Merge branch 'next' of git://git.monstr.eu/linux-2.6-microblaze
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / block / nvme.c
blobc1dc4d86c22122f4b34abd35880cfcbb0896215d
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/version.h>
44 #define NVME_Q_DEPTH 1024
45 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
46 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
47 #define NVME_MINORS 64
48 #define NVME_IO_TIMEOUT (5 * HZ)
49 #define ADMIN_TIMEOUT (60 * HZ)
51 static int nvme_major;
52 module_param(nvme_major, int, 0);
54 static int use_threaded_interrupts;
55 module_param(use_threaded_interrupts, int, 0);
57 static DEFINE_SPINLOCK(dev_list_lock);
58 static LIST_HEAD(dev_list);
59 static struct task_struct *nvme_thread;
62 * Represents an NVM Express device. Each nvme_dev is a PCI function.
64 struct nvme_dev {
65 struct list_head node;
66 struct nvme_queue **queues;
67 u32 __iomem *dbs;
68 struct pci_dev *pci_dev;
69 struct dma_pool *prp_page_pool;
70 struct dma_pool *prp_small_pool;
71 int instance;
72 int queue_count;
73 int db_stride;
74 u32 ctrl_config;
75 struct msix_entry *entry;
76 struct nvme_bar __iomem *bar;
77 struct list_head namespaces;
78 char serial[20];
79 char model[40];
80 char firmware_rev[8];
84 * An NVM Express namespace is equivalent to a SCSI LUN
86 struct nvme_ns {
87 struct list_head list;
89 struct nvme_dev *dev;
90 struct request_queue *queue;
91 struct gendisk *disk;
93 int ns_id;
94 int lba_shift;
98 * An NVM Express queue. Each device has at least two (one for admin
99 * commands and one for I/O commands).
101 struct nvme_queue {
102 struct device *q_dmadev;
103 struct nvme_dev *dev;
104 spinlock_t q_lock;
105 struct nvme_command *sq_cmds;
106 volatile struct nvme_completion *cqes;
107 dma_addr_t sq_dma_addr;
108 dma_addr_t cq_dma_addr;
109 wait_queue_head_t sq_full;
110 wait_queue_t sq_cong_wait;
111 struct bio_list sq_cong;
112 u32 __iomem *q_db;
113 u16 q_depth;
114 u16 cq_vector;
115 u16 sq_head;
116 u16 sq_tail;
117 u16 cq_head;
118 u16 cq_phase;
119 unsigned long cmdid_data[];
123 * Check we didin't inadvertently grow the command struct
125 static inline void _nvme_check_size(void)
127 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
138 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
139 struct nvme_completion *);
141 struct nvme_cmd_info {
142 nvme_completion_fn fn;
143 void *ctx;
144 unsigned long timeout;
147 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
149 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
153 * alloc_cmdid() - Allocate a Command ID
154 * @nvmeq: The queue that will be used for this command
155 * @ctx: A pointer that will be passed to the handler
156 * @handler: The function to call on completion
158 * Allocate a Command ID for a queue. The data passed in will
159 * be passed to the completion handler. This is implemented by using
160 * the bottom two bits of the ctx pointer to store the handler ID.
161 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
162 * We can change this if it becomes a problem.
164 * May be called with local interrupts disabled and the q_lock held,
165 * or with interrupts enabled and no locks held.
167 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
168 nvme_completion_fn handler, unsigned timeout)
170 int depth = nvmeq->q_depth - 1;
171 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
172 int cmdid;
174 do {
175 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
176 if (cmdid >= depth)
177 return -EBUSY;
178 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
180 info[cmdid].fn = handler;
181 info[cmdid].ctx = ctx;
182 info[cmdid].timeout = jiffies + timeout;
183 return cmdid;
186 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
187 nvme_completion_fn handler, unsigned timeout)
189 int cmdid;
190 wait_event_killable(nvmeq->sq_full,
191 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
192 return (cmdid < 0) ? -EINTR : cmdid;
195 /* Special values must be less than 0x1000 */
196 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
197 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
198 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
199 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
200 #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
202 static void special_completion(struct nvme_dev *dev, void *ctx,
203 struct nvme_completion *cqe)
205 if (ctx == CMD_CTX_CANCELLED)
206 return;
207 if (ctx == CMD_CTX_FLUSH)
208 return;
209 if (ctx == CMD_CTX_COMPLETED) {
210 dev_warn(&dev->pci_dev->dev,
211 "completed id %d twice on queue %d\n",
212 cqe->command_id, le16_to_cpup(&cqe->sq_id));
213 return;
215 if (ctx == CMD_CTX_INVALID) {
216 dev_warn(&dev->pci_dev->dev,
217 "invalid id %d completed on queue %d\n",
218 cqe->command_id, le16_to_cpup(&cqe->sq_id));
219 return;
222 dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
226 * Called with local interrupts disabled and the q_lock held. May not sleep.
228 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
229 nvme_completion_fn *fn)
231 void *ctx;
232 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
234 if (cmdid >= nvmeq->q_depth) {
235 *fn = special_completion;
236 return CMD_CTX_INVALID;
238 *fn = info[cmdid].fn;
239 ctx = info[cmdid].ctx;
240 info[cmdid].fn = special_completion;
241 info[cmdid].ctx = CMD_CTX_COMPLETED;
242 clear_bit(cmdid, nvmeq->cmdid_data);
243 wake_up(&nvmeq->sq_full);
244 return ctx;
247 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
248 nvme_completion_fn *fn)
250 void *ctx;
251 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
252 if (fn)
253 *fn = info[cmdid].fn;
254 ctx = info[cmdid].ctx;
255 info[cmdid].fn = special_completion;
256 info[cmdid].ctx = CMD_CTX_CANCELLED;
257 return ctx;
260 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
262 return dev->queues[get_cpu() + 1];
265 static void put_nvmeq(struct nvme_queue *nvmeq)
267 put_cpu();
271 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
272 * @nvmeq: The queue to use
273 * @cmd: The command to send
275 * Safe to use from interrupt context
277 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
279 unsigned long flags;
280 u16 tail;
281 spin_lock_irqsave(&nvmeq->q_lock, flags);
282 tail = nvmeq->sq_tail;
283 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
284 if (++tail == nvmeq->q_depth)
285 tail = 0;
286 writel(tail, nvmeq->q_db);
287 nvmeq->sq_tail = tail;
288 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
290 return 0;
294 * The nvme_iod describes the data in an I/O, including the list of PRP
295 * entries. You can't see it in this data structure because C doesn't let
296 * me express that. Use nvme_alloc_iod to ensure there's enough space
297 * allocated to store the PRP list.
299 struct nvme_iod {
300 void *private; /* For the use of the submitter of the I/O */
301 int npages; /* In the PRP list. 0 means small pool in use */
302 int offset; /* Of PRP list */
303 int nents; /* Used in scatterlist */
304 int length; /* Of data, in bytes */
305 dma_addr_t first_dma;
306 struct scatterlist sg[0];
309 static __le64 **iod_list(struct nvme_iod *iod)
311 return ((void *)iod) + iod->offset;
315 * Will slightly overestimate the number of pages needed. This is OK
316 * as it only leads to a small amount of wasted memory for the lifetime of
317 * the I/O.
319 static int nvme_npages(unsigned size)
321 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
322 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
325 static struct nvme_iod *
326 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
328 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
329 sizeof(__le64 *) * nvme_npages(nbytes) +
330 sizeof(struct scatterlist) * nseg, gfp);
332 if (iod) {
333 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
334 iod->npages = -1;
335 iod->length = nbytes;
338 return iod;
341 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
343 const int last_prp = PAGE_SIZE / 8 - 1;
344 int i;
345 __le64 **list = iod_list(iod);
346 dma_addr_t prp_dma = iod->first_dma;
348 if (iod->npages == 0)
349 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
350 for (i = 0; i < iod->npages; i++) {
351 __le64 *prp_list = list[i];
352 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
353 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
354 prp_dma = next_prp_dma;
356 kfree(iod);
359 static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
361 struct nvme_queue *nvmeq = get_nvmeq(dev);
362 if (bio_list_empty(&nvmeq->sq_cong))
363 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
364 bio_list_add(&nvmeq->sq_cong, bio);
365 put_nvmeq(nvmeq);
366 wake_up_process(nvme_thread);
369 static void bio_completion(struct nvme_dev *dev, void *ctx,
370 struct nvme_completion *cqe)
372 struct nvme_iod *iod = ctx;
373 struct bio *bio = iod->private;
374 u16 status = le16_to_cpup(&cqe->status) >> 1;
376 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
377 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
378 nvme_free_iod(dev, iod);
379 if (status) {
380 bio_endio(bio, -EIO);
381 } else if (bio->bi_vcnt > bio->bi_idx) {
382 requeue_bio(dev, bio);
383 } else {
384 bio_endio(bio, 0);
388 /* length is in bytes. gfp flags indicates whether we may sleep. */
389 static int nvme_setup_prps(struct nvme_dev *dev,
390 struct nvme_common_command *cmd, struct nvme_iod *iod,
391 int total_len, gfp_t gfp)
393 struct dma_pool *pool;
394 int length = total_len;
395 struct scatterlist *sg = iod->sg;
396 int dma_len = sg_dma_len(sg);
397 u64 dma_addr = sg_dma_address(sg);
398 int offset = offset_in_page(dma_addr);
399 __le64 *prp_list;
400 __le64 **list = iod_list(iod);
401 dma_addr_t prp_dma;
402 int nprps, i;
404 cmd->prp1 = cpu_to_le64(dma_addr);
405 length -= (PAGE_SIZE - offset);
406 if (length <= 0)
407 return total_len;
409 dma_len -= (PAGE_SIZE - offset);
410 if (dma_len) {
411 dma_addr += (PAGE_SIZE - offset);
412 } else {
413 sg = sg_next(sg);
414 dma_addr = sg_dma_address(sg);
415 dma_len = sg_dma_len(sg);
418 if (length <= PAGE_SIZE) {
419 cmd->prp2 = cpu_to_le64(dma_addr);
420 return total_len;
423 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
424 if (nprps <= (256 / 8)) {
425 pool = dev->prp_small_pool;
426 iod->npages = 0;
427 } else {
428 pool = dev->prp_page_pool;
429 iod->npages = 1;
432 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
433 if (!prp_list) {
434 cmd->prp2 = cpu_to_le64(dma_addr);
435 iod->npages = -1;
436 return (total_len - length) + PAGE_SIZE;
438 list[0] = prp_list;
439 iod->first_dma = prp_dma;
440 cmd->prp2 = cpu_to_le64(prp_dma);
441 i = 0;
442 for (;;) {
443 if (i == PAGE_SIZE / 8) {
444 __le64 *old_prp_list = prp_list;
445 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
446 if (!prp_list)
447 return total_len - length;
448 list[iod->npages++] = prp_list;
449 prp_list[0] = old_prp_list[i - 1];
450 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
451 i = 1;
453 prp_list[i++] = cpu_to_le64(dma_addr);
454 dma_len -= PAGE_SIZE;
455 dma_addr += PAGE_SIZE;
456 length -= PAGE_SIZE;
457 if (length <= 0)
458 break;
459 if (dma_len > 0)
460 continue;
461 BUG_ON(dma_len < 0);
462 sg = sg_next(sg);
463 dma_addr = sg_dma_address(sg);
464 dma_len = sg_dma_len(sg);
467 return total_len;
470 /* NVMe scatterlists require no holes in the virtual address */
471 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
472 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
474 static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
475 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
477 struct bio_vec *bvec, *bvprv = NULL;
478 struct scatterlist *sg = NULL;
479 int i, old_idx, length = 0, nsegs = 0;
481 sg_init_table(iod->sg, psegs);
482 old_idx = bio->bi_idx;
483 bio_for_each_segment(bvec, bio, i) {
484 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
485 sg->length += bvec->bv_len;
486 } else {
487 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
488 break;
489 sg = sg ? sg + 1 : iod->sg;
490 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
491 bvec->bv_offset);
492 nsegs++;
494 length += bvec->bv_len;
495 bvprv = bvec;
497 bio->bi_idx = i;
498 iod->nents = nsegs;
499 sg_mark_end(sg);
500 if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
501 bio->bi_idx = old_idx;
502 return -ENOMEM;
504 return length;
507 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
508 int cmdid)
510 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
512 memset(cmnd, 0, sizeof(*cmnd));
513 cmnd->common.opcode = nvme_cmd_flush;
514 cmnd->common.command_id = cmdid;
515 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
517 if (++nvmeq->sq_tail == nvmeq->q_depth)
518 nvmeq->sq_tail = 0;
519 writel(nvmeq->sq_tail, nvmeq->q_db);
521 return 0;
524 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
526 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
527 special_completion, NVME_IO_TIMEOUT);
528 if (unlikely(cmdid < 0))
529 return cmdid;
531 return nvme_submit_flush(nvmeq, ns, cmdid);
535 * Called with local interrupts disabled and the q_lock held. May not sleep.
537 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
538 struct bio *bio)
540 struct nvme_command *cmnd;
541 struct nvme_iod *iod;
542 enum dma_data_direction dma_dir;
543 int cmdid, length, result = -ENOMEM;
544 u16 control;
545 u32 dsmgmt;
546 int psegs = bio_phys_segments(ns->queue, bio);
548 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
549 result = nvme_submit_flush_data(nvmeq, ns);
550 if (result)
551 return result;
554 iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
555 if (!iod)
556 goto nomem;
557 iod->private = bio;
559 result = -EBUSY;
560 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
561 if (unlikely(cmdid < 0))
562 goto free_iod;
564 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
565 return nvme_submit_flush(nvmeq, ns, cmdid);
567 control = 0;
568 if (bio->bi_rw & REQ_FUA)
569 control |= NVME_RW_FUA;
570 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
571 control |= NVME_RW_LR;
573 dsmgmt = 0;
574 if (bio->bi_rw & REQ_RAHEAD)
575 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
577 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
579 memset(cmnd, 0, sizeof(*cmnd));
580 if (bio_data_dir(bio)) {
581 cmnd->rw.opcode = nvme_cmd_write;
582 dma_dir = DMA_TO_DEVICE;
583 } else {
584 cmnd->rw.opcode = nvme_cmd_read;
585 dma_dir = DMA_FROM_DEVICE;
588 result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
589 if (result < 0)
590 goto free_iod;
591 length = result;
593 cmnd->rw.command_id = cmdid;
594 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
595 length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
596 GFP_ATOMIC);
597 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
598 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
599 cmnd->rw.control = cpu_to_le16(control);
600 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
602 bio->bi_sector += length >> 9;
604 if (++nvmeq->sq_tail == nvmeq->q_depth)
605 nvmeq->sq_tail = 0;
606 writel(nvmeq->sq_tail, nvmeq->q_db);
608 return 0;
610 free_iod:
611 nvme_free_iod(nvmeq->dev, iod);
612 nomem:
613 return result;
616 static void nvme_make_request(struct request_queue *q, struct bio *bio)
618 struct nvme_ns *ns = q->queuedata;
619 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
620 int result = -EBUSY;
622 spin_lock_irq(&nvmeq->q_lock);
623 if (bio_list_empty(&nvmeq->sq_cong))
624 result = nvme_submit_bio_queue(nvmeq, ns, bio);
625 if (unlikely(result)) {
626 if (bio_list_empty(&nvmeq->sq_cong))
627 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
628 bio_list_add(&nvmeq->sq_cong, bio);
631 spin_unlock_irq(&nvmeq->q_lock);
632 put_nvmeq(nvmeq);
635 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
637 u16 head, phase;
639 head = nvmeq->cq_head;
640 phase = nvmeq->cq_phase;
642 for (;;) {
643 void *ctx;
644 nvme_completion_fn fn;
645 struct nvme_completion cqe = nvmeq->cqes[head];
646 if ((le16_to_cpu(cqe.status) & 1) != phase)
647 break;
648 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
649 if (++head == nvmeq->q_depth) {
650 head = 0;
651 phase = !phase;
654 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
655 fn(nvmeq->dev, ctx, &cqe);
658 /* If the controller ignores the cq head doorbell and continuously
659 * writes to the queue, it is theoretically possible to wrap around
660 * the queue twice and mistakenly return IRQ_NONE. Linux only
661 * requires that 0.1% of your interrupts are handled, so this isn't
662 * a big problem.
664 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
665 return IRQ_NONE;
667 writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
668 nvmeq->cq_head = head;
669 nvmeq->cq_phase = phase;
671 return IRQ_HANDLED;
674 static irqreturn_t nvme_irq(int irq, void *data)
676 irqreturn_t result;
677 struct nvme_queue *nvmeq = data;
678 spin_lock(&nvmeq->q_lock);
679 result = nvme_process_cq(nvmeq);
680 spin_unlock(&nvmeq->q_lock);
681 return result;
684 static irqreturn_t nvme_irq_check(int irq, void *data)
686 struct nvme_queue *nvmeq = data;
687 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
688 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
689 return IRQ_NONE;
690 return IRQ_WAKE_THREAD;
693 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
695 spin_lock_irq(&nvmeq->q_lock);
696 cancel_cmdid(nvmeq, cmdid, NULL);
697 spin_unlock_irq(&nvmeq->q_lock);
700 struct sync_cmd_info {
701 struct task_struct *task;
702 u32 result;
703 int status;
706 static void sync_completion(struct nvme_dev *dev, void *ctx,
707 struct nvme_completion *cqe)
709 struct sync_cmd_info *cmdinfo = ctx;
710 cmdinfo->result = le32_to_cpup(&cqe->result);
711 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
712 wake_up_process(cmdinfo->task);
716 * Returns 0 on success. If the result is negative, it's a Linux error code;
717 * if the result is positive, it's an NVM Express status code
719 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
720 struct nvme_command *cmd, u32 *result, unsigned timeout)
722 int cmdid;
723 struct sync_cmd_info cmdinfo;
725 cmdinfo.task = current;
726 cmdinfo.status = -EINTR;
728 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
729 timeout);
730 if (cmdid < 0)
731 return cmdid;
732 cmd->common.command_id = cmdid;
734 set_current_state(TASK_KILLABLE);
735 nvme_submit_cmd(nvmeq, cmd);
736 schedule();
738 if (cmdinfo.status == -EINTR) {
739 nvme_abort_command(nvmeq, cmdid);
740 return -EINTR;
743 if (result)
744 *result = cmdinfo.result;
746 return cmdinfo.status;
749 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
750 u32 *result)
752 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
755 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
757 int status;
758 struct nvme_command c;
760 memset(&c, 0, sizeof(c));
761 c.delete_queue.opcode = opcode;
762 c.delete_queue.qid = cpu_to_le16(id);
764 status = nvme_submit_admin_cmd(dev, &c, NULL);
765 if (status)
766 return -EIO;
767 return 0;
770 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
771 struct nvme_queue *nvmeq)
773 int status;
774 struct nvme_command c;
775 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
777 memset(&c, 0, sizeof(c));
778 c.create_cq.opcode = nvme_admin_create_cq;
779 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
780 c.create_cq.cqid = cpu_to_le16(qid);
781 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
782 c.create_cq.cq_flags = cpu_to_le16(flags);
783 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
785 status = nvme_submit_admin_cmd(dev, &c, NULL);
786 if (status)
787 return -EIO;
788 return 0;
791 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
792 struct nvme_queue *nvmeq)
794 int status;
795 struct nvme_command c;
796 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
798 memset(&c, 0, sizeof(c));
799 c.create_sq.opcode = nvme_admin_create_sq;
800 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
801 c.create_sq.sqid = cpu_to_le16(qid);
802 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
803 c.create_sq.sq_flags = cpu_to_le16(flags);
804 c.create_sq.cqid = cpu_to_le16(qid);
806 status = nvme_submit_admin_cmd(dev, &c, NULL);
807 if (status)
808 return -EIO;
809 return 0;
812 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
814 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
817 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
819 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
822 static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
823 dma_addr_t dma_addr)
825 struct nvme_command c;
827 memset(&c, 0, sizeof(c));
828 c.identify.opcode = nvme_admin_identify;
829 c.identify.nsid = cpu_to_le32(nsid);
830 c.identify.prp1 = cpu_to_le64(dma_addr);
831 c.identify.cns = cpu_to_le32(cns);
833 return nvme_submit_admin_cmd(dev, &c, NULL);
836 static int nvme_get_features(struct nvme_dev *dev, unsigned fid,
837 unsigned dword11, dma_addr_t dma_addr)
839 struct nvme_command c;
841 memset(&c, 0, sizeof(c));
842 c.features.opcode = nvme_admin_get_features;
843 c.features.prp1 = cpu_to_le64(dma_addr);
844 c.features.fid = cpu_to_le32(fid);
845 c.features.dword11 = cpu_to_le32(dword11);
847 return nvme_submit_admin_cmd(dev, &c, NULL);
850 static int nvme_set_features(struct nvme_dev *dev, unsigned fid,
851 unsigned dword11, dma_addr_t dma_addr, u32 *result)
853 struct nvme_command c;
855 memset(&c, 0, sizeof(c));
856 c.features.opcode = nvme_admin_set_features;
857 c.features.prp1 = cpu_to_le64(dma_addr);
858 c.features.fid = cpu_to_le32(fid);
859 c.features.dword11 = cpu_to_le32(dword11);
861 return nvme_submit_admin_cmd(dev, &c, result);
864 static void nvme_free_queue(struct nvme_dev *dev, int qid)
866 struct nvme_queue *nvmeq = dev->queues[qid];
867 int vector = dev->entry[nvmeq->cq_vector].vector;
869 irq_set_affinity_hint(vector, NULL);
870 free_irq(vector, nvmeq);
872 /* Don't tell the adapter to delete the admin queue */
873 if (qid) {
874 adapter_delete_sq(dev, qid);
875 adapter_delete_cq(dev, qid);
878 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
879 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
880 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
881 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
882 kfree(nvmeq);
885 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
886 int depth, int vector)
888 struct device *dmadev = &dev->pci_dev->dev;
889 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
890 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
891 if (!nvmeq)
892 return NULL;
894 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
895 &nvmeq->cq_dma_addr, GFP_KERNEL);
896 if (!nvmeq->cqes)
897 goto free_nvmeq;
898 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
900 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
901 &nvmeq->sq_dma_addr, GFP_KERNEL);
902 if (!nvmeq->sq_cmds)
903 goto free_cqdma;
905 nvmeq->q_dmadev = dmadev;
906 nvmeq->dev = dev;
907 spin_lock_init(&nvmeq->q_lock);
908 nvmeq->cq_head = 0;
909 nvmeq->cq_phase = 1;
910 init_waitqueue_head(&nvmeq->sq_full);
911 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
912 bio_list_init(&nvmeq->sq_cong);
913 nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
914 nvmeq->q_depth = depth;
915 nvmeq->cq_vector = vector;
917 return nvmeq;
919 free_cqdma:
920 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
921 nvmeq->cq_dma_addr);
922 free_nvmeq:
923 kfree(nvmeq);
924 return NULL;
927 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
928 const char *name)
930 if (use_threaded_interrupts)
931 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
932 nvme_irq_check, nvme_irq,
933 IRQF_DISABLED | IRQF_SHARED,
934 name, nvmeq);
935 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
936 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
939 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
940 int qid, int cq_size, int vector)
942 int result;
943 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
945 if (!nvmeq)
946 return ERR_PTR(-ENOMEM);
948 result = adapter_alloc_cq(dev, qid, nvmeq);
949 if (result < 0)
950 goto free_nvmeq;
952 result = adapter_alloc_sq(dev, qid, nvmeq);
953 if (result < 0)
954 goto release_cq;
956 result = queue_request_irq(dev, nvmeq, "nvme");
957 if (result < 0)
958 goto release_sq;
960 return nvmeq;
962 release_sq:
963 adapter_delete_sq(dev, qid);
964 release_cq:
965 adapter_delete_cq(dev, qid);
966 free_nvmeq:
967 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
968 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
969 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
970 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
971 kfree(nvmeq);
972 return ERR_PTR(result);
975 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
977 int result;
978 u32 aqa;
979 u64 cap;
980 unsigned long timeout;
981 struct nvme_queue *nvmeq;
983 dev->dbs = ((void __iomem *)dev->bar) + 4096;
985 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
986 if (!nvmeq)
987 return -ENOMEM;
989 aqa = nvmeq->q_depth - 1;
990 aqa |= aqa << 16;
992 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
993 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
994 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
995 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
997 writel(0, &dev->bar->cc);
998 writel(aqa, &dev->bar->aqa);
999 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1000 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1001 writel(dev->ctrl_config, &dev->bar->cc);
1003 cap = readq(&dev->bar->cap);
1004 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1005 dev->db_stride = NVME_CAP_STRIDE(cap);
1007 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
1008 msleep(100);
1009 if (fatal_signal_pending(current))
1010 return -EINTR;
1011 if (time_after(jiffies, timeout)) {
1012 dev_err(&dev->pci_dev->dev,
1013 "Device not ready; aborting initialisation\n");
1014 return -ENODEV;
1018 result = queue_request_irq(dev, nvmeq, "nvme admin");
1019 dev->queues[0] = nvmeq;
1020 return result;
1023 static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1024 unsigned long addr, unsigned length)
1026 int i, err, count, nents, offset;
1027 struct scatterlist *sg;
1028 struct page **pages;
1029 struct nvme_iod *iod;
1031 if (addr & 3)
1032 return ERR_PTR(-EINVAL);
1033 if (!length)
1034 return ERR_PTR(-EINVAL);
1036 offset = offset_in_page(addr);
1037 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1038 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1040 err = get_user_pages_fast(addr, count, 1, pages);
1041 if (err < count) {
1042 count = err;
1043 err = -EFAULT;
1044 goto put_pages;
1047 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1048 sg = iod->sg;
1049 sg_init_table(sg, count);
1050 for (i = 0; i < count; i++) {
1051 sg_set_page(&sg[i], pages[i],
1052 min_t(int, length, PAGE_SIZE - offset), offset);
1053 length -= (PAGE_SIZE - offset);
1054 offset = 0;
1056 sg_mark_end(&sg[i - 1]);
1057 iod->nents = count;
1059 err = -ENOMEM;
1060 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1061 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1062 if (!nents)
1063 goto free_iod;
1065 kfree(pages);
1066 return iod;
1068 free_iod:
1069 kfree(iod);
1070 put_pages:
1071 for (i = 0; i < count; i++)
1072 put_page(pages[i]);
1073 kfree(pages);
1074 return ERR_PTR(err);
1077 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1078 struct nvme_iod *iod)
1080 int i;
1082 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1083 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1085 for (i = 0; i < iod->nents; i++)
1086 put_page(sg_page(&iod->sg[i]));
1089 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1091 struct nvme_dev *dev = ns->dev;
1092 struct nvme_queue *nvmeq;
1093 struct nvme_user_io io;
1094 struct nvme_command c;
1095 unsigned length;
1096 int status;
1097 struct nvme_iod *iod;
1099 if (copy_from_user(&io, uio, sizeof(io)))
1100 return -EFAULT;
1101 length = (io.nblocks + 1) << ns->lba_shift;
1103 switch (io.opcode) {
1104 case nvme_cmd_write:
1105 case nvme_cmd_read:
1106 case nvme_cmd_compare:
1107 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1108 break;
1109 default:
1110 return -EINVAL;
1113 if (IS_ERR(iod))
1114 return PTR_ERR(iod);
1116 memset(&c, 0, sizeof(c));
1117 c.rw.opcode = io.opcode;
1118 c.rw.flags = io.flags;
1119 c.rw.nsid = cpu_to_le32(ns->ns_id);
1120 c.rw.slba = cpu_to_le64(io.slba);
1121 c.rw.length = cpu_to_le16(io.nblocks);
1122 c.rw.control = cpu_to_le16(io.control);
1123 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1124 c.rw.reftag = io.reftag;
1125 c.rw.apptag = io.apptag;
1126 c.rw.appmask = io.appmask;
1127 /* XXX: metadata */
1128 length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1130 nvmeq = get_nvmeq(dev);
1132 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1133 * disabled. We may be preempted at any point, and be rescheduled
1134 * to a different CPU. That will cause cacheline bouncing, but no
1135 * additional races since q_lock already protects against other CPUs.
1137 put_nvmeq(nvmeq);
1138 if (length != (io.nblocks + 1) << ns->lba_shift)
1139 status = -ENOMEM;
1140 else
1141 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1143 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1144 nvme_free_iod(dev, iod);
1145 return status;
1148 static int nvme_user_admin_cmd(struct nvme_ns *ns,
1149 struct nvme_admin_cmd __user *ucmd)
1151 struct nvme_dev *dev = ns->dev;
1152 struct nvme_admin_cmd cmd;
1153 struct nvme_command c;
1154 int status, length;
1155 struct nvme_iod *iod;
1157 if (!capable(CAP_SYS_ADMIN))
1158 return -EACCES;
1159 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1160 return -EFAULT;
1162 memset(&c, 0, sizeof(c));
1163 c.common.opcode = cmd.opcode;
1164 c.common.flags = cmd.flags;
1165 c.common.nsid = cpu_to_le32(cmd.nsid);
1166 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1167 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1168 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1169 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1170 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1171 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1172 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1173 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1175 length = cmd.data_len;
1176 if (cmd.data_len) {
1177 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1178 length);
1179 if (IS_ERR(iod))
1180 return PTR_ERR(iod);
1181 length = nvme_setup_prps(dev, &c.common, iod, length,
1182 GFP_KERNEL);
1185 if (length != cmd.data_len)
1186 status = -ENOMEM;
1187 else
1188 status = nvme_submit_admin_cmd(dev, &c, NULL);
1190 if (cmd.data_len) {
1191 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1192 nvme_free_iod(dev, iod);
1194 return status;
1197 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1198 unsigned long arg)
1200 struct nvme_ns *ns = bdev->bd_disk->private_data;
1202 switch (cmd) {
1203 case NVME_IOCTL_ID:
1204 return ns->ns_id;
1205 case NVME_IOCTL_ADMIN_CMD:
1206 return nvme_user_admin_cmd(ns, (void __user *)arg);
1207 case NVME_IOCTL_SUBMIT_IO:
1208 return nvme_submit_io(ns, (void __user *)arg);
1209 default:
1210 return -ENOTTY;
1214 static const struct block_device_operations nvme_fops = {
1215 .owner = THIS_MODULE,
1216 .ioctl = nvme_ioctl,
1217 .compat_ioctl = nvme_ioctl,
1220 static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1222 int depth = nvmeq->q_depth - 1;
1223 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1224 unsigned long now = jiffies;
1225 int cmdid;
1227 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1228 void *ctx;
1229 nvme_completion_fn fn;
1230 static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1232 if (!time_after(now, info[cmdid].timeout))
1233 continue;
1234 dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
1235 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1236 fn(nvmeq->dev, ctx, &cqe);
1240 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1242 while (bio_list_peek(&nvmeq->sq_cong)) {
1243 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1244 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1245 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1246 bio_list_add_head(&nvmeq->sq_cong, bio);
1247 break;
1249 if (bio_list_empty(&nvmeq->sq_cong))
1250 remove_wait_queue(&nvmeq->sq_full,
1251 &nvmeq->sq_cong_wait);
1255 static int nvme_kthread(void *data)
1257 struct nvme_dev *dev;
1259 while (!kthread_should_stop()) {
1260 __set_current_state(TASK_RUNNING);
1261 spin_lock(&dev_list_lock);
1262 list_for_each_entry(dev, &dev_list, node) {
1263 int i;
1264 for (i = 0; i < dev->queue_count; i++) {
1265 struct nvme_queue *nvmeq = dev->queues[i];
1266 if (!nvmeq)
1267 continue;
1268 spin_lock_irq(&nvmeq->q_lock);
1269 if (nvme_process_cq(nvmeq))
1270 printk("process_cq did something\n");
1271 nvme_timeout_ios(nvmeq);
1272 nvme_resubmit_bios(nvmeq);
1273 spin_unlock_irq(&nvmeq->q_lock);
1276 spin_unlock(&dev_list_lock);
1277 set_current_state(TASK_INTERRUPTIBLE);
1278 schedule_timeout(HZ);
1280 return 0;
1283 static DEFINE_IDA(nvme_index_ida);
1285 static int nvme_get_ns_idx(void)
1287 int index, error;
1289 do {
1290 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1291 return -1;
1293 spin_lock(&dev_list_lock);
1294 error = ida_get_new(&nvme_index_ida, &index);
1295 spin_unlock(&dev_list_lock);
1296 } while (error == -EAGAIN);
1298 if (error)
1299 index = -1;
1300 return index;
1303 static void nvme_put_ns_idx(int index)
1305 spin_lock(&dev_list_lock);
1306 ida_remove(&nvme_index_ida, index);
1307 spin_unlock(&dev_list_lock);
1310 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1311 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1313 struct nvme_ns *ns;
1314 struct gendisk *disk;
1315 int lbaf;
1317 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1318 return NULL;
1320 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1321 if (!ns)
1322 return NULL;
1323 ns->queue = blk_alloc_queue(GFP_KERNEL);
1324 if (!ns->queue)
1325 goto out_free_ns;
1326 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1327 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1328 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1329 /* queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */
1330 blk_queue_make_request(ns->queue, nvme_make_request);
1331 ns->dev = dev;
1332 ns->queue->queuedata = ns;
1334 disk = alloc_disk(NVME_MINORS);
1335 if (!disk)
1336 goto out_free_queue;
1337 ns->ns_id = nsid;
1338 ns->disk = disk;
1339 lbaf = id->flbas & 0xf;
1340 ns->lba_shift = id->lbaf[lbaf].ds;
1342 disk->major = nvme_major;
1343 disk->minors = NVME_MINORS;
1344 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1345 disk->fops = &nvme_fops;
1346 disk->private_data = ns;
1347 disk->queue = ns->queue;
1348 disk->driverfs_dev = &dev->pci_dev->dev;
1349 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1350 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1352 return ns;
1354 out_free_queue:
1355 blk_cleanup_queue(ns->queue);
1356 out_free_ns:
1357 kfree(ns);
1358 return NULL;
1361 static void nvme_ns_free(struct nvme_ns *ns)
1363 int index = ns->disk->first_minor / NVME_MINORS;
1364 put_disk(ns->disk);
1365 nvme_put_ns_idx(index);
1366 blk_cleanup_queue(ns->queue);
1367 kfree(ns);
1370 static int set_queue_count(struct nvme_dev *dev, int count)
1372 int status;
1373 u32 result;
1374 u32 q_count = (count - 1) | ((count - 1) << 16);
1376 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1377 &result);
1378 if (status)
1379 return -EIO;
1380 return min(result & 0xffff, result >> 16) + 1;
1383 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1385 int result, cpu, i, nr_io_queues, db_bar_size;
1387 nr_io_queues = num_online_cpus();
1388 result = set_queue_count(dev, nr_io_queues);
1389 if (result < 0)
1390 return result;
1391 if (result < nr_io_queues)
1392 nr_io_queues = result;
1394 /* Deregister the admin queue's interrupt */
1395 free_irq(dev->entry[0].vector, dev->queues[0]);
1397 db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1398 if (db_bar_size > 8192) {
1399 iounmap(dev->bar);
1400 dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1401 db_bar_size);
1402 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1403 dev->queues[0]->q_db = dev->dbs;
1406 for (i = 0; i < nr_io_queues; i++)
1407 dev->entry[i].entry = i;
1408 for (;;) {
1409 result = pci_enable_msix(dev->pci_dev, dev->entry,
1410 nr_io_queues);
1411 if (result == 0) {
1412 break;
1413 } else if (result > 0) {
1414 nr_io_queues = result;
1415 continue;
1416 } else {
1417 nr_io_queues = 1;
1418 break;
1422 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1423 /* XXX: handle failure here */
1425 cpu = cpumask_first(cpu_online_mask);
1426 for (i = 0; i < nr_io_queues; i++) {
1427 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1428 cpu = cpumask_next(cpu, cpu_online_mask);
1431 for (i = 0; i < nr_io_queues; i++) {
1432 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1433 NVME_Q_DEPTH, i);
1434 if (IS_ERR(dev->queues[i + 1]))
1435 return PTR_ERR(dev->queues[i + 1]);
1436 dev->queue_count++;
1439 for (; i < num_possible_cpus(); i++) {
1440 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1441 dev->queues[i + 1] = dev->queues[target + 1];
1444 return 0;
1447 static void nvme_free_queues(struct nvme_dev *dev)
1449 int i;
1451 for (i = dev->queue_count - 1; i >= 0; i--)
1452 nvme_free_queue(dev, i);
1455 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1457 int res, nn, i;
1458 struct nvme_ns *ns, *next;
1459 struct nvme_id_ctrl *ctrl;
1460 struct nvme_id_ns *id_ns;
1461 void *mem;
1462 dma_addr_t dma_addr;
1464 res = nvme_setup_io_queues(dev);
1465 if (res)
1466 return res;
1468 mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1469 GFP_KERNEL);
1471 res = nvme_identify(dev, 0, 1, dma_addr);
1472 if (res) {
1473 res = -EIO;
1474 goto out_free;
1477 ctrl = mem;
1478 nn = le32_to_cpup(&ctrl->nn);
1479 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1480 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1481 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1483 id_ns = mem;
1484 for (i = 1; i <= nn; i++) {
1485 res = nvme_identify(dev, i, 0, dma_addr);
1486 if (res)
1487 continue;
1489 if (id_ns->ncap == 0)
1490 continue;
1492 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1493 dma_addr + 4096);
1494 if (res)
1495 continue;
1497 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1498 if (ns)
1499 list_add_tail(&ns->list, &dev->namespaces);
1501 list_for_each_entry(ns, &dev->namespaces, list)
1502 add_disk(ns->disk);
1504 goto out;
1506 out_free:
1507 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1508 list_del(&ns->list);
1509 nvme_ns_free(ns);
1512 out:
1513 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1514 return res;
1517 static int nvme_dev_remove(struct nvme_dev *dev)
1519 struct nvme_ns *ns, *next;
1521 spin_lock(&dev_list_lock);
1522 list_del(&dev->node);
1523 spin_unlock(&dev_list_lock);
1525 /* TODO: wait all I/O finished or cancel them */
1527 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1528 list_del(&ns->list);
1529 del_gendisk(ns->disk);
1530 nvme_ns_free(ns);
1533 nvme_free_queues(dev);
1535 return 0;
1538 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1540 struct device *dmadev = &dev->pci_dev->dev;
1541 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1542 PAGE_SIZE, PAGE_SIZE, 0);
1543 if (!dev->prp_page_pool)
1544 return -ENOMEM;
1546 /* Optimisation for I/Os between 4k and 128k */
1547 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1548 256, 256, 0);
1549 if (!dev->prp_small_pool) {
1550 dma_pool_destroy(dev->prp_page_pool);
1551 return -ENOMEM;
1553 return 0;
1556 static void nvme_release_prp_pools(struct nvme_dev *dev)
1558 dma_pool_destroy(dev->prp_page_pool);
1559 dma_pool_destroy(dev->prp_small_pool);
1562 /* XXX: Use an ida or something to let remove / add work correctly */
1563 static void nvme_set_instance(struct nvme_dev *dev)
1565 static int instance;
1566 dev->instance = instance++;
1569 static void nvme_release_instance(struct nvme_dev *dev)
1573 static int __devinit nvme_probe(struct pci_dev *pdev,
1574 const struct pci_device_id *id)
1576 int bars, result = -ENOMEM;
1577 struct nvme_dev *dev;
1579 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1580 if (!dev)
1581 return -ENOMEM;
1582 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1583 GFP_KERNEL);
1584 if (!dev->entry)
1585 goto free;
1586 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1587 GFP_KERNEL);
1588 if (!dev->queues)
1589 goto free;
1591 if (pci_enable_device_mem(pdev))
1592 goto free;
1593 pci_set_master(pdev);
1594 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1595 if (pci_request_selected_regions(pdev, bars, "nvme"))
1596 goto disable;
1598 INIT_LIST_HEAD(&dev->namespaces);
1599 dev->pci_dev = pdev;
1600 pci_set_drvdata(pdev, dev);
1601 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1602 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1603 nvme_set_instance(dev);
1604 dev->entry[0].vector = pdev->irq;
1606 result = nvme_setup_prp_pools(dev);
1607 if (result)
1608 goto disable_msix;
1610 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1611 if (!dev->bar) {
1612 result = -ENOMEM;
1613 goto disable_msix;
1616 result = nvme_configure_admin_queue(dev);
1617 if (result)
1618 goto unmap;
1619 dev->queue_count++;
1621 spin_lock(&dev_list_lock);
1622 list_add(&dev->node, &dev_list);
1623 spin_unlock(&dev_list_lock);
1625 result = nvme_dev_add(dev);
1626 if (result)
1627 goto delete;
1629 return 0;
1631 delete:
1632 spin_lock(&dev_list_lock);
1633 list_del(&dev->node);
1634 spin_unlock(&dev_list_lock);
1636 nvme_free_queues(dev);
1637 unmap:
1638 iounmap(dev->bar);
1639 disable_msix:
1640 pci_disable_msix(pdev);
1641 nvme_release_instance(dev);
1642 nvme_release_prp_pools(dev);
1643 disable:
1644 pci_disable_device(pdev);
1645 pci_release_regions(pdev);
1646 free:
1647 kfree(dev->queues);
1648 kfree(dev->entry);
1649 kfree(dev);
1650 return result;
1653 static void __devexit nvme_remove(struct pci_dev *pdev)
1655 struct nvme_dev *dev = pci_get_drvdata(pdev);
1656 nvme_dev_remove(dev);
1657 pci_disable_msix(pdev);
1658 iounmap(dev->bar);
1659 nvme_release_instance(dev);
1660 nvme_release_prp_pools(dev);
1661 pci_disable_device(pdev);
1662 pci_release_regions(pdev);
1663 kfree(dev->queues);
1664 kfree(dev->entry);
1665 kfree(dev);
1668 /* These functions are yet to be implemented */
1669 #define nvme_error_detected NULL
1670 #define nvme_dump_registers NULL
1671 #define nvme_link_reset NULL
1672 #define nvme_slot_reset NULL
1673 #define nvme_error_resume NULL
1674 #define nvme_suspend NULL
1675 #define nvme_resume NULL
1677 static struct pci_error_handlers nvme_err_handler = {
1678 .error_detected = nvme_error_detected,
1679 .mmio_enabled = nvme_dump_registers,
1680 .link_reset = nvme_link_reset,
1681 .slot_reset = nvme_slot_reset,
1682 .resume = nvme_error_resume,
1685 /* Move to pci_ids.h later */
1686 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
1688 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1689 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1690 { 0, }
1692 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1694 static struct pci_driver nvme_driver = {
1695 .name = "nvme",
1696 .id_table = nvme_id_table,
1697 .probe = nvme_probe,
1698 .remove = __devexit_p(nvme_remove),
1699 .suspend = nvme_suspend,
1700 .resume = nvme_resume,
1701 .err_handler = &nvme_err_handler,
1704 static int __init nvme_init(void)
1706 int result = -EBUSY;
1708 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1709 if (IS_ERR(nvme_thread))
1710 return PTR_ERR(nvme_thread);
1712 nvme_major = register_blkdev(nvme_major, "nvme");
1713 if (nvme_major <= 0)
1714 goto kill_kthread;
1716 result = pci_register_driver(&nvme_driver);
1717 if (result)
1718 goto unregister_blkdev;
1719 return 0;
1721 unregister_blkdev:
1722 unregister_blkdev(nvme_major, "nvme");
1723 kill_kthread:
1724 kthread_stop(nvme_thread);
1725 return result;
1728 static void __exit nvme_exit(void)
1730 pci_unregister_driver(&nvme_driver);
1731 unregister_blkdev(nvme_major, "nvme");
1732 kthread_stop(nvme_thread);
1735 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1736 MODULE_LICENSE("GPL");
1737 MODULE_VERSION("0.8");
1738 module_init(nvme_init);
1739 module_exit(nvme_exit);