_csk(sk);
842 tp->prior_ssthresh = 0;
843 tp->bytes_acked = 0;
844 if (icsk->icsk_ca_state < TCP_CA_CWR) {
845 tp->undo_marker = 0;
846 if (set_ssthresh)
847 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848 tp->snd_cwnd = min(tp->snd_cwnd,
849 tcp_packets_in_flight(tp) + 1U);
850 tp->snd_cwnd_cnt = 0;
851 tp->high_seq = tp->snd_nxt;
852 tp->snd_cwnd_stamp = tcp_time_stamp;
853 TCP_ECN_queue_cwr(tp);
855 tcp_set_ca_state(sk, TCP_CA_CWR);
860 * Packet counting of FACK is based on in-order assumptions, therefore TCP
861 * disables it when reordering is detected
863 static void tcp_disable_fack(struct tcp_sock *tp)
865 /* RFC3517 uses different metric in lost marker => reset on change */
866 if (tcp_is_fack(tp))
867 tp->lost_skb_hint = NULL;
868 tp->rx_opt.sack_ok &= ~2;
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
874 tp->rx_opt.sack_ok |= 4;
877 /* Initialize metrics on socket. */
879 static void tcp_init_metrics(struct sock *sk)
881 struct tcp_sock *tp = tcp_sk(sk);
882 struct dst_entry *dst = __sk_dst_get(sk);
884 if (dst == NULL)
885 goto reset;
887 dst_confirm(dst);
889 if (dst_metric_locked(dst, RTAX_CWND))
890 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891 if (dst_metric(dst, RTAX_SSTHRESH)) {
892 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894 tp->snd_ssthresh = tp->snd_cwnd_clamp;
896 if (dst_metric(dst, RTAX_REORDERING) &&
897 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898 tcp_disable_fack(tp);
899 tp->reordering = dst_metric(dst, RTAX_REORDERING);
902 if (dst_metric(dst, RTAX_RTT) == 0)
903 goto reset;
905 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906 goto reset;
908 /* Initial rtt is determined from SYN,SYN-ACK.
909 * The segment is small and rtt may appear much
910 * less than real one. Use per-dst memory
911 * to make it more realistic.
913 * A bit of theory. RTT is time passed after "normal" sized packet
914 * is sent until it is ACKed. In normal circumstances sending small
915 * packets force peer to delay ACKs and calculation is correct too.
916 * The algorithm is adaptive and, provided we follow specs, it
917 * NEVER underestimate RTT. BUT! If peer tries to make some clever
918 * tricks sort of "quick acks" for time long enough to decrease RTT
919 * to low value, and then abruptly stops to do it and starts to delay
920 * ACKs, wait for troubles.
922 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924 tp->rtt_seq = tp->snd_nxt;
926 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930 tcp_set_rto(sk);
931 tcp_bound_rto(sk);
932 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933 goto reset;
934 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935 tp->snd_cwnd_stamp = tcp_time_stamp;
936 return;
938 reset:
939 /* Play conservative. If timestamps are not
940 * supported, TCP will fail to recalculate correct
941 * rtt, if initial rto is too small. FORGET ALL AND RESET!
943 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944 tp->srtt = 0;
945 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951 const int ts)
953 struct tcp_sock *tp = tcp_sk(sk);
954 if (metric > tp->reordering) {
955 int mib_idx;
957 tp->reordering = min(TCP_MAX_REORDERING, metric);
959 /* This exciting event is worth to be remembered. 8) */
960 if (ts)
961 mib_idx = LINUX_MIB_TCPTSREORDER;
962 else if (tcp_is_reno(tp))
963 mib_idx = LINUX_MIB_TCPRENOREORDER;
964 else if (tcp_is_fack(tp))
965 mib_idx = LINUX_MIB_TCPFACKREORDER;
966 else
967 mib_idx = LINUX_MIB_TCPSACKREORDER;
969 NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973 tp->reordering,
974 tp->fackets_out,
975 tp->sacked_out,
976 tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978 tcp_disable_fack(tp);
982 /* This must be called before lost_out is incremented */
983 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
985 if ((tp->retransmit_skb_hint == NULL) ||
986 before(TCP_SKB_CB(skb)->seq,
987 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
988 tp->retransmit_skb_hint = skb;
990 if (!tp->lost_out ||
991 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
992 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
997 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998 tcp_verify_retransmit_hint(tp, skb);
1000 tp->lost_out += tcp_skb_pcount(skb);
1001 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1005 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1006 struct sk_buff *skb)
1008 tcp_verify_retransmit_hint(tp, skb);
1010 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1011 tp->lost_out += tcp_skb_pcount(skb);
1012 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1016 /* This procedure tags the retransmission queue when SACKs arrive.
1018 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1019 * Packets in queue with these bits set are counted in variables
1020 * sacked_out, retrans_out and lost_out, correspondingly.
1022 * Valid combinations are:
1023 * Tag InFlight Description
1024 * 0 1 - orig segment is in flight.
1025 * S 0 - nothing flies, orig reached receiver.
1026 * L 0 - nothing flies, orig lost by net.
1027 * R 2 - both orig and retransmit are in flight.
1028 * L|R 1 - orig is lost, retransmit is in flight.
1029 * S|R 1 - orig reached receiver, retrans is still in flight.
1030 * (L|S|R is logically valid, it could occur when L|R is sacked,
1031 * but it is equivalent to plain S and code short-curcuits it to S.
1032 * L|S is logically invalid, it would mean -1 packet in flight 8))
1034 * These 6 states form finite state machine, controlled by the following events:
1035 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1036 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1037 * 3. Loss detection event of one of three flavors:
1038 * A. Scoreboard estimator decided the packet is lost.
1039 * A'. Reno "three dupacks" marks head of queue lost.
1040 * A''. Its FACK modfication, head until snd.fack is lost.
1041 * B. SACK arrives sacking data transmitted after never retransmitted
1042 * hole was sent out.
1043 * C. SACK arrives sacking SND.NXT at the moment, when the
1044 * segment was retransmitted.
1045 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1047 * It is pleasant to note, that state diagram turns out to be commutative,
1048 * so that we are allowed not to be bothered by order of our actions,
1049 * when multiple events arrive simultaneously. (see the function below).
1051 * Reordering detection.
1052 * --------------------
1053 * Reordering metric is maximal distance, which a packet can be displaced
1054 * in packet stream. With SACKs we can estimate it:
1056 * 1. SACK fills old hole and the corresponding segment was not
1057 * ever retransmitted -> reordering. Alas, we cannot use it
1058 * when segment was retransmitted.
1059 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1060 * for retransmitted and already SACKed segment -> reordering..
1061 * Both of these heuristics are not used in Loss state, when we cannot
1062 * account for retransmits accurately.
1064 * SACK block validation.
1065 * ----------------------
1067 * SACK block range validation checks that the received SACK block fits to
1068 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1069 * Note that SND.UNA is not included to the range though being valid because
1070 * it means that the receiver is rather inconsistent with itself reporting
1071 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1072 * perfectly valid, however, in light of RFC2018 which explicitly states
1073 * that "SACK block MUST reflect the newest segment. Even if the newest
1074 * segment is going to be discarded ...", not that it looks very clever
1075 * in case of head skb. Due to potentional receiver driven attacks, we
1076 * choose to avoid immediate execution of a walk in write queue due to
1077 * reneging and defer head skb's loss recovery to standard loss recovery
1078 * procedure that will eventually trigger (nothing forbids us doing this).
1080 * Implements also blockage to start_seq wrap-around. Problem lies in the
1081 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1082 * there's no guarantee that it will be before snd_nxt (n). The problem
1083 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1084 * wrap (s_w):
1086 * <- outs wnd -> <- wrapzone ->
1087 * u e n u_w e_w s n_w
1088 * | | | | | | |
1089 * |<------------+------+----- TCP seqno space --------------+---------->|
1090 * ...-- <2^31 ->| |<--------...
1091 * ...---- >2^31 ------>| |<--------...
1093 * Current code wouldn't be vulnerable but it's better still to discard such
1094 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1095 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1096 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1097 * equal to the ideal case (infinite seqno space without wrap caused issues).
1099 * With D-SACK the lower bound is extended to cover sequence space below
1100 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1101 * again, D-SACK block must not to go across snd_una (for the same reason as
1102 * for the normal SACK blocks, explained above). But there all simplicity
1103 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1104 * fully below undo_marker they do not affect behavior in anyway and can
1105 * therefore be safely ignored. In rare cases (which are more or less
1106 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1107 * fragmentation and packet reordering past skb's retransmission. To consider
1108 * them correctly, the acceptable range must be extended even more though
1109 * the exact amount is rather hard to quantify. However, tp->max_window can
1110 * be used as an exaggerated estimate.
1112 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1113 u32 start_seq, u32 end_seq)
1115 /* Too far in future, or reversed (interpretation is ambiguous) */
1116 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1117 return 0;
1119 /* Nasty start_seq wrap-around check (see comments above) */
1120 if (!before(start_seq, tp->snd_nxt))
1121 return 0;
1123 /* In outstanding window? ...This is valid exit for D-SACKs too.
1124 * start_seq == snd_una is non-sensical (see comments above)
1126 if (after(start_seq, tp->snd_una))
1127 return 1;
1129 if (!is_dsack || !tp->undo_marker)
1130 return 0;
1132 /* ...Then it's D-SACK, and must reside below snd_una completely */
1133 if (!after(end_seq, tp->snd_una))
1134 return 0;
1136 if (!before(start_seq, tp->undo_marker))
1137 return 1;
1139 /* Too old */
1140 if (!after(end_seq, tp->undo_marker))
1141 return 0;
1143 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1144 * start_seq < undo_marker and end_seq >= undo_marker.
1146 return !before(start_seq, end_seq - tp->max_window);
1149 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1150 * Event "C". Later note: FACK people cheated me again 8), we have to account
1151 * for reordering! Ugly, but should help.
1153 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1154 * less than what is now known to be received by the other end (derived from
1155 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1156 * retransmitted skbs to avoid some costly processing per ACKs.
1158 static void tcp_mark_lost_retrans(struct sock *sk)
1160 const struct inet_connection_sock *icsk = inet_csk(sk);
1161 struct tcp_sock *tp = tcp_sk(sk);
1162 struct sk_buff *skb;
1163 int cnt = 0;
1164 u32 new_low_seq = tp->snd_nxt;
1165 u32 received_upto = tcp_highest_sack_seq(tp);
1167 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1168 !after(received_upto, tp->lost_retrans_low) ||
1169 icsk->icsk_ca_state != TCP_CA_Recovery)
1170 return;
1172 tcp_for_write_queue(skb, sk) {
1173 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1175 if (skb == tcp_send_head(sk))
1176 break;
1177 if (cnt == tp->retrans_out)
1178 break;
1179 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1180 continue;
1182 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1183 continue;
1185 if (after(received_upto, ack_seq) &&
1186 (tcp_is_fack(tp) ||
1187 !before(received_upto,
1188 ack_seq + tp->reordering * tp->mss_cache))) {
1189 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1190 tp->retrans_out -= tcp_skb_pcount(skb);
1192 tcp_skb_mark_lost_uncond_verify(tp, skb);
1193 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1194 } else {
1195 if (before(ack_seq, new_low_seq))
1196 new_low_seq = ack_seq;
1197 cnt += tcp_skb_pcount(skb);
1201 if (tp->retrans_out)
1202 tp->lost_retrans_low = new_low_seq;
1205 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1206 struct tcp_sack_block_wire *sp, int num_sacks,
1207 u32 prior_snd_una)
1209 struct tcp_sock *tp = tcp_sk(sk);
1210 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1211 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1212 int dup_sack = 0;
1214 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1215 dup_sack = 1;
1216 tcp_dsack_seen(tp);
1217 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1218 } else if (num_sacks > 1) {
1219 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1220 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1222 if (!after(end_seq_0, end_seq_1) &&
1223 !before(start_seq_0, start_seq_1)) {
1224 dup_sack = 1;
1225 tcp_dsack_seen(tp);
1226 NET_INC_STATS_BH(sock_net(sk),
1227 LINUX_MIB_TCPDSACKOFORECV);
1231 /* D-SACK for already forgotten data... Do dumb counting. */
1232 if (dup_sack &&
1233 !after(end_seq_0, prior_snd_una) &&
1234 after(end_seq_0, tp->undo_marker))
1235 tp->undo_retrans--;
1237 return dup_sack;
1240 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1241 * the incoming SACK may not exactly match but we can find smaller MSS
1242 * aligned portion of it that matches. Therefore we might need to fragment
1243 * which may fail and creates some hassle (caller must handle error case
1244 * returns).
1246 * FIXME: this could be merged to shift decision code
1248 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1249 u32 start_seq, u32 end_seq)
1251 int in_sack, err;
1252 unsigned int pkt_len;
1253 unsigned int mss;
1255 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1256 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1258 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1259 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1260 mss = tcp_skb_mss(skb);
1261 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1263 if (!in_sack) {
1264 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1265 if (pkt_len < mss)
1266 pkt_len = mss;
1267 } else {
1268 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1269 if (pkt_len < mss)
1270 return -EINVAL;
1273 /* Round if necessary so that SACKs cover only full MSSes
1274 * and/or the remaining small portion (if present)
1276 if (pkt_len > mss) {
1277 unsigned int new_len = (pkt_len / mss) * mss;
1278 if (!in_sack && new_len < pkt_len) {
1279 new_len += mss;
1280 if (new_len > skb->len)
1281 return 0;
1283 pkt_len = new_len;
1285 err = tcp_fragment(sk, skb, pkt_len, mss);
1286 if (err < 0)
1287 return err;
1290 return in_sack;
1293 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1294 int *reord, int dup_sack, int fack_count,
1295 u8 *sackedto, int pcount)
1297 struct tcp_sock *tp = tcp_sk(sk);
1298 u8 sacked = TCP_SKB_CB(skb)->sacked;
1299 int flag = 0;
1301 /* Account D-SACK for retransmitted packet. */
1302 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1303 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1304 tp->undo_retrans--;
1305 if (sacked & TCPCB_SACKED_ACKED)
1306 *reord = min(fack_count, *reord);
1309 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1310 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1311 return flag;
1313 if (!(sacked & TCPCB_SACKED_ACKED)) {
1314 if (sacked & TCPCB_SACKED_RETRANS) {
1315 /* If the segment is not tagged as lost,
1316 * we do not clear RETRANS, believing
1317 * that retransmission is still in flight.
1319 if (sacked & TCPCB_LOST) {
1320 *sackedto &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1321 tp->lost_out -= pcount;
1322 tp->retrans_out -= pcount;
1324 } else {
1325 if (!(sacked & TCPCB_RETRANS)) {
1326 /* New sack for not retransmitted frame,
1327 * which was in hole. It is reordering.
1329 if (before(TCP_SKB_CB(skb)->seq,
1330 tcp_highest_sack_seq(tp)))
1331 *reord = min(fack_count, *reord);
1333 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1334 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1335 flag |= FLAG_ONLY_ORIG_SACKED;
1338 if (sacked & TCPCB_LOST) {
1339 *sackedto &= ~TCPCB_LOST;
1340 tp->lost_out -= pcount;
1344 *sackedto |= TCPCB_SACKED_ACKED;
1345 flag |= FLAG_DATA_SACKED;
1346 tp->sacked_out += pcount;
1348 fack_count += pcount;
1350 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1351 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1352 before(TCP_SKB_CB(skb)->seq,
1353 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1354 tp->lost_cnt_hint += pcount;
1356 if (fack_count > tp->fackets_out)
1357 tp->fackets_out = fack_count;
1360 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1361 * frames and clear it. undo_retrans is decreased above, L|R frames
1362 * are accounted above as well.
1364 if (dup_sack && (*sackedto & TCPCB_SACKED_RETRANS)) {
1365 *sackedto &= ~TCPCB_SACKED_RETRANS;
1366 tp->retrans_out -= pcount;
1369 return flag;
1372 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1373 struct sk_buff *skb, unsigned int pcount,
1374 int shifted, int fack_count, int *reord,
1375 int *flag, int mss)
1377 struct tcp_sock *tp = tcp_sk(sk);
1378 u8 dummy_sacked = TCP_SKB_CB(skb)->sacked; /* We discard results */
1380 BUG_ON(!pcount);
1382 /* Tweak before seqno plays */
1383 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1384 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1385 tp->lost_cnt_hint += pcount;
1387 TCP_SKB_CB(prev)->end_seq += shifted;
1388 TCP_SKB_CB(skb)->seq += shifted;
1390 skb_shinfo(prev)->gso_segs += pcount;
1391 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1392 skb_shinfo(skb)->gso_segs -= pcount;
1394 /* When we're adding to gso_segs == 1, gso_size will be zero,
1395 * in theory this shouldn't be necessary but as long as DSACK
1396 * code can come after this skb later on it's better to keep
1397 * setting gso_size to something.
1399 if (!skb_shinfo(prev)->gso_size) {
1400 skb_shinfo(prev)->gso_size = mss;
1401 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1404 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1405 if (skb_shinfo(skb)->gso_segs <= 1) {
1406 skb_shinfo(skb)->gso_size = 0;
1407 skb_shinfo(skb)->gso_type = 0;
1410 *flag |= tcp_sacktag_one(skb, sk, reord, 0, fack_count, &dummy_sacked,
1411 pcount);
1413 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1414 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1416 if (skb->len > 0) {
1417 BUG_ON(!tcp_skb_pcount(skb));
1418 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1419 return 0;
1422 /* Whole SKB was eaten :-) */
1424 if (skb == tp->retransmit_skb_hint)
1425 tp->retransmit_skb_hint = prev;
1426 if (skb == tp->scoreboard_skb_hint)
1427 tp->scoreboard_skb_hint = prev;
1428 if (skb == tp->lost_skb_hint) {
1429 tp->lost_skb_hint = prev;
1430 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1433 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1434 if (skb == tcp_highest_sack(sk))
1435 tcp_advance_highest_sack(sk, skb);
1437 tcp_unlink_write_queue(skb, sk);
1438 sk_wmem_free_skb(sk, skb);
1440 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1442 return 1;
1445 /* I wish gso_size would have a bit more sane initialization than
1446 * something-or-zero which complicates things
1448 static int tcp_shift_mss(struct sk_buff *skb)
1450 int mss = tcp_skb_mss(skb);
1452 if (!mss)
1453 mss = skb->len;
1455 return mss;
1458 /* Shifting pages past head area doesn't work */
1459 static int skb_can_shift(struct sk_buff *skb)
1461 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1464 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1465 * skb.
1467 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1468 u32 start_seq, u32 end_seq,
1469 int dup_sack, int *fack_count,
1470 int *reord, int *flag)
1472 struct tcp_sock *tp = tcp_sk(sk);
1473 struct sk_buff *prev;
1474 int mss;
1475 int pcount = 0;
1476 int len;
1477 int in_sack;
1479 if (!sk_can_gso(sk))
1480 goto fallback;
1482 /* Normally R but no L won't result in plain S */
1483 if (!dup_sack &&
1484 (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) == TCPCB_SACKED_RETRANS)
1485 goto fallback;
1486 if (!skb_can_shift(skb))
1487 goto fallback;
1488 /* This frame is about to be dropped (was ACKed). */
1489 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1490 goto fallback;
1492 /* Can only happen with delayed DSACK + discard craziness */
1493 if (unlikely(skb == tcp_write_queue_head(sk)))
1494 goto fallback;
1495 prev = tcp_write_queue_prev(sk, skb);
1497 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1498 goto fallback;
1500 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1501 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1503 if (in_sack) {
1504 len = skb->len;
1505 pcount = tcp_skb_pcount(skb);
1506 mss = tcp_shift_mss(skb);
1508 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1509 * drop this restriction as unnecessary
1511 if (mss != tcp_shift_mss(prev))
1512 goto fallback;
1513 } else {
1514 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1515 goto noop;
1516 /* CHECKME: This is non-MSS split case only?, this will
1517 * cause skipped skbs due to advancing loop btw, original
1518 * has that feature too
1520 if (tcp_skb_pcount(skb) <= 1)
1521 goto noop;
1523 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1524 if (!in_sack) {
1525 /* TODO: head merge to next could be attempted here
1526 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1527 * though it might not be worth of the additional hassle
1529 * ...we can probably just fallback to what was done
1530 * previously. We could try merging non-SACKed ones
1531 * as well but it probably isn't going to buy off
1532 * because later SACKs might again split them, and
1533 * it would make skb timestamp tracking considerably
1534 * harder problem.
1536 goto fallback;
1539 len = end_seq - TCP_SKB_CB(skb)->seq;
1540 BUG_ON(len < 0);
1541 BUG_ON(len > skb->len);
1543 /* MSS boundaries should be honoured or else pcount will
1544 * severely break even though it makes things bit trickier.
1545 * Optimize common case to avoid most of the divides
1547 mss = tcp_skb_mss(skb);
1549 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1550 * drop this restriction as unnecessary
1552 if (mss != tcp_shift_mss(prev))
1553 goto fallback;
1555 if (len == mss) {
1556 pcount = 1;
1557 } else if (len < mss) {
1558 goto noop;
1559 } else {
1560 pcount = len / mss;
1561 len = pcount * mss;
1565 if (!skb_shift(prev, skb, len))
1566 goto fallback;
1567 if (!tcp_shifted_skb(sk, prev, skb, pcount, len, *fack_count, reord,
1568 flag, mss))
1569 goto out;
1571 /* Hole filled allows collapsing with the next as well, this is very
1572 * useful when hole on every nth skb pattern happens
1574 if (prev == tcp_write_queue_tail(sk))
1575 goto out;
1576 skb = tcp_write_queue_next(sk, prev);
1578 if (!skb_can_shift(skb) ||
1579 (skb == tcp_send_head(sk)) ||
1580 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1581 (mss != tcp_shift_mss(skb)))
1582 goto out;
1584 len = skb->len;
1585 if (skb_shift(prev, skb, len)) {
1586 pcount += tcp_skb_pcount(skb);
1587 tcp_shifted_skb(sk, prev, skb, tcp_skb_pcount(skb), len,
1588 *fack_count, reord, flag, mss);
1591 out:
1592 *fack_count += pcount;
1593 return prev;
1595 noop:
1596 return skb;
1598 fallback:
1599 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1600 return NULL;
1603 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1604 struct tcp_sack_block *next_dup,
1605 u32 start_seq, u32 end_seq,
1606 int dup_sack_in, int *fack_count,
1607 int *reord, int *flag)
1609 struct tcp_sock *tp = tcp_sk(sk);
1610 struct sk_buff *tmp;
1612 tcp_for_write_queue_from(skb, sk) {
1613 int in_sack = 0;
1614 int dup_sack = dup_sack_in;
1616 if (skb == tcp_send_head(sk))
1617 break;
1619 /* queue is in-order => we can short-circuit the walk early */
1620 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1621 break;
1623 if ((next_dup != NULL) &&
1624 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1625 in_sack = tcp_match_skb_to_sack(sk, skb,
1626 next_dup->start_seq,
1627 next_dup->end_seq);
1628 if (in_sack > 0)
1629 dup_sack = 1;
1632 /* skb reference here is a bit tricky to get right, since
1633 * shifting can eat and free both this skb and the next,
1634 * so not even _safe variant of the loop is enough.
1636 if (in_sack <= 0) {
1637 tmp = tcp_shift_skb_data(sk, skb, start_seq,
1638 end_seq, dup_sack,
1639 fack_count, reord, flag);
1640 if (tmp != NULL) {
1641 if (tmp != skb) {
1642 skb = tmp;
1643 continue;
1646 in_sack = 0;
1647 } else {
1648 in_sack = tcp_match_skb_to_sack(sk, skb,
1649 start_seq,
1650 end_seq);
1654 if (unlikely(in_sack < 0))
1655 break;
1657 if (in_sack) {
1658 *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1659 *fack_count,
1660 &(TCP_SKB_CB(skb)->sacked),
1661 tcp_skb_pcount(skb));
1663 if (!before(TCP_SKB_CB(skb)->seq,
1664 tcp_highest_sack_seq(tp)))
1665 tcp_advance_highest_sack(sk, skb);
1668 *fack_count += tcp_skb_pcount(skb);
1670 return skb;
1673 /* Avoid all extra work that is being done by sacktag while walking in
1674 * a normal way
1676 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1677 u32 skip_to_seq, int *fack_count)
1679 tcp_for_write_queue_from(skb, sk) {
1680 if (skb == tcp_send_head(sk))
1681 break;
1683 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1684 break;
1686 *fack_count += tcp_skb_pcount(skb);
1688 return skb;
1691 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1692 struct sock *sk,
1693 struct tcp_sack_block *next_dup,
1694 u32 skip_to_seq,
1695 int *fack_count, int *reord,
1696 int *flag)
1698 if (next_dup == NULL)
1699 return skb;
1701 if (before(next_dup->start_seq, skip_to_seq)) {
1702 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1703 skb = tcp_sacktag_walk(skb, sk, NULL,
1704 next_dup->start_seq, next_dup->end_seq,
1705 1, fack_count, reord, flag);
1708 return skb;
1711 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1713 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1716 static int
1717 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1718 u32 prior_snd_una)
1720 const struct inet_connection_sock *icsk = inet_csk(sk);
1721 struct tcp_sock *tp = tcp_sk(sk);
1722 unsigned char *ptr = (skb_transport_header(ack_skb) +
1723 TCP_SKB_CB(ack_skb)->sacked);
1724 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1725 struct tcp_sack_block sp[TCP_NUM_SACKS];
1726 struct tcp_sack_block *cache;
1727 struct sk_buff *skb;
1728 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1729 int used_sacks;
1730 int reord = tp->packets_out;
1731 int flag = 0;
1732 int found_dup_sack = 0;
1733 int fack_count;
1734 int i, j;
1735 int first_sack_index;
1737 if (!tp->sacked_out) {
1738 if (WARN_ON(tp->fackets_out))
1739 tp->fackets_out = 0;
1740 tcp_highest_sack_reset(sk);
1743 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1744 num_sacks, prior_snd_una);
1745 if (found_dup_sack)
1746 flag |= FLAG_DSACKING_ACK;
1748 /* Eliminate too old ACKs, but take into
1749 * account more or less fresh ones, they can
1750 * contain valid SACK info.
1752 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1753 return 0;
1755 if (!tp->packets_out)
1756 goto out;
1758 used_sacks = 0;
1759 first_sack_index = 0;
1760 for (i = 0; i < num_sacks; i++) {
1761 int dup_sack = !i && found_dup_sack;
1763 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1764 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1766 if (!tcp_is_sackblock_valid(tp, dup_sack,
1767 sp[used_sacks].start_seq,
1768 sp[used_sacks].end_seq)) {
1769 int mib_idx;
1771 if (dup_sack) {
1772 if (!tp->undo_marker)
1773 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1774 else
1775 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1776 } else {
1777 /* Don't count olds caused by ACK reordering */
1778 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1779 !after(sp[used_sacks].end_seq, tp->snd_una))
1780 continue;
1781 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1784 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1785 if (i == 0)
1786 first_sack_index = -1;
1787 continue;
1790 /* Ignore very old stuff early */
1791 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1792 continue;
1794 used_sacks++;
1797 /* order SACK blocks to allow in order walk of the retrans queue */
1798 for (i = used_sacks - 1; i > 0; i--) {
1799 for (j = 0; j < i; j++) {
1800 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1801 struct tcp_sack_block tmp;
1803 tmp = sp[j];
1804 sp[j] = sp[j + 1];
1805 sp[j + 1] = tmp;
1807 /* Track where the first SACK block goes to */
1808 if (j == first_sack_index)
1809 first_sack_index = j + 1;
1814 skb = tcp_write_queue_head(sk);
1815 fack_count = 0;
1816 i = 0;
1818 if (!tp->sacked_out) {
1819 /* It's already past, so skip checking against it */
1820 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1821 } else {
1822 cache = tp->recv_sack_cache;
1823 /* Skip empty blocks in at head of the cache */
1824 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1825 !cache->end_seq)
1826 cache++;
1829 while (i < used_sacks) {
1830 u32 start_seq = sp[i].start_seq;
1831 u32 end_seq = sp[i].end_seq;
1832 int dup_sack = (found_dup_sack && (i == first_sack_index));
1833 struct tcp_sack_block *next_dup = NULL;
1835 if (found_dup_sack && ((i + 1) == first_sack_index))
1836 next_dup = &sp[i + 1];
1838 /* Event "B" in the comment above. */
1839 if (after(end_seq, tp->high_seq))
1840 flag |= FLAG_DATA_LOST;
1842 /* Skip too early cached blocks */
1843 while (tcp_sack_cache_ok(tp, cache) &&
1844 !before(start_seq, cache->end_seq))
1845 cache++;
1847 /* Can skip some work by looking recv_sack_cache? */
1848 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1849 after(end_seq, cache->start_seq)) {
1851 /* Head todo? */
1852 if (before(start_seq, cache->start_seq)) {
1853 skb = tcp_sacktag_skip(skb, sk, start_seq,
1854 &fack_count);
1855 skb = tcp_sacktag_walk(skb, sk, next_dup,
1856 start_seq,
1857 cache->start_seq,
1858 dup_sack, &fack_count,
1859 &reord, &flag);
1862 /* Rest of the block already fully processed? */
1863 if (!after(end_seq, cache->end_seq))
1864 goto advance_sp;
1866 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1867 cache->end_seq,
1868 &fack_count, &reord,
1869 &flag);
1871 /* ...tail remains todo... */
1872 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1873 /* ...but better entrypoint exists! */
1874 skb = tcp_highest_sack(sk);
1875 if (skb == NULL)
1876 break;
1877 fack_count = tp->fackets_out;
1878 cache++;
1879 goto walk;
1882 skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1883 &fack_count);
1884 /* Check overlap against next cached too (past this one already) */
1885 cache++;
1886 continue;
1889 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1890 skb = tcp_highest_sack(sk);
1891 if (skb == NULL)
1892 break;
1893 fack_count = tp->fackets_out;
1895 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1897 walk:
1898 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1899 dup_sack, &fack_count, &reord, &flag);
1901 advance_sp:
1902 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1903 * due to in-order walk
1905 if (after(end_seq, tp->frto_highmark))
1906 flag &= ~FLAG_ONLY_ORIG_SACKED;
1908 i++;
1911 /* Clear the head of the cache sack blocks so we can skip it next time */
1912 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1913 tp->recv_sack_cache[i].start_seq = 0;
1914 tp->recv_sack_cache[i].end_seq = 0;
1916 for (j = 0; j < used_sacks; j++)
1917 tp->recv_sack_cache[i++] = sp[j];
1919 tcp_mark_lost_retrans(sk);
1921 tcp_verify_left_out(tp);
1923 if ((reord < tp->fackets_out) &&
1924 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1925 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1926 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1928 out:
1930 #if FASTRETRANS_DEBUG > 0
1931 WARN_ON((int)tp->sacked_out < 0);
1932 WARN_ON((int)tp->lost_out < 0);
1933 WARN_ON((int)tp->retrans_out < 0);
1934 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1935 #endif
1936 return flag;
1939 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1940 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1942 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1944 u32 holes;
1946 holes = max(tp->lost_out, 1U);
1947 holes = min(holes, tp->packets_out);
1949 if ((tp->sacked_out + holes) > tp->packets_out) {
1950 tp->sacked_out = tp->packets_out - holes;
1951 return 1;
1953 return 0;
1956 /* If we receive more dupacks than we expected counting segments
1957 * in assumption of absent reordering, interpret this as reordering.
1958 * The only another reason could be bug in receiver TCP.
1960 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1962 struct tcp_sock *tp = tcp_sk(sk);
1963 if (tcp_limit_reno_sacked(tp))
1964 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1967 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1969 static void tcp_add_reno_sack(struct sock *sk)
1971 struct tcp_sock *tp = tcp_sk(sk);
1972 tp->sacked_out++;
1973 tcp_check_reno_reordering(sk, 0);
1974 tcp_verify_left_out(tp);
1977 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1979 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1981 struct tcp_sock *tp = tcp_sk(sk);
1983 if (acked > 0) {
1984 /* One ACK acked hole. The rest eat duplicate ACKs. */
1985 if (acked - 1 >= tp->sacked_out)
1986 tp->sacked_out = 0;
1987 else
1988 tp->sacked_out -= acked - 1;
1990 tcp_check_reno_reordering(sk, acked);
1991 tcp_verify_left_out(tp);
1994 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1996 tp->sacked_out = 0;
1999 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2001 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2004 /* F-RTO can only be used if TCP has never retransmitted anything other than
2005 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2007 int tcp_use_frto(struct sock *sk)
2009 const struct tcp_sock *tp = tcp_sk(sk);
2010 const struct inet_connection_sock *icsk = inet_csk(sk);
2011 struct sk_buff *skb;
2013 if (!sysctl_tcp_frto)
2014 return 0;
2016 /* MTU probe and F-RTO won't really play nicely along currently */
2017 if (icsk->icsk_mtup.probe_size)
2018 return 0;
2020 if (tcp_is_sackfrto(tp))
2021 return 1;
2023 /* Avoid expensive walking of rexmit queue if possible */
2024 if (tp->retrans_out > 1)
2025 return 0;
2027 skb = tcp_write_queue_head(sk);
2028 if (tcp_skb_is_last(sk, skb))
2029 return 1;
2030 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2031 tcp_for_write_queue_from(skb, sk) {
2032 if (skb == tcp_send_head(sk))
2033 break;
2034 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2035 return 0;
2036 /* Short-circuit when first non-SACKed skb has been checked */
2037 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2038 break;
2040 return 1;
2043 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2044 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2045 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2046 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2047 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2048 * bits are handled if the Loss state is really to be entered (in
2049 * tcp_enter_frto_loss).
2051 * Do like tcp_enter_loss() would; when RTO expires the second time it
2052 * does:
2053 * "Reduce ssthresh if it has not yet been made inside this window."
2055 void tcp_enter_frto(struct sock *sk)
2057 const struct inet_connection_sock *icsk = inet_csk(sk);
2058 struct tcp_sock *tp = tcp_sk(sk);
2059 struct sk_buff *skb;
2061 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2062 tp->snd_una == tp->high_seq ||
2063 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2064 !icsk->icsk_retransmits)) {
2065 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2066 /* Our state is too optimistic in ssthresh() call because cwnd
2067 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2068 * recovery has not yet completed. Pattern would be this: RTO,
2069 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2070 * up here twice).
2071 * RFC4138 should be more specific on what to do, even though
2072 * RTO is quite unlikely to occur after the first Cumulative ACK
2073 * due to back-off and complexity of triggering events ...
2075 if (tp->frto_counter) {
2076 u32 stored_cwnd;
2077 stored_cwnd = tp->snd_cwnd;
2078 tp->snd_cwnd = 2;
2079 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2080 tp->snd_cwnd = stored_cwnd;
2081 } else {
2082 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2084 /* ... in theory, cong.control module could do "any tricks" in
2085 * ssthresh(), which means that ca_state, lost bits and lost_out
2086 * counter would have to be faked before the call occurs. We
2087 * consider that too expensive, unlikely and hacky, so modules
2088 * using these in ssthresh() must deal these incompatibility
2089 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2091 tcp_ca_event(sk, CA_EVENT_FRTO);
2094 tp->undo_marker = tp->snd_una;
2095 tp->undo_retrans = 0;
2097 skb = tcp_write_queue_head(sk);
2098 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2099 tp->undo_marker = 0;
2100 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2101 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2102 tp->retrans_out -= tcp_skb_pcount(skb);
2104 tcp_verify_left_out(tp);
2106 /* Too bad if TCP was application limited */
2107 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2109 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2110 * The last condition is necessary at least in tp->frto_counter case.
2112 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2113 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2114 after(tp->high_seq, tp->snd_una)) {
2115 tp->frto_highmark = tp->high_seq;
2116 } else {
2117 tp->frto_highmark = tp->snd_nxt;
2119 tcp_set_ca_state(sk, TCP_CA_Disorder);
2120 tp->high_seq = tp->snd_nxt;
2121 tp->frto_counter = 1;
2124 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2125 * which indicates that we should follow the traditional RTO recovery,
2126 * i.e. mark everything lost and do go-back-N retransmission.
2128 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2130 struct tcp_sock *tp = tcp_sk(sk);
2131 struct sk_buff *skb;
2133 tp->lost_out = 0;
2134 tp->retrans_out = 0;
2135 if (tcp_is_reno(tp))
2136 tcp_reset_reno_sack(tp);
2138 tcp_for_write_queue(skb, sk) {
2139 if (skb == tcp_send_head(sk))
2140 break;
2142 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2144 * Count the retransmission made on RTO correctly (only when
2145 * waiting for the first ACK and did not get it)...
2147 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2148 /* For some reason this R-bit might get cleared? */
2149 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2150 tp->retrans_out += tcp_skb_pcount(skb);
2151 /* ...enter this if branch just for the first segment */
2152 flag |= FLAG_DATA_ACKED;
2153 } else {
2154 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2155 tp->undo_marker = 0;
2156 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2159 /* Marking forward transmissions that were made after RTO lost
2160 * can cause unnecessary retransmissions in some scenarios,
2161 * SACK blocks will mitigate that in some but not in all cases.
2162 * We used to not mark them but it was causing break-ups with
2163 * receivers that do only in-order receival.
2165 * TODO: we could detect presence of such receiver and select
2166 * different behavior per flow.
2168 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2169 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2170 tp->lost_out += tcp_skb_pcount(skb);
2171 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2174 tcp_verify_left_out(tp);
2176 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2177 tp->snd_cwnd_cnt = 0;
2178 tp->snd_cwnd_stamp = tcp_time_stamp;
2179 tp->frto_counter = 0;
2180 tp->bytes_acked = 0;
2182 tp->reordering = min_t(unsigned int, tp->reordering,
2183 sysctl_tcp_reordering);
2184 tcp_set_ca_state(sk, TCP_CA_Loss);
2185 tp->high_seq = tp->snd_nxt;
2186 TCP_ECN_queue_cwr(tp);
2188 tcp_clear_all_retrans_hints(tp);
2191 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2193 tp->retrans_out = 0;
2194 tp->lost_out = 0;
2196 tp->undo_marker = 0;
2197 tp->undo_retrans = 0;
2200 void tcp_clear_retrans(struct tcp_sock *tp)
2202 tcp_clear_retrans_partial(tp);
2204 tp->fackets_out = 0;
2205 tp->sacked_out = 0;
2208 /* Enter Loss state. If "how" is not zero, forget all SACK information
2209 * and reset tags completely, otherwise preserve SACKs. If receiver
2210 * dropped its ofo queue, we will know this due to reneging detection.
2212 void tcp_enter_loss(struct sock *sk, int how)
2214 const struct inet_connection_sock *icsk = inet_csk(sk);
2215 struct tcp_sock *tp = tcp_sk(sk);
2216 struct sk_buff *skb;
2218 /* Reduce ssthresh if it has not yet been made inside this window. */
2219 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2220 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2221 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2222 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2223 tcp_ca_event(sk, CA_EVENT_LOSS);
2225 tp->snd_cwnd = 1;
2226 tp->snd_cwnd_cnt = 0;
2227 tp->snd_cwnd_stamp = tcp_time_stamp;
2229 tp->bytes_acked = 0;
2230 tcp_clear_retrans_partial(tp);
2232 if (tcp_is_reno(tp))
2233 tcp_reset_reno_sack(tp);
2235 if (!how) {
2236 /* Push undo marker, if it was plain RTO and nothing
2237 * was retransmitted. */
2238 tp->undo_marker = tp->snd_una;
2239 } else {
2240 tp->sacked_out = 0;
2241 tp->fackets_out = 0;
2243 tcp_clear_all_retrans_hints(tp);
2245 tcp_for_write_queue(skb, sk) {
2246 if (skb == tcp_send_head(sk))
2247 break;
2249 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2250 tp->undo_marker = 0;
2251 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2252 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2253 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2254 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2255 tp->lost_out += tcp_skb_pcount(skb);
2256 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2259 tcp_verify_left_out(tp);
2261 tp->reordering = min_t(unsigned int, tp->reordering,
2262 sysctl_tcp_reordering);
2263 tcp_set_ca_state(sk, TCP_CA_Loss);
2264 tp->high_seq = tp->snd_nxt;
2265 TCP_ECN_queue_cwr(tp);
2266 /* Abort F-RTO algorithm if one is in progress */
2267 tp->frto_counter = 0;
2270 /* If ACK arrived pointing to a remembered SACK, it means that our
2271 * remembered SACKs do not reflect real state of receiver i.e.
2272 * receiver _host_ is heavily congested (or buggy).
2274 * Do processing similar to RTO timeout.
2276 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2278 if (flag & FLAG_SACK_RENEGING) {
2279 struct inet_connection_sock *icsk = inet_csk(sk);
2280 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2282 tcp_enter_loss(sk, 1);
2283 icsk->icsk_retransmits++;
2284 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2285 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2286 icsk->icsk_rto, TCP_RTO_MAX);
2287 return 1;
2289 return 0;
2292 static inline int tcp_fackets_out(struct tcp_sock *tp)
2294 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2297 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2298 * counter when SACK is enabled (without SACK, sacked_out is used for
2299 * that purpose).
2301 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2302 * segments up to the highest received SACK block so far and holes in
2303 * between them.
2305 * With reordering, holes may still be in flight, so RFC3517 recovery
2306 * uses pure sacked_out (total number of SACKed segments) even though
2307 * it violates the RFC that uses duplicate ACKs, often these are equal
2308 * but when e.g. out-of-window ACKs or packet duplication occurs,
2309 * they differ. Since neither occurs due to loss, TCP should really
2310 * ignore them.
2312 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2314 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2317 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2319 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2322 static inline int tcp_head_timedout(struct sock *sk)
2324 struct tcp_sock *tp = tcp_sk(sk);
2326 return tp->packets_out &&
2327 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2330 /* Linux NewReno/SACK/FACK/ECN state machine.
2331 * --------------------------------------
2333 * "Open" Normal state, no dubious events, fast path.
2334 * "Disorder" In all the respects it is "Open",
2335 * but requires a bit more attention. It is entered when
2336 * we see some SACKs or dupacks. It is split of "Open"
2337 * mainly to move some processing from fast path to slow one.
2338 * "CWR" CWND was reduced due to some Congestion Notification event.
2339 * It can be ECN, ICMP source quench, local device congestion.
2340 * "Recovery" CWND was reduced, we are fast-retransmitting.
2341 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2343 * tcp_fastretrans_alert() is entered:
2344 * - each incoming ACK, if state is not "Open"
2345 * - when arrived ACK is unusual, namely:
2346 * * SACK
2347 * * Duplicate ACK.
2348 * * ECN ECE.
2350 * Counting packets in flight is pretty simple.
2352 * in_flight = packets_out - left_out + retrans_out
2354 * packets_out is SND.NXT-SND.UNA counted in packets.
2356 * retrans_out is number of retransmitted segments.
2358 * left_out is number of segments left network, but not ACKed yet.
2360 * left_out = sacked_out + lost_out
2362 * sacked_out: Packets, which arrived to receiver out of order
2363 * and hence not ACKed. With SACKs this number is simply
2364 * amount of SACKed data. Even without SACKs
2365 * it is easy to give pretty reliable estimate of this number,
2366 * counting duplicate ACKs.
2368 * lost_out: Packets lost by network. TCP has no explicit
2369 * "loss notification" feedback from network (for now).
2370 * It means that this number can be only _guessed_.
2371 * Actually, it is the heuristics to predict lossage that
2372 * distinguishes different algorithms.
2374 * F.e. after RTO, when all the queue is considered as lost,
2375 * lost_out = packets_out and in_flight = retrans_out.
2377 * Essentially, we have now two algorithms counting
2378 * lost packets.
2380 * FACK: It is the simplest heuristics. As soon as we decided
2381 * that something is lost, we decide that _all_ not SACKed
2382 * packets until the most forward SACK are lost. I.e.
2383 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2384 * It is absolutely correct estimate, if network does not reorder
2385 * packets. And it loses any connection to reality when reordering
2386 * takes place. We use FACK by default until reordering
2387 * is suspected on the path to this destination.
2389 * NewReno: when Recovery is entered, we assume that one segment
2390 * is lost (classic Reno). While we are in Recovery and
2391 * a partial ACK arrives, we assume that one more packet
2392 * is lost (NewReno). This heuristics are the same in NewReno
2393 * and SACK.
2395 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2396 * deflation etc. CWND is real congestion window, never inflated, changes
2397 * only according to classic VJ rules.
2399 * Really tricky (and requiring careful tuning) part of algorithm
2400 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2401 * The first determines the moment _when_ we should reduce CWND and,
2402 * hence, slow down forward transmission. In fact, it determines the moment
2403 * when we decide that hole is caused by loss, rather than by a reorder.
2405 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2406 * holes, caused by lost packets.
2408 * And the most logically complicated part of algorithm is undo
2409 * heuristics. We detect false retransmits due to both too early
2410 * fast retransmit (reordering) and underestimated RTO, analyzing
2411 * timestamps and D-SACKs. When we detect that some segments were
2412 * retransmitted by mistake and CWND reduction was wrong, we undo
2413 * window reduction and abort recovery phase. This logic is hidden
2414 * inside several functions named tcp_try_undo_<something>.
2417 /* This function decides, when we should leave Disordered state
2418 * and enter Recovery phase, reducing congestion window.
2420 * Main question: may we further continue forward transmission
2421 * with the same cwnd?
2423 static int tcp_time_to_recover(struct sock *sk)
2425 struct tcp_sock *tp = tcp_sk(sk);
2426 __u32 packets_out;
2428 /* Do not perform any recovery during F-RTO algorithm */
2429 if (tp->frto_counter)
2430 return 0;
2432 /* Trick#1: The loss is proven. */
2433 if (tp->lost_out)
2434 return 1;
2436 /* Not-A-Trick#2 : Classic rule... */
2437 if (tcp_dupack_heurestics(tp) > tp->reordering)
2438 return 1;
2440 /* Trick#3 : when we use RFC2988 timer restart, fast
2441 * retransmit can be triggered by timeout of queue head.
2443 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2444 return 1;
2446 /* Trick#4: It is still not OK... But will it be useful to delay
2447 * recovery more?
2449 packets_out = tp->packets_out;
2450 if (packets_out <= tp->reordering &&
2451 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2452 !tcp_may_send_now(sk)) {
2453 /* We have nothing to send. This connection is limited
2454 * either by receiver window or by application.
2456 return 1;
2459 return 0;
2462 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2463 * is against sacked "cnt", otherwise it's against facked "cnt"
2465 static void tcp_mark_head_lost(struct sock *sk, int packets)
2467 struct tcp_sock *tp = tcp_sk(sk);
2468 struct sk_buff *skb;
2469 int cnt, oldcnt;
2470 int err;
2471 unsigned int mss;
2473 WARN_ON(packets > tp->packets_out);
2474 if (tp->lost_skb_hint) {
2475 skb = tp->lost_skb_hint;
2476 cnt = tp->lost_cnt_hint;
2477 } else {
2478 skb = tcp_write_queue_head(sk);
2479 cnt = 0;
2482 tcp_for_write_queue_from(skb, sk) {
2483 if (skb == tcp_send_head(sk))
2484 break;
2485 /* TODO: do this better */
2486 /* this is not the most efficient way to do this... */
2487 tp->lost_skb_hint = skb;
2488 tp->lost_cnt_hint = cnt;
2490 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2491 break;
2493 oldcnt = cnt;
2494 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2495 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2496 cnt += tcp_skb_pcount(skb);
2498 if (cnt > packets) {
2499 if (tcp_is_sack(tp) || (oldcnt >= packets))
2500 break;
2502 mss = skb_shinfo(skb)->gso_size;
2503 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2504 if (err < 0)
2505 break;
2506 cnt = packets;
2509 tcp_skb_mark_lost(tp, skb);
2511 tcp_verify_left_out(tp);
2514 /* Account newly detected lost packet(s) */
2516 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2518 struct tcp_sock *tp = tcp_sk(sk);
2520 if (tcp_is_reno(tp)) {
2521 tcp_mark_head_lost(sk, 1);
2522 } else if (tcp_is_fack(tp)) {
2523 int lost = tp->fackets_out - tp->reordering;
2524 if (lost <= 0)
2525 lost = 1;
2526 tcp_mark_head_lost(sk, lost);
2527 } else {
2528 int sacked_upto = tp->sacked_out - tp->reordering;
2529 if (sacked_upto < fast_rexmit)
2530 sacked_upto = fast_rexmit;
2531 tcp_mark_head_lost(sk, sacked_upto);
2534 /* New heuristics: it is possible only after we switched
2535 * to restart timer each time when something is ACKed.
2536 * Hence, we can detect timed out packets during fast
2537 * retransmit without falling to slow start.
2539 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2540 struct sk_buff *skb;
2542 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2543 : tcp_write_queue_head(sk);
2545 tcp_for_write_queue_from(skb, sk) {
2546 if (skb == tcp_send_head(sk))
2547 break;
2548 if (!tcp_skb_timedout(sk, skb))
2549 break;
2551 tcp_skb_mark_lost(tp, skb);
2554 tp->scoreboard_skb_hint = skb;
2556 tcp_verify_left_out(tp);
2560 /* CWND moderation, preventing bursts due to too big ACKs
2561 * in dubious situations.
2563 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2565 tp->snd_cwnd = min(tp->snd_cwnd,
2566 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2567 tp->snd_cwnd_stamp = tcp_time_stamp;
2570 /* Lower bound on congestion window is slow start threshold
2571 * unless congestion avoidance choice decides to overide it.
2573 static inline u32 tcp_cwnd_min(const struct sock *sk)
2575 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2577 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2580 /* Decrease cwnd each second ack. */
2581 static void tcp_cwnd_down(struct sock *sk, int flag)
2583 struct tcp_sock *tp = tcp_sk(sk);
2584 int decr = tp->snd_cwnd_cnt + 1;
2586 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2587 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2588 tp->snd_cwnd_cnt = decr & 1;
2589 decr >>= 1;
2591 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2592 tp->snd_cwnd -= decr;
2594 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2595 tp->snd_cwnd_stamp = tcp_time_stamp;
2599 /* Nothing was retransmitted or returned timestamp is less
2600 * than timestamp of the first retransmission.
2602 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2604 return !tp->retrans_stamp ||
2605 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2606 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2609 /* Undo procedures. */
2611 #if FASTRETRANS_DEBUG > 1
2612 static void DBGUNDO(struct sock *sk, const char *msg)
2614 struct tcp_sock *tp = tcp_sk(sk);
2615 struct inet_sock *inet = inet_sk(sk);
2617 if (sk->sk_family == AF_INET) {
2618 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2619 msg,
2620 &inet->daddr, ntohs(inet->dport),
2621 tp->snd_cwnd, tcp_left_out(tp),
2622 tp->snd_ssthresh, tp->prior_ssthresh,
2623 tp->packets_out);
2625 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2626 else if (sk->sk_family == AF_INET6) {
2627 struct ipv6_pinfo *np = inet6_sk(sk);
2628 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2629 msg,
2630 &np->daddr, ntohs(inet->dport),
2631 tp->snd_cwnd, tcp_left_out(tp),
2632 tp->snd_ssthresh, tp->prior_ssthresh,
2633 tp->packets_out);
2635 #endif
2637 #else
2638 #define DBGUNDO(x...) do { } while (0)
2639 #endif
2641 static void tcp_undo_cwr(struct sock *sk, const int undo)
2643 struct tcp_sock *tp = tcp_sk(sk);
2645 if (tp->prior_ssthresh) {
2646 const struct inet_connection_sock *icsk = inet_csk(sk);
2648 if (icsk->icsk_ca_ops->undo_cwnd)
2649 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2650 else
2651 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2653 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2654 tp->snd_ssthresh = tp->prior_ssthresh;
2655 TCP_ECN_withdraw_cwr(tp);
2657 } else {
2658 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2660 tcp_moderate_cwnd(tp);
2661 tp->snd_cwnd_stamp = tcp_time_stamp;
2664 static inline int tcp_may_undo(struct tcp_sock *tp)
2666 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2669 /* People celebrate: "We love our President!" */
2670 static int tcp_try_undo_recovery(struct sock *sk)
2672 struct tcp_sock *tp = tcp_sk(sk);
2674 if (tcp_may_undo(tp)) {
2675 int mib_idx;
2677 /* Happy end! We did not retransmit anything
2678 * or our original transmission succeeded.
2680 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2681 tcp_undo_cwr(sk, 1);
2682 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2683 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2684 else
2685 mib_idx = LINUX_MIB_TCPFULLUNDO;
2687 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2688 tp->undo_marker = 0;
2690 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2691 /* Hold old state until something *above* high_seq
2692 * is ACKed. For Reno it is MUST to prevent false
2693 * fast retransmits (RFC2582). SACK TCP is safe. */
2694 tcp_moderate_cwnd(tp);
2695 return 1;
2697 tcp_set_ca_state(sk, TCP_CA_Open);
2698 return 0;
2701 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2702 static void tcp_try_undo_dsack(struct sock *sk)
2704 struct tcp_sock *tp = tcp_sk(sk);
2706 if (tp->undo_marker && !tp->undo_retrans) {
2707 DBGUNDO(sk, "D-SACK");
2708 tcp_undo_cwr(sk, 1);
2709 tp->undo_marker = 0;
2710 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2714 /* Undo during fast recovery after partial ACK. */
2716 static int tcp_try_undo_partial(struct sock *sk, int acked)
2718 struct tcp_sock *tp = tcp_sk(sk);
2719 /* Partial ACK arrived. Force Hoe's retransmit. */
2720 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2722 if (tcp_may_undo(tp)) {
2723 /* Plain luck! Hole if filled with delayed
2724 * packet, rather than with a retransmit.
2726 if (tp->retrans_out == 0)
2727 tp->retrans_stamp = 0;
2729 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2731 DBGUNDO(sk, "Hoe");
2732 tcp_undo_cwr(sk, 0);
2733 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2735 /* So... Do not make Hoe's retransmit yet.
2736 * If the first packet was delayed, the rest
2737 * ones are most probably delayed as well.
2739 failed = 0;
2741 return failed;
2744 /* Undo during loss recovery after partial ACK. */
2745 static int tcp_try_undo_loss(struct sock *sk)
2747 struct tcp_sock *tp = tcp_sk(sk);
2749 if (tcp_may_undo(tp)) {
2750 struct sk_buff *skb;
2751 tcp_for_write_queue(skb, sk) {
2752 if (skb == tcp_send_head(sk))
2753 break;
2754 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2757 tcp_clear_all_retrans_hints(tp);
2759 DBGUNDO(sk, "partial loss");
2760 tp->lost_out = 0;
2761 tcp_undo_cwr(sk, 1);
2762 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2763 inet_csk(sk)->icsk_retransmits = 0;
2764 tp->undo_marker = 0;
2765 if (tcp_is_sack(tp))
2766 tcp_set_ca_state(sk, TCP_CA_Open);
2767 return 1;
2769 return 0;
2772 static inline void tcp_complete_cwr(struct sock *sk)
2774 struct tcp_sock *tp = tcp_sk(sk);
2775 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2776 tp->snd_cwnd_stamp = tcp_time_stamp;
2777 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2780 static void tcp_try_keep_open(struct sock *sk)
2782 struct tcp_sock *tp = tcp_sk(sk);
2783 int state = TCP_CA_Open;
2785 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2786 state = TCP_CA_Disorder;
2788 if (inet_csk(sk)->icsk_ca_state != state) {
2789 tcp_set_ca_state(sk, state);
2790 tp->high_seq = tp->snd_nxt;
2794 static void tcp_try_to_open(struct sock *sk, int flag)
2796 struct tcp_sock *tp = tcp_sk(sk);
2798 tcp_verify_left_out(tp);
2800 if (!tp->frto_counter && tp->retrans_out == 0)
2801 tp->retrans_stamp = 0;
2803 if (flag & FLAG_ECE)
2804 tcp_enter_cwr(sk, 1);
2806 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2807 tcp_try_keep_open(sk);
2808 tcp_moderate_cwnd(tp);
2809 } else {
2810 tcp_cwnd_down(sk, flag);
2814 static void tcp_mtup_probe_failed(struct sock *sk)
2816 struct inet_connection_sock *icsk = inet_csk(sk);
2818 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2819 icsk->icsk_mtup.probe_size = 0;
2822 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2824 struct tcp_sock *tp = tcp_sk(sk);
2825 struct inet_connection_sock *icsk = inet_csk(sk);
2827 /* FIXME: breaks with very large cwnd */
2828 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2829 tp->snd_cwnd = tp->snd_cwnd *
2830 tcp_mss_to_mtu(sk, tp->mss_cache) /
2831 icsk->icsk_mtup.probe_size;
2832 tp->snd_cwnd_cnt = 0;
2833 tp->snd_cwnd_stamp = tcp_time_stamp;
2834 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2836 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2837 icsk->icsk_mtup.probe_size = 0;
2838 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2841 /* Do a simple retransmit without using the backoff mechanisms in
2842 * tcp_timer. This is used for path mtu discovery.
2843 * The socket is already locked here.
2845 void tcp_simple_retransmit(struct sock *sk)
2847 const struct inet_connection_sock *icsk = inet_csk(sk);
2848 struct tcp_sock *tp = tcp_sk(sk);
2849 struct sk_buff *skb;
2850 unsigned int mss = tcp_current_mss(sk, 0);
2851 u32 prior_lost = tp->lost_out;
2853 tcp_for_write_queue(skb, sk) {
2854 if (skb == tcp_send_head(sk))
2855 break;
2856 if (skb->len > mss &&
2857 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2858 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2859 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2860 tp->retrans_out -= tcp_skb_pcount(skb);
2862 tcp_skb_mark_lost_uncond_verify(tp, skb);
2866 tcp_clear_retrans_hints_partial(tp);
2868 if (prior_lost == tp->lost_out)
2869 return;
2871 if (tcp_is_reno(tp))
2872 tcp_limit_reno_sacked(tp);
2874 tcp_verify_left_out(tp);
2876 /* Don't muck with the congestion window here.
2877 * Reason is that we do not increase amount of _data_
2878 * in network, but units changed and effective
2879 * cwnd/ssthresh really reduced now.
2881 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2882 tp->high_seq = tp->snd_nxt;
2883 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2884 tp->prior_ssthresh = 0;
2885 tp->undo_marker = 0;
2886 tcp_set_ca_state(sk, TCP_CA_Loss);
2888 tcp_xmit_retransmit_queue(sk);
2891 /* Process an event, which can update packets-in-flight not trivially.
2892 * Main goal of this function is to calculate new estimate for left_out,
2893 * taking into account both packets sitting in receiver's buffer and
2894 * packets lost by network.
2896 * Besides that it does CWND reduction, when packet loss is detected
2897 * and changes state of machine.
2899 * It does _not_ decide what to send, it is made in function
2900 * tcp_xmit_retransmit_queue().
2902 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2904 struct inet_connection_sock *icsk = inet_csk(sk);
2905 struct tcp_sock *tp = tcp_sk(sk);
2906 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2907 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2908 (tcp_fackets_out(tp) > tp->reordering));
2909 int fast_rexmit = 0, mib_idx;
2911 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2912 tp->sacked_out = 0;
2913 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2914 tp->fackets_out = 0;
2916 /* Now state machine starts.
2917 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2918 if (flag & FLAG_ECE)
2919 tp->prior_ssthresh = 0;
2921 /* B. In all the states check for reneging SACKs. */
2922 if (tcp_check_sack_reneging(sk, flag))
2923 return;
2925 /* C. Process data loss notification, provided it is valid. */
2926 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2927 before(tp->snd_una, tp->high_seq) &&
2928 icsk->icsk_ca_state != TCP_CA_Open &&
2929 tp->fackets_out > tp->reordering) {
2930 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2931 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2934 /* D. Check consistency of the current state. */
2935 tcp_verify_left_out(tp);
2937 /* E. Check state exit conditions. State can be terminated
2938 * when high_seq is ACKed. */
2939 if (icsk->icsk_ca_state == TCP_CA_Open) {
2940 WARN_ON(tp->retrans_out != 0);
2941 tp->retrans_stamp = 0;
2942 } else if (!before(tp->snd_una, tp->high_seq)) {
2943 switch (icsk->icsk_ca_state) {
2944 case TCP_CA_Loss:
2945 icsk->icsk_retransmits = 0;
2946 if (tcp_try_undo_recovery(sk))
2947 return;
2948 break;
2950 case TCP_CA_CWR:
2951 /* CWR is to be held something *above* high_seq
2952 * is ACKed for CWR bit to reach receiver. */
2953 if (tp->snd_una != tp->high_seq) {
2954 tcp_complete_cwr(sk);
2955 tcp_set_ca_state(sk, TCP_CA_Open);
2957 break;
2959 case TCP_CA_Disorder:
2960 tcp_try_undo_dsack(sk);
2961 if (!tp->undo_marker ||
2962 /* For SACK case do not Open to allow to undo
2963 * catching for all duplicate ACKs. */
2964 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2965 tp->undo_marker = 0;
2966 tcp_set_ca_state(sk, TCP_CA_Open);
2968 break;
2970 case TCP_CA_Recovery:
2971 if (tcp_is_reno(tp))
2972 tcp_reset_reno_sack(tp);
2973 if (tcp_try_undo_recovery(sk))
2974 return;
2975 tcp_complete_cwr(sk);
2976 break;
2980 /* F. Process state. */
2981 switch (icsk->icsk_ca_state) {
2982 case TCP_CA_Recovery:
2983 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2984 if (tcp_is_reno(tp) && is_dupack)
2985 tcp_add_reno_sack(sk);
2986 } else
2987 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2988 break;
2989 case TCP_CA_Loss:
2990 if (flag & FLAG_DATA_ACKED)
2991 icsk->icsk_retransmits = 0;
2992 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2993 tcp_reset_reno_sack(tp);
2994 if (!tcp_try_undo_loss(sk)) {
2995 tcp_moderate_cwnd(tp);
2996 tcp_xmit_retransmit_queue(sk);
2997 return;
2999 if (icsk->icsk_ca_state != TCP_CA_Open)
3000 return;
3001 /* Loss is undone; fall through to processing in Open state. */
3002 default:
3003 if (tcp_is_reno(tp)) {
3004 if (flag & FLAG_SND_UNA_ADVANCED)
3005 tcp_reset_reno_sack(tp);
3006 if (is_dupack)
3007 tcp_add_reno_sack(sk);
3010 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3011 tcp_try_undo_dsack(sk);
3013 if (!tcp_time_to_recover(sk)) {
3014 tcp_try_to_open(sk, flag);
3015 return;
3018 /* MTU probe failure: don't reduce cwnd */
3019 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3020 icsk->icsk_mtup.probe_size &&
3021 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3022 tcp_mtup_probe_failed(sk);
3023 /* Restores the reduction we did in tcp_mtup_probe() */
3024 tp->snd_cwnd++;
3025 tcp_simple_retransmit(sk);
3026 return;
3029 /* Otherwise enter Recovery state */
3031 if (tcp_is_reno(tp))
3032 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3033 else
3034 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3036 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3038 tp->high_seq = tp->snd_nxt;
3039 tp->prior_ssthresh = 0;
3040 tp->undo_marker = tp->snd_una;
3041 tp->undo_retrans = tp->retrans_out;
3043 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3044 if (!(flag & FLAG_ECE))
3045 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3046 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3047 TCP_ECN_queue_cwr(tp);
3050 tp->bytes_acked = 0;
3051 tp->snd_cwnd_cnt = 0;
3052 tcp_set_ca_state(sk, TCP_CA_Recovery);
3053 fast_rexmit = 1;
3056 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3057 tcp_update_scoreboard(sk, fast_rexmit);
3058 tcp_cwnd_down(sk, flag);
3059 tcp_xmit_retransmit_queue(sk);
3062 /* Read draft-ietf-tcplw-high-performance before mucking
3063 * with this code. (Supersedes RFC1323)
3065 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3067 /* RTTM Rule: A TSecr value received in a segment is used to
3068 * update the averaged RTT measurement only if the segment
3069 * acknowledges some new data, i.e., only if it advances the
3070 * left edge of the send window.
3072 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3073 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3075 * Changed: reset backoff as soon as we see the first valid sample.
3076 * If we do not, we get strongly overestimated rto. With timestamps
3077 * samples are accepted even from very old segments: f.e., when rtt=1
3078 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3079 * answer arrives rto becomes 120 seconds! If at least one of segments
3080 * in window is lost... Voila. --ANK (010210)
3082 struct tcp_sock *tp = tcp_sk(sk);
3083 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
3084 tcp_rtt_estimator(sk, seq_rtt);
3085 tcp_set_rto(sk);
3086 inet_csk(sk)->icsk_backoff = 0;
3087 tcp_bound_rto(sk);
3090 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3092 /* We don't have a timestamp. Can only use
3093 * packets that are not retransmitted to determine
3094 * rtt estimates. Also, we must not reset the
3095 * backoff for rto until we get a non-retransmitted
3096 * packet. This allows us to deal with a situation
3097 * where the network delay has increased suddenly.
3098 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3101 if (flag & FLAG_RETRANS_DATA_ACKED)
3102 return;
3104 tcp_rtt_estimator(sk, seq_rtt);
3105 tcp_set_rto(sk);
3106 inet_csk(sk)->icsk_backoff = 0;
3107 tcp_bound_rto(sk);
3110 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3111 const s32 seq_rtt)
3113 const struct tcp_sock *tp = tcp_sk(sk);
3114 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3115 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3116 tcp_ack_saw_tstamp(sk, flag);
3117 else if (seq_rtt >= 0)
3118 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3121 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3123 const struct inet_connection_sock *icsk = inet_csk(sk);
3124 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3125 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3128 /* Restart timer after forward progress on connection.
3129 * RFC2988 recommends to restart timer to now+rto.
3131 static void tcp_rearm_rto(struct sock *sk)
3133 struct tcp_sock *tp = tcp_sk(sk);
3135 if (!tp->packets_out) {
3136 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3137 } else {
3138 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3139 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3143 /* If we get here, the whole TSO packet has not been acked. */
3144 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3146 struct tcp_sock *tp = tcp_sk(sk);
3147 u32 packets_acked;
3149 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3151 packets_acked = tcp_skb_pcount(skb);
3152 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3153 return 0;
3154 packets_acked -= tcp_skb_pcount(skb);
3156 if (packets_acked) {
3157 BUG_ON(tcp_skb_pcount(skb) == 0);
3158 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3161 return packets_acked;
3164 /* Remove acknowledged frames from the retransmission queue. If our packet
3165 * is before the ack sequence we can discard it as it's confirmed to have
3166 * arrived at the other end.
3168 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3169 u32 prior_snd_una)
3171 struct tcp_sock *tp = tcp_sk(sk);
3172 const struct inet_connection_sock *icsk = inet_csk(sk);
3173 struct sk_buff *skb;
3174 u32 now = tcp_time_stamp;
3175 int fully_acked = 1;
3176 int flag = 0;
3177 u32 pkts_acked = 0;
3178 u32 reord = tp->packets_out;
3179 u32 prior_sacked = tp->sacked_out;
3180 s32 seq_rtt = -1;
3181 s32 ca_seq_rtt = -1;
3182 ktime_t last_ackt = net_invalid_timestamp();
3184 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3185 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3186 u32 end_seq;
3187 u32 acked_pcount;
3188 u8 sacked = scb->sacked;
3190 /* Determine how many packets and what bytes were acked, tso and else */
3191 if (after(scb->end_seq, tp->snd_una)) {
3192 if (tcp_skb_pcount(skb) == 1 ||
3193 !after(tp->snd_una, scb->seq))
3194 break;
3196 acked_pcount = tcp_tso_acked(sk, skb);
3197 if (!acked_pcount)
3198 break;
3200 fully_acked = 0;
3201 end_seq = tp->snd_una;
3202 } else {
3203 acked_pcount = tcp_skb_pcount(skb);
3204 end_seq = scb->end_seq;
3207 /* MTU probing checks */
3208 if (fully_acked && icsk->icsk_mtup.probe_size &&
3209 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
3210 tcp_mtup_probe_success(sk, skb);
3213 if (sacked & TCPCB_RETRANS) {
3214 if (sacked & TCPCB_SACKED_RETRANS)
3215 tp->retrans_out -= acked_pcount;
3216 flag |= FLAG_RETRANS_DATA_ACKED;
3217 ca_seq_rtt = -1;
3218 seq_rtt = -1;
3219 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3220 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3221 } else {
3222 ca_seq_rtt = now - scb->when;
3223 last_ackt = skb->tstamp;
3224 if (seq_rtt < 0) {
3225 seq_rtt = ca_seq_rtt;
3227 if (!(sacked & TCPCB_SACKED_ACKED))
3228 reord = min(pkts_acked, reord);
3231 if (sacked & TCPCB_SACKED_ACKED)
3232 tp->sacked_out -= acked_pcount;
3233 if (sacked & TCPCB_LOST)
3234 tp->lost_out -= acked_pcount;
3236 tp->packets_out -= acked_pcount;
3237 pkts_acked += acked_pcount;
3239 /* Initial outgoing SYN's get put onto the write_queue
3240 * just like anything else we transmit. It is not
3241 * true data, and if we misinform our callers that
3242 * this ACK acks real data, we will erroneously exit
3243 * connection startup slow start one packet too
3244 * quickly. This is severely frowned upon behavior.
3246 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3247 flag |= FLAG_DATA_ACKED;
3248 } else {
3249 flag |= FLAG_SYN_ACKED;
3250 tp->retrans_stamp = 0;
3253 if (!fully_acked)
3254 break;
3256 tcp_unlink_write_queue(skb, sk);
3257 sk_wmem_free_skb(sk, skb);
3258 tp->scoreboard_skb_hint = NULL;
3259 if (skb == tp->retransmit_skb_hint)
3260 tp->retransmit_skb_hint = NULL;
3261 if (skb == tp->lost_skb_hint)
3262 tp->lost_skb_hint = NULL;
3265 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3266 tp->snd_up = tp->snd_una;
3268 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3269 flag |= FLAG_SACK_RENEGING;
3271 if (flag & FLAG_ACKED) {
3272 const struct tcp_congestion_ops *ca_ops
3273 = inet_csk(sk)->icsk_ca_ops;
3275 tcp_ack_update_rtt(sk, flag, seq_rtt);
3276 tcp_rearm_rto(sk);
3278 if (tcp_is_reno(tp)) {
3279 tcp_remove_reno_sacks(sk, pkts_acked);
3280 } else {
3281 /* Non-retransmitted hole got filled? That's reordering */
3282 if (reord < prior_fackets)
3283 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3285 /* No need to care for underflows here because
3286 * the lost_skb_hint gets NULLed if we're past it
3287 * (or something non-trivial happened)
3289 if (tcp_is_fack(tp))
3290 tp->lost_cnt_hint -= pkts_acked;
3291 else
3292 tp->lost_cnt_hint -= prior_sacked - tp->sacked_out;
3295 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3297 if (ca_ops->pkts_acked) {
3298 s32 rtt_us = -1;
3300 /* Is the ACK triggering packet unambiguous? */
3301 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3302 /* High resolution needed and available? */
3303 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3304 !ktime_equal(last_ackt,
3305 net_invalid_timestamp()))
3306 rtt_us = ktime_us_delta(ktime_get_real(),
3307 last_ackt);
3308 else if (ca_seq_rtt > 0)
3309 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3312 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3316 #if FASTRETRANS_DEBUG > 0
3317 WARN_ON((int)tp->sacked_out < 0);
3318 WARN_ON((int)tp->lost_out < 0);
3319 WARN_ON((int)tp->retrans_out < 0);
3320 if (!tp->packets_out && tcp_is_sack(tp)) {
3321 icsk = inet_csk(sk);
3322 if (tp->lost_out) {
3323 printk(KERN_DEBUG "Leak l=%u %d\n",
3324 tp->lost_out, icsk->icsk_ca_state);
3325 tp->lost_out = 0;
3327 if (tp->sacked_out) {
3328 printk(KERN_DEBUG "Leak s=%u %d\n",
3329 tp->sacked_out, icsk->icsk_ca_state);
3330 tp->sacked_out = 0;
3332 if (tp->retrans_out) {
3333 printk(KERN_DEBUG "Leak r=%u %d\n",
3334 tp->retrans_out, icsk->icsk_ca_state);
3335 tp->retrans_out = 0;
3338 #endif
3339 return flag;
3342 static void tcp_ack_probe(struct sock *sk)
3344 const struct tcp_sock *tp = tcp_sk(sk);
3345 struct inet_connection_sock *icsk = inet_csk(sk);
3347 /* Was it a usable window open? */
3349 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3350 icsk->icsk_backoff = 0;
3351 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3352 /* Socket must be waked up by subsequent tcp_data_snd_check().
3353 * This function is not for random using!
3355 } else {
3356 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3357 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3358 TCP_RTO_MAX);
3362 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3364 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3365 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3368 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3370 const struct tcp_sock *tp = tcp_sk(sk);
3371 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3372 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3375 /* Check that window update is acceptable.
3376 * The function assumes that snd_una<=ack<=snd_next.
3378 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3379 const u32 ack, const u32 ack_seq,
3380 const u32 nwin)
3382 return (after(ack, tp->snd_una) ||
3383 after(ack_seq, tp->snd_wl1) ||
3384 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3387 /* Update our send window.
3389 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3390 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3392 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3393 u32 ack_seq)
3395 struct tcp_sock *tp = tcp_sk(sk);
3396 int flag = 0;
3397 u32 nwin = ntohs(tcp_hdr(skb)->window);
3399 if (likely(!tcp_hdr(skb)->syn))
3400 nwin <<= tp->rx_opt.snd_wscale;
3402 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3403 flag |= FLAG_WIN_UPDATE;
3404 tcp_update_wl(tp, ack, ack_seq);
3406 if (tp->snd_wnd != nwin) {
3407 tp->snd_wnd = nwin;
3409 /* Note, it is the only place, where
3410 * fast path is recovered for sending TCP.
3412 tp->pred_flags = 0;
3413 tcp_fast_path_check(sk);
3415 if (nwin > tp->max_window) {
3416 tp->max_window = nwin;
3417 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3422 tp->snd_una = ack;
3424 return flag;
3427 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3428 * continue in congestion avoidance.
3430 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3432 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3433 tp->snd_cwnd_cnt = 0;
3434 tp->bytes_acked = 0;
3435 TCP_ECN_queue_cwr(tp);
3436 tcp_moderate_cwnd(tp);
3439 /* A conservative spurious RTO response algorithm: reduce cwnd using
3440 * rate halving and continue in congestion avoidance.
3442 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3444 tcp_enter_cwr(sk, 0);
3447 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3449 if (flag & FLAG_ECE)
3450 tcp_ratehalving_spur_to_response(sk);
3451 else
3452 tcp_undo_cwr(sk, 1);
3455 /* F-RTO spurious RTO detection algorithm (RFC4138)
3457 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3458 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3459 * window (but not to or beyond highest sequence sent before RTO):
3460 * On First ACK, send two new segments out.
3461 * On Second ACK, RTO was likely spurious. Do spurious response (response
3462 * algorithm is not part of the F-RTO detection algorithm
3463 * given in RFC4138 but can be selected separately).
3464 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3465 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3466 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3467 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3469 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3470 * original window even after we transmit two new data segments.
3472 * SACK version:
3473 * on first step, wait until first cumulative ACK arrives, then move to
3474 * the second step. In second step, the next ACK decides.
3476 * F-RTO is implemented (mainly) in four functions:
3477 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3478 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3479 * called when tcp_use_frto() showed green light
3480 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3481 * - tcp_enter_frto_loss() is called if there is not enough evidence
3482 * to prove that the RTO is indeed spurious. It transfers the control
3483 * from F-RTO to the conventional RTO recovery
3485 static int tcp_process_frto(struct sock *sk, int flag)
3487 struct tcp_sock *tp = tcp_sk(sk);
3489 tcp_verify_left_out(tp);
3491 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3492 if (flag & FLAG_DATA_ACKED)
3493 inet_csk(sk)->icsk_retransmits = 0;
3495 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3496 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3497 tp->undo_marker = 0;
3499 if (!before(tp->snd_una, tp->frto_highmark)) {
3500 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3501 return 1;
3504 if (!tcp_is_sackfrto(tp)) {
3505 /* RFC4138 shortcoming in step 2; should also have case c):
3506 * ACK isn't duplicate nor advances window, e.g., opposite dir
3507 * data, winupdate
3509 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3510 return 1;
3512 if (!(flag & FLAG_DATA_ACKED)) {
3513 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3514 flag);
3515 return 1;
3517 } else {
3518 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3519 /* Prevent sending of new data. */
3520 tp->snd_cwnd = min(tp->snd_cwnd,
3521 tcp_packets_in_flight(tp));
3522 return 1;
3525 if ((tp->frto_counter >= 2) &&
3526 (!(flag & FLAG_FORWARD_PROGRESS) ||
3527 ((flag & FLAG_DATA_SACKED) &&
3528 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3529 /* RFC4138 shortcoming (see comment above) */
3530 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3531 (flag & FLAG_NOT_DUP))
3532 return 1;
3534 tcp_enter_frto_loss(sk, 3, flag);
3535 return 1;
3539 if (tp->frto_counter == 1) {
3540 /* tcp_may_send_now needs to see updated state */
3541 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3542 tp->frto_counter = 2;
3544 if (!tcp_may_send_now(sk))
3545 tcp_enter_frto_loss(sk, 2, flag);
3547 return 1;
3548 } else {
3549 switch (sysctl_tcp_frto_response) {
3550 case 2:
3551 tcp_undo_spur_to_response(sk, flag);
3552 break;
3553 case 1:
3554 tcp_conservative_spur_to_response(tp);
3555 break;
3556 default:
3557 tcp_ratehalving_spur_to_response(sk);
3558 break;
3560 tp->frto_counter = 0;
3561 tp->undo_marker = 0;
3562 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3564 return 0;
3567 /* This routine deals with incoming acks, but not outgoing ones. */
3568 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3570 struct inet_connection_sock *icsk = inet_csk(sk);
3571 struct tcp_sock *tp = tcp_sk(sk);
3572 u32 prior_snd_una = tp->snd_una;
3573 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3574 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3575 u32 prior_in_flight;
3576 u32 prior_fackets;
3577 int prior_packets;
3578 int frto_cwnd = 0;
3580 /* If the ack is newer than sent or older than previous acks
3581 * then we can probably ignore it.
3583 if (after(ack, tp->snd_nxt))
3584 goto uninteresting_ack;
3586 if (before(ack, prior_snd_una))
3587 goto old_ack;
3589 if (after(ack, prior_snd_una))
3590 flag |= FLAG_SND_UNA_ADVANCED;
3592 if (sysctl_tcp_abc) {
3593 if (icsk->icsk_ca_state < TCP_CA_CWR)
3594 tp->bytes_acked += ack - prior_snd_una;
3595 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3596 /* we assume just one segment left network */
3597 tp->bytes_acked += min(ack - prior_snd_una,
3598 tp->mss_cache);
3601 prior_fackets = tp->fackets_out;
3602 prior_in_flight = tcp_packets_in_flight(tp);
3604 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3605 /* Window is constant, pure forward advance.
3606 * No more checks are required.
3607 * Note, we use the fact that SND.UNA>=SND.WL2.
3609 tcp_update_wl(tp, ack, ack_seq);
3610 tp->snd_una = ack;
3611 flag |= FLAG_WIN_UPDATE;
3613 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3615 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3616 } else {
3617 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3618 flag |= FLAG_DATA;
3619 else
3620 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3622 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3624 if (TCP_SKB_CB(skb)->sacked)
3625 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3627 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3628 flag |= FLAG_ECE;
3630 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3633 /* We passed data and got it acked, remove any soft error
3634 * log. Something worked...
3636 sk->sk_err_soft = 0;
3637 icsk->icsk_probes_out = 0;
3638 tp->rcv_tstamp = tcp_time_stamp;
3639 prior_packets = tp->packets_out;
3640 if (!prior_packets)
3641 goto no_queue;
3643 /* See if we can take anything off of the retransmit queue. */
3644 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3646 if (tp->frto_counter)
3647 frto_cwnd = tcp_process_frto(sk, flag);
3648 /* Guarantee sacktag reordering detection against wrap-arounds */
3649 if (before(tp->frto_highmark, tp->snd_una))
3650 tp->frto_highmark = 0;
3652 if (tcp_ack_is_dubious(sk, flag)) {
3653 /* Advance CWND, if state allows this. */
3654 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3655 tcp_may_raise_cwnd(sk, flag))
3656 tcp_cong_avoid(sk, ack, prior_in_flight);
3657 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3658 flag);
3659 } else {
3660 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3661 tcp_cong_avoid(sk, ack, prior_in_flight);
3664 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3665 dst_confirm(sk->sk_dst_cache);
3667 return 1;
3669 no_queue:
3670 /* If this ack opens up a zero window, clear backoff. It was
3671 * being used to time the probes, and is probably far higher than
3672 * it needs to be for normal retransmission.
3674 if (tcp_send_head(sk))
3675 tcp_ack_probe(sk);
3676 return 1;
3678 old_ack:
3679 if (TCP_SKB_CB(skb)->sacked) {
3680 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3681 if (icsk->icsk_ca_state == TCP_CA_Open)
3682 tcp_try_keep_open(sk);
3685 uninteresting_ack:
3686 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3687 return 0;
3690 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3691 * But, this can also be called on packets in the established flow when
3692 * the fast version below fails.
3694 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3695 int estab)
3697 unsigned char *ptr;
3698 struct tcphdr *th = tcp_hdr(skb);
3699 int length = (th->doff * 4) - sizeof(struct tcphdr);
3701 ptr = (unsigned char *)(th + 1);
3702 opt_rx->saw_tstamp = 0;
3704 while (length > 0) {
3705 int opcode = *ptr++;
3706 int opsize;
3708 switch (opcode) {
3709 case TCPOPT_EOL:
3710 return;
3711 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3712 length--;
3713 continue;
3714 default:
3715 opsize = *ptr++;
3716 if (opsize < 2) /* "silly options" */
3717 return;
3718 if (opsize > length)
3719 return; /* don't parse partial options */
3720 switch (opcode) {
3721 case TCPOPT_MSS:
3722 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3723 u16 in_mss = get_unaligned_be16(ptr);
3724 if (in_mss) {
3725 if (opt_rx->user_mss &&
3726 opt_rx->user_mss < in_mss)
3727 in_mss = opt_rx->user_mss;
3728 opt_rx->mss_clamp = in_mss;
3731 break;
3732 case TCPOPT_WINDOW:
3733 if (opsize == TCPOLEN_WINDOW && th->syn &&
3734 !estab && sysctl_tcp_window_scaling) {
3735 __u8 snd_wscale = *(__u8 *)ptr;
3736 opt_rx->wscale_ok = 1;
3737 if (snd_wscale > 14) {
3738 if (net_ratelimit())
3739 printk(KERN_INFO "tcp_parse_options: Illegal window "
3740 "scaling value %d >14 received.\n",
3741 snd_wscale);
3742 snd_wscale = 14;
3744 opt_rx->snd_wscale = snd_wscale;
3746 break;
3747 case TCPOPT_TIMESTAMP:
3748 if ((opsize == TCPOLEN_TIMESTAMP) &&
3749 ((estab && opt_rx->tstamp_ok) ||
3750 (!estab && sysctl_tcp_timestamps))) {
3751 opt_rx->saw_tstamp = 1;
3752 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3753 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3755 break;
3756 case TCPOPT_SACK_PERM:
3757 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3758 !estab && sysctl_tcp_sack) {
3759 opt_rx->sack_ok = 1;
3760 tcp_sack_reset(opt_rx);
3762 break;
3764 case TCPOPT_SACK:
3765 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3766 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3767 opt_rx->sack_ok) {
3768 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3770 break;
3771 #ifdef CONFIG_TCP_MD5SIG
3772 case TCPOPT_MD5SIG:
3774 * The MD5 Hash has already been
3775 * checked (see tcp_v{4,6}_do_rcv()).
3777 break;
3778 #endif
3781 ptr += opsize-2;
3782 length -= opsize;
3787 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3789 __be32 *ptr = (__be32 *)(th + 1);
3791 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3792 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3793 tp->rx_opt.saw_tstamp = 1;
3794 ++ptr;
3795 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3796 ++ptr;
3797 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3798 return 1;
3800 return 0;
3803 /* Fast parse options. This hopes to only see timestamps.
3804 * If it is wrong it falls back on tcp_parse_options().
3806 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3807 struct tcp_sock *tp)
3809 if (th->doff == sizeof(struct tcphdr) >> 2) {
3810 tp->rx_opt.saw_tstamp = 0;
3811 return 0;
3812 } else if (tp->rx_opt.tstamp_ok &&
3813 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3814 if (tcp_parse_aligned_timestamp(tp, th))
3815 return 1;
3817 tcp_parse_options(skb, &tp->rx_opt, 1);
3818 return 1;
3821 #ifdef CONFIG_TCP_MD5SIG
3823 * Parse MD5 Signature option
3825 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3827 int length = (th->doff << 2) - sizeof (*th);
3828 u8 *ptr = (u8*)(th + 1);
3830 /* If the TCP option is too short, we can short cut */
3831 if (length < TCPOLEN_MD5SIG)
3832 return NULL;
3834 while (length > 0) {
3835 int opcode = *ptr++;
3836 int opsize;
3838 switch(opcode) {
3839 case TCPOPT_EOL:
3840 return NULL;
3841 case TCPOPT_NOP:
3842 length--;
3843 continue;
3844 default:
3845 opsize = *ptr++;
3846 if (opsize < 2 || opsize > length)
3847 return NULL;
3848 if (opcode == TCPOPT_MD5SIG)
3849 return ptr;
3851 ptr += opsize - 2;
3852 length -= opsize;
3854 return NULL;
3856 #endif
3858 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3860 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3861 tp->rx_opt.ts_recent_stamp = get_seconds();
3864 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3866 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3867 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3868 * extra check below makes sure this can only happen
3869 * for pure ACK frames. -DaveM
3871 * Not only, also it occurs for expired timestamps.
3874 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3875 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3876 tcp_store_ts_recent(tp);
3880 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3882 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3883 * it can pass through stack. So, the following predicate verifies that
3884 * this segment is not used for anything but congestion avoidance or
3885 * fast retransmit. Moreover, we even are able to eliminate most of such
3886 * second order effects, if we apply some small "replay" window (~RTO)
3887 * to timestamp space.
3889 * All these measures still do not guarantee that we reject wrapped ACKs
3890 * on networks with high bandwidth, when sequence space is recycled fastly,
3891 * but it guarantees that such events will be very rare and do not affect
3892 * connection seriously. This doesn't look nice, but alas, PAWS is really
3893 * buggy extension.
3895 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3896 * states that events when retransmit arrives after original data are rare.
3897 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3898 * the biggest problem on large power networks even with minor reordering.
3899 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3900 * up to bandwidth of 18Gigabit/sec. 8) ]
3903 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3905 struct tcp_sock *tp = tcp_sk(sk);
3906 struct tcphdr *th = tcp_hdr(skb);
3907 u32 seq = TCP_SKB_CB(skb)->seq;
3908 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3910 return (/* 1. Pure ACK with correct sequence number. */
3911 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3913 /* 2. ... and duplicate ACK. */
3914 ack == tp->snd_una &&
3916 /* 3. ... and does not update window. */
3917 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3919 /* 4. ... and sits in replay window. */
3920 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3923 static inline int tcp_paws_discard(const struct sock *sk,
3924 const struct sk_buff *skb)
3926 const struct tcp_sock *tp = tcp_sk(sk);
3927 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3928 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3929 !tcp_disordered_ack(sk, skb));
3932 /* Check segment sequence number for validity.
3934 * Segment controls are considered valid, if the segment
3935 * fits to the window after truncation to the window. Acceptability
3936 * of data (and SYN, FIN, of course) is checked separately.
3937 * See tcp_data_queue(), for example.
3939 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3940 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3941 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3942 * (borrowed from freebsd)
3945 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3947 return !before(end_seq, tp->rcv_wup) &&
3948 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3951 /* When we get a reset we do this. */
3952 static void tcp_reset(struct sock *sk)
3954 /* We want the right error as BSD sees it (and indeed as we do). */
3955 switch (sk->sk_state) {
3956 case TCP_SYN_SENT:
3957 sk->sk_err = ECONNREFUSED;
3958 break;
3959 case TCP_CLOSE_WAIT:
3960 sk->sk_err = EPIPE;
3961 break;
3962 case TCP_CLOSE:
3963 return;
3964 default:
3965 sk->sk_err = ECONNRESET;
3968 if (!sock_flag(sk, SOCK_DEAD))
3969 sk->sk_error_report(sk);
3971 tcp_done(sk);
3975 * Process the FIN bit. This now behaves as it is supposed to work
3976 * and the FIN takes effect when it is validly part of sequence
3977 * space. Not before when we get holes.
3979 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3980 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3981 * TIME-WAIT)
3983 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3984 * close and we go into CLOSING (and later onto TIME-WAIT)
3986 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3988 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3990 struct tcp_sock *tp = tcp_sk(sk);
3992 inet_csk_schedule_ack(sk);
3994 sk->sk_shutdown |= RCV_SHUTDOWN;
3995 sock_set_flag(sk, SOCK_DONE);
3997 switch (sk->sk_state) {
3998 case TCP_SYN_RECV:
3999 case TCP_ESTABLISHED:
4000 /* Move to CLOSE_WAIT */
4001 tcp_set_state(sk, TCP_CLOSE_WAIT);
4002 inet_csk(sk)->icsk_ack.pingpong = 1;
4003 break;
4005 case TCP_CLOSE_WAIT:
4006 case TCP_CLOSING:
4007 /* Received a retransmission of the FIN, do
4008 * nothing.
4010 break;
4011 case TCP_LAST_ACK:
4012 /* RFC793: Remain in the LAST-ACK state. */
4013 break;
4015 case TCP_FIN_WAIT1:
4016 /* This case occurs when a simultaneous close
4017 * happens, we must ack the received FIN and
4018 * enter the CLOSING state.
4020 tcp_send_ack(sk);
4021 tcp_set_state(sk, TCP_CLOSING);
4022 break;
4023 case TCP_FIN_WAIT2:
4024 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4025 tcp_send_ack(sk);
4026 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4027 break;
4028 default:
4029 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4030 * cases we should never reach this piece of code.
4032 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4033 __func__, sk->sk_state);
4034 break;
4037 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4038 * Probably, we should reset in this case. For now drop them.
4040 __skb_queue_purge(&tp->out_of_order_queue);
4041 if (tcp_is_sack(tp))
4042 tcp_sack_reset(&tp->rx_opt);
4043 sk_mem_reclaim(sk);
4045 if (!sock_flag(sk, SOCK_DEAD)) {
4046 sk->sk_state_change(sk);
4048 /* Do not send POLL_HUP for half duplex close. */
4049 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4050 sk->sk_state == TCP_CLOSE)
4051 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4052 else
4053 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4057 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4058 u32 end_seq)
4060 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4061 if (before(seq, sp->start_seq))
4062 sp->start_seq = seq;
4063 if (after(end_seq, sp->end_seq))
4064 sp->end_seq = end_seq;
4065 return 1;
4067 return 0;
4070 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4072 struct tcp_sock *tp = tcp_sk(sk);
4074 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4075 int mib_idx;
4077 if (before(seq, tp->rcv_nxt))
4078 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4079 else
4080 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4082 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4084 tp->rx_opt.dsack = 1;
4085 tp->duplicate_sack[0].start_seq = seq;
4086 tp->duplicate_sack[0].end_seq = end_seq;
4087 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
4091 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4093 struct tcp_sock *tp = tcp_sk(sk);
4095 if (!tp->rx_opt.dsack)
4096 tcp_dsack_set(sk, seq, end_seq);
4097 else
4098 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4101 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4103 struct tcp_sock *tp = tcp_sk(sk);
4105 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4106 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4107 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4108 tcp_enter_quickack_mode(sk);
4110 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4111 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4113 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4114 end_seq = tp->rcv_nxt;
4115 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4119 tcp_send_ack(sk);
4122 /* These routines update the SACK block as out-of-order packets arrive or
4123 * in-order packets close up the sequence space.
4125 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4127 int this_sack;
4128 struct tcp_sack_block *sp = &tp->selective_acks[0];
4129 struct tcp_sack_block *swalk = sp + 1;
4131 /* See if the recent change to the first SACK eats into
4132 * or hits the sequence space of other SACK blocks, if so coalesce.
4134 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4135 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4136 int i;
4138 /* Zap SWALK, by moving every further SACK up by one slot.
4139 * Decrease num_sacks.
4141 tp->rx_opt.num_sacks--;
4142 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4143 tp->rx_opt.dsack;
4144 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4145 sp[i] = sp[i + 1];
4146 continue;
4148 this_sack++, swalk++;
4152 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
4153 struct tcp_sack_block *sack2)
4155 __u32 tmp;
4157 tmp = sack1->start_seq;
4158 sack1->start_seq = sack2->start_seq;
4159 sack2->start_seq = tmp;
4161 tmp = sack1->end_seq;
4162 sack1->end_seq = sack2->end_seq;
4163 sack2->end_seq = tmp;
4166 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4168 struct tcp_sock *tp = tcp_sk(sk);
4169 struct tcp_sack_block *sp = &tp->selective_acks[0];
4170 int cur_sacks = tp->rx_opt.num_sacks;
4171 int this_sack;
4173 if (!cur_sacks)
4174 goto new_sack;
4176 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4177 if (tcp_sack_extend(sp, seq, end_seq)) {
4178 /* Rotate this_sack to the first one. */
4179 for (; this_sack > 0; this_sack--, sp--)
4180 tcp_sack_swap(sp, sp - 1);
4181 if (cur_sacks > 1)
4182 tcp_sack_maybe_coalesce(tp);
4183 return;
4187 /* Could not find an adjacent existing SACK, build a new one,
4188 * put it at the front, and shift everyone else down. We
4189 * always know there is at least one SACK present already here.
4191 * If the sack array is full, forget about the last one.
4193 if (this_sack >= TCP_NUM_SACKS) {
4194 this_sack--;
4195 tp->rx_opt.num_sacks--;
4196 sp--;
4198 for (; this_sack > 0; this_sack--, sp--)
4199 *sp = *(sp - 1);
4201 new_sack:
4202 /* Build the new head SACK, and we're done. */
4203 sp->start_seq = seq;
4204 sp->end_seq = end_seq;
4205 tp->rx_opt.num_sacks++;
4206 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
4209 /* RCV.NXT advances, some SACKs should be eaten. */
4211 static void tcp_sack_remove(struct tcp_sock *tp)
4213 struct tcp_sack_block *sp = &tp->selective_acks[0];
4214 int num_sacks = tp->rx_opt.num_sacks;
4215 int this_sack;
4217 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4218 if (skb_queue_empty(&tp->out_of_order_queue)) {
4219 tp->rx_opt.num_sacks = 0;
4220 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
4221 return;
4224 for (this_sack = 0; this_sack < num_sacks;) {
4225 /* Check if the start of the sack is covered by RCV.NXT. */
4226 if (!before(tp->rcv_nxt, sp->start_seq)) {
4227 int i;
4229 /* RCV.NXT must cover all the block! */
4230 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4232 /* Zap this SACK, by moving forward any other SACKS. */
4233 for (i=this_sack+1; i < num_sacks; i++)
4234 tp->selective_acks[i-1] = tp->selective_acks[i];
4235 num_sacks--;
4236 continue;
4238 this_sack++;
4239 sp++;
4241 if (num_sacks != tp->rx_opt.num_sacks) {
4242 tp->rx_opt.num_sacks = num_sacks;
4243 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4244 tp->rx_opt.dsack;
4248 /* This one checks to see if we can put data from the
4249 * out_of_order queue into the receive_queue.
4251 static void tcp_ofo_queue(struct sock *sk)
4253 struct tcp_sock *tp = tcp_sk(sk);
4254 __u32 dsack_high = tp->rcv_nxt;
4255 struct sk_buff *skb;
4257 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4258 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4259 break;
4261 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4262 __u32 dsack = dsack_high;
4263 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4264 dsack_high = TCP_SKB_CB(skb)->end_seq;
4265 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4268 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4269 SOCK_DEBUG(sk, "ofo packet was already received \n");
4270 __skb_unlink(skb, &tp->out_of_order_queue);
4271 __kfree_skb(skb);
4272 continue;
4274 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4275 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4276 TCP_SKB_CB(skb)->end_seq);
4278 __skb_unlink(skb, &tp->out_of_order_queue);
4279 __skb_queue_tail(&sk->sk_receive_queue, skb);
4280 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4281 if (tcp_hdr(skb)->fin)
4282 tcp_fin(skb, sk, tcp_hdr(skb));
4286 static int tcp_prune_ofo_queue(struct sock *sk);
4287 static int tcp_prune_queue(struct sock *sk);
4289 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4291 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4292 !sk_rmem_schedule(sk, size)) {
4294 if (tcp_prune_queue(sk) < 0)
4295 return -1;
4297 if (!sk_rmem_schedule(sk, size)) {
4298 if (!tcp_prune_ofo_queue(sk))
4299 return -1;
4301 if (!sk_rmem_schedule(sk, size))
4302 return -1;
4305 return 0;
4308 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4310 struct tcphdr *th = tcp_hdr(skb);
4311 struct tcp_sock *tp = tcp_sk(sk);
4312 int eaten = -1;
4314 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4315 goto drop;
4317 __skb_pull(skb, th->doff * 4);
4319 TCP_ECN_accept_cwr(tp, skb);
4321 if (tp->rx_opt.dsack) {
4322 tp->rx_opt.dsack = 0;
4323 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
4326 /* Queue data for delivery to the user.
4327 * Packets in sequence go to the receive queue.
4328 * Out of sequence packets to the out_of_order_queue.
4330 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4331 if (tcp_receive_window(tp) == 0)
4332 goto out_of_window;
4334 /* Ok. In sequence. In window. */
4335 if (tp->ucopy.task == current &&
4336 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4337 sock_owned_by_user(sk) && !tp->urg_data) {
4338 int chunk = min_t(unsigned int, skb->len,
4339 tp->ucopy.len);
4341 __set_current_state(TASK_RUNNING);
4343 local_bh_enable();
4344 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4345 tp->ucopy.len -= chunk;
4346 tp->copied_seq += chunk;
4347 eaten = (chunk == skb->len && !th->fin);
4348 tcp_rcv_space_adjust(sk);
4350 local_bh_disable();
4353 if (eaten <= 0) {
4354 queue_and_out:
4355 if (eaten < 0 &&
4356 tcp_try_rmem_schedule(sk, skb->truesize))
4357 goto drop;
4359 skb_set_owner_r(skb, sk);
4360 __skb_queue_tail(&sk->sk_receive_queue, skb);
4362 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4363 if (skb->len)
4364 tcp_event_data_recv(sk, skb);
4365 if (th->fin)
4366 tcp_fin(skb, sk, th);
4368 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4369 tcp_ofo_queue(sk);
4371 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4372 * gap in queue is filled.
4374 if (skb_queue_empty(&tp->out_of_order_queue))
4375 inet_csk(sk)->icsk_ack.pingpong = 0;
4378 if (tp->rx_opt.num_sacks)
4379 tcp_sack_remove(tp);
4381 tcp_fast_path_check(sk);
4383 if (eaten > 0)
4384 __kfree_skb(skb);
4385 else if (!sock_flag(sk, SOCK_DEAD))
4386 sk->sk_data_ready(sk, 0);
4387 return;
4390 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4391 /* A retransmit, 2nd most common case. Force an immediate ack. */
4392 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4393 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4395 out_of_window:
4396 tcp_enter_quickack_mode(sk);
4397 inet_csk_schedule_ack(sk);
4398 drop:
4399 __kfree_skb(skb);
4400 return;
4403 /* Out of window. F.e. zero window probe. */
4404 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4405 goto out_of_window;
4407 tcp_enter_quickack_mode(sk);
4409 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4410 /* Partial packet, seq < rcv_next < end_seq */
4411 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4412 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4413 TCP_SKB_CB(skb)->end_seq);
4415 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4417 /* If window is closed, drop tail of packet. But after
4418 * remembering D-SACK for its head made in previous line.
4420 if (!tcp_receive_window(tp))
4421 goto out_of_window;
4422 goto queue_and_out;
4425 TCP_ECN_check_ce(tp, skb);
4427 if (tcp_try_rmem_schedule(sk, skb->truesize))
4428 goto drop;
4430 /* Disable header prediction. */
4431 tp->pred_flags = 0;
4432 inet_csk_schedule_ack(sk);
4434 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4435 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4437 skb_set_owner_r(skb, sk);
4439 if (!skb_peek(&tp->out_of_order_queue)) {
4440 /* Initial out of order segment, build 1 SACK. */
4441 if (tcp_is_sack(tp)) {
4442 tp->rx_opt.num_sacks = 1;
4443 tp->rx_opt.dsack = 0;
4444 tp->rx_opt.eff_sacks = 1;
4445 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4446 tp->selective_acks[0].end_seq =
4447 TCP_SKB_CB(skb)->end_seq;
4449 __skb_queue_head(&tp->out_of_order_queue, skb);
4450 } else {
4451 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4452 u32 seq = TCP_SKB_CB(skb)->seq;
4453 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4455 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4456 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4458 if (!tp->rx_opt.num_sacks ||
4459 tp->selective_acks[0].end_seq != seq)
4460 goto add_sack;
4462 /* Common case: data arrive in order after hole. */
4463 tp->selective_acks[0].end_seq = end_seq;
4464 return;
4467 /* Find place to insert this segment. */
4468 do {
4469 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4470 break;
4471 } while ((skb1 = skb1->prev) !=
4472 (struct sk_buff *)&tp->out_of_order_queue);
4474 /* Do skb overlap to previous one? */
4475 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4476 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4477 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4478 /* All the bits are present. Drop. */
4479 __kfree_skb(skb);
4480 tcp_dsack_set(sk, seq, end_seq);
4481 goto add_sack;
4483 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4484 /* Partial overlap. */
4485 tcp_dsack_set(sk, seq,
4486 TCP_SKB_CB(skb1)->end_seq);
4487 } else {
4488 skb1 = skb1->prev;
4491 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4493 /* And clean segments covered by new one as whole. */
4494 while ((skb1 = skb->next) !=
4495 (struct sk_buff *)&tp->out_of_order_queue &&
4496 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4497 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4498 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4499 end_seq);
4500 break;
4502 __skb_unlink(skb1, &tp->out_of_order_queue);
4503 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4504 TCP_SKB_CB(skb1)->end_seq);
4505 __kfree_skb(skb1);
4508 add_sack:
4509 if (tcp_is_sack(tp))
4510 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4514 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4515 struct sk_buff_head *list)
4517 struct sk_buff *next = skb->next;
4519 __skb_unlink(skb, list);
4520 __kfree_skb(skb);
4521 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4523 return next;
4526 /* Collapse contiguous sequence of skbs head..tail with
4527 * sequence numbers start..end.
4528 * Segments with FIN/SYN are not collapsed (only because this
4529 * simplifies code)
4531 static void
4532 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4533 struct sk_buff *head, struct sk_buff *tail,
4534 u32 start, u32 end)
4536 struct sk_buff *skb;
4538 /* First, check that queue is collapsible and find
4539 * the point where collapsing can be useful. */
4540 for (skb = head; skb != tail;) {
4541 /* No new bits? It is possible on ofo queue. */
4542 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4543 skb = tcp_collapse_one(sk, skb, list);
4544 continue;
4547 /* The first skb to collapse is:
4548 * - not SYN/FIN and
4549 * - bloated or contains data before "start" or
4550 * overlaps to the next one.
4552 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4553 (tcp_win_from_space(skb->truesize) > skb->len ||
4554 before(TCP_SKB_CB(skb)->seq, start) ||
4555 (skb->next != tail &&
4556 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4557 break;
4559 /* Decided to skip this, advance start seq. */
4560 start = TCP_SKB_CB(skb)->end_seq;
4561 skb = skb->next;
4563 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4564 return;
4566 while (before(start, end)) {
4567 struct sk_buff *nskb;
4568 unsigned int header = skb_headroom(skb);
4569 int copy = SKB_MAX_ORDER(header, 0);
4571 /* Too big header? This can happen with IPv6. */
4572 if (copy < 0)
4573 return;
4574 if (end - start < copy)
4575 copy = end - start;
4576 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4577 if (!nskb)
4578 return;
4580 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4581 skb_set_network_header(nskb, (skb_network_header(skb) -
4582 skb->head));
4583 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4584 skb->head));
4585 skb_reserve(nskb, header);
4586 memcpy(nskb->head, skb->head, header);
4587 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4588 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4589 __skb_queue_before(list, skb, nskb);
4590 skb_set_owner_r(nskb, sk);
4592 /* Copy data, releasing collapsed skbs. */
4593 while (copy > 0) {
4594 int offset = start - TCP_SKB_CB(skb)->seq;
4595 int size = TCP_SKB_CB(skb)->end_seq - start;
4597 BUG_ON(offset < 0);
4598 if (size > 0) {
4599 size = min(copy, size);
4600 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4601 BUG();
4602 TCP_SKB_CB(nskb)->end_seq += size;
4603 copy -= size;
4604 start += size;
4606 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4607 skb = tcp_collapse_one(sk, skb, list);
4608 if (skb == tail ||
4609 tcp_hdr(skb)->syn ||
4610 tcp_hdr(skb)->fin)
4611 return;
4617 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4618 * and tcp_collapse() them until all the queue is collapsed.
4620 static void tcp_collapse_ofo_queue(struct sock *sk)
4622 struct tcp_sock *tp = tcp_sk(sk);
4623 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4624 struct sk_buff *head;
4625 u32 start, end;
4627 if (skb == NULL)
4628 return;
4630 start = TCP_SKB_CB(skb)->seq;
4631 end = TCP_SKB_CB(skb)->end_seq;
4632 head = skb;
4634 for (;;) {
4635 skb = skb->next;
4637 /* Segment is terminated when we see gap or when
4638 * we are at the end of all the queue. */
4639 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4640 after(TCP_SKB_CB(skb)->seq, end) ||
4641 before(TCP_SKB_CB(skb)->end_seq, start)) {
4642 tcp_collapse(sk, &tp->out_of_order_queue,
4643 head, skb, start, end);
4644 head = skb;
4645 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4646 break;
4647 /* Start new segment */
4648 start = TCP_SKB_CB(skb)->seq;
4649 end = TCP_SKB_CB(skb)->end_seq;
4650 } else {
4651 if (before(TCP_SKB_CB(skb)->seq, start))
4652 start = TCP_SKB_CB(skb)->seq;
4653 if (after(TCP_SKB_CB(skb)->end_seq, end))
4654 end = TCP_SKB_CB(skb)->end_seq;
4660 * Purge the out-of-order queue.
4661 * Return true if queue was pruned.
4663 static int tcp_prune_ofo_queue(struct sock *sk)
4665 struct tcp_sock *tp = tcp_sk(sk);
4666 int res = 0;
4668 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4669 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4670 __skb_queue_purge(&tp->out_of_order_queue);
4672 /* Reset SACK state. A conforming SACK implementation will
4673 * do the same at a timeout based retransmit. When a connection
4674 * is in a sad state like this, we care only about integrity
4675 * of the connection not performance.
4677 if (tp->rx_opt.sack_ok)
4678 tcp_sack_reset(&tp->rx_opt);
4679 sk_mem_reclaim(sk);
4680 res = 1;
4682 return res;
4685 /* Reduce allocated memory if we can, trying to get
4686 * the socket within its memory limits again.
4688 * Return less than zero if we should start dropping frames
4689 * until the socket owning process reads some of the data
4690 * to stabilize the situation.
4692 static int tcp_prune_queue(struct sock *sk)
4694 struct tcp_sock *tp = tcp_sk(sk);
4696 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4698 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4700 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4701 tcp_clamp_window(sk);
4702 else if (tcp_memory_pressure)
4703 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4705 tcp_collapse_ofo_queue(sk);
4706 tcp_collapse(sk, &sk->sk_receive_queue,
4707 sk->sk_receive_queue.next,
4708 (struct sk_buff *)&sk->sk_receive_queue,
4709 tp->copied_seq, tp->rcv_nxt);
4710 sk_mem_reclaim(sk);
4712 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4713 return 0;
4715 /* Collapsing did not help, destructive actions follow.
4716 * This must not ever occur. */
4718 tcp_prune_ofo_queue(sk);
4720 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4721 return 0;
4723 /* If we are really being abused, tell the caller to silently
4724 * drop receive data on the floor. It will get retransmitted
4725 * and hopefully then we'll have sufficient space.
4727 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4729 /* Massive buffer overcommit. */
4730 tp->pred_flags = 0;
4731 return -1;
4734 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4735 * As additional protections, we do not touch cwnd in retransmission phases,
4736 * and if application hit its sndbuf limit recently.
4738 void tcp_cwnd_application_limited(struct sock *sk)
4740 struct tcp_sock *tp = tcp_sk(sk);
4742 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4743 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4744 /* Limited by application or receiver window. */
4745 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4746 u32 win_used = max(tp->snd_cwnd_used, init_win);
4747 if (win_used < tp->snd_cwnd) {
4748 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4749 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4751 tp->snd_cwnd_used = 0;
4753 tp->snd_cwnd_stamp = tcp_time_stamp;
4756 static int tcp_should_expand_sndbuf(struct sock *sk)
4758 struct tcp_sock *tp = tcp_sk(sk);
4760 /* If the user specified a specific send buffer setting, do
4761 * not modify it.
4763 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4764 return 0;
4766 /* If we are under global TCP memory pressure, do not expand. */
4767 if (tcp_memory_pressure)
4768 return 0;
4770 /* If we are under soft global TCP memory pressure, do not expand. */
4771 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4772 return 0;
4774 /* If we filled the congestion window, do not expand. */
4775 if (tp->packets_out >= tp->snd_cwnd)
4776 return 0;
4778 return 1;
4781 /* When incoming ACK allowed to free some skb from write_queue,
4782 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4783 * on the exit from tcp input handler.
4785 * PROBLEM: sndbuf expansion does not work well with largesend.
4787 static void tcp_new_space(struct sock *sk)
4789 struct tcp_sock *tp = tcp_sk(sk);
4791 if (tcp_should_expand_sndbuf(sk)) {
4792 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4793 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4794 int demanded = max_t(unsigned int, tp->snd_cwnd,
4795 tp->reordering + 1);
4796 sndmem *= 2 * demanded;
4797 if (sndmem > sk->sk_sndbuf)
4798 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4799 tp->snd_cwnd_stamp = tcp_time_stamp;
4802 sk->sk_write_space(sk);
4805 static void tcp_check_space(struct sock *sk)
4807 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4808 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4809 if (sk->sk_socket &&
4810 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4811 tcp_new_space(sk);
4815 static inline void tcp_data_snd_check(struct sock *sk)
4817 tcp_push_pending_frames(sk);
4818 tcp_check_space(sk);
4822 * Check if sending an ack is needed.
4824 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4826 struct tcp_sock *tp = tcp_sk(sk);
4828 /* More than one full frame received... */
4829 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4830 /* ... and right edge of window advances far enough.
4831 * (tcp_recvmsg() will send ACK otherwise). Or...
4833 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4834 /* We ACK each frame or... */
4835 tcp_in_quickack_mode(sk) ||
4836 /* We have out of order data. */
4837 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4838 /* Then ack it now */
4839 tcp_send_ack(sk);
4840 } else {
4841 /* Else, send delayed ack. */
4842 tcp_send_delayed_ack(sk);
4846 static inline void tcp_ack_snd_check(struct sock *sk)
4848 if (!inet_csk_ack_scheduled(sk)) {
4849 /* We sent a data segment already. */
4850 return;
4852 __tcp_ack_snd_check(sk, 1);
4856 * This routine is only called when we have urgent data
4857 * signaled. Its the 'slow' part of tcp_urg. It could be
4858 * moved inline now as tcp_urg is only called from one
4859 * place. We handle URGent data wrong. We have to - as
4860 * BSD still doesn't use the correction from RFC961.
4861 * For 1003.1g we should support a new option TCP_STDURG to permit
4862 * either form (or just set the sysctl tcp_stdurg).
4865 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4867 struct tcp_sock *tp = tcp_sk(sk);
4868 u32 ptr = ntohs(th->urg_ptr);
4870 if (ptr && !sysctl_tcp_stdurg)
4871 ptr--;
4872 ptr += ntohl(th->seq);
4874 /* Ignore urgent data that we've already seen and read. */
4875 if (after(tp->copied_seq, ptr))
4876 return;
4878 /* Do not replay urg ptr.
4880 * NOTE: interesting situation not covered by specs.
4881 * Misbehaving sender may send urg ptr, pointing to segment,
4882 * which we already have in ofo queue. We are not able to fetch
4883 * such data and will stay in TCP_URG_NOTYET until will be eaten
4884 * by recvmsg(). Seems, we are not obliged to handle such wicked
4885 * situations. But it is worth to think about possibility of some
4886 * DoSes using some hypothetical application level deadlock.
4888 if (before(ptr, tp->rcv_nxt))
4889 return;
4891 /* Do we already have a newer (or duplicate) urgent pointer? */
4892 if (tp->urg_data && !after(ptr, tp->urg_seq))
4893 return;
4895 /* Tell the world about our new urgent pointer. */
4896 sk_send_sigurg(sk);
4898 /* We may be adding urgent data when the last byte read was
4899 * urgent. To do this requires some care. We cannot just ignore
4900 * tp->copied_seq since we would read the last urgent byte again
4901 * as data, nor can we alter copied_seq until this data arrives
4902 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4904 * NOTE. Double Dutch. Rendering to plain English: author of comment
4905 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4906 * and expect that both A and B disappear from stream. This is _wrong_.
4907 * Though this happens in BSD with high probability, this is occasional.
4908 * Any application relying on this is buggy. Note also, that fix "works"
4909 * only in this artificial test. Insert some normal data between A and B and we will
4910 * decline of BSD again. Verdict: it is better to remove to trap
4911 * buggy users.
4913 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4914 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4915 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4916 tp->copied_seq++;
4917 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4918 __skb_unlink(skb, &sk->sk_receive_queue);
4919 __kfree_skb(skb);
4923 tp->urg_data = TCP_URG_NOTYET;
4924 tp->urg_seq = ptr;
4926 /* Disable header prediction. */
4927 tp->pred_flags = 0;
4930 /* This is the 'fast' part of urgent handling. */
4931 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4933 struct tcp_sock *tp = tcp_sk(sk);
4935 /* Check if we get a new urgent pointer - normally not. */
4936 if (th->urg)
4937 tcp_check_urg(sk, th);
4939 /* Do we wait for any urgent data? - normally not... */
4940 if (tp->urg_data == TCP_URG_NOTYET) {
4941 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4942 th->syn;
4944 /* Is the urgent pointer pointing into this packet? */
4945 if (ptr < skb->len) {
4946 u8 tmp;
4947 if (skb_copy_bits(skb, ptr, &tmp, 1))
4948 BUG();
4949 tp->urg_data = TCP_URG_VALID | tmp;
4950 if (!sock_flag(sk, SOCK_DEAD))
4951 sk->sk_data_ready(sk, 0);
4956 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4958 struct tcp_sock *tp = tcp_sk(sk);
4959 int chunk = skb->len - hlen;
4960 int err;
4962 local_bh_enable();
4963 if (skb_csum_unnecessary(skb))
4964 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4965 else
4966 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4967 tp->ucopy.iov);
4969 if (!err) {
4970 tp->ucopy.len -= chunk;
4971 tp->copied_seq += chunk;
4972 tcp_rcv_space_adjust(sk);
4975 local_bh_disable();
4976 return err;
4979 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4980 struct sk_buff *skb)
4982 __sum16 result;
4984 if (sock_owned_by_user(sk)) {
4985 local_bh_enable();
4986 result = __tcp_checksum_complete(skb);
4987 local_bh_disable();
4988 } else {
4989 result = __tcp_checksum_complete(skb);
4991 return result;
4994 static inline int tcp_checksum_complete_user(struct sock *sk,
4995 struct sk_buff *skb)
4997 return !skb_csum_unnecessary(skb) &&
4998 __tcp_checksum_complete_user(sk, skb);
5001 #ifdef CONFIG_NET_DMA
5002 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5003 int hlen)
5005 struct tcp_sock *tp = tcp_sk(sk);
5006 int chunk = skb->len - hlen;
5007 int dma_cookie;
5008 int copied_early = 0;
5010 if (tp->ucopy.wakeup)
5011 return 0;
5013 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5014 tp->ucopy.dma_chan = get_softnet_dma();
5016 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5018 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5019 skb, hlen,
5020 tp->ucopy.iov, chunk,
5021 tp->ucopy.pinned_list);
5023 if (dma_cookie < 0)
5024 goto out;
5026 tp->ucopy.dma_cookie = dma_cookie;
5027 copied_early = 1;
5029 tp->ucopy.len -= chunk;
5030 tp->copied_seq += chunk;
5031 tcp_rcv_space_adjust(sk);
5033 if ((tp->ucopy.len == 0) ||
5034 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5035 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5036 tp->ucopy.wakeup = 1;
5037 sk->sk_data_ready(sk, 0);
5039 } else if (chunk > 0) {
5040 tp->ucopy.wakeup = 1;
5041 sk->sk_data_ready(sk, 0);
5043 out:
5044 return copied_early;
5046 #endif /* CONFIG_NET_DMA */
5048 /* Does PAWS and seqno based validation of an incoming segment, flags will
5049 * play significant role here.
5051 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5052 struct tcphdr *th, int syn_inerr)
5054 struct tcp_sock *tp = tcp_sk(sk);
5056 /* RFC1323: H1. Apply PAWS check first. */
5057 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5058 tcp_paws_discard(sk, skb)) {
5059 if (!th->rst) {
5060 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5061 tcp_send_dupack(sk, skb);
5062 goto discard;
5064 /* Reset is accepted even if it did not pass PAWS. */
5067 /* Step 1: check sequence number */
5068 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5069 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5070 * (RST) segments are validated by checking their SEQ-fields."
5071 * And page 69: "If an incoming segment is not acceptable,
5072 * an acknowledgment should be sent in reply (unless the RST
5073 * bit is set, if so drop the segment and return)".
5075 if (!th->rst)
5076 tcp_send_dupack(sk, skb);
5077 goto discard;
5080 /* Step 2: check RST bit */
5081 if (th->rst) {
5082 tcp_reset(sk);
5083 goto discard;
5086 /* ts_recent update must be made after we are sure that the packet
5087 * is in window.
5089 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5091 /* step 3: check security and precedence [ignored] */
5093 /* step 4: Check for a SYN in window. */
5094 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5095 if (syn_inerr)
5096 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5097 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5098 tcp_reset(sk);
5099 return -1;
5102 return 1;
5104 discard:
5105 __kfree_skb(skb);
5106 return 0;
5110 * TCP receive function for the ESTABLISHED state.
5112 * It is split into a fast path and a slow path. The fast path is
5113 * disabled when:
5114 * - A zero window was announced from us - zero window probing
5115 * is only handled properly in the slow path.
5116 * - Out of order segments arrived.
5117 * - Urgent data is expected.
5118 * - There is no buffer space left
5119 * - Unexpected TCP flags/window values/header lengths are received
5120 * (detected by checking the TCP header against pred_flags)
5121 * - Data is sent in both directions. Fast path only supports pure senders
5122 * or pure receivers (this means either the sequence number or the ack
5123 * value must stay constant)
5124 * - Unexpected TCP option.
5126 * When these conditions are not satisfied it drops into a standard
5127 * receive procedure patterned after RFC793 to handle all cases.
5128 * The first three cases are guaranteed by proper pred_flags setting,
5129 * the rest is checked inline. Fast processing is turned on in
5130 * tcp_data_queue when everything is OK.
5132 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5133 struct tcphdr *th, unsigned len)
5135 struct tcp_sock *tp = tcp_sk(sk);
5136 int res;
5139 * Header prediction.
5140 * The code loosely follows the one in the famous
5141 * "30 instruction TCP receive" Van Jacobson mail.
5143 * Van's trick is to deposit buffers into socket queue
5144 * on a device interrupt, to call tcp_recv function
5145 * on the receive process context and checksum and copy
5146 * the buffer to user space. smart...
5148 * Our current scheme is not silly either but we take the
5149 * extra cost of the net_bh soft interrupt processing...
5150 * We do checksum and copy also but from device to kernel.
5153 tp->rx_opt.saw_tstamp = 0;
5155 /* pred_flags is 0xS?10 << 16 + snd_wnd
5156 * if header_prediction is to be made
5157 * 'S' will always be tp->tcp_header_len >> 2
5158 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5159 * turn it off (when there are holes in the receive
5160 * space for instance)
5161 * PSH flag is ignored.
5164 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5165 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5166 int tcp_header_len = tp->tcp_header_len;
5168 /* Timestamp header prediction: tcp_header_len
5169 * is automatically equal to th->doff*4 due to pred_flags
5170 * match.
5173 /* Check timestamp */
5174 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5175 /* No? Slow path! */
5176 if (!tcp_parse_aligned_timestamp(tp, th))
5177 goto slow_path;
5179 /* If PAWS failed, check it more carefully in slow path */
5180 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5181 goto slow_path;
5183 /* DO NOT update ts_recent here, if checksum fails
5184 * and timestamp was corrupted part, it will result
5185 * in a hung connection since we will drop all
5186 * future packets due to the PAWS test.
5190 if (len <= tcp_header_len) {
5191 /* Bulk data transfer: sender */
5192 if (len == tcp_header_len) {
5193 /* Predicted packet is in window by definition.
5194 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5195 * Hence, check seq<=rcv_wup reduces to:
5197 if (tcp_header_len ==
5198 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5199 tp->rcv_nxt == tp->rcv_wup)
5200 tcp_store_ts_recent(tp);
5202 /* We know that such packets are checksummed
5203 * on entry.
5205 tcp_ack(sk, skb, 0);
5206 __kfree_skb(skb);
5207 tcp_data_snd_check(sk);
5208 return 0;
5209 } else { /* Header too small */
5210 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5211 goto discard;
5213 } else {
5214 int eaten = 0;
5215 int copied_early = 0;
5217 if (tp->copied_seq == tp->rcv_nxt &&
5218 len - tcp_header_len <= tp->ucopy.len) {
5219 #ifdef CONFIG_NET_DMA
5220 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5221 copied_early = 1;
5222 eaten = 1;
5224 #endif
5225 if (tp->ucopy.task == current &&
5226 sock_owned_by_user(sk) && !copied_early) {
5227 __set_current_state(TASK_RUNNING);
5229 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5230 eaten = 1;
5232 if (eaten) {
5233 /* Predicted packet is in window by definition.
5234 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5235 * Hence, check seq<=rcv_wup reduces to:
5237 if (tcp_header_len ==
5238 (sizeof(struct tcphdr) +
5239 TCPOLEN_TSTAMP_ALIGNED) &&
5240 tp->rcv_nxt == tp->rcv_wup)
5241 tcp_store_ts_recent(tp);
5243 tcp_rcv_rtt_measure_ts(sk, skb);
5245 __skb_pull(skb, tcp_header_len);
5246 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5247 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5249 if (copied_early)
5250 tcp_cleanup_rbuf(sk, skb->len);
5252 if (!eaten) {
5253 if (tcp_checksum_complete_user(sk, skb))
5254 goto csum_error;
5256 /* Predicted packet is in window by definition.
5257 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5258 * Hence, check seq<=rcv_wup reduces to:
5260 if (tcp_header_len ==
5261 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5262 tp->rcv_nxt == tp->rcv_wup)
5263 tcp_store_ts_recent(tp);
5265 tcp_rcv_rtt_measure_ts(sk, skb);
5267 if ((int)skb->truesize > sk->sk_forward_alloc)
5268 goto step5;
5270 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5272 /* Bulk data transfer: receiver */
5273 __skb_pull(skb, tcp_header_len);
5274 __skb_queue_tail(&sk->sk_receive_queue, skb);
5275 skb_set_owner_r(skb, sk);
5276 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5279 tcp_event_data_recv(sk, skb);
5281 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5282 /* Well, only one small jumplet in fast path... */
5283 tcp_ack(sk, skb, FLAG_DATA);
5284 tcp_data_snd_check(sk);
5285 if (!inet_csk_ack_scheduled(sk))
5286 goto no_ack;
5289 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5290 __tcp_ack_snd_check(sk, 0);
5291 no_ack:
5292 #ifdef CONFIG_NET_DMA
5293 if (copied_early)
5294 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5295 else
5296 #endif
5297 if (eaten)
5298 __kfree_skb(skb);
5299 else
5300 sk->sk_data_ready(sk, 0);
5301 return 0;
5305 slow_path:
5306 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5307 goto csum_error;
5310 * Standard slow path.
5313 res = tcp_validate_incoming(sk, skb, th, 1);
5314 if (res <= 0)
5315 return -res;
5317 step5:
5318 if (th->ack)
5319 tcp_ack(sk, skb, FLAG_SLOWPATH);
5321 tcp_rcv_rtt_measure_ts(sk, skb);
5323 /* Process urgent data. */
5324 tcp_urg(sk, skb, th);
5326 /* step 7: process the segment text */
5327 tcp_data_queue(sk, skb);
5329 tcp_data_snd_check(sk);
5330 tcp_ack_snd_check(sk);
5331 return 0;
5333 csum_error:
5334 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5336 discard:
5337 __kfree_skb(skb);
5338 return 0;
5341 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5342 struct tcphdr *th, unsigned len)
5344 struct tcp_sock *tp = tcp_sk(sk);
5345 struct inet_connection_sock *icsk = inet_csk(sk);
5346 int saved_clamp = tp->rx_opt.mss_clamp;
5348 tcp_parse_options(skb, &tp->rx_opt, 0);
5350 if (th->ack) {
5351 /* rfc793:
5352 * "If the state is SYN-SENT then
5353 * first check the ACK bit
5354 * If the ACK bit is set
5355 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5356 * a reset (unless the RST bit is set, if so drop
5357 * the segment and return)"
5359 * We do not send data with SYN, so that RFC-correct
5360 * test reduces to:
5362 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5363 goto reset_and_undo;
5365 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5366 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5367 tcp_time_stamp)) {
5368 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5369 goto reset_and_undo;
5372 /* Now ACK is acceptable.
5374 * "If the RST bit is set
5375 * If the ACK was acceptable then signal the user "error:
5376 * connection reset", drop the segment, enter CLOSED state,
5377 * delete TCB, and return."
5380 if (th->rst) {
5381 tcp_reset(sk);
5382 goto discard;
5385 /* rfc793:
5386 * "fifth, if neither of the SYN or RST bits is set then
5387 * drop the segment and return."
5389 * See note below!
5390 * --ANK(990513)
5392 if (!th->syn)
5393 goto discard_and_undo;
5395 /* rfc793:
5396 * "If the SYN bit is on ...
5397 * are acceptable then ...
5398 * (our SYN has been ACKed), change the connection
5399 * state to ESTABLISHED..."
5402 TCP_ECN_rcv_synack(tp, th);
5404 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5405 tcp_ack(sk, skb, FLAG_SLOWPATH);
5407 /* Ok.. it's good. Set up sequence numbers and
5408 * move to established.
5410 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5411 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5413 /* RFC1323: The window in SYN & SYN/ACK segments is
5414 * never scaled.
5416 tp->snd_wnd = ntohs(th->window);
5417 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5419 if (!tp->rx_opt.wscale_ok) {
5420 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5421 tp->window_clamp = min(tp->window_clamp, 65535U);
5424 if (tp->rx_opt.saw_tstamp) {
5425 tp->rx_opt.tstamp_ok = 1;
5426 tp->tcp_header_len =
5427 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5428 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5429 tcp_store_ts_recent(tp);
5430 } else {
5431 tp->tcp_header_len = sizeof(struct tcphdr);
5434 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5435 tcp_enable_fack(tp);
5437 tcp_mtup_init(sk);
5438 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5439 tcp_initialize_rcv_mss(sk);
5441 /* Remember, tcp_poll() does not lock socket!
5442 * Change state from SYN-SENT only after copied_seq
5443 * is initialized. */
5444 tp->copied_seq = tp->rcv_nxt;
5445 smp_mb();
5446 tcp_set_state(sk, TCP_ESTABLISHED);
5448 security_inet_conn_established(sk, skb);
5450 /* Make sure socket is routed, for correct metrics. */
5451 icsk->icsk_af_ops->rebuild_header(sk);
5453 tcp_init_metrics(sk);
5455 tcp_init_congestion_control(sk);
5457 /* Prevent spurious tcp_cwnd_restart() on first data
5458 * packet.
5460 tp->lsndtime = tcp_time_stamp;
5462 tcp_init_buffer_space(sk);
5464 if (sock_flag(sk, SOCK_KEEPOPEN))
5465 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5467 if (!tp->rx_opt.snd_wscale)
5468 __tcp_fast_path_on(tp, tp->snd_wnd);
5469 else
5470 tp->pred_flags = 0;
5472 if (!sock_flag(sk, SOCK_DEAD)) {
5473 sk->sk_state_change(sk);
5474 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5477 if (sk->sk_write_pending ||
5478 icsk->icsk_accept_queue.rskq_defer_accept ||
5479 icsk->icsk_ack.pingpong) {
5480 /* Save one ACK. Data will be ready after
5481 * several ticks, if write_pending is set.
5483 * It may be deleted, but with this feature tcpdumps
5484 * look so _wonderfully_ clever, that I was not able
5485 * to stand against the temptation 8) --ANK
5487 inet_csk_schedule_ack(sk);
5488 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5489 icsk->icsk_ack.ato = TCP_ATO_MIN;
5490 tcp_incr_quickack(sk);
5491 tcp_enter_quickack_mode(sk);
5492 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5493 TCP_DELACK_MAX, TCP_RTO_MAX);
5495 discard:
5496 __kfree_skb(skb);
5497 return 0;
5498 } else {
5499 tcp_send_ack(sk);
5501 return -1;
5504 /* No ACK in the segment */
5506 if (th->rst) {
5507 /* rfc793:
5508 * "If the RST bit is set
5510 * Otherwise (no ACK) drop the segment and return."
5513 goto discard_and_undo;
5516 /* PAWS check. */
5517 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5518 tcp_paws_check(&tp->rx_opt, 0))
5519 goto discard_and_undo;
5521 if (th->syn) {
5522 /* We see SYN without ACK. It is attempt of
5523 * simultaneous connect with crossed SYNs.
5524 * Particularly, it can be connect to self.
5526 tcp_set_state(sk, TCP_SYN_RECV);
5528 if (tp->rx_opt.saw_tstamp) {
5529 tp->rx_opt.tstamp_ok = 1;
5530 tcp_store_ts_recent(tp);
5531 tp->tcp_header_len =
5532 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5533 } else {
5534 tp->tcp_header_len = sizeof(struct tcphdr);
5537 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5538 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5540 /* RFC1323: The window in SYN & SYN/ACK segments is
5541 * never scaled.
5543 tp->snd_wnd = ntohs(th->window);
5544 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5545 tp->max_window = tp->snd_wnd;
5547 TCP_ECN_rcv_syn(tp, th);
5549 tcp_mtup_init(sk);
5550 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5551 tcp_initialize_rcv_mss(sk);
5553 tcp_send_synack(sk);
5554 #if 0
5555 /* Note, we could accept data and URG from this segment.
5556 * There are no obstacles to make this.
5558 * However, if we ignore data in ACKless segments sometimes,
5559 * we have no reasons to accept it sometimes.
5560 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5561 * is not flawless. So, discard packet for sanity.
5562 * Uncomment this return to process the data.
5564 return -1;
5565 #else
5566 goto discard;
5567 #endif
5569 /* "fifth, if neither of the SYN or RST bits is set then
5570 * drop the segment and return."
5573 discard_and_undo:
5574 tcp_clear_options(&tp->rx_opt);
5575 tp->rx_opt.mss_clamp = saved_clamp;
5576 goto discard;
5578 reset_and_undo:
5579 tcp_clear_options(&tp->rx_opt);
5580 tp->rx_opt.mss_clamp = saved_clamp;
5581 return 1;
5585 * This function implements the receiving procedure of RFC 793 for
5586 * all states except ESTABLISHED and TIME_WAIT.
5587 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5588 * address independent.
5591 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5592 struct tcphdr *th, unsigned len)
5594 struct tcp_sock *tp = tcp_sk(sk);
5595 struct inet_connection_sock *icsk = inet_csk(sk);
5596 int queued = 0;
5597 int res;
5599 tp->rx_opt.saw_tstamp = 0;
5601 switch (sk->sk_state) {
5602 case TCP_CLOSE:
5603 goto discard;
5605 case TCP_LISTEN:
5606 if (th->ack)
5607 return 1;
5609 if (th->rst)
5610 goto discard;
5612 if (th->syn) {
5613 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5614 return 1;
5616 /* Now we have several options: In theory there is
5617 * nothing else in the frame. KA9Q has an option to
5618 * send data with the syn, BSD accepts data with the
5619 * syn up to the [to be] advertised window and
5620 * Solaris 2.1 gives you a protocol error. For now
5621 * we just ignore it, that fits the spec precisely
5622 * and avoids incompatibilities. It would be nice in
5623 * future to drop through and process the data.
5625 * Now that TTCP is starting to be used we ought to
5626 * queue this data.
5627 * But, this leaves one open to an easy denial of
5628 * service attack, and SYN cookies can't defend
5629 * against this problem. So, we drop the data
5630 * in the interest of security over speed unless
5631 * it's still in use.
5633 kfree_skb(skb);
5634 return 0;
5636 goto discard;
5638 case TCP_SYN_SENT:
5639 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5640 if (queued >= 0)
5641 return queued;
5643 /* Do step6 onward by hand. */
5644 tcp_urg(sk, skb, th);
5645 __kfree_skb(skb);
5646 tcp_data_snd_check(sk);
5647 return 0;
5650 res = tcp_validate_incoming(sk, skb, th, 0);
5651 if (res <= 0)
5652 return -res;
5654 /* step 5: check the ACK field */
5655 if (th->ack) {
5656 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5658 switch (sk->sk_state) {
5659 case TCP_SYN_RECV:
5660 if (acceptable) {
5661 tp->copied_seq = tp->rcv_nxt;
5662 smp_mb();
5663 tcp_set_state(sk, TCP_ESTABLISHED);
5664 sk->sk_state_change(sk);
5666 /* Note, that this wakeup is only for marginal
5667 * crossed SYN case. Passively open sockets
5668 * are not waked up, because sk->sk_sleep ==
5669 * NULL and sk->sk_socket == NULL.
5671 if (sk->sk_socket)
5672 sk_wake_async(sk,
5673 SOCK_WAKE_IO, POLL_OUT);
5675 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5676 tp->snd_wnd = ntohs(th->window) <<
5677 tp->rx_opt.snd_wscale;
5678 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5679 TCP_SKB_CB(skb)->seq);
5681 /* tcp_ack considers this ACK as duplicate
5682 * and does not calculate rtt.
5683 * Fix it at least with timestamps.
5685 if (tp->rx_opt.saw_tstamp &&
5686 tp->rx_opt.rcv_tsecr && !tp->srtt)
5687 tcp_ack_saw_tstamp(sk, 0);
5689 if (tp->rx_opt.tstamp_ok)
5690 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5692 /* Make sure socket is routed, for
5693 * correct metrics.
5695 icsk->icsk_af_ops->rebuild_header(sk);
5697 tcp_init_metrics(sk);
5699 tcp_init_congestion_control(sk);
5701 /* Prevent spurious tcp_cwnd_restart() on
5702 * first data packet.
5704 tp->lsndtime = tcp_time_stamp;
5706 tcp_mtup_init(sk);
5707 tcp_initialize_rcv_mss(sk);
5708 tcp_init_buffer_space(sk);
5709 tcp_fast_path_on(tp);
5710 } else {
5711 return 1;
5713 break;
5715 case TCP_FIN_WAIT1:
5716 if (tp->snd_una == tp->write_seq) {
5717 tcp_set_state(sk, TCP_FIN_WAIT2);
5718 sk->sk_shutdown |= SEND_SHUTDOWN;
5719 dst_confirm(sk->sk_dst_cache);
5721 if (!sock_flag(sk, SOCK_DEAD))
5722 /* Wake up lingering close() */
5723 sk->sk_state_change(sk);
5724 else {
5725 int tmo;
5727 if (tp->linger2 < 0 ||
5728 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5729 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5730 tcp_done(sk);
5731 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5732 return 1;
5735 tmo = tcp_fin_time(sk);
5736 if (tmo > TCP_TIMEWAIT_LEN) {
5737 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5738 } else if (th->fin || sock_owned_by_user(sk)) {
5739 /* Bad case. We could lose such FIN otherwise.
5740 * It is not a big problem, but it looks confusing
5741 * and not so rare event. We still can lose it now,
5742 * if it spins in bh_lock_sock(), but it is really
5743 * marginal case.
5745 inet_csk_reset_keepalive_timer(sk, tmo);
5746 } else {
5747 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5748 goto discard;
5752 break;
5754 case TCP_CLOSING:
5755 if (tp->snd_una == tp->write_seq) {
5756 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5757 goto discard;
5759 break;
5761 case TCP_LAST_ACK:
5762 if (tp->snd_una == tp->write_seq) {
5763 tcp_update_metrics(sk);
5764 tcp_done(sk);
5765 goto discard;
5767 break;
5769 } else
5770 goto discard;
5772 /* step 6: check the URG bit */
5773 tcp_urg(sk, skb, th);
5775 /* step 7: process the segment text */
5776 switch (sk->sk_state) {
5777 case TCP_CLOSE_WAIT:
5778 case TCP_CLOSING:
5779 case TCP_LAST_ACK:
5780 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5781 break;
5782 case TCP_FIN_WAIT1:
5783 case TCP_FIN_WAIT2:
5784 /* RFC 793 says to queue data in these states,
5785 * RFC 1122 says we MUST send a reset.
5786 * BSD 4.4 also does reset.
5788 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5789 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5790 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5791 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5792 tcp_reset(sk);
5793 return 1;
5796 /* Fall through */
5797 case TCP_ESTABLISHED:
5798 tcp_data_queue(sk, skb);
5799 queued = 1;
5800 break;
5803 /* tcp_data could move socket to TIME-WAIT */
5804 if (sk->sk_state != TCP_CLOSE) {
5805 tcp_data_snd_check(sk);
5806 tcp_ack_snd_check(sk);
5809 if (!queued) {
5810 discard:
5811 __kfree_skb(skb);
5813 return 0;
5816 EXPORT_SYMBOL(sysctl_tcp_ecn);
5817 EXPORT_SYMBOL(sysctl_tcp_reordering);
5818 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5819 EXPORT_SYMBOL(tcp_parse_options);
5820 #ifdef CONFIG_TCP_MD5SIG
5821 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5822 #endif
5823 EXPORT_SYMBOL(tcp_rcv_established);
5824 EXPORT_SYMBOL(tcp_rcv_state_process);
5825 EXPORT_SYMBOL(tcp_initialize_rcv_mss);