mmc: sdhci: Check mrq->cmd in sdhci_tasklet_finish
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / rtc / rtc-cmos.c
blobaf5fd61bd446dd65aad3af799e0b239ac16a4a25
1 /*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/log2.h>
39 #include <linux/pm.h>
41 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
42 #include <asm-generic/rtc.h>
44 struct cmos_rtc {
45 struct rtc_device *rtc;
46 struct device *dev;
47 int irq;
48 struct resource *iomem;
50 void (*wake_on)(struct device *);
51 void (*wake_off)(struct device *);
53 u8 enabled_wake;
54 u8 suspend_ctrl;
56 /* newer hardware extends the original register set */
57 u8 day_alrm;
58 u8 mon_alrm;
59 u8 century;
62 /* both platform and pnp busses use negative numbers for invalid irqs */
63 #define is_valid_irq(n) ((n) > 0)
65 static const char driver_name[] = "rtc_cmos";
67 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
68 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
69 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
71 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
73 static inline int is_intr(u8 rtc_intr)
75 if (!(rtc_intr & RTC_IRQF))
76 return 0;
77 return rtc_intr & RTC_IRQMASK;
80 /*----------------------------------------------------------------*/
82 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
83 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
84 * used in a broken "legacy replacement" mode. The breakage includes
85 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
86 * other (better) use.
88 * When that broken mode is in use, platform glue provides a partial
89 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
90 * want to use HPET for anything except those IRQs though...
92 #ifdef CONFIG_HPET_EMULATE_RTC
93 #include <asm/hpet.h>
94 #else
96 static inline int is_hpet_enabled(void)
98 return 0;
101 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
103 return 0;
106 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
108 return 0;
111 static inline int
112 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
114 return 0;
117 static inline int hpet_set_periodic_freq(unsigned long freq)
119 return 0;
122 static inline int hpet_rtc_dropped_irq(void)
124 return 0;
127 static inline int hpet_rtc_timer_init(void)
129 return 0;
132 extern irq_handler_t hpet_rtc_interrupt;
134 static inline int hpet_register_irq_handler(irq_handler_t handler)
136 return 0;
139 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
141 return 0;
144 #endif
146 /*----------------------------------------------------------------*/
148 #ifdef RTC_PORT
150 /* Most newer x86 systems have two register banks, the first used
151 * for RTC and NVRAM and the second only for NVRAM. Caller must
152 * own rtc_lock ... and we won't worry about access during NMI.
154 #define can_bank2 true
156 static inline unsigned char cmos_read_bank2(unsigned char addr)
158 outb(addr, RTC_PORT(2));
159 return inb(RTC_PORT(3));
162 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
164 outb(addr, RTC_PORT(2));
165 outb(val, RTC_PORT(2));
168 #else
170 #define can_bank2 false
172 static inline unsigned char cmos_read_bank2(unsigned char addr)
174 return 0;
177 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
181 #endif
183 /*----------------------------------------------------------------*/
185 static int cmos_read_time(struct device *dev, struct rtc_time *t)
187 /* REVISIT: if the clock has a "century" register, use
188 * that instead of the heuristic in get_rtc_time().
189 * That'll make Y3K compatility (year > 2070) easy!
191 get_rtc_time(t);
192 return 0;
195 static int cmos_set_time(struct device *dev, struct rtc_time *t)
197 /* REVISIT: set the "century" register if available
199 * NOTE: this ignores the issue whereby updating the seconds
200 * takes effect exactly 500ms after we write the register.
201 * (Also queueing and other delays before we get this far.)
203 return set_rtc_time(t);
206 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
208 struct cmos_rtc *cmos = dev_get_drvdata(dev);
209 unsigned char rtc_control;
211 if (!is_valid_irq(cmos->irq))
212 return -EIO;
214 /* Basic alarms only support hour, minute, and seconds fields.
215 * Some also support day and month, for alarms up to a year in
216 * the future.
218 t->time.tm_mday = -1;
219 t->time.tm_mon = -1;
221 spin_lock_irq(&rtc_lock);
222 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
223 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
224 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
226 if (cmos->day_alrm) {
227 /* ignore upper bits on readback per ACPI spec */
228 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
229 if (!t->time.tm_mday)
230 t->time.tm_mday = -1;
232 if (cmos->mon_alrm) {
233 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
234 if (!t->time.tm_mon)
235 t->time.tm_mon = -1;
239 rtc_control = CMOS_READ(RTC_CONTROL);
240 spin_unlock_irq(&rtc_lock);
242 /* REVISIT this assumes PC style usage: always BCD */
244 if (((unsigned)t->time.tm_sec) < 0x60)
245 t->time.tm_sec = bcd2bin(t->time.tm_sec);
246 else
247 t->time.tm_sec = -1;
248 if (((unsigned)t->time.tm_min) < 0x60)
249 t->time.tm_min = bcd2bin(t->time.tm_min);
250 else
251 t->time.tm_min = -1;
252 if (((unsigned)t->time.tm_hour) < 0x24)
253 t->time.tm_hour = bcd2bin(t->time.tm_hour);
254 else
255 t->time.tm_hour = -1;
257 if (cmos->day_alrm) {
258 if (((unsigned)t->time.tm_mday) <= 0x31)
259 t->time.tm_mday = bcd2bin(t->time.tm_mday);
260 else
261 t->time.tm_mday = -1;
262 if (cmos->mon_alrm) {
263 if (((unsigned)t->time.tm_mon) <= 0x12)
264 t->time.tm_mon = bcd2bin(t->time.tm_mon) - 1;
265 else
266 t->time.tm_mon = -1;
269 t->time.tm_year = -1;
271 t->enabled = !!(rtc_control & RTC_AIE);
272 t->pending = 0;
274 return 0;
277 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
279 unsigned char rtc_intr;
281 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
282 * allegedly some older rtcs need that to handle irqs properly
284 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
286 if (is_hpet_enabled())
287 return;
289 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
290 if (is_intr(rtc_intr))
291 rtc_update_irq(cmos->rtc, 1, rtc_intr);
294 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
296 unsigned char rtc_control;
298 /* flush any pending IRQ status, notably for update irqs,
299 * before we enable new IRQs
301 rtc_control = CMOS_READ(RTC_CONTROL);
302 cmos_checkintr(cmos, rtc_control);
304 rtc_control |= mask;
305 CMOS_WRITE(rtc_control, RTC_CONTROL);
306 hpet_set_rtc_irq_bit(mask);
308 cmos_checkintr(cmos, rtc_control);
311 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
313 unsigned char rtc_control;
315 rtc_control = CMOS_READ(RTC_CONTROL);
316 rtc_control &= ~mask;
317 CMOS_WRITE(rtc_control, RTC_CONTROL);
318 hpet_mask_rtc_irq_bit(mask);
320 cmos_checkintr(cmos, rtc_control);
323 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
325 struct cmos_rtc *cmos = dev_get_drvdata(dev);
326 unsigned char mon, mday, hrs, min, sec;
328 if (!is_valid_irq(cmos->irq))
329 return -EIO;
331 /* REVISIT this assumes PC style usage: always BCD */
333 /* Writing 0xff means "don't care" or "match all". */
335 mon = t->time.tm_mon + 1;
336 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
338 mday = t->time.tm_mday;
339 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
341 hrs = t->time.tm_hour;
342 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
344 min = t->time.tm_min;
345 min = (min < 60) ? bin2bcd(min) : 0xff;
347 sec = t->time.tm_sec;
348 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
350 spin_lock_irq(&rtc_lock);
352 /* next rtc irq must not be from previous alarm setting */
353 cmos_irq_disable(cmos, RTC_AIE);
355 /* update alarm */
356 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
357 CMOS_WRITE(min, RTC_MINUTES_ALARM);
358 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
360 /* the system may support an "enhanced" alarm */
361 if (cmos->day_alrm) {
362 CMOS_WRITE(mday, cmos->day_alrm);
363 if (cmos->mon_alrm)
364 CMOS_WRITE(mon, cmos->mon_alrm);
367 /* FIXME the HPET alarm glue currently ignores day_alrm
368 * and mon_alrm ...
370 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
372 if (t->enabled)
373 cmos_irq_enable(cmos, RTC_AIE);
375 spin_unlock_irq(&rtc_lock);
377 return 0;
380 static int cmos_irq_set_freq(struct device *dev, int freq)
382 struct cmos_rtc *cmos = dev_get_drvdata(dev);
383 int f;
384 unsigned long flags;
386 if (!is_valid_irq(cmos->irq))
387 return -ENXIO;
389 if (!is_power_of_2(freq))
390 return -EINVAL;
391 /* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
392 f = ffs(freq);
393 if (f-- > 16)
394 return -EINVAL;
395 f = 16 - f;
397 spin_lock_irqsave(&rtc_lock, flags);
398 hpet_set_periodic_freq(freq);
399 CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
400 spin_unlock_irqrestore(&rtc_lock, flags);
402 return 0;
405 static int cmos_irq_set_state(struct device *dev, int enabled)
407 struct cmos_rtc *cmos = dev_get_drvdata(dev);
408 unsigned long flags;
410 if (!is_valid_irq(cmos->irq))
411 return -ENXIO;
413 spin_lock_irqsave(&rtc_lock, flags);
415 if (enabled)
416 cmos_irq_enable(cmos, RTC_PIE);
417 else
418 cmos_irq_disable(cmos, RTC_PIE);
420 spin_unlock_irqrestore(&rtc_lock, flags);
421 return 0;
424 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
426 struct cmos_rtc *cmos = dev_get_drvdata(dev);
427 unsigned long flags;
429 if (!is_valid_irq(cmos->irq))
430 return -EINVAL;
432 spin_lock_irqsave(&rtc_lock, flags);
434 if (enabled)
435 cmos_irq_enable(cmos, RTC_AIE);
436 else
437 cmos_irq_disable(cmos, RTC_AIE);
439 spin_unlock_irqrestore(&rtc_lock, flags);
440 return 0;
443 static int cmos_update_irq_enable(struct device *dev, unsigned int enabled)
445 struct cmos_rtc *cmos = dev_get_drvdata(dev);
446 unsigned long flags;
448 if (!is_valid_irq(cmos->irq))
449 return -EINVAL;
451 spin_lock_irqsave(&rtc_lock, flags);
453 if (enabled)
454 cmos_irq_enable(cmos, RTC_UIE);
455 else
456 cmos_irq_disable(cmos, RTC_UIE);
458 spin_unlock_irqrestore(&rtc_lock, flags);
459 return 0;
462 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
464 static int cmos_procfs(struct device *dev, struct seq_file *seq)
466 struct cmos_rtc *cmos = dev_get_drvdata(dev);
467 unsigned char rtc_control, valid;
469 spin_lock_irq(&rtc_lock);
470 rtc_control = CMOS_READ(RTC_CONTROL);
471 valid = CMOS_READ(RTC_VALID);
472 spin_unlock_irq(&rtc_lock);
474 /* NOTE: at least ICH6 reports battery status using a different
475 * (non-RTC) bit; and SQWE is ignored on many current systems.
477 return seq_printf(seq,
478 "periodic_IRQ\t: %s\n"
479 "update_IRQ\t: %s\n"
480 "HPET_emulated\t: %s\n"
481 // "square_wave\t: %s\n"
482 // "BCD\t\t: %s\n"
483 "DST_enable\t: %s\n"
484 "periodic_freq\t: %d\n"
485 "batt_status\t: %s\n",
486 (rtc_control & RTC_PIE) ? "yes" : "no",
487 (rtc_control & RTC_UIE) ? "yes" : "no",
488 is_hpet_enabled() ? "yes" : "no",
489 // (rtc_control & RTC_SQWE) ? "yes" : "no",
490 // (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
491 (rtc_control & RTC_DST_EN) ? "yes" : "no",
492 cmos->rtc->irq_freq,
493 (valid & RTC_VRT) ? "okay" : "dead");
496 #else
497 #define cmos_procfs NULL
498 #endif
500 static const struct rtc_class_ops cmos_rtc_ops = {
501 .read_time = cmos_read_time,
502 .set_time = cmos_set_time,
503 .read_alarm = cmos_read_alarm,
504 .set_alarm = cmos_set_alarm,
505 .proc = cmos_procfs,
506 .irq_set_freq = cmos_irq_set_freq,
507 .irq_set_state = cmos_irq_set_state,
508 .alarm_irq_enable = cmos_alarm_irq_enable,
509 .update_irq_enable = cmos_update_irq_enable,
512 /*----------------------------------------------------------------*/
515 * All these chips have at least 64 bytes of address space, shared by
516 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
517 * by boot firmware. Modern chips have 128 or 256 bytes.
520 #define NVRAM_OFFSET (RTC_REG_D + 1)
522 static ssize_t
523 cmos_nvram_read(struct kobject *kobj, struct bin_attribute *attr,
524 char *buf, loff_t off, size_t count)
526 int retval;
528 if (unlikely(off >= attr->size))
529 return 0;
530 if (unlikely(off < 0))
531 return -EINVAL;
532 if ((off + count) > attr->size)
533 count = attr->size - off;
535 off += NVRAM_OFFSET;
536 spin_lock_irq(&rtc_lock);
537 for (retval = 0; count; count--, off++, retval++) {
538 if (off < 128)
539 *buf++ = CMOS_READ(off);
540 else if (can_bank2)
541 *buf++ = cmos_read_bank2(off);
542 else
543 break;
545 spin_unlock_irq(&rtc_lock);
547 return retval;
550 static ssize_t
551 cmos_nvram_write(struct kobject *kobj, struct bin_attribute *attr,
552 char *buf, loff_t off, size_t count)
554 struct cmos_rtc *cmos;
555 int retval;
557 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
558 if (unlikely(off >= attr->size))
559 return -EFBIG;
560 if (unlikely(off < 0))
561 return -EINVAL;
562 if ((off + count) > attr->size)
563 count = attr->size - off;
565 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
566 * checksum on part of the NVRAM data. That's currently ignored
567 * here. If userspace is smart enough to know what fields of
568 * NVRAM to update, updating checksums is also part of its job.
570 off += NVRAM_OFFSET;
571 spin_lock_irq(&rtc_lock);
572 for (retval = 0; count; count--, off++, retval++) {
573 /* don't trash RTC registers */
574 if (off == cmos->day_alrm
575 || off == cmos->mon_alrm
576 || off == cmos->century)
577 buf++;
578 else if (off < 128)
579 CMOS_WRITE(*buf++, off);
580 else if (can_bank2)
581 cmos_write_bank2(*buf++, off);
582 else
583 break;
585 spin_unlock_irq(&rtc_lock);
587 return retval;
590 static struct bin_attribute nvram = {
591 .attr = {
592 .name = "nvram",
593 .mode = S_IRUGO | S_IWUSR,
596 .read = cmos_nvram_read,
597 .write = cmos_nvram_write,
598 /* size gets set up later */
601 /*----------------------------------------------------------------*/
603 static struct cmos_rtc cmos_rtc;
605 static irqreturn_t cmos_interrupt(int irq, void *p)
607 u8 irqstat;
608 u8 rtc_control;
610 spin_lock(&rtc_lock);
612 /* When the HPET interrupt handler calls us, the interrupt
613 * status is passed as arg1 instead of the irq number. But
614 * always clear irq status, even when HPET is in the way.
616 * Note that HPET and RTC are almost certainly out of phase,
617 * giving different IRQ status ...
619 irqstat = CMOS_READ(RTC_INTR_FLAGS);
620 rtc_control = CMOS_READ(RTC_CONTROL);
621 if (is_hpet_enabled())
622 irqstat = (unsigned long)irq & 0xF0;
623 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
625 /* All Linux RTC alarms should be treated as if they were oneshot.
626 * Similar code may be needed in system wakeup paths, in case the
627 * alarm woke the system.
629 if (irqstat & RTC_AIE) {
630 rtc_control &= ~RTC_AIE;
631 CMOS_WRITE(rtc_control, RTC_CONTROL);
632 hpet_mask_rtc_irq_bit(RTC_AIE);
634 CMOS_READ(RTC_INTR_FLAGS);
636 spin_unlock(&rtc_lock);
638 if (is_intr(irqstat)) {
639 rtc_update_irq(p, 1, irqstat);
640 return IRQ_HANDLED;
641 } else
642 return IRQ_NONE;
645 #ifdef CONFIG_PNP
646 #define INITSECTION
648 #else
649 #define INITSECTION __init
650 #endif
652 static int INITSECTION
653 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
655 struct cmos_rtc_board_info *info = dev->platform_data;
656 int retval = 0;
657 unsigned char rtc_control;
658 unsigned address_space;
660 /* there can be only one ... */
661 if (cmos_rtc.dev)
662 return -EBUSY;
664 if (!ports)
665 return -ENODEV;
667 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
669 * REVISIT non-x86 systems may instead use memory space resources
670 * (needing ioremap etc), not i/o space resources like this ...
672 ports = request_region(ports->start,
673 ports->end + 1 - ports->start,
674 driver_name);
675 if (!ports) {
676 dev_dbg(dev, "i/o registers already in use\n");
677 return -EBUSY;
680 cmos_rtc.irq = rtc_irq;
681 cmos_rtc.iomem = ports;
683 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
684 * driver did, but don't reject unknown configs. Old hardware
685 * won't address 128 bytes. Newer chips have multiple banks,
686 * though they may not be listed in one I/O resource.
688 #if defined(CONFIG_ATARI)
689 address_space = 64;
690 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
691 || defined(__sparc__) || defined(__mips__)
692 address_space = 128;
693 #else
694 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
695 address_space = 128;
696 #endif
697 if (can_bank2 && ports->end > (ports->start + 1))
698 address_space = 256;
700 /* For ACPI systems extension info comes from the FADT. On others,
701 * board specific setup provides it as appropriate. Systems where
702 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
703 * some almost-clones) can provide hooks to make that behave.
705 * Note that ACPI doesn't preclude putting these registers into
706 * "extended" areas of the chip, including some that we won't yet
707 * expect CMOS_READ and friends to handle.
709 if (info) {
710 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
711 cmos_rtc.day_alrm = info->rtc_day_alarm;
712 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
713 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
714 if (info->rtc_century && info->rtc_century < 128)
715 cmos_rtc.century = info->rtc_century;
717 if (info->wake_on && info->wake_off) {
718 cmos_rtc.wake_on = info->wake_on;
719 cmos_rtc.wake_off = info->wake_off;
723 cmos_rtc.dev = dev;
724 dev_set_drvdata(dev, &cmos_rtc);
726 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
727 &cmos_rtc_ops, THIS_MODULE);
728 if (IS_ERR(cmos_rtc.rtc)) {
729 retval = PTR_ERR(cmos_rtc.rtc);
730 goto cleanup0;
733 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
735 spin_lock_irq(&rtc_lock);
737 /* force periodic irq to CMOS reset default of 1024Hz;
739 * REVISIT it's been reported that at least one x86_64 ALI mobo
740 * doesn't use 32KHz here ... for portability we might need to
741 * do something about other clock frequencies.
743 cmos_rtc.rtc->irq_freq = 1024;
744 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
745 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
747 /* disable irqs */
748 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
750 rtc_control = CMOS_READ(RTC_CONTROL);
752 spin_unlock_irq(&rtc_lock);
754 /* FIXME teach the alarm code how to handle binary mode;
755 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
757 if (is_valid_irq(rtc_irq) &&
758 (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY)))) {
759 dev_dbg(dev, "only 24-hr BCD mode supported\n");
760 retval = -ENXIO;
761 goto cleanup1;
764 if (is_valid_irq(rtc_irq)) {
765 irq_handler_t rtc_cmos_int_handler;
767 if (is_hpet_enabled()) {
768 int err;
770 rtc_cmos_int_handler = hpet_rtc_interrupt;
771 err = hpet_register_irq_handler(cmos_interrupt);
772 if (err != 0) {
773 printk(KERN_WARNING "hpet_register_irq_handler "
774 " failed in rtc_init().");
775 goto cleanup1;
777 } else
778 rtc_cmos_int_handler = cmos_interrupt;
780 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
781 IRQF_DISABLED, dev_name(&cmos_rtc.rtc->dev),
782 cmos_rtc.rtc);
783 if (retval < 0) {
784 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
785 goto cleanup1;
788 hpet_rtc_timer_init();
790 /* export at least the first block of NVRAM */
791 nvram.size = address_space - NVRAM_OFFSET;
792 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
793 if (retval < 0) {
794 dev_dbg(dev, "can't create nvram file? %d\n", retval);
795 goto cleanup2;
798 pr_info("%s: %s%s, %zd bytes nvram%s\n",
799 dev_name(&cmos_rtc.rtc->dev),
800 !is_valid_irq(rtc_irq) ? "no alarms" :
801 cmos_rtc.mon_alrm ? "alarms up to one year" :
802 cmos_rtc.day_alrm ? "alarms up to one month" :
803 "alarms up to one day",
804 cmos_rtc.century ? ", y3k" : "",
805 nvram.size,
806 is_hpet_enabled() ? ", hpet irqs" : "");
808 return 0;
810 cleanup2:
811 if (is_valid_irq(rtc_irq))
812 free_irq(rtc_irq, cmos_rtc.rtc);
813 cleanup1:
814 cmos_rtc.dev = NULL;
815 rtc_device_unregister(cmos_rtc.rtc);
816 cleanup0:
817 release_region(ports->start, ports->end + 1 - ports->start);
818 return retval;
821 static void cmos_do_shutdown(void)
823 spin_lock_irq(&rtc_lock);
824 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
825 spin_unlock_irq(&rtc_lock);
828 static void __exit cmos_do_remove(struct device *dev)
830 struct cmos_rtc *cmos = dev_get_drvdata(dev);
831 struct resource *ports;
833 cmos_do_shutdown();
835 sysfs_remove_bin_file(&dev->kobj, &nvram);
837 if (is_valid_irq(cmos->irq)) {
838 free_irq(cmos->irq, cmos->rtc);
839 hpet_unregister_irq_handler(cmos_interrupt);
842 rtc_device_unregister(cmos->rtc);
843 cmos->rtc = NULL;
845 ports = cmos->iomem;
846 release_region(ports->start, ports->end + 1 - ports->start);
847 cmos->iomem = NULL;
849 cmos->dev = NULL;
850 dev_set_drvdata(dev, NULL);
853 #ifdef CONFIG_PM
855 static int cmos_suspend(struct device *dev)
857 struct cmos_rtc *cmos = dev_get_drvdata(dev);
858 unsigned char tmp;
860 /* only the alarm might be a wakeup event source */
861 spin_lock_irq(&rtc_lock);
862 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
863 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
864 unsigned char mask;
866 if (device_may_wakeup(dev))
867 mask = RTC_IRQMASK & ~RTC_AIE;
868 else
869 mask = RTC_IRQMASK;
870 tmp &= ~mask;
871 CMOS_WRITE(tmp, RTC_CONTROL);
873 /* shut down hpet emulation - we don't need it for alarm */
874 hpet_mask_rtc_irq_bit(RTC_PIE|RTC_AIE|RTC_UIE);
875 cmos_checkintr(cmos, tmp);
877 spin_unlock_irq(&rtc_lock);
879 if (tmp & RTC_AIE) {
880 cmos->enabled_wake = 1;
881 if (cmos->wake_on)
882 cmos->wake_on(dev);
883 else
884 enable_irq_wake(cmos->irq);
887 pr_debug("%s: suspend%s, ctrl %02x\n",
888 dev_name(&cmos_rtc.rtc->dev),
889 (tmp & RTC_AIE) ? ", alarm may wake" : "",
890 tmp);
892 return 0;
895 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
896 * after a detour through G3 "mechanical off", although the ACPI spec
897 * says wakeup should only work from G1/S4 "hibernate". To most users,
898 * distinctions between S4 and S5 are pointless. So when the hardware
899 * allows, don't draw that distinction.
901 static inline int cmos_poweroff(struct device *dev)
903 return cmos_suspend(dev);
906 static int cmos_resume(struct device *dev)
908 struct cmos_rtc *cmos = dev_get_drvdata(dev);
909 unsigned char tmp = cmos->suspend_ctrl;
911 /* re-enable any irqs previously active */
912 if (tmp & RTC_IRQMASK) {
913 unsigned char mask;
915 if (cmos->enabled_wake) {
916 if (cmos->wake_off)
917 cmos->wake_off(dev);
918 else
919 disable_irq_wake(cmos->irq);
920 cmos->enabled_wake = 0;
923 spin_lock_irq(&rtc_lock);
924 do {
925 CMOS_WRITE(tmp, RTC_CONTROL);
926 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
928 mask = CMOS_READ(RTC_INTR_FLAGS);
929 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
930 if (!is_hpet_enabled() || !is_intr(mask))
931 break;
933 /* force one-shot behavior if HPET blocked
934 * the wake alarm's irq
936 rtc_update_irq(cmos->rtc, 1, mask);
937 tmp &= ~RTC_AIE;
938 hpet_mask_rtc_irq_bit(RTC_AIE);
939 } while (mask & RTC_AIE);
940 spin_unlock_irq(&rtc_lock);
943 pr_debug("%s: resume, ctrl %02x\n",
944 dev_name(&cmos_rtc.rtc->dev),
945 tmp);
947 return 0;
950 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
952 #else
954 static inline int cmos_poweroff(struct device *dev)
956 return -ENOSYS;
959 #endif
961 /*----------------------------------------------------------------*/
963 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
964 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
965 * probably list them in similar PNPBIOS tables; so PNP is more common.
967 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
968 * predate even PNPBIOS should set up platform_bus devices.
971 #ifdef CONFIG_ACPI
973 #include <linux/acpi.h>
975 #ifdef CONFIG_PM
976 static u32 rtc_handler(void *context)
978 acpi_clear_event(ACPI_EVENT_RTC);
979 acpi_disable_event(ACPI_EVENT_RTC, 0);
980 return ACPI_INTERRUPT_HANDLED;
983 static inline void rtc_wake_setup(void)
985 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL);
987 * After the RTC handler is installed, the Fixed_RTC event should
988 * be disabled. Only when the RTC alarm is set will it be enabled.
990 acpi_clear_event(ACPI_EVENT_RTC);
991 acpi_disable_event(ACPI_EVENT_RTC, 0);
994 static void rtc_wake_on(struct device *dev)
996 acpi_clear_event(ACPI_EVENT_RTC);
997 acpi_enable_event(ACPI_EVENT_RTC, 0);
1000 static void rtc_wake_off(struct device *dev)
1002 acpi_disable_event(ACPI_EVENT_RTC, 0);
1004 #else
1005 #define rtc_wake_setup() do{}while(0)
1006 #define rtc_wake_on NULL
1007 #define rtc_wake_off NULL
1008 #endif
1010 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1011 * its device node and pass extra config data. This helps its driver use
1012 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1013 * that this board's RTC is wakeup-capable (per ACPI spec).
1015 static struct cmos_rtc_board_info acpi_rtc_info;
1017 static void __devinit
1018 cmos_wake_setup(struct device *dev)
1020 if (acpi_disabled)
1021 return;
1023 rtc_wake_setup();
1024 acpi_rtc_info.wake_on = rtc_wake_on;
1025 acpi_rtc_info.wake_off = rtc_wake_off;
1027 /* workaround bug in some ACPI tables */
1028 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1029 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1030 acpi_gbl_FADT.month_alarm);
1031 acpi_gbl_FADT.month_alarm = 0;
1034 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1035 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1036 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1038 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1039 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1040 dev_info(dev, "RTC can wake from S4\n");
1042 dev->platform_data = &acpi_rtc_info;
1044 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1045 device_init_wakeup(dev, 1);
1048 #else
1050 static void __devinit
1051 cmos_wake_setup(struct device *dev)
1055 #endif
1057 #ifdef CONFIG_PNP
1059 #include <linux/pnp.h>
1061 static int __devinit
1062 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1064 cmos_wake_setup(&pnp->dev);
1066 if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
1067 /* Some machines contain a PNP entry for the RTC, but
1068 * don't define the IRQ. It should always be safe to
1069 * hardcode it in these cases
1071 return cmos_do_probe(&pnp->dev,
1072 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1073 else
1074 return cmos_do_probe(&pnp->dev,
1075 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1076 pnp_irq(pnp, 0));
1079 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1081 cmos_do_remove(&pnp->dev);
1084 #ifdef CONFIG_PM
1086 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
1088 return cmos_suspend(&pnp->dev);
1091 static int cmos_pnp_resume(struct pnp_dev *pnp)
1093 return cmos_resume(&pnp->dev);
1096 #else
1097 #define cmos_pnp_suspend NULL
1098 #define cmos_pnp_resume NULL
1099 #endif
1101 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1103 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
1104 return;
1106 cmos_do_shutdown();
1109 static const struct pnp_device_id rtc_ids[] = {
1110 { .id = "PNP0b00", },
1111 { .id = "PNP0b01", },
1112 { .id = "PNP0b02", },
1113 { },
1115 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1117 static struct pnp_driver cmos_pnp_driver = {
1118 .name = (char *) driver_name,
1119 .id_table = rtc_ids,
1120 .probe = cmos_pnp_probe,
1121 .remove = __exit_p(cmos_pnp_remove),
1122 .shutdown = cmos_pnp_shutdown,
1124 /* flag ensures resume() gets called, and stops syslog spam */
1125 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1126 .suspend = cmos_pnp_suspend,
1127 .resume = cmos_pnp_resume,
1130 #endif /* CONFIG_PNP */
1132 /*----------------------------------------------------------------*/
1134 /* Platform setup should have set up an RTC device, when PNP is
1135 * unavailable ... this could happen even on (older) PCs.
1138 static int __init cmos_platform_probe(struct platform_device *pdev)
1140 cmos_wake_setup(&pdev->dev);
1141 return cmos_do_probe(&pdev->dev,
1142 platform_get_resource(pdev, IORESOURCE_IO, 0),
1143 platform_get_irq(pdev, 0));
1146 static int __exit cmos_platform_remove(struct platform_device *pdev)
1148 cmos_do_remove(&pdev->dev);
1149 return 0;
1152 static void cmos_platform_shutdown(struct platform_device *pdev)
1154 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1155 return;
1157 cmos_do_shutdown();
1160 /* work with hotplug and coldplug */
1161 MODULE_ALIAS("platform:rtc_cmos");
1163 static struct platform_driver cmos_platform_driver = {
1164 .remove = __exit_p(cmos_platform_remove),
1165 .shutdown = cmos_platform_shutdown,
1166 .driver = {
1167 .name = (char *) driver_name,
1168 #ifdef CONFIG_PM
1169 .pm = &cmos_pm_ops,
1170 #endif
1174 #ifdef CONFIG_PNP
1175 static bool pnp_driver_registered;
1176 #endif
1177 static bool platform_driver_registered;
1179 static int __init cmos_init(void)
1181 int retval = 0;
1183 #ifdef CONFIG_PNP
1184 retval = pnp_register_driver(&cmos_pnp_driver);
1185 if (retval == 0)
1186 pnp_driver_registered = true;
1187 #endif
1189 if (!cmos_rtc.dev) {
1190 retval = platform_driver_probe(&cmos_platform_driver,
1191 cmos_platform_probe);
1192 if (retval == 0)
1193 platform_driver_registered = true;
1196 if (retval == 0)
1197 return 0;
1199 #ifdef CONFIG_PNP
1200 if (pnp_driver_registered)
1201 pnp_unregister_driver(&cmos_pnp_driver);
1202 #endif
1203 return retval;
1205 module_init(cmos_init);
1207 static void __exit cmos_exit(void)
1209 #ifdef CONFIG_PNP
1210 if (pnp_driver_registered)
1211 pnp_unregister_driver(&cmos_pnp_driver);
1212 #endif
1213 if (platform_driver_registered)
1214 platform_driver_unregister(&cmos_platform_driver);
1216 module_exit(cmos_exit);
1219 MODULE_AUTHOR("David Brownell");
1220 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1221 MODULE_LICENSE("GPL");