sfc: Move Falcon NIC operations to efx_nic_type
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / sfc / efx.c
blob73ab246d9f2a3cf877c1c1916c2d0a2d63c6e71e
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
24 #include "efx.h"
25 #include "mdio_10g.h"
26 #include "falcon.h"
28 /**************************************************************************
30 * Type name strings
32 **************************************************************************
35 /* Loopback mode names (see LOOPBACK_MODE()) */
36 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
37 const char *efx_loopback_mode_names[] = {
38 [LOOPBACK_NONE] = "NONE",
39 [LOOPBACK_GMAC] = "GMAC",
40 [LOOPBACK_XGMII] = "XGMII",
41 [LOOPBACK_XGXS] = "XGXS",
42 [LOOPBACK_XAUI] = "XAUI",
43 [LOOPBACK_GPHY] = "GPHY",
44 [LOOPBACK_PHYXS] = "PHYXS",
45 [LOOPBACK_PCS] = "PCS",
46 [LOOPBACK_PMAPMD] = "PMA/PMD",
47 [LOOPBACK_NETWORK] = "NETWORK",
50 /* Interrupt mode names (see INT_MODE())) */
51 const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
52 const char *efx_interrupt_mode_names[] = {
53 [EFX_INT_MODE_MSIX] = "MSI-X",
54 [EFX_INT_MODE_MSI] = "MSI",
55 [EFX_INT_MODE_LEGACY] = "legacy",
58 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
59 const char *efx_reset_type_names[] = {
60 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
61 [RESET_TYPE_ALL] = "ALL",
62 [RESET_TYPE_WORLD] = "WORLD",
63 [RESET_TYPE_DISABLE] = "DISABLE",
64 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
65 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
66 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
67 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
68 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
69 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
72 #define EFX_MAX_MTU (9 * 1024)
74 /* RX slow fill workqueue. If memory allocation fails in the fast path,
75 * a work item is pushed onto this work queue to retry the allocation later,
76 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
77 * workqueue, there is nothing to be gained in making it per NIC
79 static struct workqueue_struct *refill_workqueue;
81 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
82 * queued onto this work queue. This is not a per-nic work queue, because
83 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
85 static struct workqueue_struct *reset_workqueue;
87 /**************************************************************************
89 * Configurable values
91 *************************************************************************/
94 * Use separate channels for TX and RX events
96 * Set this to 1 to use separate channels for TX and RX. It allows us
97 * to control interrupt affinity separately for TX and RX.
99 * This is only used in MSI-X interrupt mode
101 static unsigned int separate_tx_channels;
102 module_param(separate_tx_channels, uint, 0644);
103 MODULE_PARM_DESC(separate_tx_channels,
104 "Use separate channels for TX and RX");
106 /* This is the weight assigned to each of the (per-channel) virtual
107 * NAPI devices.
109 static int napi_weight = 64;
111 /* This is the time (in jiffies) between invocations of the hardware
112 * monitor, which checks for known hardware bugs and resets the
113 * hardware and driver as necessary.
115 unsigned int efx_monitor_interval = 1 * HZ;
117 /* This controls whether or not the driver will initialise devices
118 * with invalid MAC addresses stored in the EEPROM or flash. If true,
119 * such devices will be initialised with a random locally-generated
120 * MAC address. This allows for loading the sfc_mtd driver to
121 * reprogram the flash, even if the flash contents (including the MAC
122 * address) have previously been erased.
124 static unsigned int allow_bad_hwaddr;
126 /* Initial interrupt moderation settings. They can be modified after
127 * module load with ethtool.
129 * The default for RX should strike a balance between increasing the
130 * round-trip latency and reducing overhead.
132 static unsigned int rx_irq_mod_usec = 60;
134 /* Initial interrupt moderation settings. They can be modified after
135 * module load with ethtool.
137 * This default is chosen to ensure that a 10G link does not go idle
138 * while a TX queue is stopped after it has become full. A queue is
139 * restarted when it drops below half full. The time this takes (assuming
140 * worst case 3 descriptors per packet and 1024 descriptors) is
141 * 512 / 3 * 1.2 = 205 usec.
143 static unsigned int tx_irq_mod_usec = 150;
145 /* This is the first interrupt mode to try out of:
146 * 0 => MSI-X
147 * 1 => MSI
148 * 2 => legacy
150 static unsigned int interrupt_mode;
152 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
153 * i.e. the number of CPUs among which we may distribute simultaneous
154 * interrupt handling.
156 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
157 * The default (0) means to assign an interrupt to each package (level II cache)
159 static unsigned int rss_cpus;
160 module_param(rss_cpus, uint, 0444);
161 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
163 static int phy_flash_cfg;
164 module_param(phy_flash_cfg, int, 0644);
165 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
167 static unsigned irq_adapt_low_thresh = 10000;
168 module_param(irq_adapt_low_thresh, uint, 0644);
169 MODULE_PARM_DESC(irq_adapt_low_thresh,
170 "Threshold score for reducing IRQ moderation");
172 static unsigned irq_adapt_high_thresh = 20000;
173 module_param(irq_adapt_high_thresh, uint, 0644);
174 MODULE_PARM_DESC(irq_adapt_high_thresh,
175 "Threshold score for increasing IRQ moderation");
177 /**************************************************************************
179 * Utility functions and prototypes
181 *************************************************************************/
182 static void efx_remove_channel(struct efx_channel *channel);
183 static void efx_remove_port(struct efx_nic *efx);
184 static void efx_fini_napi(struct efx_nic *efx);
185 static void efx_fini_channels(struct efx_nic *efx);
187 #define EFX_ASSERT_RESET_SERIALISED(efx) \
188 do { \
189 if ((efx->state == STATE_RUNNING) || \
190 (efx->state == STATE_DISABLED)) \
191 ASSERT_RTNL(); \
192 } while (0)
194 /**************************************************************************
196 * Event queue processing
198 *************************************************************************/
200 /* Process channel's event queue
202 * This function is responsible for processing the event queue of a
203 * single channel. The caller must guarantee that this function will
204 * never be concurrently called more than once on the same channel,
205 * though different channels may be being processed concurrently.
207 static int efx_process_channel(struct efx_channel *channel, int rx_quota)
209 struct efx_nic *efx = channel->efx;
210 int rx_packets;
212 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
213 !channel->enabled))
214 return 0;
216 rx_packets = falcon_process_eventq(channel, rx_quota);
217 if (rx_packets == 0)
218 return 0;
220 /* Deliver last RX packet. */
221 if (channel->rx_pkt) {
222 __efx_rx_packet(channel, channel->rx_pkt,
223 channel->rx_pkt_csummed);
224 channel->rx_pkt = NULL;
227 efx_rx_strategy(channel);
229 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
231 return rx_packets;
234 /* Mark channel as finished processing
236 * Note that since we will not receive further interrupts for this
237 * channel before we finish processing and call the eventq_read_ack()
238 * method, there is no need to use the interrupt hold-off timers.
240 static inline void efx_channel_processed(struct efx_channel *channel)
242 /* The interrupt handler for this channel may set work_pending
243 * as soon as we acknowledge the events we've seen. Make sure
244 * it's cleared before then. */
245 channel->work_pending = false;
246 smp_wmb();
248 falcon_eventq_read_ack(channel);
251 /* NAPI poll handler
253 * NAPI guarantees serialisation of polls of the same device, which
254 * provides the guarantee required by efx_process_channel().
256 static int efx_poll(struct napi_struct *napi, int budget)
258 struct efx_channel *channel =
259 container_of(napi, struct efx_channel, napi_str);
260 int rx_packets;
262 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
263 channel->channel, raw_smp_processor_id());
265 rx_packets = efx_process_channel(channel, budget);
267 if (rx_packets < budget) {
268 struct efx_nic *efx = channel->efx;
270 if (channel->used_flags & EFX_USED_BY_RX &&
271 efx->irq_rx_adaptive &&
272 unlikely(++channel->irq_count == 1000)) {
273 if (unlikely(channel->irq_mod_score <
274 irq_adapt_low_thresh)) {
275 if (channel->irq_moderation > 1) {
276 channel->irq_moderation -= 1;
277 efx->type->push_irq_moderation(channel);
279 } else if (unlikely(channel->irq_mod_score >
280 irq_adapt_high_thresh)) {
281 if (channel->irq_moderation <
282 efx->irq_rx_moderation) {
283 channel->irq_moderation += 1;
284 efx->type->push_irq_moderation(channel);
287 channel->irq_count = 0;
288 channel->irq_mod_score = 0;
291 /* There is no race here; although napi_disable() will
292 * only wait for napi_complete(), this isn't a problem
293 * since efx_channel_processed() will have no effect if
294 * interrupts have already been disabled.
296 napi_complete(napi);
297 efx_channel_processed(channel);
300 return rx_packets;
303 /* Process the eventq of the specified channel immediately on this CPU
305 * Disable hardware generated interrupts, wait for any existing
306 * processing to finish, then directly poll (and ack ) the eventq.
307 * Finally reenable NAPI and interrupts.
309 * Since we are touching interrupts the caller should hold the suspend lock
311 void efx_process_channel_now(struct efx_channel *channel)
313 struct efx_nic *efx = channel->efx;
315 BUG_ON(!channel->used_flags);
316 BUG_ON(!channel->enabled);
318 /* Disable interrupts and wait for ISRs to complete */
319 falcon_disable_interrupts(efx);
320 if (efx->legacy_irq)
321 synchronize_irq(efx->legacy_irq);
322 if (channel->irq)
323 synchronize_irq(channel->irq);
325 /* Wait for any NAPI processing to complete */
326 napi_disable(&channel->napi_str);
328 /* Poll the channel */
329 efx_process_channel(channel, EFX_EVQ_SIZE);
331 /* Ack the eventq. This may cause an interrupt to be generated
332 * when they are reenabled */
333 efx_channel_processed(channel);
335 napi_enable(&channel->napi_str);
336 falcon_enable_interrupts(efx);
339 /* Create event queue
340 * Event queue memory allocations are done only once. If the channel
341 * is reset, the memory buffer will be reused; this guards against
342 * errors during channel reset and also simplifies interrupt handling.
344 static int efx_probe_eventq(struct efx_channel *channel)
346 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
348 return falcon_probe_eventq(channel);
351 /* Prepare channel's event queue */
352 static void efx_init_eventq(struct efx_channel *channel)
354 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
356 channel->eventq_read_ptr = 0;
358 falcon_init_eventq(channel);
361 static void efx_fini_eventq(struct efx_channel *channel)
363 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
365 falcon_fini_eventq(channel);
368 static void efx_remove_eventq(struct efx_channel *channel)
370 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
372 falcon_remove_eventq(channel);
375 /**************************************************************************
377 * Channel handling
379 *************************************************************************/
381 static int efx_probe_channel(struct efx_channel *channel)
383 struct efx_tx_queue *tx_queue;
384 struct efx_rx_queue *rx_queue;
385 int rc;
387 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
389 rc = efx_probe_eventq(channel);
390 if (rc)
391 goto fail1;
393 efx_for_each_channel_tx_queue(tx_queue, channel) {
394 rc = efx_probe_tx_queue(tx_queue);
395 if (rc)
396 goto fail2;
399 efx_for_each_channel_rx_queue(rx_queue, channel) {
400 rc = efx_probe_rx_queue(rx_queue);
401 if (rc)
402 goto fail3;
405 channel->n_rx_frm_trunc = 0;
407 return 0;
409 fail3:
410 efx_for_each_channel_rx_queue(rx_queue, channel)
411 efx_remove_rx_queue(rx_queue);
412 fail2:
413 efx_for_each_channel_tx_queue(tx_queue, channel)
414 efx_remove_tx_queue(tx_queue);
415 fail1:
416 return rc;
420 static void efx_set_channel_names(struct efx_nic *efx)
422 struct efx_channel *channel;
423 const char *type = "";
424 int number;
426 efx_for_each_channel(channel, efx) {
427 number = channel->channel;
428 if (efx->n_channels > efx->n_rx_queues) {
429 if (channel->channel < efx->n_rx_queues) {
430 type = "-rx";
431 } else {
432 type = "-tx";
433 number -= efx->n_rx_queues;
436 snprintf(channel->name, sizeof(channel->name),
437 "%s%s-%d", efx->name, type, number);
441 /* Channels are shutdown and reinitialised whilst the NIC is running
442 * to propagate configuration changes (mtu, checksum offload), or
443 * to clear hardware error conditions
445 static void efx_init_channels(struct efx_nic *efx)
447 struct efx_tx_queue *tx_queue;
448 struct efx_rx_queue *rx_queue;
449 struct efx_channel *channel;
451 /* Calculate the rx buffer allocation parameters required to
452 * support the current MTU, including padding for header
453 * alignment and overruns.
455 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
456 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
457 efx->type->rx_buffer_padding);
458 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
460 /* Initialise the channels */
461 efx_for_each_channel(channel, efx) {
462 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
464 efx_init_eventq(channel);
466 efx_for_each_channel_tx_queue(tx_queue, channel)
467 efx_init_tx_queue(tx_queue);
469 /* The rx buffer allocation strategy is MTU dependent */
470 efx_rx_strategy(channel);
472 efx_for_each_channel_rx_queue(rx_queue, channel)
473 efx_init_rx_queue(rx_queue);
475 WARN_ON(channel->rx_pkt != NULL);
476 efx_rx_strategy(channel);
480 /* This enables event queue processing and packet transmission.
482 * Note that this function is not allowed to fail, since that would
483 * introduce too much complexity into the suspend/resume path.
485 static void efx_start_channel(struct efx_channel *channel)
487 struct efx_rx_queue *rx_queue;
489 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
491 /* The interrupt handler for this channel may set work_pending
492 * as soon as we enable it. Make sure it's cleared before
493 * then. Similarly, make sure it sees the enabled flag set. */
494 channel->work_pending = false;
495 channel->enabled = true;
496 smp_wmb();
498 napi_enable(&channel->napi_str);
500 /* Load up RX descriptors */
501 efx_for_each_channel_rx_queue(rx_queue, channel)
502 efx_fast_push_rx_descriptors(rx_queue);
505 /* This disables event queue processing and packet transmission.
506 * This function does not guarantee that all queue processing
507 * (e.g. RX refill) is complete.
509 static void efx_stop_channel(struct efx_channel *channel)
511 struct efx_rx_queue *rx_queue;
513 if (!channel->enabled)
514 return;
516 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
518 channel->enabled = false;
519 napi_disable(&channel->napi_str);
521 /* Ensure that any worker threads have exited or will be no-ops */
522 efx_for_each_channel_rx_queue(rx_queue, channel) {
523 spin_lock_bh(&rx_queue->add_lock);
524 spin_unlock_bh(&rx_queue->add_lock);
528 static void efx_fini_channels(struct efx_nic *efx)
530 struct efx_channel *channel;
531 struct efx_tx_queue *tx_queue;
532 struct efx_rx_queue *rx_queue;
533 int rc;
535 EFX_ASSERT_RESET_SERIALISED(efx);
536 BUG_ON(efx->port_enabled);
538 rc = falcon_flush_queues(efx);
539 if (rc)
540 EFX_ERR(efx, "failed to flush queues\n");
541 else
542 EFX_LOG(efx, "successfully flushed all queues\n");
544 efx_for_each_channel(channel, efx) {
545 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
547 efx_for_each_channel_rx_queue(rx_queue, channel)
548 efx_fini_rx_queue(rx_queue);
549 efx_for_each_channel_tx_queue(tx_queue, channel)
550 efx_fini_tx_queue(tx_queue);
551 efx_fini_eventq(channel);
555 static void efx_remove_channel(struct efx_channel *channel)
557 struct efx_tx_queue *tx_queue;
558 struct efx_rx_queue *rx_queue;
560 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
562 efx_for_each_channel_rx_queue(rx_queue, channel)
563 efx_remove_rx_queue(rx_queue);
564 efx_for_each_channel_tx_queue(tx_queue, channel)
565 efx_remove_tx_queue(tx_queue);
566 efx_remove_eventq(channel);
568 channel->used_flags = 0;
571 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
573 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
576 /**************************************************************************
578 * Port handling
580 **************************************************************************/
582 /* This ensures that the kernel is kept informed (via
583 * netif_carrier_on/off) of the link status, and also maintains the
584 * link status's stop on the port's TX queue.
586 void efx_link_status_changed(struct efx_nic *efx)
588 struct efx_link_state *link_state = &efx->link_state;
590 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
591 * that no events are triggered between unregister_netdev() and the
592 * driver unloading. A more general condition is that NETDEV_CHANGE
593 * can only be generated between NETDEV_UP and NETDEV_DOWN */
594 if (!netif_running(efx->net_dev))
595 return;
597 if (efx->port_inhibited) {
598 netif_carrier_off(efx->net_dev);
599 return;
602 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
603 efx->n_link_state_changes++;
605 if (link_state->up)
606 netif_carrier_on(efx->net_dev);
607 else
608 netif_carrier_off(efx->net_dev);
611 /* Status message for kernel log */
612 if (link_state->up) {
613 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
614 link_state->speed, link_state->fd ? "full" : "half",
615 efx->net_dev->mtu,
616 (efx->promiscuous ? " [PROMISC]" : ""));
617 } else {
618 EFX_INFO(efx, "link down\n");
623 static void efx_fini_port(struct efx_nic *efx);
625 /* This call reinitialises the MAC to pick up new PHY settings. The
626 * caller must hold the mac_lock */
627 void __efx_reconfigure_port(struct efx_nic *efx)
629 WARN_ON(!mutex_is_locked(&efx->mac_lock));
631 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
632 raw_smp_processor_id());
634 /* Serialise the promiscuous flag with efx_set_multicast_list. */
635 if (efx_dev_registered(efx)) {
636 netif_addr_lock_bh(efx->net_dev);
637 netif_addr_unlock_bh(efx->net_dev);
640 efx->type->stop_stats(efx);
641 falcon_deconfigure_mac_wrapper(efx);
643 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
644 if (LOOPBACK_INTERNAL(efx))
645 efx->phy_mode |= PHY_MODE_TX_DISABLED;
646 else
647 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
648 efx->phy_op->reconfigure(efx);
650 if (falcon_switch_mac(efx))
651 goto fail;
653 efx->mac_op->reconfigure(efx);
655 efx->type->start_stats(efx);
657 /* Inform kernel of loss/gain of carrier */
658 efx_link_status_changed(efx);
659 return;
661 fail:
662 EFX_ERR(efx, "failed to reconfigure MAC\n");
663 efx->port_enabled = false;
664 efx_fini_port(efx);
667 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
668 * disabled. */
669 void efx_reconfigure_port(struct efx_nic *efx)
671 EFX_ASSERT_RESET_SERIALISED(efx);
673 mutex_lock(&efx->mac_lock);
674 __efx_reconfigure_port(efx);
675 mutex_unlock(&efx->mac_lock);
678 /* Asynchronous work item for changing MAC promiscuity and multicast
679 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
680 * MAC directly. */
681 static void efx_mac_work(struct work_struct *data)
683 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
685 mutex_lock(&efx->mac_lock);
686 if (efx->port_enabled) {
687 efx->type->push_multicast_hash(efx);
688 efx->mac_op->reconfigure(efx);
690 mutex_unlock(&efx->mac_lock);
693 static int efx_probe_port(struct efx_nic *efx)
695 int rc;
697 EFX_LOG(efx, "create port\n");
699 /* Connect up MAC/PHY operations table */
700 rc = efx->type->probe_port(efx);
701 if (rc)
702 goto err;
704 if (phy_flash_cfg)
705 efx->phy_mode = PHY_MODE_SPECIAL;
707 /* Sanity check MAC address */
708 if (is_valid_ether_addr(efx->mac_address)) {
709 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
710 } else {
711 EFX_ERR(efx, "invalid MAC address %pM\n",
712 efx->mac_address);
713 if (!allow_bad_hwaddr) {
714 rc = -EINVAL;
715 goto err;
717 random_ether_addr(efx->net_dev->dev_addr);
718 EFX_INFO(efx, "using locally-generated MAC %pM\n",
719 efx->net_dev->dev_addr);
722 return 0;
724 err:
725 efx_remove_port(efx);
726 return rc;
729 static int efx_init_port(struct efx_nic *efx)
731 int rc;
733 EFX_LOG(efx, "init port\n");
735 mutex_lock(&efx->mac_lock);
737 rc = efx->phy_op->init(efx);
738 if (rc)
739 goto fail1;
740 efx->phy_op->reconfigure(efx);
741 rc = falcon_switch_mac(efx);
742 if (rc)
743 goto fail2;
744 efx->mac_op->reconfigure(efx);
746 efx->port_initialized = true;
748 mutex_unlock(&efx->mac_lock);
749 return 0;
751 fail2:
752 efx->phy_op->fini(efx);
753 fail1:
754 mutex_unlock(&efx->mac_lock);
755 return rc;
758 static void efx_start_port(struct efx_nic *efx)
760 EFX_LOG(efx, "start port\n");
761 BUG_ON(efx->port_enabled);
763 mutex_lock(&efx->mac_lock);
764 efx->port_enabled = true;
766 /* efx_mac_work() might have been scheduled after efx_stop_port(),
767 * and then cancelled by efx_flush_all() */
768 efx->type->push_multicast_hash(efx);
769 efx->mac_op->reconfigure(efx);
771 mutex_unlock(&efx->mac_lock);
774 /* Prevent efx_mac_work() and efx_monitor() from working */
775 static void efx_stop_port(struct efx_nic *efx)
777 EFX_LOG(efx, "stop port\n");
779 mutex_lock(&efx->mac_lock);
780 efx->port_enabled = false;
781 mutex_unlock(&efx->mac_lock);
783 /* Serialise against efx_set_multicast_list() */
784 if (efx_dev_registered(efx)) {
785 netif_addr_lock_bh(efx->net_dev);
786 netif_addr_unlock_bh(efx->net_dev);
790 static void efx_fini_port(struct efx_nic *efx)
792 EFX_LOG(efx, "shut down port\n");
794 if (!efx->port_initialized)
795 return;
797 efx->phy_op->fini(efx);
798 efx->port_initialized = false;
800 efx->link_state.up = false;
801 efx_link_status_changed(efx);
804 static void efx_remove_port(struct efx_nic *efx)
806 EFX_LOG(efx, "destroying port\n");
808 efx->type->remove_port(efx);
811 /**************************************************************************
813 * NIC handling
815 **************************************************************************/
817 /* This configures the PCI device to enable I/O and DMA. */
818 static int efx_init_io(struct efx_nic *efx)
820 struct pci_dev *pci_dev = efx->pci_dev;
821 dma_addr_t dma_mask = efx->type->max_dma_mask;
822 int rc;
824 EFX_LOG(efx, "initialising I/O\n");
826 rc = pci_enable_device(pci_dev);
827 if (rc) {
828 EFX_ERR(efx, "failed to enable PCI device\n");
829 goto fail1;
832 pci_set_master(pci_dev);
834 /* Set the PCI DMA mask. Try all possibilities from our
835 * genuine mask down to 32 bits, because some architectures
836 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
837 * masks event though they reject 46 bit masks.
839 while (dma_mask > 0x7fffffffUL) {
840 if (pci_dma_supported(pci_dev, dma_mask) &&
841 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
842 break;
843 dma_mask >>= 1;
845 if (rc) {
846 EFX_ERR(efx, "could not find a suitable DMA mask\n");
847 goto fail2;
849 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
850 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
851 if (rc) {
852 /* pci_set_consistent_dma_mask() is not *allowed* to
853 * fail with a mask that pci_set_dma_mask() accepted,
854 * but just in case...
856 EFX_ERR(efx, "failed to set consistent DMA mask\n");
857 goto fail2;
860 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
861 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
862 if (rc) {
863 EFX_ERR(efx, "request for memory BAR failed\n");
864 rc = -EIO;
865 goto fail3;
867 efx->membase = ioremap_nocache(efx->membase_phys,
868 efx->type->mem_map_size);
869 if (!efx->membase) {
870 EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
871 (unsigned long long)efx->membase_phys,
872 efx->type->mem_map_size);
873 rc = -ENOMEM;
874 goto fail4;
876 EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
877 (unsigned long long)efx->membase_phys,
878 efx->type->mem_map_size, efx->membase);
880 return 0;
882 fail4:
883 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
884 fail3:
885 efx->membase_phys = 0;
886 fail2:
887 pci_disable_device(efx->pci_dev);
888 fail1:
889 return rc;
892 static void efx_fini_io(struct efx_nic *efx)
894 EFX_LOG(efx, "shutting down I/O\n");
896 if (efx->membase) {
897 iounmap(efx->membase);
898 efx->membase = NULL;
901 if (efx->membase_phys) {
902 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
903 efx->membase_phys = 0;
906 pci_disable_device(efx->pci_dev);
909 /* Get number of RX queues wanted. Return number of online CPU
910 * packages in the expectation that an IRQ balancer will spread
911 * interrupts across them. */
912 static int efx_wanted_rx_queues(void)
914 cpumask_var_t core_mask;
915 int count;
916 int cpu;
918 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
919 printk(KERN_WARNING
920 "sfc: RSS disabled due to allocation failure\n");
921 return 1;
924 count = 0;
925 for_each_online_cpu(cpu) {
926 if (!cpumask_test_cpu(cpu, core_mask)) {
927 ++count;
928 cpumask_or(core_mask, core_mask,
929 topology_core_cpumask(cpu));
933 free_cpumask_var(core_mask);
934 return count;
937 /* Probe the number and type of interrupts we are able to obtain, and
938 * the resulting numbers of channels and RX queues.
940 static void efx_probe_interrupts(struct efx_nic *efx)
942 int max_channels =
943 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
944 int rc, i;
946 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
947 struct msix_entry xentries[EFX_MAX_CHANNELS];
948 int wanted_ints;
949 int rx_queues;
951 /* We want one RX queue and interrupt per CPU package
952 * (or as specified by the rss_cpus module parameter).
953 * We will need one channel per interrupt.
955 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
956 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
957 wanted_ints = min(wanted_ints, max_channels);
959 for (i = 0; i < wanted_ints; i++)
960 xentries[i].entry = i;
961 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
962 if (rc > 0) {
963 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
964 " available (%d < %d).\n", rc, wanted_ints);
965 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
966 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
967 wanted_ints = rc;
968 rc = pci_enable_msix(efx->pci_dev, xentries,
969 wanted_ints);
972 if (rc == 0) {
973 efx->n_rx_queues = min(rx_queues, wanted_ints);
974 efx->n_channels = wanted_ints;
975 for (i = 0; i < wanted_ints; i++)
976 efx->channel[i].irq = xentries[i].vector;
977 } else {
978 /* Fall back to single channel MSI */
979 efx->interrupt_mode = EFX_INT_MODE_MSI;
980 EFX_ERR(efx, "could not enable MSI-X\n");
984 /* Try single interrupt MSI */
985 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
986 efx->n_rx_queues = 1;
987 efx->n_channels = 1;
988 rc = pci_enable_msi(efx->pci_dev);
989 if (rc == 0) {
990 efx->channel[0].irq = efx->pci_dev->irq;
991 } else {
992 EFX_ERR(efx, "could not enable MSI\n");
993 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
997 /* Assume legacy interrupts */
998 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
999 efx->n_rx_queues = 1;
1000 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1001 efx->legacy_irq = efx->pci_dev->irq;
1005 static void efx_remove_interrupts(struct efx_nic *efx)
1007 struct efx_channel *channel;
1009 /* Remove MSI/MSI-X interrupts */
1010 efx_for_each_channel(channel, efx)
1011 channel->irq = 0;
1012 pci_disable_msi(efx->pci_dev);
1013 pci_disable_msix(efx->pci_dev);
1015 /* Remove legacy interrupt */
1016 efx->legacy_irq = 0;
1019 static void efx_set_channels(struct efx_nic *efx)
1021 struct efx_tx_queue *tx_queue;
1022 struct efx_rx_queue *rx_queue;
1024 efx_for_each_tx_queue(tx_queue, efx) {
1025 if (separate_tx_channels)
1026 tx_queue->channel = &efx->channel[efx->n_channels-1];
1027 else
1028 tx_queue->channel = &efx->channel[0];
1029 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
1032 efx_for_each_rx_queue(rx_queue, efx) {
1033 rx_queue->channel = &efx->channel[rx_queue->queue];
1034 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
1038 static int efx_probe_nic(struct efx_nic *efx)
1040 int rc;
1042 EFX_LOG(efx, "creating NIC\n");
1044 /* Carry out hardware-type specific initialisation */
1045 rc = efx->type->probe(efx);
1046 if (rc)
1047 return rc;
1049 /* Determine the number of channels and RX queues by trying to hook
1050 * in MSI-X interrupts. */
1051 efx_probe_interrupts(efx);
1053 efx_set_channels(efx);
1055 /* Initialise the interrupt moderation settings */
1056 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1058 return 0;
1061 static void efx_remove_nic(struct efx_nic *efx)
1063 EFX_LOG(efx, "destroying NIC\n");
1065 efx_remove_interrupts(efx);
1066 efx->type->remove(efx);
1069 /**************************************************************************
1071 * NIC startup/shutdown
1073 *************************************************************************/
1075 static int efx_probe_all(struct efx_nic *efx)
1077 struct efx_channel *channel;
1078 int rc;
1080 /* Create NIC */
1081 rc = efx_probe_nic(efx);
1082 if (rc) {
1083 EFX_ERR(efx, "failed to create NIC\n");
1084 goto fail1;
1087 /* Create port */
1088 rc = efx_probe_port(efx);
1089 if (rc) {
1090 EFX_ERR(efx, "failed to create port\n");
1091 goto fail2;
1094 /* Create channels */
1095 efx_for_each_channel(channel, efx) {
1096 rc = efx_probe_channel(channel);
1097 if (rc) {
1098 EFX_ERR(efx, "failed to create channel %d\n",
1099 channel->channel);
1100 goto fail3;
1103 efx_set_channel_names(efx);
1105 return 0;
1107 fail3:
1108 efx_for_each_channel(channel, efx)
1109 efx_remove_channel(channel);
1110 efx_remove_port(efx);
1111 fail2:
1112 efx_remove_nic(efx);
1113 fail1:
1114 return rc;
1117 /* Called after previous invocation(s) of efx_stop_all, restarts the
1118 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1119 * and ensures that the port is scheduled to be reconfigured.
1120 * This function is safe to call multiple times when the NIC is in any
1121 * state. */
1122 static void efx_start_all(struct efx_nic *efx)
1124 struct efx_channel *channel;
1126 EFX_ASSERT_RESET_SERIALISED(efx);
1128 /* Check that it is appropriate to restart the interface. All
1129 * of these flags are safe to read under just the rtnl lock */
1130 if (efx->port_enabled)
1131 return;
1132 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1133 return;
1134 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1135 return;
1137 /* Mark the port as enabled so port reconfigurations can start, then
1138 * restart the transmit interface early so the watchdog timer stops */
1139 efx_start_port(efx);
1140 if (efx_dev_registered(efx))
1141 efx_wake_queue(efx);
1143 efx_for_each_channel(channel, efx)
1144 efx_start_channel(channel);
1146 falcon_enable_interrupts(efx);
1148 /* Start the hardware monitor (if there is one) if we're in RUNNING */
1149 if (efx->state == STATE_RUNNING && efx->type->monitor != NULL)
1150 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1151 efx_monitor_interval);
1153 efx->type->start_stats(efx);
1156 /* Flush all delayed work. Should only be called when no more delayed work
1157 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1158 * since we're holding the rtnl_lock at this point. */
1159 static void efx_flush_all(struct efx_nic *efx)
1161 struct efx_rx_queue *rx_queue;
1163 /* Make sure the hardware monitor is stopped */
1164 cancel_delayed_work_sync(&efx->monitor_work);
1166 /* Ensure that all RX slow refills are complete. */
1167 efx_for_each_rx_queue(rx_queue, efx)
1168 cancel_delayed_work_sync(&rx_queue->work);
1170 /* Stop scheduled port reconfigurations */
1171 cancel_work_sync(&efx->mac_work);
1174 /* Quiesce hardware and software without bringing the link down.
1175 * Safe to call multiple times, when the nic and interface is in any
1176 * state. The caller is guaranteed to subsequently be in a position
1177 * to modify any hardware and software state they see fit without
1178 * taking locks. */
1179 static void efx_stop_all(struct efx_nic *efx)
1181 struct efx_channel *channel;
1183 EFX_ASSERT_RESET_SERIALISED(efx);
1185 /* port_enabled can be read safely under the rtnl lock */
1186 if (!efx->port_enabled)
1187 return;
1189 efx->type->stop_stats(efx);
1191 /* Disable interrupts and wait for ISR to complete */
1192 falcon_disable_interrupts(efx);
1193 if (efx->legacy_irq)
1194 synchronize_irq(efx->legacy_irq);
1195 efx_for_each_channel(channel, efx) {
1196 if (channel->irq)
1197 synchronize_irq(channel->irq);
1200 /* Stop all NAPI processing and synchronous rx refills */
1201 efx_for_each_channel(channel, efx)
1202 efx_stop_channel(channel);
1204 /* Stop all asynchronous port reconfigurations. Since all
1205 * event processing has already been stopped, there is no
1206 * window to loose phy events */
1207 efx_stop_port(efx);
1209 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
1210 efx_flush_all(efx);
1212 /* Isolate the MAC from the TX and RX engines, so that queue
1213 * flushes will complete in a timely fashion. */
1214 falcon_deconfigure_mac_wrapper(efx);
1215 msleep(10); /* Let the Rx FIFO drain */
1216 falcon_drain_tx_fifo(efx);
1218 /* Stop the kernel transmit interface late, so the watchdog
1219 * timer isn't ticking over the flush */
1220 if (efx_dev_registered(efx)) {
1221 efx_stop_queue(efx);
1222 netif_tx_lock_bh(efx->net_dev);
1223 netif_tx_unlock_bh(efx->net_dev);
1227 static void efx_remove_all(struct efx_nic *efx)
1229 struct efx_channel *channel;
1231 efx_for_each_channel(channel, efx)
1232 efx_remove_channel(channel);
1233 efx_remove_port(efx);
1234 efx_remove_nic(efx);
1237 /**************************************************************************
1239 * Interrupt moderation
1241 **************************************************************************/
1243 static unsigned irq_mod_ticks(int usecs, int resolution)
1245 if (usecs <= 0)
1246 return 0; /* cannot receive interrupts ahead of time :-) */
1247 if (usecs < resolution)
1248 return 1; /* never round down to 0 */
1249 return usecs / resolution;
1252 /* Set interrupt moderation parameters */
1253 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1254 bool rx_adaptive)
1256 struct efx_tx_queue *tx_queue;
1257 struct efx_rx_queue *rx_queue;
1258 unsigned tx_ticks = irq_mod_ticks(tx_usecs, FALCON_IRQ_MOD_RESOLUTION);
1259 unsigned rx_ticks = irq_mod_ticks(rx_usecs, FALCON_IRQ_MOD_RESOLUTION);
1261 EFX_ASSERT_RESET_SERIALISED(efx);
1263 efx_for_each_tx_queue(tx_queue, efx)
1264 tx_queue->channel->irq_moderation = tx_ticks;
1266 efx->irq_rx_adaptive = rx_adaptive;
1267 efx->irq_rx_moderation = rx_ticks;
1268 efx_for_each_rx_queue(rx_queue, efx)
1269 rx_queue->channel->irq_moderation = rx_ticks;
1272 /**************************************************************************
1274 * Hardware monitor
1276 **************************************************************************/
1278 /* Run periodically off the general workqueue. Serialised against
1279 * efx_reconfigure_port via the mac_lock */
1280 static void efx_monitor(struct work_struct *data)
1282 struct efx_nic *efx = container_of(data, struct efx_nic,
1283 monitor_work.work);
1285 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1286 raw_smp_processor_id());
1287 BUG_ON(efx->type->monitor == NULL);
1289 /* If the mac_lock is already held then it is likely a port
1290 * reconfiguration is already in place, which will likely do
1291 * most of the work of check_hw() anyway. */
1292 if (!mutex_trylock(&efx->mac_lock))
1293 goto out_requeue;
1294 if (!efx->port_enabled)
1295 goto out_unlock;
1296 efx->type->monitor(efx);
1298 out_unlock:
1299 mutex_unlock(&efx->mac_lock);
1300 out_requeue:
1301 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1302 efx_monitor_interval);
1305 /**************************************************************************
1307 * ioctls
1309 *************************************************************************/
1311 /* Net device ioctl
1312 * Context: process, rtnl_lock() held.
1314 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1316 struct efx_nic *efx = netdev_priv(net_dev);
1317 struct mii_ioctl_data *data = if_mii(ifr);
1319 EFX_ASSERT_RESET_SERIALISED(efx);
1321 /* Convert phy_id from older PRTAD/DEVAD format */
1322 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1323 (data->phy_id & 0xfc00) == 0x0400)
1324 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1326 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1329 /**************************************************************************
1331 * NAPI interface
1333 **************************************************************************/
1335 static int efx_init_napi(struct efx_nic *efx)
1337 struct efx_channel *channel;
1339 efx_for_each_channel(channel, efx) {
1340 channel->napi_dev = efx->net_dev;
1341 netif_napi_add(channel->napi_dev, &channel->napi_str,
1342 efx_poll, napi_weight);
1344 return 0;
1347 static void efx_fini_napi(struct efx_nic *efx)
1349 struct efx_channel *channel;
1351 efx_for_each_channel(channel, efx) {
1352 if (channel->napi_dev)
1353 netif_napi_del(&channel->napi_str);
1354 channel->napi_dev = NULL;
1358 /**************************************************************************
1360 * Kernel netpoll interface
1362 *************************************************************************/
1364 #ifdef CONFIG_NET_POLL_CONTROLLER
1366 /* Although in the common case interrupts will be disabled, this is not
1367 * guaranteed. However, all our work happens inside the NAPI callback,
1368 * so no locking is required.
1370 static void efx_netpoll(struct net_device *net_dev)
1372 struct efx_nic *efx = netdev_priv(net_dev);
1373 struct efx_channel *channel;
1375 efx_for_each_channel(channel, efx)
1376 efx_schedule_channel(channel);
1379 #endif
1381 /**************************************************************************
1383 * Kernel net device interface
1385 *************************************************************************/
1387 /* Context: process, rtnl_lock() held. */
1388 static int efx_net_open(struct net_device *net_dev)
1390 struct efx_nic *efx = netdev_priv(net_dev);
1391 EFX_ASSERT_RESET_SERIALISED(efx);
1393 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1394 raw_smp_processor_id());
1396 if (efx->state == STATE_DISABLED)
1397 return -EIO;
1398 if (efx->phy_mode & PHY_MODE_SPECIAL)
1399 return -EBUSY;
1401 efx_start_all(efx);
1402 return 0;
1405 /* Context: process, rtnl_lock() held.
1406 * Note that the kernel will ignore our return code; this method
1407 * should really be a void.
1409 static int efx_net_stop(struct net_device *net_dev)
1411 struct efx_nic *efx = netdev_priv(net_dev);
1413 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1414 raw_smp_processor_id());
1416 if (efx->state != STATE_DISABLED) {
1417 /* Stop the device and flush all the channels */
1418 efx_stop_all(efx);
1419 efx_fini_channels(efx);
1420 efx_init_channels(efx);
1423 return 0;
1426 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1427 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1429 struct efx_nic *efx = netdev_priv(net_dev);
1430 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1431 struct net_device_stats *stats = &net_dev->stats;
1433 spin_lock_bh(&efx->stats_lock);
1434 efx->type->update_stats(efx);
1435 spin_unlock_bh(&efx->stats_lock);
1437 stats->rx_packets = mac_stats->rx_packets;
1438 stats->tx_packets = mac_stats->tx_packets;
1439 stats->rx_bytes = mac_stats->rx_bytes;
1440 stats->tx_bytes = mac_stats->tx_bytes;
1441 stats->multicast = mac_stats->rx_multicast;
1442 stats->collisions = mac_stats->tx_collision;
1443 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1444 mac_stats->rx_length_error);
1445 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1446 stats->rx_crc_errors = mac_stats->rx_bad;
1447 stats->rx_frame_errors = mac_stats->rx_align_error;
1448 stats->rx_fifo_errors = mac_stats->rx_overflow;
1449 stats->rx_missed_errors = mac_stats->rx_missed;
1450 stats->tx_window_errors = mac_stats->tx_late_collision;
1452 stats->rx_errors = (stats->rx_length_errors +
1453 stats->rx_over_errors +
1454 stats->rx_crc_errors +
1455 stats->rx_frame_errors +
1456 stats->rx_fifo_errors +
1457 stats->rx_missed_errors +
1458 mac_stats->rx_symbol_error);
1459 stats->tx_errors = (stats->tx_window_errors +
1460 mac_stats->tx_bad);
1462 return stats;
1465 /* Context: netif_tx_lock held, BHs disabled. */
1466 static void efx_watchdog(struct net_device *net_dev)
1468 struct efx_nic *efx = netdev_priv(net_dev);
1470 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1471 " resetting channels\n",
1472 atomic_read(&efx->netif_stop_count), efx->port_enabled);
1474 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1478 /* Context: process, rtnl_lock() held. */
1479 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1481 struct efx_nic *efx = netdev_priv(net_dev);
1482 int rc = 0;
1484 EFX_ASSERT_RESET_SERIALISED(efx);
1486 if (new_mtu > EFX_MAX_MTU)
1487 return -EINVAL;
1489 efx_stop_all(efx);
1491 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1493 efx_fini_channels(efx);
1494 net_dev->mtu = new_mtu;
1495 efx_init_channels(efx);
1497 efx_start_all(efx);
1498 return rc;
1501 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1503 struct efx_nic *efx = netdev_priv(net_dev);
1504 struct sockaddr *addr = data;
1505 char *new_addr = addr->sa_data;
1507 EFX_ASSERT_RESET_SERIALISED(efx);
1509 if (!is_valid_ether_addr(new_addr)) {
1510 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1511 new_addr);
1512 return -EINVAL;
1515 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1517 /* Reconfigure the MAC */
1518 efx_reconfigure_port(efx);
1520 return 0;
1523 /* Context: netif_addr_lock held, BHs disabled. */
1524 static void efx_set_multicast_list(struct net_device *net_dev)
1526 struct efx_nic *efx = netdev_priv(net_dev);
1527 struct dev_mc_list *mc_list = net_dev->mc_list;
1528 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1529 u32 crc;
1530 int bit;
1531 int i;
1533 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1535 /* Build multicast hash table */
1536 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1537 memset(mc_hash, 0xff, sizeof(*mc_hash));
1538 } else {
1539 memset(mc_hash, 0x00, sizeof(*mc_hash));
1540 for (i = 0; i < net_dev->mc_count; i++) {
1541 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1542 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1543 set_bit_le(bit, mc_hash->byte);
1544 mc_list = mc_list->next;
1547 /* Broadcast packets go through the multicast hash filter.
1548 * ether_crc_le() of the broadcast address is 0xbe2612ff
1549 * so we always add bit 0xff to the mask.
1551 set_bit_le(0xff, mc_hash->byte);
1554 if (efx->port_enabled)
1555 queue_work(efx->workqueue, &efx->mac_work);
1556 /* Otherwise efx_start_port() will do this */
1559 static const struct net_device_ops efx_netdev_ops = {
1560 .ndo_open = efx_net_open,
1561 .ndo_stop = efx_net_stop,
1562 .ndo_get_stats = efx_net_stats,
1563 .ndo_tx_timeout = efx_watchdog,
1564 .ndo_start_xmit = efx_hard_start_xmit,
1565 .ndo_validate_addr = eth_validate_addr,
1566 .ndo_do_ioctl = efx_ioctl,
1567 .ndo_change_mtu = efx_change_mtu,
1568 .ndo_set_mac_address = efx_set_mac_address,
1569 .ndo_set_multicast_list = efx_set_multicast_list,
1570 #ifdef CONFIG_NET_POLL_CONTROLLER
1571 .ndo_poll_controller = efx_netpoll,
1572 #endif
1575 static void efx_update_name(struct efx_nic *efx)
1577 strcpy(efx->name, efx->net_dev->name);
1578 efx_mtd_rename(efx);
1579 efx_set_channel_names(efx);
1582 static int efx_netdev_event(struct notifier_block *this,
1583 unsigned long event, void *ptr)
1585 struct net_device *net_dev = ptr;
1587 if (net_dev->netdev_ops == &efx_netdev_ops &&
1588 event == NETDEV_CHANGENAME)
1589 efx_update_name(netdev_priv(net_dev));
1591 return NOTIFY_DONE;
1594 static struct notifier_block efx_netdev_notifier = {
1595 .notifier_call = efx_netdev_event,
1598 static ssize_t
1599 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1601 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1602 return sprintf(buf, "%d\n", efx->phy_type);
1604 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1606 static int efx_register_netdev(struct efx_nic *efx)
1608 struct net_device *net_dev = efx->net_dev;
1609 int rc;
1611 net_dev->watchdog_timeo = 5 * HZ;
1612 net_dev->irq = efx->pci_dev->irq;
1613 net_dev->netdev_ops = &efx_netdev_ops;
1614 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1615 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1617 /* Clear MAC statistics */
1618 efx->mac_op->update_stats(efx);
1619 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1621 rtnl_lock();
1623 rc = dev_alloc_name(net_dev, net_dev->name);
1624 if (rc < 0)
1625 goto fail_locked;
1626 efx_update_name(efx);
1628 rc = register_netdevice(net_dev);
1629 if (rc)
1630 goto fail_locked;
1632 /* Always start with carrier off; PHY events will detect the link */
1633 netif_carrier_off(efx->net_dev);
1635 rtnl_unlock();
1637 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1638 if (rc) {
1639 EFX_ERR(efx, "failed to init net dev attributes\n");
1640 goto fail_registered;
1643 return 0;
1645 fail_locked:
1646 rtnl_unlock();
1647 EFX_ERR(efx, "could not register net dev\n");
1648 return rc;
1650 fail_registered:
1651 unregister_netdev(net_dev);
1652 return rc;
1655 static void efx_unregister_netdev(struct efx_nic *efx)
1657 struct efx_tx_queue *tx_queue;
1659 if (!efx->net_dev)
1660 return;
1662 BUG_ON(netdev_priv(efx->net_dev) != efx);
1664 /* Free up any skbs still remaining. This has to happen before
1665 * we try to unregister the netdev as running their destructors
1666 * may be needed to get the device ref. count to 0. */
1667 efx_for_each_tx_queue(tx_queue, efx)
1668 efx_release_tx_buffers(tx_queue);
1670 if (efx_dev_registered(efx)) {
1671 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1672 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1673 unregister_netdev(efx->net_dev);
1677 /**************************************************************************
1679 * Device reset and suspend
1681 **************************************************************************/
1683 /* Tears down the entire software state and most of the hardware state
1684 * before reset. */
1685 void efx_reset_down(struct efx_nic *efx, enum reset_type method,
1686 struct ethtool_cmd *ecmd)
1688 EFX_ASSERT_RESET_SERIALISED(efx);
1690 efx_stop_all(efx);
1691 mutex_lock(&efx->mac_lock);
1692 mutex_lock(&efx->spi_lock);
1694 efx->phy_op->get_settings(efx, ecmd);
1696 efx_fini_channels(efx);
1697 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1698 efx->phy_op->fini(efx);
1699 efx->type->fini(efx);
1702 /* This function will always ensure that the locks acquired in
1703 * efx_reset_down() are released. A failure return code indicates
1704 * that we were unable to reinitialise the hardware, and the
1705 * driver should be disabled. If ok is false, then the rx and tx
1706 * engines are not restarted, pending a RESET_DISABLE. */
1707 int efx_reset_up(struct efx_nic *efx, enum reset_type method,
1708 struct ethtool_cmd *ecmd, bool ok)
1710 int rc;
1712 EFX_ASSERT_RESET_SERIALISED(efx);
1714 rc = efx->type->init(efx);
1715 if (rc) {
1716 EFX_ERR(efx, "failed to initialise NIC\n");
1717 ok = false;
1720 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1721 if (ok) {
1722 rc = efx->phy_op->init(efx);
1723 if (rc)
1724 ok = false;
1726 if (!ok)
1727 efx->port_initialized = false;
1730 if (ok) {
1731 efx_init_channels(efx);
1733 if (efx->phy_op->set_settings(efx, ecmd))
1734 EFX_ERR(efx, "could not restore PHY settings\n");
1737 mutex_unlock(&efx->spi_lock);
1738 mutex_unlock(&efx->mac_lock);
1740 if (ok)
1741 efx_start_all(efx);
1742 return rc;
1745 /* Reset the NIC as transparently as possible. Do not reset the PHY
1746 * Note that the reset may fail, in which case the card will be left
1747 * in a most-probably-unusable state.
1749 * This function will sleep. You cannot reset from within an atomic
1750 * state; use efx_schedule_reset() instead.
1752 * Grabs the rtnl_lock.
1754 static int efx_reset(struct efx_nic *efx)
1756 struct ethtool_cmd ecmd;
1757 enum reset_type method = efx->reset_pending;
1758 int rc = 0;
1760 /* Serialise with kernel interfaces */
1761 rtnl_lock();
1763 /* If we're not RUNNING then don't reset. Leave the reset_pending
1764 * flag set so that efx_pci_probe_main will be retried */
1765 if (efx->state != STATE_RUNNING) {
1766 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1767 goto out_unlock;
1770 EFX_INFO(efx, "resetting (%s)\n", RESET_TYPE(method));
1772 efx_reset_down(efx, method, &ecmd);
1774 rc = efx->type->reset(efx, method);
1775 if (rc) {
1776 EFX_ERR(efx, "failed to reset hardware\n");
1777 goto out_disable;
1780 /* Allow resets to be rescheduled. */
1781 efx->reset_pending = RESET_TYPE_NONE;
1783 /* Reinitialise bus-mastering, which may have been turned off before
1784 * the reset was scheduled. This is still appropriate, even in the
1785 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1786 * can respond to requests. */
1787 pci_set_master(efx->pci_dev);
1789 /* Leave device stopped if necessary */
1790 if (method == RESET_TYPE_DISABLE) {
1791 efx_reset_up(efx, method, &ecmd, false);
1792 rc = -EIO;
1793 } else {
1794 rc = efx_reset_up(efx, method, &ecmd, true);
1797 out_disable:
1798 if (rc) {
1799 EFX_ERR(efx, "has been disabled\n");
1800 efx->state = STATE_DISABLED;
1801 dev_close(efx->net_dev);
1802 } else {
1803 EFX_LOG(efx, "reset complete\n");
1806 out_unlock:
1807 rtnl_unlock();
1808 return rc;
1811 /* The worker thread exists so that code that cannot sleep can
1812 * schedule a reset for later.
1814 static void efx_reset_work(struct work_struct *data)
1816 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1818 efx_reset(nic);
1821 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1823 enum reset_type method;
1825 if (efx->reset_pending != RESET_TYPE_NONE) {
1826 EFX_INFO(efx, "quenching already scheduled reset\n");
1827 return;
1830 switch (type) {
1831 case RESET_TYPE_INVISIBLE:
1832 case RESET_TYPE_ALL:
1833 case RESET_TYPE_WORLD:
1834 case RESET_TYPE_DISABLE:
1835 method = type;
1836 break;
1837 case RESET_TYPE_RX_RECOVERY:
1838 case RESET_TYPE_RX_DESC_FETCH:
1839 case RESET_TYPE_TX_DESC_FETCH:
1840 case RESET_TYPE_TX_SKIP:
1841 method = RESET_TYPE_INVISIBLE;
1842 break;
1843 default:
1844 method = RESET_TYPE_ALL;
1845 break;
1848 if (method != type)
1849 EFX_LOG(efx, "scheduling %s reset for %s\n",
1850 RESET_TYPE(method), RESET_TYPE(type));
1851 else
1852 EFX_LOG(efx, "scheduling %s reset\n", RESET_TYPE(method));
1854 efx->reset_pending = method;
1856 queue_work(reset_workqueue, &efx->reset_work);
1859 /**************************************************************************
1861 * List of NICs we support
1863 **************************************************************************/
1865 /* PCI device ID table */
1866 static struct pci_device_id efx_pci_table[] __devinitdata = {
1867 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1868 .driver_data = (unsigned long) &falcon_a1_nic_type},
1869 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1870 .driver_data = (unsigned long) &falcon_b0_nic_type},
1871 {0} /* end of list */
1874 /**************************************************************************
1876 * Dummy PHY/MAC operations
1878 * Can be used for some unimplemented operations
1879 * Needed so all function pointers are valid and do not have to be tested
1880 * before use
1882 **************************************************************************/
1883 int efx_port_dummy_op_int(struct efx_nic *efx)
1885 return 0;
1887 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1888 void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1891 bool efx_port_dummy_op_poll(struct efx_nic *efx)
1893 return false;
1896 static struct efx_phy_operations efx_dummy_phy_operations = {
1897 .init = efx_port_dummy_op_int,
1898 .reconfigure = efx_port_dummy_op_void,
1899 .poll = efx_port_dummy_op_poll,
1900 .fini = efx_port_dummy_op_void,
1903 /**************************************************************************
1905 * Data housekeeping
1907 **************************************************************************/
1909 /* This zeroes out and then fills in the invariants in a struct
1910 * efx_nic (including all sub-structures).
1912 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1913 struct pci_dev *pci_dev, struct net_device *net_dev)
1915 struct efx_channel *channel;
1916 struct efx_tx_queue *tx_queue;
1917 struct efx_rx_queue *rx_queue;
1918 int i;
1920 /* Initialise common structures */
1921 memset(efx, 0, sizeof(*efx));
1922 spin_lock_init(&efx->biu_lock);
1923 mutex_init(&efx->mdio_lock);
1924 mutex_init(&efx->spi_lock);
1925 INIT_WORK(&efx->reset_work, efx_reset_work);
1926 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1927 efx->pci_dev = pci_dev;
1928 efx->state = STATE_INIT;
1929 efx->reset_pending = RESET_TYPE_NONE;
1930 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1932 efx->net_dev = net_dev;
1933 efx->rx_checksum_enabled = true;
1934 spin_lock_init(&efx->netif_stop_lock);
1935 spin_lock_init(&efx->stats_lock);
1936 mutex_init(&efx->mac_lock);
1937 efx->mac_op = type->default_mac_ops;
1938 efx->phy_op = &efx_dummy_phy_operations;
1939 efx->mdio.dev = net_dev;
1940 INIT_WORK(&efx->mac_work, efx_mac_work);
1941 atomic_set(&efx->netif_stop_count, 1);
1943 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1944 channel = &efx->channel[i];
1945 channel->efx = efx;
1946 channel->channel = i;
1947 channel->work_pending = false;
1949 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1950 tx_queue = &efx->tx_queue[i];
1951 tx_queue->efx = efx;
1952 tx_queue->queue = i;
1953 tx_queue->buffer = NULL;
1954 tx_queue->channel = &efx->channel[0]; /* for safety */
1955 tx_queue->tso_headers_free = NULL;
1957 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1958 rx_queue = &efx->rx_queue[i];
1959 rx_queue->efx = efx;
1960 rx_queue->queue = i;
1961 rx_queue->channel = &efx->channel[0]; /* for safety */
1962 rx_queue->buffer = NULL;
1963 spin_lock_init(&rx_queue->add_lock);
1964 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1967 efx->type = type;
1969 /* As close as we can get to guaranteeing that we don't overflow */
1970 BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
1972 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1974 /* Higher numbered interrupt modes are less capable! */
1975 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1976 interrupt_mode);
1978 /* Would be good to use the net_dev name, but we're too early */
1979 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1980 pci_name(pci_dev));
1981 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1982 if (!efx->workqueue)
1983 return -ENOMEM;
1985 return 0;
1988 static void efx_fini_struct(struct efx_nic *efx)
1990 if (efx->workqueue) {
1991 destroy_workqueue(efx->workqueue);
1992 efx->workqueue = NULL;
1996 /**************************************************************************
1998 * PCI interface
2000 **************************************************************************/
2002 /* Main body of final NIC shutdown code
2003 * This is called only at module unload (or hotplug removal).
2005 static void efx_pci_remove_main(struct efx_nic *efx)
2007 falcon_fini_interrupt(efx);
2008 efx_fini_channels(efx);
2009 efx_fini_port(efx);
2010 efx->type->fini(efx);
2011 efx_fini_napi(efx);
2012 efx_remove_all(efx);
2015 /* Final NIC shutdown
2016 * This is called only at module unload (or hotplug removal).
2018 static void efx_pci_remove(struct pci_dev *pci_dev)
2020 struct efx_nic *efx;
2022 efx = pci_get_drvdata(pci_dev);
2023 if (!efx)
2024 return;
2026 /* Mark the NIC as fini, then stop the interface */
2027 rtnl_lock();
2028 efx->state = STATE_FINI;
2029 dev_close(efx->net_dev);
2031 /* Allow any queued efx_resets() to complete */
2032 rtnl_unlock();
2034 efx_unregister_netdev(efx);
2036 efx_mtd_remove(efx);
2038 /* Wait for any scheduled resets to complete. No more will be
2039 * scheduled from this point because efx_stop_all() has been
2040 * called, we are no longer registered with driverlink, and
2041 * the net_device's have been removed. */
2042 cancel_work_sync(&efx->reset_work);
2044 efx_pci_remove_main(efx);
2046 efx_fini_io(efx);
2047 EFX_LOG(efx, "shutdown successful\n");
2049 pci_set_drvdata(pci_dev, NULL);
2050 efx_fini_struct(efx);
2051 free_netdev(efx->net_dev);
2054 /* Main body of NIC initialisation
2055 * This is called at module load (or hotplug insertion, theoretically).
2057 static int efx_pci_probe_main(struct efx_nic *efx)
2059 int rc;
2061 /* Do start-of-day initialisation */
2062 rc = efx_probe_all(efx);
2063 if (rc)
2064 goto fail1;
2066 rc = efx_init_napi(efx);
2067 if (rc)
2068 goto fail2;
2070 rc = efx->type->init(efx);
2071 if (rc) {
2072 EFX_ERR(efx, "failed to initialise NIC\n");
2073 goto fail3;
2076 rc = efx_init_port(efx);
2077 if (rc) {
2078 EFX_ERR(efx, "failed to initialise port\n");
2079 goto fail4;
2082 efx_init_channels(efx);
2084 rc = falcon_init_interrupt(efx);
2085 if (rc)
2086 goto fail5;
2088 return 0;
2090 fail5:
2091 efx_fini_channels(efx);
2092 efx_fini_port(efx);
2093 fail4:
2094 efx->type->fini(efx);
2095 fail3:
2096 efx_fini_napi(efx);
2097 fail2:
2098 efx_remove_all(efx);
2099 fail1:
2100 return rc;
2103 /* NIC initialisation
2105 * This is called at module load (or hotplug insertion,
2106 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2107 * sets up and registers the network devices with the kernel and hooks
2108 * the interrupt service routine. It does not prepare the device for
2109 * transmission; this is left to the first time one of the network
2110 * interfaces is brought up (i.e. efx_net_open).
2112 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2113 const struct pci_device_id *entry)
2115 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2116 struct net_device *net_dev;
2117 struct efx_nic *efx;
2118 int i, rc;
2120 /* Allocate and initialise a struct net_device and struct efx_nic */
2121 net_dev = alloc_etherdev(sizeof(*efx));
2122 if (!net_dev)
2123 return -ENOMEM;
2124 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2125 NETIF_F_HIGHDMA | NETIF_F_TSO |
2126 NETIF_F_GRO);
2127 /* Mask for features that also apply to VLAN devices */
2128 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2129 NETIF_F_HIGHDMA | NETIF_F_TSO);
2130 efx = netdev_priv(net_dev);
2131 pci_set_drvdata(pci_dev, efx);
2132 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2133 if (rc)
2134 goto fail1;
2136 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2138 /* Set up basic I/O (BAR mappings etc) */
2139 rc = efx_init_io(efx);
2140 if (rc)
2141 goto fail2;
2143 /* No serialisation is required with the reset path because
2144 * we're in STATE_INIT. */
2145 for (i = 0; i < 5; i++) {
2146 rc = efx_pci_probe_main(efx);
2148 /* Serialise against efx_reset(). No more resets will be
2149 * scheduled since efx_stop_all() has been called, and we
2150 * have not and never have been registered with either
2151 * the rtnetlink or driverlink layers. */
2152 cancel_work_sync(&efx->reset_work);
2154 if (rc == 0) {
2155 if (efx->reset_pending != RESET_TYPE_NONE) {
2156 /* If there was a scheduled reset during
2157 * probe, the NIC is probably hosed anyway */
2158 efx_pci_remove_main(efx);
2159 rc = -EIO;
2160 } else {
2161 break;
2165 /* Retry if a recoverably reset event has been scheduled */
2166 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2167 (efx->reset_pending != RESET_TYPE_ALL))
2168 goto fail3;
2170 efx->reset_pending = RESET_TYPE_NONE;
2173 if (rc) {
2174 EFX_ERR(efx, "Could not reset NIC\n");
2175 goto fail4;
2178 /* Switch to the running state before we expose the device to the OS,
2179 * so that dev_open()|efx_start_all() will actually start the device */
2180 efx->state = STATE_RUNNING;
2182 rc = efx_register_netdev(efx);
2183 if (rc)
2184 goto fail5;
2186 EFX_LOG(efx, "initialisation successful\n");
2188 rtnl_lock();
2189 efx_mtd_probe(efx); /* allowed to fail */
2190 rtnl_unlock();
2191 return 0;
2193 fail5:
2194 efx_pci_remove_main(efx);
2195 fail4:
2196 fail3:
2197 efx_fini_io(efx);
2198 fail2:
2199 efx_fini_struct(efx);
2200 fail1:
2201 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2202 free_netdev(net_dev);
2203 return rc;
2206 static struct pci_driver efx_pci_driver = {
2207 .name = EFX_DRIVER_NAME,
2208 .id_table = efx_pci_table,
2209 .probe = efx_pci_probe,
2210 .remove = efx_pci_remove,
2213 /**************************************************************************
2215 * Kernel module interface
2217 *************************************************************************/
2219 module_param(interrupt_mode, uint, 0444);
2220 MODULE_PARM_DESC(interrupt_mode,
2221 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2223 static int __init efx_init_module(void)
2225 int rc;
2227 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2229 rc = register_netdevice_notifier(&efx_netdev_notifier);
2230 if (rc)
2231 goto err_notifier;
2233 refill_workqueue = create_workqueue("sfc_refill");
2234 if (!refill_workqueue) {
2235 rc = -ENOMEM;
2236 goto err_refill;
2238 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2239 if (!reset_workqueue) {
2240 rc = -ENOMEM;
2241 goto err_reset;
2244 rc = pci_register_driver(&efx_pci_driver);
2245 if (rc < 0)
2246 goto err_pci;
2248 return 0;
2250 err_pci:
2251 destroy_workqueue(reset_workqueue);
2252 err_reset:
2253 destroy_workqueue(refill_workqueue);
2254 err_refill:
2255 unregister_netdevice_notifier(&efx_netdev_notifier);
2256 err_notifier:
2257 return rc;
2260 static void __exit efx_exit_module(void)
2262 printk(KERN_INFO "Solarflare NET driver unloading\n");
2264 pci_unregister_driver(&efx_pci_driver);
2265 destroy_workqueue(reset_workqueue);
2266 destroy_workqueue(refill_workqueue);
2267 unregister_netdevice_notifier(&efx_netdev_notifier);
2271 module_init(efx_init_module);
2272 module_exit(efx_exit_module);
2274 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2275 "Solarflare Communications");
2276 MODULE_DESCRIPTION("Solarflare Communications network driver");
2277 MODULE_LICENSE("GPL");
2278 MODULE_DEVICE_TABLE(pci, efx_pci_table);