xen: separate p2m allocation from setting
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / xen / mmu.c
blob0b2d554d1d587908976cc74053f574a3b7c28d64
1 /*
2 * Xen mmu operations
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
46 #include <asm/pgtable.h>
47 #include <asm/tlbflush.h>
48 #include <asm/fixmap.h>
49 #include <asm/mmu_context.h>
50 #include <asm/setup.h>
51 #include <asm/paravirt.h>
52 #include <asm/linkage.h>
54 #include <asm/xen/hypercall.h>
55 #include <asm/xen/hypervisor.h>
57 #include <xen/page.h>
58 #include <xen/interface/xen.h>
59 #include <xen/interface/version.h>
60 #include <xen/hvc-console.h>
62 #include "multicalls.h"
63 #include "mmu.h"
64 #include "debugfs.h"
66 #define MMU_UPDATE_HISTO 30
68 #ifdef CONFIG_XEN_DEBUG_FS
70 static struct {
71 u32 pgd_update;
72 u32 pgd_update_pinned;
73 u32 pgd_update_batched;
75 u32 pud_update;
76 u32 pud_update_pinned;
77 u32 pud_update_batched;
79 u32 pmd_update;
80 u32 pmd_update_pinned;
81 u32 pmd_update_batched;
83 u32 pte_update;
84 u32 pte_update_pinned;
85 u32 pte_update_batched;
87 u32 mmu_update;
88 u32 mmu_update_extended;
89 u32 mmu_update_histo[MMU_UPDATE_HISTO];
91 u32 prot_commit;
92 u32 prot_commit_batched;
94 u32 set_pte_at;
95 u32 set_pte_at_batched;
96 u32 set_pte_at_pinned;
97 u32 set_pte_at_current;
98 u32 set_pte_at_kernel;
99 } mmu_stats;
101 static u8 zero_stats;
103 static inline void check_zero(void)
105 if (unlikely(zero_stats)) {
106 memset(&mmu_stats, 0, sizeof(mmu_stats));
107 zero_stats = 0;
111 #define ADD_STATS(elem, val) \
112 do { check_zero(); mmu_stats.elem += (val); } while(0)
114 #else /* !CONFIG_XEN_DEBUG_FS */
116 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
118 #endif /* CONFIG_XEN_DEBUG_FS */
122 * Identity map, in addition to plain kernel map. This needs to be
123 * large enough to allocate page table pages to allocate the rest.
124 * Each page can map 2MB.
126 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
128 #ifdef CONFIG_X86_64
129 /* l3 pud for userspace vsyscall mapping */
130 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
131 #endif /* CONFIG_X86_64 */
134 * Note about cr3 (pagetable base) values:
136 * xen_cr3 contains the current logical cr3 value; it contains the
137 * last set cr3. This may not be the current effective cr3, because
138 * its update may be being lazily deferred. However, a vcpu looking
139 * at its own cr3 can use this value knowing that it everything will
140 * be self-consistent.
142 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
143 * hypercall to set the vcpu cr3 is complete (so it may be a little
144 * out of date, but it will never be set early). If one vcpu is
145 * looking at another vcpu's cr3 value, it should use this variable.
147 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
148 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
152 * Just beyond the highest usermode address. STACK_TOP_MAX has a
153 * redzone above it, so round it up to a PGD boundary.
155 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
158 #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
159 #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
161 /* Placeholder for holes in the address space */
162 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
163 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
165 /* Array of pointers to pages containing p2m entries */
166 static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
167 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
169 /* Arrays of p2m arrays expressed in mfns used for save/restore */
170 static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
172 static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
173 __page_aligned_bss;
175 static inline unsigned p2m_top_index(unsigned long pfn)
177 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
178 return pfn / P2M_ENTRIES_PER_PAGE;
181 static inline unsigned p2m_index(unsigned long pfn)
183 return pfn % P2M_ENTRIES_PER_PAGE;
186 /* Build the parallel p2m_top_mfn structures */
187 void xen_setup_mfn_list_list(void)
189 unsigned pfn, idx;
191 for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
192 unsigned topidx = p2m_top_index(pfn);
194 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
197 for (idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
198 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
199 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
202 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
204 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
205 virt_to_mfn(p2m_top_mfn_list);
206 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
209 /* Set up p2m_top to point to the domain-builder provided p2m pages */
210 void __init xen_build_dynamic_phys_to_machine(void)
212 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
213 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
214 unsigned pfn;
216 for (pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
217 unsigned topidx = p2m_top_index(pfn);
219 p2m_top[topidx] = &mfn_list[pfn];
223 unsigned long get_phys_to_machine(unsigned long pfn)
225 unsigned topidx, idx;
227 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
228 return INVALID_P2M_ENTRY;
230 topidx = p2m_top_index(pfn);
231 idx = p2m_index(pfn);
232 return p2m_top[topidx][idx];
234 EXPORT_SYMBOL_GPL(get_phys_to_machine);
236 /* install a new p2m_top page */
237 bool install_p2mtop_page(unsigned long pfn, unsigned long *p)
239 unsigned topidx = p2m_top_index(pfn);
240 unsigned long **pfnp, *mfnp;
241 unsigned i;
243 pfnp = &p2m_top[topidx];
244 mfnp = &p2m_top_mfn[topidx];
246 for (i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
247 p[i] = INVALID_P2M_ENTRY;
249 if (cmpxchg(pfnp, p2m_missing, p) == p2m_missing) {
250 *mfnp = virt_to_mfn(p);
251 return true;
254 return false;
257 static void alloc_p2m(unsigned long pfn)
259 unsigned long *p;
261 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
262 BUG_ON(p == NULL);
264 if (!install_p2mtop_page(pfn, p))
265 free_page((unsigned long)p);
268 /* Try to install p2m mapping; fail if intermediate bits missing */
269 bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
271 unsigned topidx, idx;
273 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
274 BUG_ON(mfn != INVALID_P2M_ENTRY);
275 return true;
278 topidx = p2m_top_index(pfn);
279 if (p2m_top[topidx] == p2m_missing) {
280 if (mfn == INVALID_P2M_ENTRY)
281 return true;
282 return false;
285 idx = p2m_index(pfn);
286 p2m_top[topidx][idx] = mfn;
288 return true;
291 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
293 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
294 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
295 return;
298 if (unlikely(!__set_phys_to_machine(pfn, mfn))) {
299 alloc_p2m(pfn);
301 if (!__set_phys_to_machine(pfn, mfn))
302 BUG();
306 unsigned long arbitrary_virt_to_mfn(void *vaddr)
308 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
310 return PFN_DOWN(maddr.maddr);
313 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
315 unsigned long address = (unsigned long)vaddr;
316 unsigned int level;
317 pte_t *pte;
318 unsigned offset;
321 * if the PFN is in the linear mapped vaddr range, we can just use
322 * the (quick) virt_to_machine() p2m lookup
324 if (virt_addr_valid(vaddr))
325 return virt_to_machine(vaddr);
327 /* otherwise we have to do a (slower) full page-table walk */
329 pte = lookup_address(address, &level);
330 BUG_ON(pte == NULL);
331 offset = address & ~PAGE_MASK;
332 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
335 void make_lowmem_page_readonly(void *vaddr)
337 pte_t *pte, ptev;
338 unsigned long address = (unsigned long)vaddr;
339 unsigned int level;
341 pte = lookup_address(address, &level);
342 BUG_ON(pte == NULL);
344 ptev = pte_wrprotect(*pte);
346 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
347 BUG();
350 void make_lowmem_page_readwrite(void *vaddr)
352 pte_t *pte, ptev;
353 unsigned long address = (unsigned long)vaddr;
354 unsigned int level;
356 pte = lookup_address(address, &level);
357 BUG_ON(pte == NULL);
359 ptev = pte_mkwrite(*pte);
361 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
362 BUG();
366 static bool xen_page_pinned(void *ptr)
368 struct page *page = virt_to_page(ptr);
370 return PagePinned(page);
373 static void xen_extend_mmu_update(const struct mmu_update *update)
375 struct multicall_space mcs;
376 struct mmu_update *u;
378 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
380 if (mcs.mc != NULL) {
381 ADD_STATS(mmu_update_extended, 1);
382 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
384 mcs.mc->args[1]++;
386 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
387 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
388 else
389 ADD_STATS(mmu_update_histo[0], 1);
390 } else {
391 ADD_STATS(mmu_update, 1);
392 mcs = __xen_mc_entry(sizeof(*u));
393 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
394 ADD_STATS(mmu_update_histo[1], 1);
397 u = mcs.args;
398 *u = *update;
401 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
403 struct mmu_update u;
405 preempt_disable();
407 xen_mc_batch();
409 /* ptr may be ioremapped for 64-bit pagetable setup */
410 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
411 u.val = pmd_val_ma(val);
412 xen_extend_mmu_update(&u);
414 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
416 xen_mc_issue(PARAVIRT_LAZY_MMU);
418 preempt_enable();
421 void xen_set_pmd(pmd_t *ptr, pmd_t val)
423 ADD_STATS(pmd_update, 1);
425 /* If page is not pinned, we can just update the entry
426 directly */
427 if (!xen_page_pinned(ptr)) {
428 *ptr = val;
429 return;
432 ADD_STATS(pmd_update_pinned, 1);
434 xen_set_pmd_hyper(ptr, val);
438 * Associate a virtual page frame with a given physical page frame
439 * and protection flags for that frame.
441 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
443 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
446 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
447 pte_t *ptep, pte_t pteval)
449 /* updates to init_mm may be done without lock */
450 if (mm == &init_mm)
451 preempt_disable();
453 ADD_STATS(set_pte_at, 1);
454 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
455 ADD_STATS(set_pte_at_current, mm == current->mm);
456 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
458 if (mm == current->mm || mm == &init_mm) {
459 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
460 struct multicall_space mcs;
461 mcs = xen_mc_entry(0);
463 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
464 ADD_STATS(set_pte_at_batched, 1);
465 xen_mc_issue(PARAVIRT_LAZY_MMU);
466 goto out;
467 } else
468 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
469 goto out;
471 xen_set_pte(ptep, pteval);
473 out:
474 if (mm == &init_mm)
475 preempt_enable();
478 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
479 unsigned long addr, pte_t *ptep)
481 /* Just return the pte as-is. We preserve the bits on commit */
482 return *ptep;
485 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
486 pte_t *ptep, pte_t pte)
488 struct mmu_update u;
490 xen_mc_batch();
492 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
493 u.val = pte_val_ma(pte);
494 xen_extend_mmu_update(&u);
496 ADD_STATS(prot_commit, 1);
497 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
499 xen_mc_issue(PARAVIRT_LAZY_MMU);
502 /* Assume pteval_t is equivalent to all the other *val_t types. */
503 static pteval_t pte_mfn_to_pfn(pteval_t val)
505 if (val & _PAGE_PRESENT) {
506 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
507 pteval_t flags = val & PTE_FLAGS_MASK;
508 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
511 return val;
514 static pteval_t pte_pfn_to_mfn(pteval_t val)
516 if (val & _PAGE_PRESENT) {
517 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
518 pteval_t flags = val & PTE_FLAGS_MASK;
519 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
522 return val;
525 pteval_t xen_pte_val(pte_t pte)
527 return pte_mfn_to_pfn(pte.pte);
529 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
531 pgdval_t xen_pgd_val(pgd_t pgd)
533 return pte_mfn_to_pfn(pgd.pgd);
535 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
537 pte_t xen_make_pte(pteval_t pte)
539 pte = pte_pfn_to_mfn(pte);
540 return native_make_pte(pte);
542 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
544 pgd_t xen_make_pgd(pgdval_t pgd)
546 pgd = pte_pfn_to_mfn(pgd);
547 return native_make_pgd(pgd);
549 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
551 pmdval_t xen_pmd_val(pmd_t pmd)
553 return pte_mfn_to_pfn(pmd.pmd);
555 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
557 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
559 struct mmu_update u;
561 preempt_disable();
563 xen_mc_batch();
565 /* ptr may be ioremapped for 64-bit pagetable setup */
566 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
567 u.val = pud_val_ma(val);
568 xen_extend_mmu_update(&u);
570 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
572 xen_mc_issue(PARAVIRT_LAZY_MMU);
574 preempt_enable();
577 void xen_set_pud(pud_t *ptr, pud_t val)
579 ADD_STATS(pud_update, 1);
581 /* If page is not pinned, we can just update the entry
582 directly */
583 if (!xen_page_pinned(ptr)) {
584 *ptr = val;
585 return;
588 ADD_STATS(pud_update_pinned, 1);
590 xen_set_pud_hyper(ptr, val);
593 void xen_set_pte(pte_t *ptep, pte_t pte)
595 ADD_STATS(pte_update, 1);
596 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
597 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
599 #ifdef CONFIG_X86_PAE
600 ptep->pte_high = pte.pte_high;
601 smp_wmb();
602 ptep->pte_low = pte.pte_low;
603 #else
604 *ptep = pte;
605 #endif
608 #ifdef CONFIG_X86_PAE
609 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
611 set_64bit((u64 *)ptep, native_pte_val(pte));
614 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
616 ptep->pte_low = 0;
617 smp_wmb(); /* make sure low gets written first */
618 ptep->pte_high = 0;
621 void xen_pmd_clear(pmd_t *pmdp)
623 set_pmd(pmdp, __pmd(0));
625 #endif /* CONFIG_X86_PAE */
627 pmd_t xen_make_pmd(pmdval_t pmd)
629 pmd = pte_pfn_to_mfn(pmd);
630 return native_make_pmd(pmd);
632 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
634 #if PAGETABLE_LEVELS == 4
635 pudval_t xen_pud_val(pud_t pud)
637 return pte_mfn_to_pfn(pud.pud);
639 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
641 pud_t xen_make_pud(pudval_t pud)
643 pud = pte_pfn_to_mfn(pud);
645 return native_make_pud(pud);
647 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
649 pgd_t *xen_get_user_pgd(pgd_t *pgd)
651 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
652 unsigned offset = pgd - pgd_page;
653 pgd_t *user_ptr = NULL;
655 if (offset < pgd_index(USER_LIMIT)) {
656 struct page *page = virt_to_page(pgd_page);
657 user_ptr = (pgd_t *)page->private;
658 if (user_ptr)
659 user_ptr += offset;
662 return user_ptr;
665 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
667 struct mmu_update u;
669 u.ptr = virt_to_machine(ptr).maddr;
670 u.val = pgd_val_ma(val);
671 xen_extend_mmu_update(&u);
675 * Raw hypercall-based set_pgd, intended for in early boot before
676 * there's a page structure. This implies:
677 * 1. The only existing pagetable is the kernel's
678 * 2. It is always pinned
679 * 3. It has no user pagetable attached to it
681 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
683 preempt_disable();
685 xen_mc_batch();
687 __xen_set_pgd_hyper(ptr, val);
689 xen_mc_issue(PARAVIRT_LAZY_MMU);
691 preempt_enable();
694 void xen_set_pgd(pgd_t *ptr, pgd_t val)
696 pgd_t *user_ptr = xen_get_user_pgd(ptr);
698 ADD_STATS(pgd_update, 1);
700 /* If page is not pinned, we can just update the entry
701 directly */
702 if (!xen_page_pinned(ptr)) {
703 *ptr = val;
704 if (user_ptr) {
705 WARN_ON(xen_page_pinned(user_ptr));
706 *user_ptr = val;
708 return;
711 ADD_STATS(pgd_update_pinned, 1);
712 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
714 /* If it's pinned, then we can at least batch the kernel and
715 user updates together. */
716 xen_mc_batch();
718 __xen_set_pgd_hyper(ptr, val);
719 if (user_ptr)
720 __xen_set_pgd_hyper(user_ptr, val);
722 xen_mc_issue(PARAVIRT_LAZY_MMU);
724 #endif /* PAGETABLE_LEVELS == 4 */
727 * (Yet another) pagetable walker. This one is intended for pinning a
728 * pagetable. This means that it walks a pagetable and calls the
729 * callback function on each page it finds making up the page table,
730 * at every level. It walks the entire pagetable, but it only bothers
731 * pinning pte pages which are below limit. In the normal case this
732 * will be STACK_TOP_MAX, but at boot we need to pin up to
733 * FIXADDR_TOP.
735 * For 32-bit the important bit is that we don't pin beyond there,
736 * because then we start getting into Xen's ptes.
738 * For 64-bit, we must skip the Xen hole in the middle of the address
739 * space, just after the big x86-64 virtual hole.
741 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
742 int (*func)(struct mm_struct *mm, struct page *,
743 enum pt_level),
744 unsigned long limit)
746 int flush = 0;
747 unsigned hole_low, hole_high;
748 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
749 unsigned pgdidx, pudidx, pmdidx;
751 /* The limit is the last byte to be touched */
752 limit--;
753 BUG_ON(limit >= FIXADDR_TOP);
755 if (xen_feature(XENFEAT_auto_translated_physmap))
756 return 0;
759 * 64-bit has a great big hole in the middle of the address
760 * space, which contains the Xen mappings. On 32-bit these
761 * will end up making a zero-sized hole and so is a no-op.
763 hole_low = pgd_index(USER_LIMIT);
764 hole_high = pgd_index(PAGE_OFFSET);
766 pgdidx_limit = pgd_index(limit);
767 #if PTRS_PER_PUD > 1
768 pudidx_limit = pud_index(limit);
769 #else
770 pudidx_limit = 0;
771 #endif
772 #if PTRS_PER_PMD > 1
773 pmdidx_limit = pmd_index(limit);
774 #else
775 pmdidx_limit = 0;
776 #endif
778 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
779 pud_t *pud;
781 if (pgdidx >= hole_low && pgdidx < hole_high)
782 continue;
784 if (!pgd_val(pgd[pgdidx]))
785 continue;
787 pud = pud_offset(&pgd[pgdidx], 0);
789 if (PTRS_PER_PUD > 1) /* not folded */
790 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
792 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
793 pmd_t *pmd;
795 if (pgdidx == pgdidx_limit &&
796 pudidx > pudidx_limit)
797 goto out;
799 if (pud_none(pud[pudidx]))
800 continue;
802 pmd = pmd_offset(&pud[pudidx], 0);
804 if (PTRS_PER_PMD > 1) /* not folded */
805 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
807 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
808 struct page *pte;
810 if (pgdidx == pgdidx_limit &&
811 pudidx == pudidx_limit &&
812 pmdidx > pmdidx_limit)
813 goto out;
815 if (pmd_none(pmd[pmdidx]))
816 continue;
818 pte = pmd_page(pmd[pmdidx]);
819 flush |= (*func)(mm, pte, PT_PTE);
824 out:
825 /* Do the top level last, so that the callbacks can use it as
826 a cue to do final things like tlb flushes. */
827 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
829 return flush;
832 static int xen_pgd_walk(struct mm_struct *mm,
833 int (*func)(struct mm_struct *mm, struct page *,
834 enum pt_level),
835 unsigned long limit)
837 return __xen_pgd_walk(mm, mm->pgd, func, limit);
840 /* If we're using split pte locks, then take the page's lock and
841 return a pointer to it. Otherwise return NULL. */
842 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
844 spinlock_t *ptl = NULL;
846 #if USE_SPLIT_PTLOCKS
847 ptl = __pte_lockptr(page);
848 spin_lock_nest_lock(ptl, &mm->page_table_lock);
849 #endif
851 return ptl;
854 static void xen_pte_unlock(void *v)
856 spinlock_t *ptl = v;
857 spin_unlock(ptl);
860 static void xen_do_pin(unsigned level, unsigned long pfn)
862 struct mmuext_op *op;
863 struct multicall_space mcs;
865 mcs = __xen_mc_entry(sizeof(*op));
866 op = mcs.args;
867 op->cmd = level;
868 op->arg1.mfn = pfn_to_mfn(pfn);
869 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
872 static int xen_pin_page(struct mm_struct *mm, struct page *page,
873 enum pt_level level)
875 unsigned pgfl = TestSetPagePinned(page);
876 int flush;
878 if (pgfl)
879 flush = 0; /* already pinned */
880 else if (PageHighMem(page))
881 /* kmaps need flushing if we found an unpinned
882 highpage */
883 flush = 1;
884 else {
885 void *pt = lowmem_page_address(page);
886 unsigned long pfn = page_to_pfn(page);
887 struct multicall_space mcs = __xen_mc_entry(0);
888 spinlock_t *ptl;
890 flush = 0;
893 * We need to hold the pagetable lock between the time
894 * we make the pagetable RO and when we actually pin
895 * it. If we don't, then other users may come in and
896 * attempt to update the pagetable by writing it,
897 * which will fail because the memory is RO but not
898 * pinned, so Xen won't do the trap'n'emulate.
900 * If we're using split pte locks, we can't hold the
901 * entire pagetable's worth of locks during the
902 * traverse, because we may wrap the preempt count (8
903 * bits). The solution is to mark RO and pin each PTE
904 * page while holding the lock. This means the number
905 * of locks we end up holding is never more than a
906 * batch size (~32 entries, at present).
908 * If we're not using split pte locks, we needn't pin
909 * the PTE pages independently, because we're
910 * protected by the overall pagetable lock.
912 ptl = NULL;
913 if (level == PT_PTE)
914 ptl = xen_pte_lock(page, mm);
916 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
917 pfn_pte(pfn, PAGE_KERNEL_RO),
918 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
920 if (ptl) {
921 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
923 /* Queue a deferred unlock for when this batch
924 is completed. */
925 xen_mc_callback(xen_pte_unlock, ptl);
929 return flush;
932 /* This is called just after a mm has been created, but it has not
933 been used yet. We need to make sure that its pagetable is all
934 read-only, and can be pinned. */
935 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
937 vm_unmap_aliases();
939 xen_mc_batch();
941 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
942 /* re-enable interrupts for flushing */
943 xen_mc_issue(0);
945 kmap_flush_unused();
947 xen_mc_batch();
950 #ifdef CONFIG_X86_64
952 pgd_t *user_pgd = xen_get_user_pgd(pgd);
954 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
956 if (user_pgd) {
957 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
958 xen_do_pin(MMUEXT_PIN_L4_TABLE,
959 PFN_DOWN(__pa(user_pgd)));
962 #else /* CONFIG_X86_32 */
963 #ifdef CONFIG_X86_PAE
964 /* Need to make sure unshared kernel PMD is pinnable */
965 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
966 PT_PMD);
967 #endif
968 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
969 #endif /* CONFIG_X86_64 */
970 xen_mc_issue(0);
973 static void xen_pgd_pin(struct mm_struct *mm)
975 __xen_pgd_pin(mm, mm->pgd);
979 * On save, we need to pin all pagetables to make sure they get their
980 * mfns turned into pfns. Search the list for any unpinned pgds and pin
981 * them (unpinned pgds are not currently in use, probably because the
982 * process is under construction or destruction).
984 * Expected to be called in stop_machine() ("equivalent to taking
985 * every spinlock in the system"), so the locking doesn't really
986 * matter all that much.
988 void xen_mm_pin_all(void)
990 unsigned long flags;
991 struct page *page;
993 spin_lock_irqsave(&pgd_lock, flags);
995 list_for_each_entry(page, &pgd_list, lru) {
996 if (!PagePinned(page)) {
997 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
998 SetPageSavePinned(page);
1002 spin_unlock_irqrestore(&pgd_lock, flags);
1006 * The init_mm pagetable is really pinned as soon as its created, but
1007 * that's before we have page structures to store the bits. So do all
1008 * the book-keeping now.
1010 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1011 enum pt_level level)
1013 SetPagePinned(page);
1014 return 0;
1017 void __init xen_mark_init_mm_pinned(void)
1019 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1022 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1023 enum pt_level level)
1025 unsigned pgfl = TestClearPagePinned(page);
1027 if (pgfl && !PageHighMem(page)) {
1028 void *pt = lowmem_page_address(page);
1029 unsigned long pfn = page_to_pfn(page);
1030 spinlock_t *ptl = NULL;
1031 struct multicall_space mcs;
1034 * Do the converse to pin_page. If we're using split
1035 * pte locks, we must be holding the lock for while
1036 * the pte page is unpinned but still RO to prevent
1037 * concurrent updates from seeing it in this
1038 * partially-pinned state.
1040 if (level == PT_PTE) {
1041 ptl = xen_pte_lock(page, mm);
1043 if (ptl)
1044 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1047 mcs = __xen_mc_entry(0);
1049 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1050 pfn_pte(pfn, PAGE_KERNEL),
1051 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1053 if (ptl) {
1054 /* unlock when batch completed */
1055 xen_mc_callback(xen_pte_unlock, ptl);
1059 return 0; /* never need to flush on unpin */
1062 /* Release a pagetables pages back as normal RW */
1063 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1065 xen_mc_batch();
1067 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1069 #ifdef CONFIG_X86_64
1071 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1073 if (user_pgd) {
1074 xen_do_pin(MMUEXT_UNPIN_TABLE,
1075 PFN_DOWN(__pa(user_pgd)));
1076 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1079 #endif
1081 #ifdef CONFIG_X86_PAE
1082 /* Need to make sure unshared kernel PMD is unpinned */
1083 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1084 PT_PMD);
1085 #endif
1087 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1089 xen_mc_issue(0);
1092 static void xen_pgd_unpin(struct mm_struct *mm)
1094 __xen_pgd_unpin(mm, mm->pgd);
1098 * On resume, undo any pinning done at save, so that the rest of the
1099 * kernel doesn't see any unexpected pinned pagetables.
1101 void xen_mm_unpin_all(void)
1103 unsigned long flags;
1104 struct page *page;
1106 spin_lock_irqsave(&pgd_lock, flags);
1108 list_for_each_entry(page, &pgd_list, lru) {
1109 if (PageSavePinned(page)) {
1110 BUG_ON(!PagePinned(page));
1111 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1112 ClearPageSavePinned(page);
1116 spin_unlock_irqrestore(&pgd_lock, flags);
1119 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1121 spin_lock(&next->page_table_lock);
1122 xen_pgd_pin(next);
1123 spin_unlock(&next->page_table_lock);
1126 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1128 spin_lock(&mm->page_table_lock);
1129 xen_pgd_pin(mm);
1130 spin_unlock(&mm->page_table_lock);
1134 #ifdef CONFIG_SMP
1135 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1136 we need to repoint it somewhere else before we can unpin it. */
1137 static void drop_other_mm_ref(void *info)
1139 struct mm_struct *mm = info;
1140 struct mm_struct *active_mm;
1142 active_mm = percpu_read(cpu_tlbstate.active_mm);
1144 if (active_mm == mm)
1145 leave_mm(smp_processor_id());
1147 /* If this cpu still has a stale cr3 reference, then make sure
1148 it has been flushed. */
1149 if (percpu_read(xen_current_cr3) == __pa(mm->pgd)) {
1150 load_cr3(swapper_pg_dir);
1151 arch_flush_lazy_cpu_mode();
1155 static void xen_drop_mm_ref(struct mm_struct *mm)
1157 cpumask_var_t mask;
1158 unsigned cpu;
1160 if (current->active_mm == mm) {
1161 if (current->mm == mm)
1162 load_cr3(swapper_pg_dir);
1163 else
1164 leave_mm(smp_processor_id());
1165 arch_flush_lazy_cpu_mode();
1168 /* Get the "official" set of cpus referring to our pagetable. */
1169 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1170 for_each_online_cpu(cpu) {
1171 if (!cpumask_test_cpu(cpu, &mm->cpu_vm_mask)
1172 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1173 continue;
1174 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1176 return;
1178 cpumask_copy(mask, &mm->cpu_vm_mask);
1180 /* It's possible that a vcpu may have a stale reference to our
1181 cr3, because its in lazy mode, and it hasn't yet flushed
1182 its set of pending hypercalls yet. In this case, we can
1183 look at its actual current cr3 value, and force it to flush
1184 if needed. */
1185 for_each_online_cpu(cpu) {
1186 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1187 cpumask_set_cpu(cpu, mask);
1190 if (!cpumask_empty(mask))
1191 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1192 free_cpumask_var(mask);
1194 #else
1195 static void xen_drop_mm_ref(struct mm_struct *mm)
1197 if (current->active_mm == mm)
1198 load_cr3(swapper_pg_dir);
1200 #endif
1203 * While a process runs, Xen pins its pagetables, which means that the
1204 * hypervisor forces it to be read-only, and it controls all updates
1205 * to it. This means that all pagetable updates have to go via the
1206 * hypervisor, which is moderately expensive.
1208 * Since we're pulling the pagetable down, we switch to use init_mm,
1209 * unpin old process pagetable and mark it all read-write, which
1210 * allows further operations on it to be simple memory accesses.
1212 * The only subtle point is that another CPU may be still using the
1213 * pagetable because of lazy tlb flushing. This means we need need to
1214 * switch all CPUs off this pagetable before we can unpin it.
1216 void xen_exit_mmap(struct mm_struct *mm)
1218 get_cpu(); /* make sure we don't move around */
1219 xen_drop_mm_ref(mm);
1220 put_cpu();
1222 spin_lock(&mm->page_table_lock);
1224 /* pgd may not be pinned in the error exit path of execve */
1225 if (xen_page_pinned(mm->pgd))
1226 xen_pgd_unpin(mm);
1228 spin_unlock(&mm->page_table_lock);
1231 static __init void xen_pagetable_setup_start(pgd_t *base)
1235 static __init void xen_pagetable_setup_done(pgd_t *base)
1237 xen_setup_shared_info();
1240 static void xen_write_cr2(unsigned long cr2)
1242 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1245 static unsigned long xen_read_cr2(void)
1247 return percpu_read(xen_vcpu)->arch.cr2;
1250 unsigned long xen_read_cr2_direct(void)
1252 return percpu_read(xen_vcpu_info.arch.cr2);
1255 static void xen_flush_tlb(void)
1257 struct mmuext_op *op;
1258 struct multicall_space mcs;
1260 preempt_disable();
1262 mcs = xen_mc_entry(sizeof(*op));
1264 op = mcs.args;
1265 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1266 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1268 xen_mc_issue(PARAVIRT_LAZY_MMU);
1270 preempt_enable();
1273 static void xen_flush_tlb_single(unsigned long addr)
1275 struct mmuext_op *op;
1276 struct multicall_space mcs;
1278 preempt_disable();
1280 mcs = xen_mc_entry(sizeof(*op));
1281 op = mcs.args;
1282 op->cmd = MMUEXT_INVLPG_LOCAL;
1283 op->arg1.linear_addr = addr & PAGE_MASK;
1284 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1286 xen_mc_issue(PARAVIRT_LAZY_MMU);
1288 preempt_enable();
1291 static void xen_flush_tlb_others(const struct cpumask *cpus,
1292 struct mm_struct *mm, unsigned long va)
1294 struct {
1295 struct mmuext_op op;
1296 DECLARE_BITMAP(mask, NR_CPUS);
1297 } *args;
1298 struct multicall_space mcs;
1300 BUG_ON(cpumask_empty(cpus));
1301 BUG_ON(!mm);
1303 mcs = xen_mc_entry(sizeof(*args));
1304 args = mcs.args;
1305 args->op.arg2.vcpumask = to_cpumask(args->mask);
1307 /* Remove us, and any offline CPUS. */
1308 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1309 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1311 if (va == TLB_FLUSH_ALL) {
1312 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1313 } else {
1314 args->op.cmd = MMUEXT_INVLPG_MULTI;
1315 args->op.arg1.linear_addr = va;
1318 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1320 xen_mc_issue(PARAVIRT_LAZY_MMU);
1323 static unsigned long xen_read_cr3(void)
1325 return percpu_read(xen_cr3);
1328 static void set_current_cr3(void *v)
1330 percpu_write(xen_current_cr3, (unsigned long)v);
1333 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1335 struct mmuext_op *op;
1336 struct multicall_space mcs;
1337 unsigned long mfn;
1339 if (cr3)
1340 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1341 else
1342 mfn = 0;
1344 WARN_ON(mfn == 0 && kernel);
1346 mcs = __xen_mc_entry(sizeof(*op));
1348 op = mcs.args;
1349 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1350 op->arg1.mfn = mfn;
1352 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1354 if (kernel) {
1355 percpu_write(xen_cr3, cr3);
1357 /* Update xen_current_cr3 once the batch has actually
1358 been submitted. */
1359 xen_mc_callback(set_current_cr3, (void *)cr3);
1363 static void xen_write_cr3(unsigned long cr3)
1365 BUG_ON(preemptible());
1367 xen_mc_batch(); /* disables interrupts */
1369 /* Update while interrupts are disabled, so its atomic with
1370 respect to ipis */
1371 percpu_write(xen_cr3, cr3);
1373 __xen_write_cr3(true, cr3);
1375 #ifdef CONFIG_X86_64
1377 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1378 if (user_pgd)
1379 __xen_write_cr3(false, __pa(user_pgd));
1380 else
1381 __xen_write_cr3(false, 0);
1383 #endif
1385 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1388 static int xen_pgd_alloc(struct mm_struct *mm)
1390 pgd_t *pgd = mm->pgd;
1391 int ret = 0;
1393 BUG_ON(PagePinned(virt_to_page(pgd)));
1395 #ifdef CONFIG_X86_64
1397 struct page *page = virt_to_page(pgd);
1398 pgd_t *user_pgd;
1400 BUG_ON(page->private != 0);
1402 ret = -ENOMEM;
1404 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1405 page->private = (unsigned long)user_pgd;
1407 if (user_pgd != NULL) {
1408 user_pgd[pgd_index(VSYSCALL_START)] =
1409 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1410 ret = 0;
1413 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1415 #endif
1417 return ret;
1420 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1422 #ifdef CONFIG_X86_64
1423 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1425 if (user_pgd)
1426 free_page((unsigned long)user_pgd);
1427 #endif
1430 #ifdef CONFIG_HIGHPTE
1431 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
1433 pgprot_t prot = PAGE_KERNEL;
1435 if (PagePinned(page))
1436 prot = PAGE_KERNEL_RO;
1438 if (0 && PageHighMem(page))
1439 printk("mapping highpte %lx type %d prot %s\n",
1440 page_to_pfn(page), type,
1441 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
1443 return kmap_atomic_prot(page, type, prot);
1445 #endif
1447 #ifdef CONFIG_X86_32
1448 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1450 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1451 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1452 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1453 pte_val_ma(pte));
1455 return pte;
1458 /* Init-time set_pte while constructing initial pagetables, which
1459 doesn't allow RO pagetable pages to be remapped RW */
1460 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1462 pte = mask_rw_pte(ptep, pte);
1464 xen_set_pte(ptep, pte);
1466 #endif
1468 /* Early in boot, while setting up the initial pagetable, assume
1469 everything is pinned. */
1470 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1472 #ifdef CONFIG_FLATMEM
1473 BUG_ON(mem_map); /* should only be used early */
1474 #endif
1475 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1478 /* Early release_pte assumes that all pts are pinned, since there's
1479 only init_mm and anything attached to that is pinned. */
1480 static void xen_release_pte_init(unsigned long pfn)
1482 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1485 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1487 struct mmuext_op op;
1488 op.cmd = cmd;
1489 op.arg1.mfn = pfn_to_mfn(pfn);
1490 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1491 BUG();
1494 /* This needs to make sure the new pte page is pinned iff its being
1495 attached to a pinned pagetable. */
1496 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1498 struct page *page = pfn_to_page(pfn);
1500 if (PagePinned(virt_to_page(mm->pgd))) {
1501 SetPagePinned(page);
1503 vm_unmap_aliases();
1504 if (!PageHighMem(page)) {
1505 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1506 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1507 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1508 } else {
1509 /* make sure there are no stray mappings of
1510 this page */
1511 kmap_flush_unused();
1516 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1518 xen_alloc_ptpage(mm, pfn, PT_PTE);
1521 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1523 xen_alloc_ptpage(mm, pfn, PT_PMD);
1526 /* This should never happen until we're OK to use struct page */
1527 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1529 struct page *page = pfn_to_page(pfn);
1531 if (PagePinned(page)) {
1532 if (!PageHighMem(page)) {
1533 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1534 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1535 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1537 ClearPagePinned(page);
1541 static void xen_release_pte(unsigned long pfn)
1543 xen_release_ptpage(pfn, PT_PTE);
1546 static void xen_release_pmd(unsigned long pfn)
1548 xen_release_ptpage(pfn, PT_PMD);
1551 #if PAGETABLE_LEVELS == 4
1552 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1554 xen_alloc_ptpage(mm, pfn, PT_PUD);
1557 static void xen_release_pud(unsigned long pfn)
1559 xen_release_ptpage(pfn, PT_PUD);
1561 #endif
1563 void __init xen_reserve_top(void)
1565 #ifdef CONFIG_X86_32
1566 unsigned long top = HYPERVISOR_VIRT_START;
1567 struct xen_platform_parameters pp;
1569 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1570 top = pp.virt_start;
1572 reserve_top_address(-top);
1573 #endif /* CONFIG_X86_32 */
1577 * Like __va(), but returns address in the kernel mapping (which is
1578 * all we have until the physical memory mapping has been set up.
1580 static void *__ka(phys_addr_t paddr)
1582 #ifdef CONFIG_X86_64
1583 return (void *)(paddr + __START_KERNEL_map);
1584 #else
1585 return __va(paddr);
1586 #endif
1589 /* Convert a machine address to physical address */
1590 static unsigned long m2p(phys_addr_t maddr)
1592 phys_addr_t paddr;
1594 maddr &= PTE_PFN_MASK;
1595 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1597 return paddr;
1600 /* Convert a machine address to kernel virtual */
1601 static void *m2v(phys_addr_t maddr)
1603 return __ka(m2p(maddr));
1606 static void set_page_prot(void *addr, pgprot_t prot)
1608 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1609 pte_t pte = pfn_pte(pfn, prot);
1611 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1612 BUG();
1615 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1617 unsigned pmdidx, pteidx;
1618 unsigned ident_pte;
1619 unsigned long pfn;
1621 ident_pte = 0;
1622 pfn = 0;
1623 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1624 pte_t *pte_page;
1626 /* Reuse or allocate a page of ptes */
1627 if (pmd_present(pmd[pmdidx]))
1628 pte_page = m2v(pmd[pmdidx].pmd);
1629 else {
1630 /* Check for free pte pages */
1631 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1632 break;
1634 pte_page = &level1_ident_pgt[ident_pte];
1635 ident_pte += PTRS_PER_PTE;
1637 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1640 /* Install mappings */
1641 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1642 pte_t pte;
1644 if (pfn > max_pfn_mapped)
1645 max_pfn_mapped = pfn;
1647 if (!pte_none(pte_page[pteidx]))
1648 continue;
1650 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1651 pte_page[pteidx] = pte;
1655 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1656 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1658 set_page_prot(pmd, PAGE_KERNEL_RO);
1661 #ifdef CONFIG_X86_64
1662 static void convert_pfn_mfn(void *v)
1664 pte_t *pte = v;
1665 int i;
1667 /* All levels are converted the same way, so just treat them
1668 as ptes. */
1669 for (i = 0; i < PTRS_PER_PTE; i++)
1670 pte[i] = xen_make_pte(pte[i].pte);
1674 * Set up the inital kernel pagetable.
1676 * We can construct this by grafting the Xen provided pagetable into
1677 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1678 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1679 * means that only the kernel has a physical mapping to start with -
1680 * but that's enough to get __va working. We need to fill in the rest
1681 * of the physical mapping once some sort of allocator has been set
1682 * up.
1684 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1685 unsigned long max_pfn)
1687 pud_t *l3;
1688 pmd_t *l2;
1690 /* Zap identity mapping */
1691 init_level4_pgt[0] = __pgd(0);
1693 /* Pre-constructed entries are in pfn, so convert to mfn */
1694 convert_pfn_mfn(init_level4_pgt);
1695 convert_pfn_mfn(level3_ident_pgt);
1696 convert_pfn_mfn(level3_kernel_pgt);
1698 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1699 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1701 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1702 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1704 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1705 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1706 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1708 /* Set up identity map */
1709 xen_map_identity_early(level2_ident_pgt, max_pfn);
1711 /* Make pagetable pieces RO */
1712 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1713 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1714 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1715 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1716 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1717 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1719 /* Pin down new L4 */
1720 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1721 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1723 /* Unpin Xen-provided one */
1724 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1726 /* Switch over */
1727 pgd = init_level4_pgt;
1730 * At this stage there can be no user pgd, and no page
1731 * structure to attach it to, so make sure we just set kernel
1732 * pgd.
1734 xen_mc_batch();
1735 __xen_write_cr3(true, __pa(pgd));
1736 xen_mc_issue(PARAVIRT_LAZY_CPU);
1738 reserve_early(__pa(xen_start_info->pt_base),
1739 __pa(xen_start_info->pt_base +
1740 xen_start_info->nr_pt_frames * PAGE_SIZE),
1741 "XEN PAGETABLES");
1743 return pgd;
1745 #else /* !CONFIG_X86_64 */
1746 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1748 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1749 unsigned long max_pfn)
1751 pmd_t *kernel_pmd;
1753 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1754 xen_start_info->nr_pt_frames * PAGE_SIZE +
1755 512*1024);
1757 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1758 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1760 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1762 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1763 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1764 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1766 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1767 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1768 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1770 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1772 xen_write_cr3(__pa(swapper_pg_dir));
1774 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1776 return swapper_pg_dir;
1778 #endif /* CONFIG_X86_64 */
1780 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1782 pte_t pte;
1784 phys >>= PAGE_SHIFT;
1786 switch (idx) {
1787 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1788 #ifdef CONFIG_X86_F00F_BUG
1789 case FIX_F00F_IDT:
1790 #endif
1791 #ifdef CONFIG_X86_32
1792 case FIX_WP_TEST:
1793 case FIX_VDSO:
1794 # ifdef CONFIG_HIGHMEM
1795 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1796 # endif
1797 #else
1798 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1799 #endif
1800 #ifdef CONFIG_X86_LOCAL_APIC
1801 case FIX_APIC_BASE: /* maps dummy local APIC */
1802 #endif
1803 pte = pfn_pte(phys, prot);
1804 break;
1806 default:
1807 pte = mfn_pte(phys, prot);
1808 break;
1811 __native_set_fixmap(idx, pte);
1813 #ifdef CONFIG_X86_64
1814 /* Replicate changes to map the vsyscall page into the user
1815 pagetable vsyscall mapping. */
1816 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1817 unsigned long vaddr = __fix_to_virt(idx);
1818 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1820 #endif
1823 __init void xen_post_allocator_init(void)
1825 pv_mmu_ops.set_pte = xen_set_pte;
1826 pv_mmu_ops.set_pmd = xen_set_pmd;
1827 pv_mmu_ops.set_pud = xen_set_pud;
1828 #if PAGETABLE_LEVELS == 4
1829 pv_mmu_ops.set_pgd = xen_set_pgd;
1830 #endif
1832 /* This will work as long as patching hasn't happened yet
1833 (which it hasn't) */
1834 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1835 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1836 pv_mmu_ops.release_pte = xen_release_pte;
1837 pv_mmu_ops.release_pmd = xen_release_pmd;
1838 #if PAGETABLE_LEVELS == 4
1839 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1840 pv_mmu_ops.release_pud = xen_release_pud;
1841 #endif
1843 #ifdef CONFIG_X86_64
1844 SetPagePinned(virt_to_page(level3_user_vsyscall));
1845 #endif
1846 xen_mark_init_mm_pinned();
1849 const struct pv_mmu_ops xen_mmu_ops __initdata = {
1850 .pagetable_setup_start = xen_pagetable_setup_start,
1851 .pagetable_setup_done = xen_pagetable_setup_done,
1853 .read_cr2 = xen_read_cr2,
1854 .write_cr2 = xen_write_cr2,
1856 .read_cr3 = xen_read_cr3,
1857 .write_cr3 = xen_write_cr3,
1859 .flush_tlb_user = xen_flush_tlb,
1860 .flush_tlb_kernel = xen_flush_tlb,
1861 .flush_tlb_single = xen_flush_tlb_single,
1862 .flush_tlb_others = xen_flush_tlb_others,
1864 .pte_update = paravirt_nop,
1865 .pte_update_defer = paravirt_nop,
1867 .pgd_alloc = xen_pgd_alloc,
1868 .pgd_free = xen_pgd_free,
1870 .alloc_pte = xen_alloc_pte_init,
1871 .release_pte = xen_release_pte_init,
1872 .alloc_pmd = xen_alloc_pte_init,
1873 .alloc_pmd_clone = paravirt_nop,
1874 .release_pmd = xen_release_pte_init,
1876 #ifdef CONFIG_HIGHPTE
1877 .kmap_atomic_pte = xen_kmap_atomic_pte,
1878 #endif
1880 #ifdef CONFIG_X86_64
1881 .set_pte = xen_set_pte,
1882 #else
1883 .set_pte = xen_set_pte_init,
1884 #endif
1885 .set_pte_at = xen_set_pte_at,
1886 .set_pmd = xen_set_pmd_hyper,
1888 .ptep_modify_prot_start = __ptep_modify_prot_start,
1889 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1891 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
1892 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
1894 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
1895 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
1897 #ifdef CONFIG_X86_PAE
1898 .set_pte_atomic = xen_set_pte_atomic,
1899 .pte_clear = xen_pte_clear,
1900 .pmd_clear = xen_pmd_clear,
1901 #endif /* CONFIG_X86_PAE */
1902 .set_pud = xen_set_pud_hyper,
1904 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
1905 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
1907 #if PAGETABLE_LEVELS == 4
1908 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
1909 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
1910 .set_pgd = xen_set_pgd_hyper,
1912 .alloc_pud = xen_alloc_pte_init,
1913 .release_pud = xen_release_pte_init,
1914 #endif /* PAGETABLE_LEVELS == 4 */
1916 .activate_mm = xen_activate_mm,
1917 .dup_mmap = xen_dup_mmap,
1918 .exit_mmap = xen_exit_mmap,
1920 .lazy_mode = {
1921 .enter = paravirt_enter_lazy_mmu,
1922 .leave = xen_leave_lazy,
1925 .set_fixmap = xen_set_fixmap,
1929 #ifdef CONFIG_XEN_DEBUG_FS
1931 static struct dentry *d_mmu_debug;
1933 static int __init xen_mmu_debugfs(void)
1935 struct dentry *d_xen = xen_init_debugfs();
1937 if (d_xen == NULL)
1938 return -ENOMEM;
1940 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
1942 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
1944 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
1945 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
1946 &mmu_stats.pgd_update_pinned);
1947 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
1948 &mmu_stats.pgd_update_pinned);
1950 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
1951 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
1952 &mmu_stats.pud_update_pinned);
1953 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
1954 &mmu_stats.pud_update_pinned);
1956 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
1957 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
1958 &mmu_stats.pmd_update_pinned);
1959 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
1960 &mmu_stats.pmd_update_pinned);
1962 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
1963 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
1964 // &mmu_stats.pte_update_pinned);
1965 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
1966 &mmu_stats.pte_update_pinned);
1968 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
1969 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
1970 &mmu_stats.mmu_update_extended);
1971 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
1972 mmu_stats.mmu_update_histo, 20);
1974 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
1975 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
1976 &mmu_stats.set_pte_at_batched);
1977 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
1978 &mmu_stats.set_pte_at_current);
1979 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
1980 &mmu_stats.set_pte_at_kernel);
1982 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
1983 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
1984 &mmu_stats.prot_commit_batched);
1986 return 0;
1988 fs_initcall(xen_mmu_debugfs);
1990 #endif /* CONFIG_XEN_DEBUG_FS */