thinkpad-acpi: lock down size of hotkey keymap
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sys.c
blob3868b7ba93024da6dc949c517eed621bd200b811
1 /*
2 * linux/kernel/sys.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
39 #include <linux/compat.h>
40 #include <linux/syscalls.h>
41 #include <linux/kprobes.h>
42 #include <linux/user_namespace.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46 #include <asm/unistd.h>
48 #ifndef SET_UNALIGN_CTL
49 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
50 #endif
51 #ifndef GET_UNALIGN_CTL
52 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
53 #endif
54 #ifndef SET_FPEMU_CTL
55 # define SET_FPEMU_CTL(a,b) (-EINVAL)
56 #endif
57 #ifndef GET_FPEMU_CTL
58 # define GET_FPEMU_CTL(a,b) (-EINVAL)
59 #endif
60 #ifndef SET_FPEXC_CTL
61 # define SET_FPEXC_CTL(a,b) (-EINVAL)
62 #endif
63 #ifndef GET_FPEXC_CTL
64 # define GET_FPEXC_CTL(a,b) (-EINVAL)
65 #endif
66 #ifndef GET_ENDIAN
67 # define GET_ENDIAN(a,b) (-EINVAL)
68 #endif
69 #ifndef SET_ENDIAN
70 # define SET_ENDIAN(a,b) (-EINVAL)
71 #endif
72 #ifndef GET_TSC_CTL
73 # define GET_TSC_CTL(a) (-EINVAL)
74 #endif
75 #ifndef SET_TSC_CTL
76 # define SET_TSC_CTL(a) (-EINVAL)
77 #endif
80 * this is where the system-wide overflow UID and GID are defined, for
81 * architectures that now have 32-bit UID/GID but didn't in the past
84 int overflowuid = DEFAULT_OVERFLOWUID;
85 int overflowgid = DEFAULT_OVERFLOWGID;
87 #ifdef CONFIG_UID16
88 EXPORT_SYMBOL(overflowuid);
89 EXPORT_SYMBOL(overflowgid);
90 #endif
93 * the same as above, but for filesystems which can only store a 16-bit
94 * UID and GID. as such, this is needed on all architectures
97 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
98 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
100 EXPORT_SYMBOL(fs_overflowuid);
101 EXPORT_SYMBOL(fs_overflowgid);
104 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
107 int C_A_D = 1;
108 struct pid *cad_pid;
109 EXPORT_SYMBOL(cad_pid);
112 * If set, this is used for preparing the system to power off.
115 void (*pm_power_off_prepare)(void);
118 * set the priority of a task
119 * - the caller must hold the RCU read lock
121 static int set_one_prio(struct task_struct *p, int niceval, int error)
123 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
124 int no_nice;
126 if (pcred->uid != cred->euid &&
127 pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
128 error = -EPERM;
129 goto out;
131 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
132 error = -EACCES;
133 goto out;
135 no_nice = security_task_setnice(p, niceval);
136 if (no_nice) {
137 error = no_nice;
138 goto out;
140 if (error == -ESRCH)
141 error = 0;
142 set_user_nice(p, niceval);
143 out:
144 return error;
147 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
149 struct task_struct *g, *p;
150 struct user_struct *user;
151 const struct cred *cred = current_cred();
152 int error = -EINVAL;
153 struct pid *pgrp;
155 if (which > PRIO_USER || which < PRIO_PROCESS)
156 goto out;
158 /* normalize: avoid signed division (rounding problems) */
159 error = -ESRCH;
160 if (niceval < -20)
161 niceval = -20;
162 if (niceval > 19)
163 niceval = 19;
165 rcu_read_lock();
166 read_lock(&tasklist_lock);
167 switch (which) {
168 case PRIO_PROCESS:
169 if (who)
170 p = find_task_by_vpid(who);
171 else
172 p = current;
173 if (p)
174 error = set_one_prio(p, niceval, error);
175 break;
176 case PRIO_PGRP:
177 if (who)
178 pgrp = find_vpid(who);
179 else
180 pgrp = task_pgrp(current);
181 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
182 error = set_one_prio(p, niceval, error);
183 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
184 break;
185 case PRIO_USER:
186 user = (struct user_struct *) cred->user;
187 if (!who)
188 who = cred->uid;
189 else if ((who != cred->uid) &&
190 !(user = find_user(who)))
191 goto out_unlock; /* No processes for this user */
193 do_each_thread(g, p) {
194 if (__task_cred(p)->uid == who)
195 error = set_one_prio(p, niceval, error);
196 } while_each_thread(g, p);
197 if (who != cred->uid)
198 free_uid(user); /* For find_user() */
199 break;
201 out_unlock:
202 read_unlock(&tasklist_lock);
203 rcu_read_unlock();
204 out:
205 return error;
209 * Ugh. To avoid negative return values, "getpriority()" will
210 * not return the normal nice-value, but a negated value that
211 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
212 * to stay compatible.
214 SYSCALL_DEFINE2(getpriority, int, which, int, who)
216 struct task_struct *g, *p;
217 struct user_struct *user;
218 const struct cred *cred = current_cred();
219 long niceval, retval = -ESRCH;
220 struct pid *pgrp;
222 if (which > PRIO_USER || which < PRIO_PROCESS)
223 return -EINVAL;
225 rcu_read_lock();
226 read_lock(&tasklist_lock);
227 switch (which) {
228 case PRIO_PROCESS:
229 if (who)
230 p = find_task_by_vpid(who);
231 else
232 p = current;
233 if (p) {
234 niceval = 20 - task_nice(p);
235 if (niceval > retval)
236 retval = niceval;
238 break;
239 case PRIO_PGRP:
240 if (who)
241 pgrp = find_vpid(who);
242 else
243 pgrp = task_pgrp(current);
244 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
245 niceval = 20 - task_nice(p);
246 if (niceval > retval)
247 retval = niceval;
248 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
249 break;
250 case PRIO_USER:
251 user = (struct user_struct *) cred->user;
252 if (!who)
253 who = cred->uid;
254 else if ((who != cred->uid) &&
255 !(user = find_user(who)))
256 goto out_unlock; /* No processes for this user */
258 do_each_thread(g, p) {
259 if (__task_cred(p)->uid == who) {
260 niceval = 20 - task_nice(p);
261 if (niceval > retval)
262 retval = niceval;
264 } while_each_thread(g, p);
265 if (who != cred->uid)
266 free_uid(user); /* for find_user() */
267 break;
269 out_unlock:
270 read_unlock(&tasklist_lock);
271 rcu_read_unlock();
273 return retval;
277 * emergency_restart - reboot the system
279 * Without shutting down any hardware or taking any locks
280 * reboot the system. This is called when we know we are in
281 * trouble so this is our best effort to reboot. This is
282 * safe to call in interrupt context.
284 void emergency_restart(void)
286 machine_emergency_restart();
288 EXPORT_SYMBOL_GPL(emergency_restart);
290 void kernel_restart_prepare(char *cmd)
292 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
293 system_state = SYSTEM_RESTART;
294 device_shutdown();
295 sysdev_shutdown();
299 * kernel_restart - reboot the system
300 * @cmd: pointer to buffer containing command to execute for restart
301 * or %NULL
303 * Shutdown everything and perform a clean reboot.
304 * This is not safe to call in interrupt context.
306 void kernel_restart(char *cmd)
308 kernel_restart_prepare(cmd);
309 if (!cmd)
310 printk(KERN_EMERG "Restarting system.\n");
311 else
312 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
313 machine_restart(cmd);
315 EXPORT_SYMBOL_GPL(kernel_restart);
317 static void kernel_shutdown_prepare(enum system_states state)
319 blocking_notifier_call_chain(&reboot_notifier_list,
320 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
321 system_state = state;
322 device_shutdown();
325 * kernel_halt - halt the system
327 * Shutdown everything and perform a clean system halt.
329 void kernel_halt(void)
331 kernel_shutdown_prepare(SYSTEM_HALT);
332 sysdev_shutdown();
333 printk(KERN_EMERG "System halted.\n");
334 machine_halt();
337 EXPORT_SYMBOL_GPL(kernel_halt);
340 * kernel_power_off - power_off the system
342 * Shutdown everything and perform a clean system power_off.
344 void kernel_power_off(void)
346 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
347 if (pm_power_off_prepare)
348 pm_power_off_prepare();
349 disable_nonboot_cpus();
350 sysdev_shutdown();
351 printk(KERN_EMERG "Power down.\n");
352 machine_power_off();
354 EXPORT_SYMBOL_GPL(kernel_power_off);
356 static DEFINE_MUTEX(reboot_mutex);
359 * Reboot system call: for obvious reasons only root may call it,
360 * and even root needs to set up some magic numbers in the registers
361 * so that some mistake won't make this reboot the whole machine.
362 * You can also set the meaning of the ctrl-alt-del-key here.
364 * reboot doesn't sync: do that yourself before calling this.
366 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
367 void __user *, arg)
369 char buffer[256];
370 int ret = 0;
372 /* We only trust the superuser with rebooting the system. */
373 if (!capable(CAP_SYS_BOOT))
374 return -EPERM;
376 /* For safety, we require "magic" arguments. */
377 if (magic1 != LINUX_REBOOT_MAGIC1 ||
378 (magic2 != LINUX_REBOOT_MAGIC2 &&
379 magic2 != LINUX_REBOOT_MAGIC2A &&
380 magic2 != LINUX_REBOOT_MAGIC2B &&
381 magic2 != LINUX_REBOOT_MAGIC2C))
382 return -EINVAL;
384 /* Instead of trying to make the power_off code look like
385 * halt when pm_power_off is not set do it the easy way.
387 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
388 cmd = LINUX_REBOOT_CMD_HALT;
390 mutex_lock(&reboot_mutex);
391 switch (cmd) {
392 case LINUX_REBOOT_CMD_RESTART:
393 kernel_restart(NULL);
394 break;
396 case LINUX_REBOOT_CMD_CAD_ON:
397 C_A_D = 1;
398 break;
400 case LINUX_REBOOT_CMD_CAD_OFF:
401 C_A_D = 0;
402 break;
404 case LINUX_REBOOT_CMD_HALT:
405 kernel_halt();
406 do_exit(0);
407 panic("cannot halt");
409 case LINUX_REBOOT_CMD_POWER_OFF:
410 kernel_power_off();
411 do_exit(0);
412 break;
414 case LINUX_REBOOT_CMD_RESTART2:
415 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
416 ret = -EFAULT;
417 break;
419 buffer[sizeof(buffer) - 1] = '\0';
421 kernel_restart(buffer);
422 break;
424 #ifdef CONFIG_KEXEC
425 case LINUX_REBOOT_CMD_KEXEC:
426 ret = kernel_kexec();
427 break;
428 #endif
430 #ifdef CONFIG_HIBERNATION
431 case LINUX_REBOOT_CMD_SW_SUSPEND:
432 ret = hibernate();
433 break;
434 #endif
436 default:
437 ret = -EINVAL;
438 break;
440 mutex_unlock(&reboot_mutex);
441 return ret;
444 static void deferred_cad(struct work_struct *dummy)
446 kernel_restart(NULL);
450 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
451 * As it's called within an interrupt, it may NOT sync: the only choice
452 * is whether to reboot at once, or just ignore the ctrl-alt-del.
454 void ctrl_alt_del(void)
456 static DECLARE_WORK(cad_work, deferred_cad);
458 if (C_A_D)
459 schedule_work(&cad_work);
460 else
461 kill_cad_pid(SIGINT, 1);
465 * Unprivileged users may change the real gid to the effective gid
466 * or vice versa. (BSD-style)
468 * If you set the real gid at all, or set the effective gid to a value not
469 * equal to the real gid, then the saved gid is set to the new effective gid.
471 * This makes it possible for a setgid program to completely drop its
472 * privileges, which is often a useful assertion to make when you are doing
473 * a security audit over a program.
475 * The general idea is that a program which uses just setregid() will be
476 * 100% compatible with BSD. A program which uses just setgid() will be
477 * 100% compatible with POSIX with saved IDs.
479 * SMP: There are not races, the GIDs are checked only by filesystem
480 * operations (as far as semantic preservation is concerned).
482 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
484 const struct cred *old;
485 struct cred *new;
486 int retval;
488 new = prepare_creds();
489 if (!new)
490 return -ENOMEM;
491 old = current_cred();
493 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
494 if (retval)
495 goto error;
497 retval = -EPERM;
498 if (rgid != (gid_t) -1) {
499 if (old->gid == rgid ||
500 old->egid == rgid ||
501 capable(CAP_SETGID))
502 new->gid = rgid;
503 else
504 goto error;
506 if (egid != (gid_t) -1) {
507 if (old->gid == egid ||
508 old->egid == egid ||
509 old->sgid == egid ||
510 capable(CAP_SETGID))
511 new->egid = egid;
512 else
513 goto error;
516 if (rgid != (gid_t) -1 ||
517 (egid != (gid_t) -1 && egid != old->gid))
518 new->sgid = new->egid;
519 new->fsgid = new->egid;
521 return commit_creds(new);
523 error:
524 abort_creds(new);
525 return retval;
529 * setgid() is implemented like SysV w/ SAVED_IDS
531 * SMP: Same implicit races as above.
533 SYSCALL_DEFINE1(setgid, gid_t, gid)
535 const struct cred *old;
536 struct cred *new;
537 int retval;
539 new = prepare_creds();
540 if (!new)
541 return -ENOMEM;
542 old = current_cred();
544 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
545 if (retval)
546 goto error;
548 retval = -EPERM;
549 if (capable(CAP_SETGID))
550 new->gid = new->egid = new->sgid = new->fsgid = gid;
551 else if (gid == old->gid || gid == old->sgid)
552 new->egid = new->fsgid = gid;
553 else
554 goto error;
556 return commit_creds(new);
558 error:
559 abort_creds(new);
560 return retval;
564 * change the user struct in a credentials set to match the new UID
566 static int set_user(struct cred *new)
568 struct user_struct *new_user;
570 new_user = alloc_uid(current_user_ns(), new->uid);
571 if (!new_user)
572 return -EAGAIN;
574 if (!task_can_switch_user(new_user, current)) {
575 free_uid(new_user);
576 return -EINVAL;
579 if (atomic_read(&new_user->processes) >=
580 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
581 new_user != INIT_USER) {
582 free_uid(new_user);
583 return -EAGAIN;
586 free_uid(new->user);
587 new->user = new_user;
588 return 0;
592 * Unprivileged users may change the real uid to the effective uid
593 * or vice versa. (BSD-style)
595 * If you set the real uid at all, or set the effective uid to a value not
596 * equal to the real uid, then the saved uid is set to the new effective uid.
598 * This makes it possible for a setuid program to completely drop its
599 * privileges, which is often a useful assertion to make when you are doing
600 * a security audit over a program.
602 * The general idea is that a program which uses just setreuid() will be
603 * 100% compatible with BSD. A program which uses just setuid() will be
604 * 100% compatible with POSIX with saved IDs.
606 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
608 const struct cred *old;
609 struct cred *new;
610 int retval;
612 new = prepare_creds();
613 if (!new)
614 return -ENOMEM;
615 old = current_cred();
617 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
618 if (retval)
619 goto error;
621 retval = -EPERM;
622 if (ruid != (uid_t) -1) {
623 new->uid = ruid;
624 if (old->uid != ruid &&
625 old->euid != ruid &&
626 !capable(CAP_SETUID))
627 goto error;
630 if (euid != (uid_t) -1) {
631 new->euid = euid;
632 if (old->uid != euid &&
633 old->euid != euid &&
634 old->suid != euid &&
635 !capable(CAP_SETUID))
636 goto error;
639 if (new->uid != old->uid) {
640 retval = set_user(new);
641 if (retval < 0)
642 goto error;
644 if (ruid != (uid_t) -1 ||
645 (euid != (uid_t) -1 && euid != old->uid))
646 new->suid = new->euid;
647 new->fsuid = new->euid;
649 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
650 if (retval < 0)
651 goto error;
653 return commit_creds(new);
655 error:
656 abort_creds(new);
657 return retval;
661 * setuid() is implemented like SysV with SAVED_IDS
663 * Note that SAVED_ID's is deficient in that a setuid root program
664 * like sendmail, for example, cannot set its uid to be a normal
665 * user and then switch back, because if you're root, setuid() sets
666 * the saved uid too. If you don't like this, blame the bright people
667 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
668 * will allow a root program to temporarily drop privileges and be able to
669 * regain them by swapping the real and effective uid.
671 SYSCALL_DEFINE1(setuid, uid_t, uid)
673 const struct cred *old;
674 struct cred *new;
675 int retval;
677 new = prepare_creds();
678 if (!new)
679 return -ENOMEM;
680 old = current_cred();
682 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
683 if (retval)
684 goto error;
686 retval = -EPERM;
687 if (capable(CAP_SETUID)) {
688 new->suid = new->uid = uid;
689 if (uid != old->uid) {
690 retval = set_user(new);
691 if (retval < 0)
692 goto error;
694 } else if (uid != old->uid && uid != new->suid) {
695 goto error;
698 new->fsuid = new->euid = uid;
700 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
701 if (retval < 0)
702 goto error;
704 return commit_creds(new);
706 error:
707 abort_creds(new);
708 return retval;
713 * This function implements a generic ability to update ruid, euid,
714 * and suid. This allows you to implement the 4.4 compatible seteuid().
716 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
718 const struct cred *old;
719 struct cred *new;
720 int retval;
722 new = prepare_creds();
723 if (!new)
724 return -ENOMEM;
726 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
727 if (retval)
728 goto error;
729 old = current_cred();
731 retval = -EPERM;
732 if (!capable(CAP_SETUID)) {
733 if (ruid != (uid_t) -1 && ruid != old->uid &&
734 ruid != old->euid && ruid != old->suid)
735 goto error;
736 if (euid != (uid_t) -1 && euid != old->uid &&
737 euid != old->euid && euid != old->suid)
738 goto error;
739 if (suid != (uid_t) -1 && suid != old->uid &&
740 suid != old->euid && suid != old->suid)
741 goto error;
744 if (ruid != (uid_t) -1) {
745 new->uid = ruid;
746 if (ruid != old->uid) {
747 retval = set_user(new);
748 if (retval < 0)
749 goto error;
752 if (euid != (uid_t) -1)
753 new->euid = euid;
754 if (suid != (uid_t) -1)
755 new->suid = suid;
756 new->fsuid = new->euid;
758 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
759 if (retval < 0)
760 goto error;
762 return commit_creds(new);
764 error:
765 abort_creds(new);
766 return retval;
769 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
771 const struct cred *cred = current_cred();
772 int retval;
774 if (!(retval = put_user(cred->uid, ruid)) &&
775 !(retval = put_user(cred->euid, euid)))
776 retval = put_user(cred->suid, suid);
778 return retval;
782 * Same as above, but for rgid, egid, sgid.
784 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
786 const struct cred *old;
787 struct cred *new;
788 int retval;
790 new = prepare_creds();
791 if (!new)
792 return -ENOMEM;
793 old = current_cred();
795 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
796 if (retval)
797 goto error;
799 retval = -EPERM;
800 if (!capable(CAP_SETGID)) {
801 if (rgid != (gid_t) -1 && rgid != old->gid &&
802 rgid != old->egid && rgid != old->sgid)
803 goto error;
804 if (egid != (gid_t) -1 && egid != old->gid &&
805 egid != old->egid && egid != old->sgid)
806 goto error;
807 if (sgid != (gid_t) -1 && sgid != old->gid &&
808 sgid != old->egid && sgid != old->sgid)
809 goto error;
812 if (rgid != (gid_t) -1)
813 new->gid = rgid;
814 if (egid != (gid_t) -1)
815 new->egid = egid;
816 if (sgid != (gid_t) -1)
817 new->sgid = sgid;
818 new->fsgid = new->egid;
820 return commit_creds(new);
822 error:
823 abort_creds(new);
824 return retval;
827 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
829 const struct cred *cred = current_cred();
830 int retval;
832 if (!(retval = put_user(cred->gid, rgid)) &&
833 !(retval = put_user(cred->egid, egid)))
834 retval = put_user(cred->sgid, sgid);
836 return retval;
841 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
842 * is used for "access()" and for the NFS daemon (letting nfsd stay at
843 * whatever uid it wants to). It normally shadows "euid", except when
844 * explicitly set by setfsuid() or for access..
846 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
848 const struct cred *old;
849 struct cred *new;
850 uid_t old_fsuid;
852 new = prepare_creds();
853 if (!new)
854 return current_fsuid();
855 old = current_cred();
856 old_fsuid = old->fsuid;
858 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
859 goto error;
861 if (uid == old->uid || uid == old->euid ||
862 uid == old->suid || uid == old->fsuid ||
863 capable(CAP_SETUID)) {
864 if (uid != old_fsuid) {
865 new->fsuid = uid;
866 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
867 goto change_okay;
871 error:
872 abort_creds(new);
873 return old_fsuid;
875 change_okay:
876 commit_creds(new);
877 return old_fsuid;
881 * Samma på svenska..
883 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
885 const struct cred *old;
886 struct cred *new;
887 gid_t old_fsgid;
889 new = prepare_creds();
890 if (!new)
891 return current_fsgid();
892 old = current_cred();
893 old_fsgid = old->fsgid;
895 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
896 goto error;
898 if (gid == old->gid || gid == old->egid ||
899 gid == old->sgid || gid == old->fsgid ||
900 capable(CAP_SETGID)) {
901 if (gid != old_fsgid) {
902 new->fsgid = gid;
903 goto change_okay;
907 error:
908 abort_creds(new);
909 return old_fsgid;
911 change_okay:
912 commit_creds(new);
913 return old_fsgid;
916 void do_sys_times(struct tms *tms)
918 cputime_t tgutime, tgstime, cutime, cstime;
920 spin_lock_irq(&current->sighand->siglock);
921 thread_group_times(current, &tgutime, &tgstime);
922 cutime = current->signal->cutime;
923 cstime = current->signal->cstime;
924 spin_unlock_irq(&current->sighand->siglock);
925 tms->tms_utime = cputime_to_clock_t(tgutime);
926 tms->tms_stime = cputime_to_clock_t(tgstime);
927 tms->tms_cutime = cputime_to_clock_t(cutime);
928 tms->tms_cstime = cputime_to_clock_t(cstime);
931 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
933 if (tbuf) {
934 struct tms tmp;
936 do_sys_times(&tmp);
937 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
938 return -EFAULT;
940 force_successful_syscall_return();
941 return (long) jiffies_64_to_clock_t(get_jiffies_64());
945 * This needs some heavy checking ...
946 * I just haven't the stomach for it. I also don't fully
947 * understand sessions/pgrp etc. Let somebody who does explain it.
949 * OK, I think I have the protection semantics right.... this is really
950 * only important on a multi-user system anyway, to make sure one user
951 * can't send a signal to a process owned by another. -TYT, 12/12/91
953 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
954 * LBT 04.03.94
956 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
958 struct task_struct *p;
959 struct task_struct *group_leader = current->group_leader;
960 struct pid *pgrp;
961 int err;
963 if (!pid)
964 pid = task_pid_vnr(group_leader);
965 if (!pgid)
966 pgid = pid;
967 if (pgid < 0)
968 return -EINVAL;
969 rcu_read_lock();
971 /* From this point forward we keep holding onto the tasklist lock
972 * so that our parent does not change from under us. -DaveM
974 write_lock_irq(&tasklist_lock);
976 err = -ESRCH;
977 p = find_task_by_vpid(pid);
978 if (!p)
979 goto out;
981 err = -EINVAL;
982 if (!thread_group_leader(p))
983 goto out;
985 if (same_thread_group(p->real_parent, group_leader)) {
986 err = -EPERM;
987 if (task_session(p) != task_session(group_leader))
988 goto out;
989 err = -EACCES;
990 if (p->did_exec)
991 goto out;
992 } else {
993 err = -ESRCH;
994 if (p != group_leader)
995 goto out;
998 err = -EPERM;
999 if (p->signal->leader)
1000 goto out;
1002 pgrp = task_pid(p);
1003 if (pgid != pid) {
1004 struct task_struct *g;
1006 pgrp = find_vpid(pgid);
1007 g = pid_task(pgrp, PIDTYPE_PGID);
1008 if (!g || task_session(g) != task_session(group_leader))
1009 goto out;
1012 err = security_task_setpgid(p, pgid);
1013 if (err)
1014 goto out;
1016 if (task_pgrp(p) != pgrp)
1017 change_pid(p, PIDTYPE_PGID, pgrp);
1019 err = 0;
1020 out:
1021 /* All paths lead to here, thus we are safe. -DaveM */
1022 write_unlock_irq(&tasklist_lock);
1023 rcu_read_unlock();
1024 return err;
1027 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1029 struct task_struct *p;
1030 struct pid *grp;
1031 int retval;
1033 rcu_read_lock();
1034 if (!pid)
1035 grp = task_pgrp(current);
1036 else {
1037 retval = -ESRCH;
1038 p = find_task_by_vpid(pid);
1039 if (!p)
1040 goto out;
1041 grp = task_pgrp(p);
1042 if (!grp)
1043 goto out;
1045 retval = security_task_getpgid(p);
1046 if (retval)
1047 goto out;
1049 retval = pid_vnr(grp);
1050 out:
1051 rcu_read_unlock();
1052 return retval;
1055 #ifdef __ARCH_WANT_SYS_GETPGRP
1057 SYSCALL_DEFINE0(getpgrp)
1059 return sys_getpgid(0);
1062 #endif
1064 SYSCALL_DEFINE1(getsid, pid_t, pid)
1066 struct task_struct *p;
1067 struct pid *sid;
1068 int retval;
1070 rcu_read_lock();
1071 if (!pid)
1072 sid = task_session(current);
1073 else {
1074 retval = -ESRCH;
1075 p = find_task_by_vpid(pid);
1076 if (!p)
1077 goto out;
1078 sid = task_session(p);
1079 if (!sid)
1080 goto out;
1082 retval = security_task_getsid(p);
1083 if (retval)
1084 goto out;
1086 retval = pid_vnr(sid);
1087 out:
1088 rcu_read_unlock();
1089 return retval;
1092 SYSCALL_DEFINE0(setsid)
1094 struct task_struct *group_leader = current->group_leader;
1095 struct pid *sid = task_pid(group_leader);
1096 pid_t session = pid_vnr(sid);
1097 int err = -EPERM;
1099 write_lock_irq(&tasklist_lock);
1100 /* Fail if I am already a session leader */
1101 if (group_leader->signal->leader)
1102 goto out;
1104 /* Fail if a process group id already exists that equals the
1105 * proposed session id.
1107 if (pid_task(sid, PIDTYPE_PGID))
1108 goto out;
1110 group_leader->signal->leader = 1;
1111 __set_special_pids(sid);
1113 proc_clear_tty(group_leader);
1115 err = session;
1116 out:
1117 write_unlock_irq(&tasklist_lock);
1118 if (err > 0)
1119 proc_sid_connector(group_leader);
1120 return err;
1123 DECLARE_RWSEM(uts_sem);
1125 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1127 int errno = 0;
1129 down_read(&uts_sem);
1130 if (copy_to_user(name, utsname(), sizeof *name))
1131 errno = -EFAULT;
1132 up_read(&uts_sem);
1133 return errno;
1136 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1138 int errno;
1139 char tmp[__NEW_UTS_LEN];
1141 if (!capable(CAP_SYS_ADMIN))
1142 return -EPERM;
1143 if (len < 0 || len > __NEW_UTS_LEN)
1144 return -EINVAL;
1145 down_write(&uts_sem);
1146 errno = -EFAULT;
1147 if (!copy_from_user(tmp, name, len)) {
1148 struct new_utsname *u = utsname();
1150 memcpy(u->nodename, tmp, len);
1151 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1152 errno = 0;
1154 up_write(&uts_sem);
1155 return errno;
1158 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1160 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1162 int i, errno;
1163 struct new_utsname *u;
1165 if (len < 0)
1166 return -EINVAL;
1167 down_read(&uts_sem);
1168 u = utsname();
1169 i = 1 + strlen(u->nodename);
1170 if (i > len)
1171 i = len;
1172 errno = 0;
1173 if (copy_to_user(name, u->nodename, i))
1174 errno = -EFAULT;
1175 up_read(&uts_sem);
1176 return errno;
1179 #endif
1182 * Only setdomainname; getdomainname can be implemented by calling
1183 * uname()
1185 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1187 int errno;
1188 char tmp[__NEW_UTS_LEN];
1190 if (!capable(CAP_SYS_ADMIN))
1191 return -EPERM;
1192 if (len < 0 || len > __NEW_UTS_LEN)
1193 return -EINVAL;
1195 down_write(&uts_sem);
1196 errno = -EFAULT;
1197 if (!copy_from_user(tmp, name, len)) {
1198 struct new_utsname *u = utsname();
1200 memcpy(u->domainname, tmp, len);
1201 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1202 errno = 0;
1204 up_write(&uts_sem);
1205 return errno;
1208 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1210 if (resource >= RLIM_NLIMITS)
1211 return -EINVAL;
1212 else {
1213 struct rlimit value;
1214 task_lock(current->group_leader);
1215 value = current->signal->rlim[resource];
1216 task_unlock(current->group_leader);
1217 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1221 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1224 * Back compatibility for getrlimit. Needed for some apps.
1227 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1228 struct rlimit __user *, rlim)
1230 struct rlimit x;
1231 if (resource >= RLIM_NLIMITS)
1232 return -EINVAL;
1234 task_lock(current->group_leader);
1235 x = current->signal->rlim[resource];
1236 task_unlock(current->group_leader);
1237 if (x.rlim_cur > 0x7FFFFFFF)
1238 x.rlim_cur = 0x7FFFFFFF;
1239 if (x.rlim_max > 0x7FFFFFFF)
1240 x.rlim_max = 0x7FFFFFFF;
1241 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1244 #endif
1246 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1248 struct rlimit new_rlim, *old_rlim;
1249 int retval;
1251 if (resource >= RLIM_NLIMITS)
1252 return -EINVAL;
1253 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1254 return -EFAULT;
1255 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1256 return -EINVAL;
1257 old_rlim = current->signal->rlim + resource;
1258 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1259 !capable(CAP_SYS_RESOURCE))
1260 return -EPERM;
1261 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
1262 return -EPERM;
1264 retval = security_task_setrlimit(resource, &new_rlim);
1265 if (retval)
1266 return retval;
1268 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1270 * The caller is asking for an immediate RLIMIT_CPU
1271 * expiry. But we use the zero value to mean "it was
1272 * never set". So let's cheat and make it one second
1273 * instead
1275 new_rlim.rlim_cur = 1;
1278 task_lock(current->group_leader);
1279 *old_rlim = new_rlim;
1280 task_unlock(current->group_leader);
1282 if (resource != RLIMIT_CPU)
1283 goto out;
1286 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1287 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1288 * very long-standing error, and fixing it now risks breakage of
1289 * applications, so we live with it
1291 if (new_rlim.rlim_cur == RLIM_INFINITY)
1292 goto out;
1294 update_rlimit_cpu(new_rlim.rlim_cur);
1295 out:
1296 return 0;
1300 * It would make sense to put struct rusage in the task_struct,
1301 * except that would make the task_struct be *really big*. After
1302 * task_struct gets moved into malloc'ed memory, it would
1303 * make sense to do this. It will make moving the rest of the information
1304 * a lot simpler! (Which we're not doing right now because we're not
1305 * measuring them yet).
1307 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1308 * races with threads incrementing their own counters. But since word
1309 * reads are atomic, we either get new values or old values and we don't
1310 * care which for the sums. We always take the siglock to protect reading
1311 * the c* fields from p->signal from races with exit.c updating those
1312 * fields when reaping, so a sample either gets all the additions of a
1313 * given child after it's reaped, or none so this sample is before reaping.
1315 * Locking:
1316 * We need to take the siglock for CHILDEREN, SELF and BOTH
1317 * for the cases current multithreaded, non-current single threaded
1318 * non-current multithreaded. Thread traversal is now safe with
1319 * the siglock held.
1320 * Strictly speaking, we donot need to take the siglock if we are current and
1321 * single threaded, as no one else can take our signal_struct away, no one
1322 * else can reap the children to update signal->c* counters, and no one else
1323 * can race with the signal-> fields. If we do not take any lock, the
1324 * signal-> fields could be read out of order while another thread was just
1325 * exiting. So we should place a read memory barrier when we avoid the lock.
1326 * On the writer side, write memory barrier is implied in __exit_signal
1327 * as __exit_signal releases the siglock spinlock after updating the signal->
1328 * fields. But we don't do this yet to keep things simple.
1332 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1334 r->ru_nvcsw += t->nvcsw;
1335 r->ru_nivcsw += t->nivcsw;
1336 r->ru_minflt += t->min_flt;
1337 r->ru_majflt += t->maj_flt;
1338 r->ru_inblock += task_io_get_inblock(t);
1339 r->ru_oublock += task_io_get_oublock(t);
1342 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1344 struct task_struct *t;
1345 unsigned long flags;
1346 cputime_t tgutime, tgstime, utime, stime;
1347 unsigned long maxrss = 0;
1349 memset((char *) r, 0, sizeof *r);
1350 utime = stime = cputime_zero;
1352 if (who == RUSAGE_THREAD) {
1353 task_times(current, &utime, &stime);
1354 accumulate_thread_rusage(p, r);
1355 maxrss = p->signal->maxrss;
1356 goto out;
1359 if (!lock_task_sighand(p, &flags))
1360 return;
1362 switch (who) {
1363 case RUSAGE_BOTH:
1364 case RUSAGE_CHILDREN:
1365 utime = p->signal->cutime;
1366 stime = p->signal->cstime;
1367 r->ru_nvcsw = p->signal->cnvcsw;
1368 r->ru_nivcsw = p->signal->cnivcsw;
1369 r->ru_minflt = p->signal->cmin_flt;
1370 r->ru_majflt = p->signal->cmaj_flt;
1371 r->ru_inblock = p->signal->cinblock;
1372 r->ru_oublock = p->signal->coublock;
1373 maxrss = p->signal->cmaxrss;
1375 if (who == RUSAGE_CHILDREN)
1376 break;
1378 case RUSAGE_SELF:
1379 thread_group_times(p, &tgutime, &tgstime);
1380 utime = cputime_add(utime, tgutime);
1381 stime = cputime_add(stime, tgstime);
1382 r->ru_nvcsw += p->signal->nvcsw;
1383 r->ru_nivcsw += p->signal->nivcsw;
1384 r->ru_minflt += p->signal->min_flt;
1385 r->ru_majflt += p->signal->maj_flt;
1386 r->ru_inblock += p->signal->inblock;
1387 r->ru_oublock += p->signal->oublock;
1388 if (maxrss < p->signal->maxrss)
1389 maxrss = p->signal->maxrss;
1390 t = p;
1391 do {
1392 accumulate_thread_rusage(t, r);
1393 t = next_thread(t);
1394 } while (t != p);
1395 break;
1397 default:
1398 BUG();
1400 unlock_task_sighand(p, &flags);
1402 out:
1403 cputime_to_timeval(utime, &r->ru_utime);
1404 cputime_to_timeval(stime, &r->ru_stime);
1406 if (who != RUSAGE_CHILDREN) {
1407 struct mm_struct *mm = get_task_mm(p);
1408 if (mm) {
1409 setmax_mm_hiwater_rss(&maxrss, mm);
1410 mmput(mm);
1413 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1416 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1418 struct rusage r;
1419 k_getrusage(p, who, &r);
1420 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1423 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1425 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1426 who != RUSAGE_THREAD)
1427 return -EINVAL;
1428 return getrusage(current, who, ru);
1431 SYSCALL_DEFINE1(umask, int, mask)
1433 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1434 return mask;
1437 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1438 unsigned long, arg4, unsigned long, arg5)
1440 struct task_struct *me = current;
1441 unsigned char comm[sizeof(me->comm)];
1442 long error;
1444 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1445 if (error != -ENOSYS)
1446 return error;
1448 error = 0;
1449 switch (option) {
1450 case PR_SET_PDEATHSIG:
1451 if (!valid_signal(arg2)) {
1452 error = -EINVAL;
1453 break;
1455 me->pdeath_signal = arg2;
1456 error = 0;
1457 break;
1458 case PR_GET_PDEATHSIG:
1459 error = put_user(me->pdeath_signal, (int __user *)arg2);
1460 break;
1461 case PR_GET_DUMPABLE:
1462 error = get_dumpable(me->mm);
1463 break;
1464 case PR_SET_DUMPABLE:
1465 if (arg2 < 0 || arg2 > 1) {
1466 error = -EINVAL;
1467 break;
1469 set_dumpable(me->mm, arg2);
1470 error = 0;
1471 break;
1473 case PR_SET_UNALIGN:
1474 error = SET_UNALIGN_CTL(me, arg2);
1475 break;
1476 case PR_GET_UNALIGN:
1477 error = GET_UNALIGN_CTL(me, arg2);
1478 break;
1479 case PR_SET_FPEMU:
1480 error = SET_FPEMU_CTL(me, arg2);
1481 break;
1482 case PR_GET_FPEMU:
1483 error = GET_FPEMU_CTL(me, arg2);
1484 break;
1485 case PR_SET_FPEXC:
1486 error = SET_FPEXC_CTL(me, arg2);
1487 break;
1488 case PR_GET_FPEXC:
1489 error = GET_FPEXC_CTL(me, arg2);
1490 break;
1491 case PR_GET_TIMING:
1492 error = PR_TIMING_STATISTICAL;
1493 break;
1494 case PR_SET_TIMING:
1495 if (arg2 != PR_TIMING_STATISTICAL)
1496 error = -EINVAL;
1497 else
1498 error = 0;
1499 break;
1501 case PR_SET_NAME:
1502 comm[sizeof(me->comm)-1] = 0;
1503 if (strncpy_from_user(comm, (char __user *)arg2,
1504 sizeof(me->comm) - 1) < 0)
1505 return -EFAULT;
1506 set_task_comm(me, comm);
1507 return 0;
1508 case PR_GET_NAME:
1509 get_task_comm(comm, me);
1510 if (copy_to_user((char __user *)arg2, comm,
1511 sizeof(comm)))
1512 return -EFAULT;
1513 return 0;
1514 case PR_GET_ENDIAN:
1515 error = GET_ENDIAN(me, arg2);
1516 break;
1517 case PR_SET_ENDIAN:
1518 error = SET_ENDIAN(me, arg2);
1519 break;
1521 case PR_GET_SECCOMP:
1522 error = prctl_get_seccomp();
1523 break;
1524 case PR_SET_SECCOMP:
1525 error = prctl_set_seccomp(arg2);
1526 break;
1527 case PR_GET_TSC:
1528 error = GET_TSC_CTL(arg2);
1529 break;
1530 case PR_SET_TSC:
1531 error = SET_TSC_CTL(arg2);
1532 break;
1533 case PR_TASK_PERF_EVENTS_DISABLE:
1534 error = perf_event_task_disable();
1535 break;
1536 case PR_TASK_PERF_EVENTS_ENABLE:
1537 error = perf_event_task_enable();
1538 break;
1539 case PR_GET_TIMERSLACK:
1540 error = current->timer_slack_ns;
1541 break;
1542 case PR_SET_TIMERSLACK:
1543 if (arg2 <= 0)
1544 current->timer_slack_ns =
1545 current->default_timer_slack_ns;
1546 else
1547 current->timer_slack_ns = arg2;
1548 error = 0;
1549 break;
1550 case PR_MCE_KILL:
1551 if (arg4 | arg5)
1552 return -EINVAL;
1553 switch (arg2) {
1554 case PR_MCE_KILL_CLEAR:
1555 if (arg3 != 0)
1556 return -EINVAL;
1557 current->flags &= ~PF_MCE_PROCESS;
1558 break;
1559 case PR_MCE_KILL_SET:
1560 current->flags |= PF_MCE_PROCESS;
1561 if (arg3 == PR_MCE_KILL_EARLY)
1562 current->flags |= PF_MCE_EARLY;
1563 else if (arg3 == PR_MCE_KILL_LATE)
1564 current->flags &= ~PF_MCE_EARLY;
1565 else if (arg3 == PR_MCE_KILL_DEFAULT)
1566 current->flags &=
1567 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1568 else
1569 return -EINVAL;
1570 break;
1571 default:
1572 return -EINVAL;
1574 error = 0;
1575 break;
1576 case PR_MCE_KILL_GET:
1577 if (arg2 | arg3 | arg4 | arg5)
1578 return -EINVAL;
1579 if (current->flags & PF_MCE_PROCESS)
1580 error = (current->flags & PF_MCE_EARLY) ?
1581 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1582 else
1583 error = PR_MCE_KILL_DEFAULT;
1584 break;
1585 default:
1586 error = -EINVAL;
1587 break;
1589 return error;
1592 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1593 struct getcpu_cache __user *, unused)
1595 int err = 0;
1596 int cpu = raw_smp_processor_id();
1597 if (cpup)
1598 err |= put_user(cpu, cpup);
1599 if (nodep)
1600 err |= put_user(cpu_to_node(cpu), nodep);
1601 return err ? -EFAULT : 0;
1604 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1606 static void argv_cleanup(char **argv, char **envp)
1608 argv_free(argv);
1612 * orderly_poweroff - Trigger an orderly system poweroff
1613 * @force: force poweroff if command execution fails
1615 * This may be called from any context to trigger a system shutdown.
1616 * If the orderly shutdown fails, it will force an immediate shutdown.
1618 int orderly_poweroff(bool force)
1620 int argc;
1621 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1622 static char *envp[] = {
1623 "HOME=/",
1624 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1625 NULL
1627 int ret = -ENOMEM;
1628 struct subprocess_info *info;
1630 if (argv == NULL) {
1631 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1632 __func__, poweroff_cmd);
1633 goto out;
1636 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1637 if (info == NULL) {
1638 argv_free(argv);
1639 goto out;
1642 call_usermodehelper_setcleanup(info, argv_cleanup);
1644 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1646 out:
1647 if (ret && force) {
1648 printk(KERN_WARNING "Failed to start orderly shutdown: "
1649 "forcing the issue\n");
1651 /* I guess this should try to kick off some daemon to
1652 sync and poweroff asap. Or not even bother syncing
1653 if we're doing an emergency shutdown? */
1654 emergency_sync();
1655 kernel_power_off();
1658 return ret;
1660 EXPORT_SYMBOL_GPL(orderly_poweroff);