ALSA: hda - Add support for 92HD65 / 92HD66 family of codecs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / transaction.c
blob51dcec86757f071654bc3866123e65157ef0286b
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
32 #define BTRFS_ROOT_TRANS_TAG 0
34 static noinline void put_transaction(struct btrfs_transaction *transaction)
36 WARN_ON(atomic_read(&transaction->use_count) == 0);
37 if (atomic_dec_and_test(&transaction->use_count)) {
38 BUG_ON(!list_empty(&transaction->list));
39 memset(transaction, 0, sizeof(*transaction));
40 kmem_cache_free(btrfs_transaction_cachep, transaction);
44 static noinline void switch_commit_root(struct btrfs_root *root)
46 free_extent_buffer(root->commit_root);
47 root->commit_root = btrfs_root_node(root);
51 * either allocate a new transaction or hop into the existing one
53 static noinline int join_transaction(struct btrfs_root *root, int nofail)
55 struct btrfs_transaction *cur_trans;
57 spin_lock(&root->fs_info->trans_lock);
58 if (root->fs_info->trans_no_join) {
59 if (!nofail) {
60 spin_unlock(&root->fs_info->trans_lock);
61 return -EBUSY;
65 cur_trans = root->fs_info->running_transaction;
66 if (cur_trans) {
67 atomic_inc(&cur_trans->use_count);
68 atomic_inc(&cur_trans->num_writers);
69 cur_trans->num_joined++;
70 spin_unlock(&root->fs_info->trans_lock);
71 return 0;
73 spin_unlock(&root->fs_info->trans_lock);
75 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
76 if (!cur_trans)
77 return -ENOMEM;
78 spin_lock(&root->fs_info->trans_lock);
79 if (root->fs_info->running_transaction) {
80 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
81 cur_trans = root->fs_info->running_transaction;
82 atomic_inc(&cur_trans->use_count);
83 atomic_inc(&cur_trans->num_writers);
84 cur_trans->num_joined++;
85 spin_unlock(&root->fs_info->trans_lock);
86 return 0;
88 atomic_set(&cur_trans->num_writers, 1);
89 cur_trans->num_joined = 0;
90 init_waitqueue_head(&cur_trans->writer_wait);
91 init_waitqueue_head(&cur_trans->commit_wait);
92 cur_trans->in_commit = 0;
93 cur_trans->blocked = 0;
95 * One for this trans handle, one so it will live on until we
96 * commit the transaction.
98 atomic_set(&cur_trans->use_count, 2);
99 cur_trans->commit_done = 0;
100 cur_trans->start_time = get_seconds();
102 cur_trans->delayed_refs.root = RB_ROOT;
103 cur_trans->delayed_refs.num_entries = 0;
104 cur_trans->delayed_refs.num_heads_ready = 0;
105 cur_trans->delayed_refs.num_heads = 0;
106 cur_trans->delayed_refs.flushing = 0;
107 cur_trans->delayed_refs.run_delayed_start = 0;
108 spin_lock_init(&cur_trans->commit_lock);
109 spin_lock_init(&cur_trans->delayed_refs.lock);
111 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
112 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
113 extent_io_tree_init(&cur_trans->dirty_pages,
114 root->fs_info->btree_inode->i_mapping);
115 root->fs_info->generation++;
116 cur_trans->transid = root->fs_info->generation;
117 root->fs_info->running_transaction = cur_trans;
118 spin_unlock(&root->fs_info->trans_lock);
120 return 0;
124 * this does all the record keeping required to make sure that a reference
125 * counted root is properly recorded in a given transaction. This is required
126 * to make sure the old root from before we joined the transaction is deleted
127 * when the transaction commits
129 static int record_root_in_trans(struct btrfs_trans_handle *trans,
130 struct btrfs_root *root)
132 if (root->ref_cows && root->last_trans < trans->transid) {
133 WARN_ON(root == root->fs_info->extent_root);
134 WARN_ON(root->commit_root != root->node);
137 * see below for in_trans_setup usage rules
138 * we have the reloc mutex held now, so there
139 * is only one writer in this function
141 root->in_trans_setup = 1;
143 /* make sure readers find in_trans_setup before
144 * they find our root->last_trans update
146 smp_wmb();
148 spin_lock(&root->fs_info->fs_roots_radix_lock);
149 if (root->last_trans == trans->transid) {
150 spin_unlock(&root->fs_info->fs_roots_radix_lock);
151 return 0;
153 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
154 (unsigned long)root->root_key.objectid,
155 BTRFS_ROOT_TRANS_TAG);
156 spin_unlock(&root->fs_info->fs_roots_radix_lock);
157 root->last_trans = trans->transid;
159 /* this is pretty tricky. We don't want to
160 * take the relocation lock in btrfs_record_root_in_trans
161 * unless we're really doing the first setup for this root in
162 * this transaction.
164 * Normally we'd use root->last_trans as a flag to decide
165 * if we want to take the expensive mutex.
167 * But, we have to set root->last_trans before we
168 * init the relocation root, otherwise, we trip over warnings
169 * in ctree.c. The solution used here is to flag ourselves
170 * with root->in_trans_setup. When this is 1, we're still
171 * fixing up the reloc trees and everyone must wait.
173 * When this is zero, they can trust root->last_trans and fly
174 * through btrfs_record_root_in_trans without having to take the
175 * lock. smp_wmb() makes sure that all the writes above are
176 * done before we pop in the zero below
178 btrfs_init_reloc_root(trans, root);
179 smp_wmb();
180 root->in_trans_setup = 0;
182 return 0;
186 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
187 struct btrfs_root *root)
189 if (!root->ref_cows)
190 return 0;
193 * see record_root_in_trans for comments about in_trans_setup usage
194 * and barriers
196 smp_rmb();
197 if (root->last_trans == trans->transid &&
198 !root->in_trans_setup)
199 return 0;
201 mutex_lock(&root->fs_info->reloc_mutex);
202 record_root_in_trans(trans, root);
203 mutex_unlock(&root->fs_info->reloc_mutex);
205 return 0;
208 /* wait for commit against the current transaction to become unblocked
209 * when this is done, it is safe to start a new transaction, but the current
210 * transaction might not be fully on disk.
212 static void wait_current_trans(struct btrfs_root *root)
214 struct btrfs_transaction *cur_trans;
216 spin_lock(&root->fs_info->trans_lock);
217 cur_trans = root->fs_info->running_transaction;
218 if (cur_trans && cur_trans->blocked) {
219 DEFINE_WAIT(wait);
220 atomic_inc(&cur_trans->use_count);
221 spin_unlock(&root->fs_info->trans_lock);
222 while (1) {
223 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
224 TASK_UNINTERRUPTIBLE);
225 if (!cur_trans->blocked)
226 break;
227 schedule();
229 finish_wait(&root->fs_info->transaction_wait, &wait);
230 put_transaction(cur_trans);
231 } else {
232 spin_unlock(&root->fs_info->trans_lock);
236 enum btrfs_trans_type {
237 TRANS_START,
238 TRANS_JOIN,
239 TRANS_USERSPACE,
240 TRANS_JOIN_NOLOCK,
243 static int may_wait_transaction(struct btrfs_root *root, int type)
245 if (root->fs_info->log_root_recovering)
246 return 0;
248 if (type == TRANS_USERSPACE)
249 return 1;
251 if (type == TRANS_START &&
252 !atomic_read(&root->fs_info->open_ioctl_trans))
253 return 1;
255 return 0;
258 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
259 u64 num_items, int type)
261 struct btrfs_trans_handle *h;
262 struct btrfs_transaction *cur_trans;
263 int retries = 0;
264 int ret;
266 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
267 return ERR_PTR(-EROFS);
269 if (current->journal_info) {
270 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
271 h = current->journal_info;
272 h->use_count++;
273 h->orig_rsv = h->block_rsv;
274 h->block_rsv = NULL;
275 goto got_it;
277 again:
278 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
279 if (!h)
280 return ERR_PTR(-ENOMEM);
282 if (may_wait_transaction(root, type))
283 wait_current_trans(root);
285 do {
286 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
287 if (ret == -EBUSY)
288 wait_current_trans(root);
289 } while (ret == -EBUSY);
291 if (ret < 0) {
292 kmem_cache_free(btrfs_trans_handle_cachep, h);
293 return ERR_PTR(ret);
296 cur_trans = root->fs_info->running_transaction;
298 h->transid = cur_trans->transid;
299 h->transaction = cur_trans;
300 h->blocks_used = 0;
301 h->bytes_reserved = 0;
302 h->delayed_ref_updates = 0;
303 h->use_count = 1;
304 h->block_rsv = NULL;
305 h->orig_rsv = NULL;
307 smp_mb();
308 if (cur_trans->blocked && may_wait_transaction(root, type)) {
309 btrfs_commit_transaction(h, root);
310 goto again;
313 if (num_items > 0) {
314 ret = btrfs_trans_reserve_metadata(h, root, num_items);
315 if (ret == -EAGAIN && !retries) {
316 retries++;
317 btrfs_commit_transaction(h, root);
318 goto again;
319 } else if (ret == -EAGAIN) {
321 * We have already retried and got EAGAIN, so really we
322 * don't have space, so set ret to -ENOSPC.
324 ret = -ENOSPC;
327 if (ret < 0) {
328 btrfs_end_transaction(h, root);
329 return ERR_PTR(ret);
333 got_it:
334 btrfs_record_root_in_trans(h, root);
336 if (!current->journal_info && type != TRANS_USERSPACE)
337 current->journal_info = h;
338 return h;
341 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
342 int num_items)
344 return start_transaction(root, num_items, TRANS_START);
346 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
348 return start_transaction(root, 0, TRANS_JOIN);
351 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
353 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
356 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
358 return start_transaction(root, 0, TRANS_USERSPACE);
361 /* wait for a transaction commit to be fully complete */
362 static noinline int wait_for_commit(struct btrfs_root *root,
363 struct btrfs_transaction *commit)
365 DEFINE_WAIT(wait);
366 while (!commit->commit_done) {
367 prepare_to_wait(&commit->commit_wait, &wait,
368 TASK_UNINTERRUPTIBLE);
369 if (commit->commit_done)
370 break;
371 schedule();
373 finish_wait(&commit->commit_wait, &wait);
374 return 0;
377 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
379 struct btrfs_transaction *cur_trans = NULL, *t;
380 int ret;
382 ret = 0;
383 if (transid) {
384 if (transid <= root->fs_info->last_trans_committed)
385 goto out;
387 /* find specified transaction */
388 spin_lock(&root->fs_info->trans_lock);
389 list_for_each_entry(t, &root->fs_info->trans_list, list) {
390 if (t->transid == transid) {
391 cur_trans = t;
392 atomic_inc(&cur_trans->use_count);
393 break;
395 if (t->transid > transid)
396 break;
398 spin_unlock(&root->fs_info->trans_lock);
399 ret = -EINVAL;
400 if (!cur_trans)
401 goto out; /* bad transid */
402 } else {
403 /* find newest transaction that is committing | committed */
404 spin_lock(&root->fs_info->trans_lock);
405 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
406 list) {
407 if (t->in_commit) {
408 if (t->commit_done)
409 break;
410 cur_trans = t;
411 atomic_inc(&cur_trans->use_count);
412 break;
415 spin_unlock(&root->fs_info->trans_lock);
416 if (!cur_trans)
417 goto out; /* nothing committing|committed */
420 wait_for_commit(root, cur_trans);
422 put_transaction(cur_trans);
423 ret = 0;
424 out:
425 return ret;
428 void btrfs_throttle(struct btrfs_root *root)
430 if (!atomic_read(&root->fs_info->open_ioctl_trans))
431 wait_current_trans(root);
434 static int should_end_transaction(struct btrfs_trans_handle *trans,
435 struct btrfs_root *root)
437 int ret;
438 ret = btrfs_block_rsv_check(trans, root,
439 &root->fs_info->global_block_rsv, 0, 5);
440 return ret ? 1 : 0;
443 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
444 struct btrfs_root *root)
446 struct btrfs_transaction *cur_trans = trans->transaction;
447 int updates;
449 smp_mb();
450 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
451 return 1;
453 updates = trans->delayed_ref_updates;
454 trans->delayed_ref_updates = 0;
455 if (updates)
456 btrfs_run_delayed_refs(trans, root, updates);
458 return should_end_transaction(trans, root);
461 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
462 struct btrfs_root *root, int throttle, int lock)
464 struct btrfs_transaction *cur_trans = trans->transaction;
465 struct btrfs_fs_info *info = root->fs_info;
466 int count = 0;
468 if (--trans->use_count) {
469 trans->block_rsv = trans->orig_rsv;
470 return 0;
473 while (count < 4) {
474 unsigned long cur = trans->delayed_ref_updates;
475 trans->delayed_ref_updates = 0;
476 if (cur &&
477 trans->transaction->delayed_refs.num_heads_ready > 64) {
478 trans->delayed_ref_updates = 0;
481 * do a full flush if the transaction is trying
482 * to close
484 if (trans->transaction->delayed_refs.flushing)
485 cur = 0;
486 btrfs_run_delayed_refs(trans, root, cur);
487 } else {
488 break;
490 count++;
493 btrfs_trans_release_metadata(trans, root);
495 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
496 should_end_transaction(trans, root)) {
497 trans->transaction->blocked = 1;
498 smp_wmb();
501 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
502 if (throttle)
503 return btrfs_commit_transaction(trans, root);
504 else
505 wake_up_process(info->transaction_kthread);
508 WARN_ON(cur_trans != info->running_transaction);
509 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
510 atomic_dec(&cur_trans->num_writers);
512 smp_mb();
513 if (waitqueue_active(&cur_trans->writer_wait))
514 wake_up(&cur_trans->writer_wait);
515 put_transaction(cur_trans);
517 if (current->journal_info == trans)
518 current->journal_info = NULL;
519 memset(trans, 0, sizeof(*trans));
520 kmem_cache_free(btrfs_trans_handle_cachep, trans);
522 if (throttle)
523 btrfs_run_delayed_iputs(root);
525 return 0;
528 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
529 struct btrfs_root *root)
531 int ret;
533 ret = __btrfs_end_transaction(trans, root, 0, 1);
534 if (ret)
535 return ret;
536 return 0;
539 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
540 struct btrfs_root *root)
542 int ret;
544 ret = __btrfs_end_transaction(trans, root, 1, 1);
545 if (ret)
546 return ret;
547 return 0;
550 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
551 struct btrfs_root *root)
553 int ret;
555 ret = __btrfs_end_transaction(trans, root, 0, 0);
556 if (ret)
557 return ret;
558 return 0;
561 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
562 struct btrfs_root *root)
564 return __btrfs_end_transaction(trans, root, 1, 1);
568 * when btree blocks are allocated, they have some corresponding bits set for
569 * them in one of two extent_io trees. This is used to make sure all of
570 * those extents are sent to disk but does not wait on them
572 int btrfs_write_marked_extents(struct btrfs_root *root,
573 struct extent_io_tree *dirty_pages, int mark)
575 int ret;
576 int err = 0;
577 int werr = 0;
578 struct page *page;
579 struct inode *btree_inode = root->fs_info->btree_inode;
580 u64 start = 0;
581 u64 end;
582 unsigned long index;
584 while (1) {
585 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
586 mark);
587 if (ret)
588 break;
589 while (start <= end) {
590 cond_resched();
592 index = start >> PAGE_CACHE_SHIFT;
593 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
594 page = find_get_page(btree_inode->i_mapping, index);
595 if (!page)
596 continue;
598 btree_lock_page_hook(page);
599 if (!page->mapping) {
600 unlock_page(page);
601 page_cache_release(page);
602 continue;
605 if (PageWriteback(page)) {
606 if (PageDirty(page))
607 wait_on_page_writeback(page);
608 else {
609 unlock_page(page);
610 page_cache_release(page);
611 continue;
614 err = write_one_page(page, 0);
615 if (err)
616 werr = err;
617 page_cache_release(page);
620 if (err)
621 werr = err;
622 return werr;
626 * when btree blocks are allocated, they have some corresponding bits set for
627 * them in one of two extent_io trees. This is used to make sure all of
628 * those extents are on disk for transaction or log commit. We wait
629 * on all the pages and clear them from the dirty pages state tree
631 int btrfs_wait_marked_extents(struct btrfs_root *root,
632 struct extent_io_tree *dirty_pages, int mark)
634 int ret;
635 int err = 0;
636 int werr = 0;
637 struct page *page;
638 struct inode *btree_inode = root->fs_info->btree_inode;
639 u64 start = 0;
640 u64 end;
641 unsigned long index;
643 while (1) {
644 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
645 mark);
646 if (ret)
647 break;
649 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
650 while (start <= end) {
651 index = start >> PAGE_CACHE_SHIFT;
652 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
653 page = find_get_page(btree_inode->i_mapping, index);
654 if (!page)
655 continue;
656 if (PageDirty(page)) {
657 btree_lock_page_hook(page);
658 wait_on_page_writeback(page);
659 err = write_one_page(page, 0);
660 if (err)
661 werr = err;
663 wait_on_page_writeback(page);
664 page_cache_release(page);
665 cond_resched();
668 if (err)
669 werr = err;
670 return werr;
674 * when btree blocks are allocated, they have some corresponding bits set for
675 * them in one of two extent_io trees. This is used to make sure all of
676 * those extents are on disk for transaction or log commit
678 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
679 struct extent_io_tree *dirty_pages, int mark)
681 int ret;
682 int ret2;
684 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
685 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
686 return ret || ret2;
689 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
690 struct btrfs_root *root)
692 if (!trans || !trans->transaction) {
693 struct inode *btree_inode;
694 btree_inode = root->fs_info->btree_inode;
695 return filemap_write_and_wait(btree_inode->i_mapping);
697 return btrfs_write_and_wait_marked_extents(root,
698 &trans->transaction->dirty_pages,
699 EXTENT_DIRTY);
703 * this is used to update the root pointer in the tree of tree roots.
705 * But, in the case of the extent allocation tree, updating the root
706 * pointer may allocate blocks which may change the root of the extent
707 * allocation tree.
709 * So, this loops and repeats and makes sure the cowonly root didn't
710 * change while the root pointer was being updated in the metadata.
712 static int update_cowonly_root(struct btrfs_trans_handle *trans,
713 struct btrfs_root *root)
715 int ret;
716 u64 old_root_bytenr;
717 u64 old_root_used;
718 struct btrfs_root *tree_root = root->fs_info->tree_root;
720 old_root_used = btrfs_root_used(&root->root_item);
721 btrfs_write_dirty_block_groups(trans, root);
723 while (1) {
724 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
725 if (old_root_bytenr == root->node->start &&
726 old_root_used == btrfs_root_used(&root->root_item))
727 break;
729 btrfs_set_root_node(&root->root_item, root->node);
730 ret = btrfs_update_root(trans, tree_root,
731 &root->root_key,
732 &root->root_item);
733 BUG_ON(ret);
735 old_root_used = btrfs_root_used(&root->root_item);
736 ret = btrfs_write_dirty_block_groups(trans, root);
737 BUG_ON(ret);
740 if (root != root->fs_info->extent_root)
741 switch_commit_root(root);
743 return 0;
747 * update all the cowonly tree roots on disk
749 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
750 struct btrfs_root *root)
752 struct btrfs_fs_info *fs_info = root->fs_info;
753 struct list_head *next;
754 struct extent_buffer *eb;
755 int ret;
757 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
758 BUG_ON(ret);
760 eb = btrfs_lock_root_node(fs_info->tree_root);
761 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
762 btrfs_tree_unlock(eb);
763 free_extent_buffer(eb);
765 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
766 BUG_ON(ret);
768 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
769 next = fs_info->dirty_cowonly_roots.next;
770 list_del_init(next);
771 root = list_entry(next, struct btrfs_root, dirty_list);
773 update_cowonly_root(trans, root);
776 down_write(&fs_info->extent_commit_sem);
777 switch_commit_root(fs_info->extent_root);
778 up_write(&fs_info->extent_commit_sem);
780 return 0;
784 * dead roots are old snapshots that need to be deleted. This allocates
785 * a dirty root struct and adds it into the list of dead roots that need to
786 * be deleted
788 int btrfs_add_dead_root(struct btrfs_root *root)
790 spin_lock(&root->fs_info->trans_lock);
791 list_add(&root->root_list, &root->fs_info->dead_roots);
792 spin_unlock(&root->fs_info->trans_lock);
793 return 0;
797 * update all the cowonly tree roots on disk
799 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
800 struct btrfs_root *root)
802 struct btrfs_root *gang[8];
803 struct btrfs_fs_info *fs_info = root->fs_info;
804 int i;
805 int ret;
806 int err = 0;
808 spin_lock(&fs_info->fs_roots_radix_lock);
809 while (1) {
810 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
811 (void **)gang, 0,
812 ARRAY_SIZE(gang),
813 BTRFS_ROOT_TRANS_TAG);
814 if (ret == 0)
815 break;
816 for (i = 0; i < ret; i++) {
817 root = gang[i];
818 radix_tree_tag_clear(&fs_info->fs_roots_radix,
819 (unsigned long)root->root_key.objectid,
820 BTRFS_ROOT_TRANS_TAG);
821 spin_unlock(&fs_info->fs_roots_radix_lock);
823 btrfs_free_log(trans, root);
824 btrfs_update_reloc_root(trans, root);
825 btrfs_orphan_commit_root(trans, root);
827 btrfs_save_ino_cache(root, trans);
829 if (root->commit_root != root->node) {
830 mutex_lock(&root->fs_commit_mutex);
831 switch_commit_root(root);
832 btrfs_unpin_free_ino(root);
833 mutex_unlock(&root->fs_commit_mutex);
835 btrfs_set_root_node(&root->root_item,
836 root->node);
839 err = btrfs_update_root(trans, fs_info->tree_root,
840 &root->root_key,
841 &root->root_item);
842 spin_lock(&fs_info->fs_roots_radix_lock);
843 if (err)
844 break;
847 spin_unlock(&fs_info->fs_roots_radix_lock);
848 return err;
852 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
853 * otherwise every leaf in the btree is read and defragged.
855 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
857 struct btrfs_fs_info *info = root->fs_info;
858 struct btrfs_trans_handle *trans;
859 int ret;
860 unsigned long nr;
862 if (xchg(&root->defrag_running, 1))
863 return 0;
865 while (1) {
866 trans = btrfs_start_transaction(root, 0);
867 if (IS_ERR(trans))
868 return PTR_ERR(trans);
870 ret = btrfs_defrag_leaves(trans, root, cacheonly);
872 nr = trans->blocks_used;
873 btrfs_end_transaction(trans, root);
874 btrfs_btree_balance_dirty(info->tree_root, nr);
875 cond_resched();
877 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
878 break;
880 root->defrag_running = 0;
881 return ret;
885 * new snapshots need to be created at a very specific time in the
886 * transaction commit. This does the actual creation
888 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
889 struct btrfs_fs_info *fs_info,
890 struct btrfs_pending_snapshot *pending)
892 struct btrfs_key key;
893 struct btrfs_root_item *new_root_item;
894 struct btrfs_root *tree_root = fs_info->tree_root;
895 struct btrfs_root *root = pending->root;
896 struct btrfs_root *parent_root;
897 struct inode *parent_inode;
898 struct dentry *parent;
899 struct dentry *dentry;
900 struct extent_buffer *tmp;
901 struct extent_buffer *old;
902 int ret;
903 u64 to_reserve = 0;
904 u64 index = 0;
905 u64 objectid;
906 u64 root_flags;
908 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
909 if (!new_root_item) {
910 pending->error = -ENOMEM;
911 goto fail;
914 ret = btrfs_find_free_objectid(tree_root, &objectid);
915 if (ret) {
916 pending->error = ret;
917 goto fail;
920 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
921 btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
923 if (to_reserve > 0) {
924 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
925 to_reserve);
926 if (ret) {
927 pending->error = ret;
928 goto fail;
932 key.objectid = objectid;
933 key.offset = (u64)-1;
934 key.type = BTRFS_ROOT_ITEM_KEY;
936 trans->block_rsv = &pending->block_rsv;
938 dentry = pending->dentry;
939 parent = dget_parent(dentry);
940 parent_inode = parent->d_inode;
941 parent_root = BTRFS_I(parent_inode)->root;
942 record_root_in_trans(trans, parent_root);
945 * insert the directory item
947 ret = btrfs_set_inode_index(parent_inode, &index);
948 BUG_ON(ret);
949 ret = btrfs_insert_dir_item(trans, parent_root,
950 dentry->d_name.name, dentry->d_name.len,
951 parent_inode, &key,
952 BTRFS_FT_DIR, index);
953 BUG_ON(ret);
955 btrfs_i_size_write(parent_inode, parent_inode->i_size +
956 dentry->d_name.len * 2);
957 ret = btrfs_update_inode(trans, parent_root, parent_inode);
958 BUG_ON(ret);
961 * pull in the delayed directory update
962 * and the delayed inode item
963 * otherwise we corrupt the FS during
964 * snapshot
966 ret = btrfs_run_delayed_items(trans, root);
967 BUG_ON(ret);
969 record_root_in_trans(trans, root);
970 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
971 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
972 btrfs_check_and_init_root_item(new_root_item);
974 root_flags = btrfs_root_flags(new_root_item);
975 if (pending->readonly)
976 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
977 else
978 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
979 btrfs_set_root_flags(new_root_item, root_flags);
981 old = btrfs_lock_root_node(root);
982 btrfs_cow_block(trans, root, old, NULL, 0, &old);
983 btrfs_set_lock_blocking(old);
985 btrfs_copy_root(trans, root, old, &tmp, objectid);
986 btrfs_tree_unlock(old);
987 free_extent_buffer(old);
989 btrfs_set_root_node(new_root_item, tmp);
990 /* record when the snapshot was created in key.offset */
991 key.offset = trans->transid;
992 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
993 btrfs_tree_unlock(tmp);
994 free_extent_buffer(tmp);
995 BUG_ON(ret);
998 * insert root back/forward references
1000 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1001 parent_root->root_key.objectid,
1002 btrfs_ino(parent_inode), index,
1003 dentry->d_name.name, dentry->d_name.len);
1004 BUG_ON(ret);
1005 dput(parent);
1007 key.offset = (u64)-1;
1008 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1009 BUG_ON(IS_ERR(pending->snap));
1011 btrfs_reloc_post_snapshot(trans, pending);
1012 btrfs_orphan_post_snapshot(trans, pending);
1013 fail:
1014 kfree(new_root_item);
1015 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1016 return 0;
1020 * create all the snapshots we've scheduled for creation
1022 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1023 struct btrfs_fs_info *fs_info)
1025 struct btrfs_pending_snapshot *pending;
1026 struct list_head *head = &trans->transaction->pending_snapshots;
1027 int ret;
1029 list_for_each_entry(pending, head, list) {
1030 ret = create_pending_snapshot(trans, fs_info, pending);
1031 BUG_ON(ret);
1033 return 0;
1036 static void update_super_roots(struct btrfs_root *root)
1038 struct btrfs_root_item *root_item;
1039 struct btrfs_super_block *super;
1041 super = &root->fs_info->super_copy;
1043 root_item = &root->fs_info->chunk_root->root_item;
1044 super->chunk_root = root_item->bytenr;
1045 super->chunk_root_generation = root_item->generation;
1046 super->chunk_root_level = root_item->level;
1048 root_item = &root->fs_info->tree_root->root_item;
1049 super->root = root_item->bytenr;
1050 super->generation = root_item->generation;
1051 super->root_level = root_item->level;
1052 if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1053 super->cache_generation = root_item->generation;
1056 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1058 int ret = 0;
1059 spin_lock(&info->trans_lock);
1060 if (info->running_transaction)
1061 ret = info->running_transaction->in_commit;
1062 spin_unlock(&info->trans_lock);
1063 return ret;
1066 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1068 int ret = 0;
1069 spin_lock(&info->trans_lock);
1070 if (info->running_transaction)
1071 ret = info->running_transaction->blocked;
1072 spin_unlock(&info->trans_lock);
1073 return ret;
1077 * wait for the current transaction commit to start and block subsequent
1078 * transaction joins
1080 static void wait_current_trans_commit_start(struct btrfs_root *root,
1081 struct btrfs_transaction *trans)
1083 DEFINE_WAIT(wait);
1085 if (trans->in_commit)
1086 return;
1088 while (1) {
1089 prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait,
1090 TASK_UNINTERRUPTIBLE);
1091 if (trans->in_commit) {
1092 finish_wait(&root->fs_info->transaction_blocked_wait,
1093 &wait);
1094 break;
1096 schedule();
1097 finish_wait(&root->fs_info->transaction_blocked_wait, &wait);
1102 * wait for the current transaction to start and then become unblocked.
1103 * caller holds ref.
1105 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1106 struct btrfs_transaction *trans)
1108 DEFINE_WAIT(wait);
1110 if (trans->commit_done || (trans->in_commit && !trans->blocked))
1111 return;
1113 while (1) {
1114 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
1115 TASK_UNINTERRUPTIBLE);
1116 if (trans->commit_done ||
1117 (trans->in_commit && !trans->blocked)) {
1118 finish_wait(&root->fs_info->transaction_wait,
1119 &wait);
1120 break;
1122 schedule();
1123 finish_wait(&root->fs_info->transaction_wait,
1124 &wait);
1129 * commit transactions asynchronously. once btrfs_commit_transaction_async
1130 * returns, any subsequent transaction will not be allowed to join.
1132 struct btrfs_async_commit {
1133 struct btrfs_trans_handle *newtrans;
1134 struct btrfs_root *root;
1135 struct delayed_work work;
1138 static void do_async_commit(struct work_struct *work)
1140 struct btrfs_async_commit *ac =
1141 container_of(work, struct btrfs_async_commit, work.work);
1143 btrfs_commit_transaction(ac->newtrans, ac->root);
1144 kfree(ac);
1147 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1148 struct btrfs_root *root,
1149 int wait_for_unblock)
1151 struct btrfs_async_commit *ac;
1152 struct btrfs_transaction *cur_trans;
1154 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1155 if (!ac)
1156 return -ENOMEM;
1158 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1159 ac->root = root;
1160 ac->newtrans = btrfs_join_transaction(root);
1161 if (IS_ERR(ac->newtrans)) {
1162 int err = PTR_ERR(ac->newtrans);
1163 kfree(ac);
1164 return err;
1167 /* take transaction reference */
1168 cur_trans = trans->transaction;
1169 atomic_inc(&cur_trans->use_count);
1171 btrfs_end_transaction(trans, root);
1172 schedule_delayed_work(&ac->work, 0);
1174 /* wait for transaction to start and unblock */
1175 if (wait_for_unblock)
1176 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1177 else
1178 wait_current_trans_commit_start(root, cur_trans);
1180 if (current->journal_info == trans)
1181 current->journal_info = NULL;
1183 put_transaction(cur_trans);
1184 return 0;
1188 * btrfs_transaction state sequence:
1189 * in_commit = 0, blocked = 0 (initial)
1190 * in_commit = 1, blocked = 1
1191 * blocked = 0
1192 * commit_done = 1
1194 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1195 struct btrfs_root *root)
1197 unsigned long joined = 0;
1198 struct btrfs_transaction *cur_trans;
1199 struct btrfs_transaction *prev_trans = NULL;
1200 DEFINE_WAIT(wait);
1201 int ret;
1202 int should_grow = 0;
1203 unsigned long now = get_seconds();
1204 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1206 btrfs_run_ordered_operations(root, 0);
1208 /* make a pass through all the delayed refs we have so far
1209 * any runnings procs may add more while we are here
1211 ret = btrfs_run_delayed_refs(trans, root, 0);
1212 BUG_ON(ret);
1214 btrfs_trans_release_metadata(trans, root);
1216 cur_trans = trans->transaction;
1218 * set the flushing flag so procs in this transaction have to
1219 * start sending their work down.
1221 cur_trans->delayed_refs.flushing = 1;
1223 ret = btrfs_run_delayed_refs(trans, root, 0);
1224 BUG_ON(ret);
1226 spin_lock(&cur_trans->commit_lock);
1227 if (cur_trans->in_commit) {
1228 spin_unlock(&cur_trans->commit_lock);
1229 atomic_inc(&cur_trans->use_count);
1230 btrfs_end_transaction(trans, root);
1232 ret = wait_for_commit(root, cur_trans);
1233 BUG_ON(ret);
1235 put_transaction(cur_trans);
1237 return 0;
1240 trans->transaction->in_commit = 1;
1241 trans->transaction->blocked = 1;
1242 spin_unlock(&cur_trans->commit_lock);
1243 wake_up(&root->fs_info->transaction_blocked_wait);
1245 spin_lock(&root->fs_info->trans_lock);
1246 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1247 prev_trans = list_entry(cur_trans->list.prev,
1248 struct btrfs_transaction, list);
1249 if (!prev_trans->commit_done) {
1250 atomic_inc(&prev_trans->use_count);
1251 spin_unlock(&root->fs_info->trans_lock);
1253 wait_for_commit(root, prev_trans);
1255 put_transaction(prev_trans);
1256 } else {
1257 spin_unlock(&root->fs_info->trans_lock);
1259 } else {
1260 spin_unlock(&root->fs_info->trans_lock);
1263 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1264 should_grow = 1;
1266 do {
1267 int snap_pending = 0;
1269 joined = cur_trans->num_joined;
1270 if (!list_empty(&trans->transaction->pending_snapshots))
1271 snap_pending = 1;
1273 WARN_ON(cur_trans != trans->transaction);
1275 if (flush_on_commit || snap_pending) {
1276 btrfs_start_delalloc_inodes(root, 1);
1277 ret = btrfs_wait_ordered_extents(root, 0, 1);
1278 BUG_ON(ret);
1281 ret = btrfs_run_delayed_items(trans, root);
1282 BUG_ON(ret);
1285 * rename don't use btrfs_join_transaction, so, once we
1286 * set the transaction to blocked above, we aren't going
1287 * to get any new ordered operations. We can safely run
1288 * it here and no for sure that nothing new will be added
1289 * to the list
1291 btrfs_run_ordered_operations(root, 1);
1293 prepare_to_wait(&cur_trans->writer_wait, &wait,
1294 TASK_UNINTERRUPTIBLE);
1296 if (atomic_read(&cur_trans->num_writers) > 1)
1297 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1298 else if (should_grow)
1299 schedule_timeout(1);
1301 finish_wait(&cur_trans->writer_wait, &wait);
1302 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1303 (should_grow && cur_trans->num_joined != joined));
1306 * Ok now we need to make sure to block out any other joins while we
1307 * commit the transaction. We could have started a join before setting
1308 * no_join so make sure to wait for num_writers to == 1 again.
1310 spin_lock(&root->fs_info->trans_lock);
1311 root->fs_info->trans_no_join = 1;
1312 spin_unlock(&root->fs_info->trans_lock);
1313 wait_event(cur_trans->writer_wait,
1314 atomic_read(&cur_trans->num_writers) == 1);
1317 * the reloc mutex makes sure that we stop
1318 * the balancing code from coming in and moving
1319 * extents around in the middle of the commit
1321 mutex_lock(&root->fs_info->reloc_mutex);
1323 ret = btrfs_run_delayed_items(trans, root);
1324 BUG_ON(ret);
1326 ret = create_pending_snapshots(trans, root->fs_info);
1327 BUG_ON(ret);
1329 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1330 BUG_ON(ret);
1333 * make sure none of the code above managed to slip in a
1334 * delayed item
1336 btrfs_assert_delayed_root_empty(root);
1338 WARN_ON(cur_trans != trans->transaction);
1340 btrfs_scrub_pause(root);
1341 /* btrfs_commit_tree_roots is responsible for getting the
1342 * various roots consistent with each other. Every pointer
1343 * in the tree of tree roots has to point to the most up to date
1344 * root for every subvolume and other tree. So, we have to keep
1345 * the tree logging code from jumping in and changing any
1346 * of the trees.
1348 * At this point in the commit, there can't be any tree-log
1349 * writers, but a little lower down we drop the trans mutex
1350 * and let new people in. By holding the tree_log_mutex
1351 * from now until after the super is written, we avoid races
1352 * with the tree-log code.
1354 mutex_lock(&root->fs_info->tree_log_mutex);
1356 ret = commit_fs_roots(trans, root);
1357 BUG_ON(ret);
1359 /* commit_fs_roots gets rid of all the tree log roots, it is now
1360 * safe to free the root of tree log roots
1362 btrfs_free_log_root_tree(trans, root->fs_info);
1364 ret = commit_cowonly_roots(trans, root);
1365 BUG_ON(ret);
1367 btrfs_prepare_extent_commit(trans, root);
1369 cur_trans = root->fs_info->running_transaction;
1371 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1372 root->fs_info->tree_root->node);
1373 switch_commit_root(root->fs_info->tree_root);
1375 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1376 root->fs_info->chunk_root->node);
1377 switch_commit_root(root->fs_info->chunk_root);
1379 update_super_roots(root);
1381 if (!root->fs_info->log_root_recovering) {
1382 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1383 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1386 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1387 sizeof(root->fs_info->super_copy));
1389 trans->transaction->blocked = 0;
1390 spin_lock(&root->fs_info->trans_lock);
1391 root->fs_info->running_transaction = NULL;
1392 root->fs_info->trans_no_join = 0;
1393 spin_unlock(&root->fs_info->trans_lock);
1394 mutex_unlock(&root->fs_info->reloc_mutex);
1396 wake_up(&root->fs_info->transaction_wait);
1398 ret = btrfs_write_and_wait_transaction(trans, root);
1399 BUG_ON(ret);
1400 write_ctree_super(trans, root, 0);
1403 * the super is written, we can safely allow the tree-loggers
1404 * to go about their business
1406 mutex_unlock(&root->fs_info->tree_log_mutex);
1408 btrfs_finish_extent_commit(trans, root);
1410 cur_trans->commit_done = 1;
1412 root->fs_info->last_trans_committed = cur_trans->transid;
1414 wake_up(&cur_trans->commit_wait);
1416 spin_lock(&root->fs_info->trans_lock);
1417 list_del_init(&cur_trans->list);
1418 spin_unlock(&root->fs_info->trans_lock);
1420 put_transaction(cur_trans);
1421 put_transaction(cur_trans);
1423 trace_btrfs_transaction_commit(root);
1425 btrfs_scrub_continue(root);
1427 if (current->journal_info == trans)
1428 current->journal_info = NULL;
1430 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1432 if (current != root->fs_info->transaction_kthread)
1433 btrfs_run_delayed_iputs(root);
1435 return ret;
1439 * interface function to delete all the snapshots we have scheduled for deletion
1441 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1443 LIST_HEAD(list);
1444 struct btrfs_fs_info *fs_info = root->fs_info;
1446 spin_lock(&fs_info->trans_lock);
1447 list_splice_init(&fs_info->dead_roots, &list);
1448 spin_unlock(&fs_info->trans_lock);
1450 while (!list_empty(&list)) {
1451 root = list_entry(list.next, struct btrfs_root, root_list);
1452 list_del(&root->root_list);
1454 btrfs_kill_all_delayed_nodes(root);
1456 if (btrfs_header_backref_rev(root->node) <
1457 BTRFS_MIXED_BACKREF_REV)
1458 btrfs_drop_snapshot(root, NULL, 0);
1459 else
1460 btrfs_drop_snapshot(root, NULL, 1);
1462 return 0;