thinkpad-acpi: lock down size of hotkey keymap
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / signal.c
bloba437ca29f0cc30f23e9c04e86fe35f1a9d1c7247
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/signal.h>
34 #include <asm/param.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/siginfo.h>
38 #include "audit.h" /* audit_signal_info() */
41 * SLAB caches for signal bits.
44 static struct kmem_cache *sigqueue_cachep;
46 int print_fatal_signals __read_mostly;
48 static void __user *sig_handler(struct task_struct *t, int sig)
50 return t->sighand->action[sig - 1].sa.sa_handler;
53 static int sig_handler_ignored(void __user *handler, int sig)
55 /* Is it explicitly or implicitly ignored? */
56 return handler == SIG_IGN ||
57 (handler == SIG_DFL && sig_kernel_ignore(sig));
60 static int sig_task_ignored(struct task_struct *t, int sig,
61 int from_ancestor_ns)
63 void __user *handler;
65 handler = sig_handler(t, sig);
67 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
68 handler == SIG_DFL && !from_ancestor_ns)
69 return 1;
71 return sig_handler_ignored(handler, sig);
74 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
77 * Blocked signals are never ignored, since the
78 * signal handler may change by the time it is
79 * unblocked.
81 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
82 return 0;
84 if (!sig_task_ignored(t, sig, from_ancestor_ns))
85 return 0;
88 * Tracers may want to know about even ignored signals.
90 return !tracehook_consider_ignored_signal(t, sig);
94 * Re-calculate pending state from the set of locally pending
95 * signals, globally pending signals, and blocked signals.
97 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
99 unsigned long ready;
100 long i;
102 switch (_NSIG_WORDS) {
103 default:
104 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
105 ready |= signal->sig[i] &~ blocked->sig[i];
106 break;
108 case 4: ready = signal->sig[3] &~ blocked->sig[3];
109 ready |= signal->sig[2] &~ blocked->sig[2];
110 ready |= signal->sig[1] &~ blocked->sig[1];
111 ready |= signal->sig[0] &~ blocked->sig[0];
112 break;
114 case 2: ready = signal->sig[1] &~ blocked->sig[1];
115 ready |= signal->sig[0] &~ blocked->sig[0];
116 break;
118 case 1: ready = signal->sig[0] &~ blocked->sig[0];
120 return ready != 0;
123 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
125 static int recalc_sigpending_tsk(struct task_struct *t)
127 if (t->signal->group_stop_count > 0 ||
128 PENDING(&t->pending, &t->blocked) ||
129 PENDING(&t->signal->shared_pending, &t->blocked)) {
130 set_tsk_thread_flag(t, TIF_SIGPENDING);
131 return 1;
134 * We must never clear the flag in another thread, or in current
135 * when it's possible the current syscall is returning -ERESTART*.
136 * So we don't clear it here, and only callers who know they should do.
138 return 0;
142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
143 * This is superfluous when called on current, the wakeup is a harmless no-op.
145 void recalc_sigpending_and_wake(struct task_struct *t)
147 if (recalc_sigpending_tsk(t))
148 signal_wake_up(t, 0);
151 void recalc_sigpending(void)
153 if (unlikely(tracehook_force_sigpending()))
154 set_thread_flag(TIF_SIGPENDING);
155 else if (!recalc_sigpending_tsk(current) && !freezing(current))
156 clear_thread_flag(TIF_SIGPENDING);
160 /* Given the mask, find the first available signal that should be serviced. */
162 #define SYNCHRONOUS_MASK \
163 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
164 sigmask(SIGTRAP) | sigmask(SIGFPE))
166 int next_signal(struct sigpending *pending, sigset_t *mask)
168 unsigned long i, *s, *m, x;
169 int sig = 0;
171 s = pending->signal.sig;
172 m = mask->sig;
175 * Handle the first word specially: it contains the
176 * synchronous signals that need to be dequeued first.
178 x = *s &~ *m;
179 if (x) {
180 if (x & SYNCHRONOUS_MASK)
181 x &= SYNCHRONOUS_MASK;
182 sig = ffz(~x) + 1;
183 return sig;
186 switch (_NSIG_WORDS) {
187 default:
188 for (i = 1; i < _NSIG_WORDS; ++i) {
189 x = *++s &~ *++m;
190 if (!x)
191 continue;
192 sig = ffz(~x) + i*_NSIG_BPW + 1;
193 break;
195 break;
197 case 2:
198 x = s[1] &~ m[1];
199 if (!x)
200 break;
201 sig = ffz(~x) + _NSIG_BPW + 1;
202 break;
204 case 1:
205 /* Nothing to do */
206 break;
209 return sig;
212 static inline void print_dropped_signal(int sig)
214 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
216 if (!print_fatal_signals)
217 return;
219 if (!__ratelimit(&ratelimit_state))
220 return;
222 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
223 current->comm, current->pid, sig);
227 * allocate a new signal queue record
228 * - this may be called without locks if and only if t == current, otherwise an
229 * appopriate lock must be held to stop the target task from exiting
231 static struct sigqueue *
232 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
234 struct sigqueue *q = NULL;
235 struct user_struct *user;
238 * Protect access to @t credentials. This can go away when all
239 * callers hold rcu read lock.
241 rcu_read_lock();
242 user = get_uid(__task_cred(t)->user);
243 atomic_inc(&user->sigpending);
244 rcu_read_unlock();
246 if (override_rlimit ||
247 atomic_read(&user->sigpending) <=
248 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) {
249 q = kmem_cache_alloc(sigqueue_cachep, flags);
250 } else {
251 print_dropped_signal(sig);
254 if (unlikely(q == NULL)) {
255 atomic_dec(&user->sigpending);
256 free_uid(user);
257 } else {
258 INIT_LIST_HEAD(&q->list);
259 q->flags = 0;
260 q->user = user;
263 return q;
266 static void __sigqueue_free(struct sigqueue *q)
268 if (q->flags & SIGQUEUE_PREALLOC)
269 return;
270 atomic_dec(&q->user->sigpending);
271 free_uid(q->user);
272 kmem_cache_free(sigqueue_cachep, q);
275 void flush_sigqueue(struct sigpending *queue)
277 struct sigqueue *q;
279 sigemptyset(&queue->signal);
280 while (!list_empty(&queue->list)) {
281 q = list_entry(queue->list.next, struct sigqueue , list);
282 list_del_init(&q->list);
283 __sigqueue_free(q);
288 * Flush all pending signals for a task.
290 void __flush_signals(struct task_struct *t)
292 clear_tsk_thread_flag(t, TIF_SIGPENDING);
293 flush_sigqueue(&t->pending);
294 flush_sigqueue(&t->signal->shared_pending);
297 void flush_signals(struct task_struct *t)
299 unsigned long flags;
301 spin_lock_irqsave(&t->sighand->siglock, flags);
302 __flush_signals(t);
303 spin_unlock_irqrestore(&t->sighand->siglock, flags);
306 static void __flush_itimer_signals(struct sigpending *pending)
308 sigset_t signal, retain;
309 struct sigqueue *q, *n;
311 signal = pending->signal;
312 sigemptyset(&retain);
314 list_for_each_entry_safe(q, n, &pending->list, list) {
315 int sig = q->info.si_signo;
317 if (likely(q->info.si_code != SI_TIMER)) {
318 sigaddset(&retain, sig);
319 } else {
320 sigdelset(&signal, sig);
321 list_del_init(&q->list);
322 __sigqueue_free(q);
326 sigorsets(&pending->signal, &signal, &retain);
329 void flush_itimer_signals(void)
331 struct task_struct *tsk = current;
332 unsigned long flags;
334 spin_lock_irqsave(&tsk->sighand->siglock, flags);
335 __flush_itimer_signals(&tsk->pending);
336 __flush_itimer_signals(&tsk->signal->shared_pending);
337 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
340 void ignore_signals(struct task_struct *t)
342 int i;
344 for (i = 0; i < _NSIG; ++i)
345 t->sighand->action[i].sa.sa_handler = SIG_IGN;
347 flush_signals(t);
351 * Flush all handlers for a task.
354 void
355 flush_signal_handlers(struct task_struct *t, int force_default)
357 int i;
358 struct k_sigaction *ka = &t->sighand->action[0];
359 for (i = _NSIG ; i != 0 ; i--) {
360 if (force_default || ka->sa.sa_handler != SIG_IGN)
361 ka->sa.sa_handler = SIG_DFL;
362 ka->sa.sa_flags = 0;
363 sigemptyset(&ka->sa.sa_mask);
364 ka++;
368 int unhandled_signal(struct task_struct *tsk, int sig)
370 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
371 if (is_global_init(tsk))
372 return 1;
373 if (handler != SIG_IGN && handler != SIG_DFL)
374 return 0;
375 return !tracehook_consider_fatal_signal(tsk, sig);
379 /* Notify the system that a driver wants to block all signals for this
380 * process, and wants to be notified if any signals at all were to be
381 * sent/acted upon. If the notifier routine returns non-zero, then the
382 * signal will be acted upon after all. If the notifier routine returns 0,
383 * then then signal will be blocked. Only one block per process is
384 * allowed. priv is a pointer to private data that the notifier routine
385 * can use to determine if the signal should be blocked or not. */
387 void
388 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
390 unsigned long flags;
392 spin_lock_irqsave(&current->sighand->siglock, flags);
393 current->notifier_mask = mask;
394 current->notifier_data = priv;
395 current->notifier = notifier;
396 spin_unlock_irqrestore(&current->sighand->siglock, flags);
399 /* Notify the system that blocking has ended. */
401 void
402 unblock_all_signals(void)
404 unsigned long flags;
406 spin_lock_irqsave(&current->sighand->siglock, flags);
407 current->notifier = NULL;
408 current->notifier_data = NULL;
409 recalc_sigpending();
410 spin_unlock_irqrestore(&current->sighand->siglock, flags);
413 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
415 struct sigqueue *q, *first = NULL;
418 * Collect the siginfo appropriate to this signal. Check if
419 * there is another siginfo for the same signal.
421 list_for_each_entry(q, &list->list, list) {
422 if (q->info.si_signo == sig) {
423 if (first)
424 goto still_pending;
425 first = q;
429 sigdelset(&list->signal, sig);
431 if (first) {
432 still_pending:
433 list_del_init(&first->list);
434 copy_siginfo(info, &first->info);
435 __sigqueue_free(first);
436 } else {
437 /* Ok, it wasn't in the queue. This must be
438 a fast-pathed signal or we must have been
439 out of queue space. So zero out the info.
441 info->si_signo = sig;
442 info->si_errno = 0;
443 info->si_code = SI_USER;
444 info->si_pid = 0;
445 info->si_uid = 0;
449 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
450 siginfo_t *info)
452 int sig = next_signal(pending, mask);
454 if (sig) {
455 if (current->notifier) {
456 if (sigismember(current->notifier_mask, sig)) {
457 if (!(current->notifier)(current->notifier_data)) {
458 clear_thread_flag(TIF_SIGPENDING);
459 return 0;
464 collect_signal(sig, pending, info);
467 return sig;
471 * Dequeue a signal and return the element to the caller, which is
472 * expected to free it.
474 * All callers have to hold the siglock.
476 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
478 int signr;
480 /* We only dequeue private signals from ourselves, we don't let
481 * signalfd steal them
483 signr = __dequeue_signal(&tsk->pending, mask, info);
484 if (!signr) {
485 signr = __dequeue_signal(&tsk->signal->shared_pending,
486 mask, info);
488 * itimer signal ?
490 * itimers are process shared and we restart periodic
491 * itimers in the signal delivery path to prevent DoS
492 * attacks in the high resolution timer case. This is
493 * compliant with the old way of self restarting
494 * itimers, as the SIGALRM is a legacy signal and only
495 * queued once. Changing the restart behaviour to
496 * restart the timer in the signal dequeue path is
497 * reducing the timer noise on heavy loaded !highres
498 * systems too.
500 if (unlikely(signr == SIGALRM)) {
501 struct hrtimer *tmr = &tsk->signal->real_timer;
503 if (!hrtimer_is_queued(tmr) &&
504 tsk->signal->it_real_incr.tv64 != 0) {
505 hrtimer_forward(tmr, tmr->base->get_time(),
506 tsk->signal->it_real_incr);
507 hrtimer_restart(tmr);
512 recalc_sigpending();
513 if (!signr)
514 return 0;
516 if (unlikely(sig_kernel_stop(signr))) {
518 * Set a marker that we have dequeued a stop signal. Our
519 * caller might release the siglock and then the pending
520 * stop signal it is about to process is no longer in the
521 * pending bitmasks, but must still be cleared by a SIGCONT
522 * (and overruled by a SIGKILL). So those cases clear this
523 * shared flag after we've set it. Note that this flag may
524 * remain set after the signal we return is ignored or
525 * handled. That doesn't matter because its only purpose
526 * is to alert stop-signal processing code when another
527 * processor has come along and cleared the flag.
529 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
531 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
533 * Release the siglock to ensure proper locking order
534 * of timer locks outside of siglocks. Note, we leave
535 * irqs disabled here, since the posix-timers code is
536 * about to disable them again anyway.
538 spin_unlock(&tsk->sighand->siglock);
539 do_schedule_next_timer(info);
540 spin_lock(&tsk->sighand->siglock);
542 return signr;
546 * Tell a process that it has a new active signal..
548 * NOTE! we rely on the previous spin_lock to
549 * lock interrupts for us! We can only be called with
550 * "siglock" held, and the local interrupt must
551 * have been disabled when that got acquired!
553 * No need to set need_resched since signal event passing
554 * goes through ->blocked
556 void signal_wake_up(struct task_struct *t, int resume)
558 unsigned int mask;
560 set_tsk_thread_flag(t, TIF_SIGPENDING);
563 * For SIGKILL, we want to wake it up in the stopped/traced/killable
564 * case. We don't check t->state here because there is a race with it
565 * executing another processor and just now entering stopped state.
566 * By using wake_up_state, we ensure the process will wake up and
567 * handle its death signal.
569 mask = TASK_INTERRUPTIBLE;
570 if (resume)
571 mask |= TASK_WAKEKILL;
572 if (!wake_up_state(t, mask))
573 kick_process(t);
577 * Remove signals in mask from the pending set and queue.
578 * Returns 1 if any signals were found.
580 * All callers must be holding the siglock.
582 * This version takes a sigset mask and looks at all signals,
583 * not just those in the first mask word.
585 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
587 struct sigqueue *q, *n;
588 sigset_t m;
590 sigandsets(&m, mask, &s->signal);
591 if (sigisemptyset(&m))
592 return 0;
594 signandsets(&s->signal, &s->signal, mask);
595 list_for_each_entry_safe(q, n, &s->list, list) {
596 if (sigismember(mask, q->info.si_signo)) {
597 list_del_init(&q->list);
598 __sigqueue_free(q);
601 return 1;
604 * Remove signals in mask from the pending set and queue.
605 * Returns 1 if any signals were found.
607 * All callers must be holding the siglock.
609 static int rm_from_queue(unsigned long mask, struct sigpending *s)
611 struct sigqueue *q, *n;
613 if (!sigtestsetmask(&s->signal, mask))
614 return 0;
616 sigdelsetmask(&s->signal, mask);
617 list_for_each_entry_safe(q, n, &s->list, list) {
618 if (q->info.si_signo < SIGRTMIN &&
619 (mask & sigmask(q->info.si_signo))) {
620 list_del_init(&q->list);
621 __sigqueue_free(q);
624 return 1;
627 static inline int is_si_special(const struct siginfo *info)
629 return info <= SEND_SIG_FORCED;
632 static inline bool si_fromuser(const struct siginfo *info)
634 return info == SEND_SIG_NOINFO ||
635 (!is_si_special(info) && SI_FROMUSER(info));
639 * Bad permissions for sending the signal
640 * - the caller must hold at least the RCU read lock
642 static int check_kill_permission(int sig, struct siginfo *info,
643 struct task_struct *t)
645 const struct cred *cred, *tcred;
646 struct pid *sid;
647 int error;
649 if (!valid_signal(sig))
650 return -EINVAL;
652 if (!si_fromuser(info))
653 return 0;
655 error = audit_signal_info(sig, t); /* Let audit system see the signal */
656 if (error)
657 return error;
659 cred = current_cred();
660 tcred = __task_cred(t);
661 if (!same_thread_group(current, t) &&
662 (cred->euid ^ tcred->suid) &&
663 (cred->euid ^ tcred->uid) &&
664 (cred->uid ^ tcred->suid) &&
665 (cred->uid ^ tcred->uid) &&
666 !capable(CAP_KILL)) {
667 switch (sig) {
668 case SIGCONT:
669 sid = task_session(t);
671 * We don't return the error if sid == NULL. The
672 * task was unhashed, the caller must notice this.
674 if (!sid || sid == task_session(current))
675 break;
676 default:
677 return -EPERM;
681 return security_task_kill(t, info, sig, 0);
685 * Handle magic process-wide effects of stop/continue signals. Unlike
686 * the signal actions, these happen immediately at signal-generation
687 * time regardless of blocking, ignoring, or handling. This does the
688 * actual continuing for SIGCONT, but not the actual stopping for stop
689 * signals. The process stop is done as a signal action for SIG_DFL.
691 * Returns true if the signal should be actually delivered, otherwise
692 * it should be dropped.
694 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
696 struct signal_struct *signal = p->signal;
697 struct task_struct *t;
699 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
701 * The process is in the middle of dying, nothing to do.
703 } else if (sig_kernel_stop(sig)) {
705 * This is a stop signal. Remove SIGCONT from all queues.
707 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
708 t = p;
709 do {
710 rm_from_queue(sigmask(SIGCONT), &t->pending);
711 } while_each_thread(p, t);
712 } else if (sig == SIGCONT) {
713 unsigned int why;
715 * Remove all stop signals from all queues,
716 * and wake all threads.
718 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
719 t = p;
720 do {
721 unsigned int state;
722 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
724 * If there is a handler for SIGCONT, we must make
725 * sure that no thread returns to user mode before
726 * we post the signal, in case it was the only
727 * thread eligible to run the signal handler--then
728 * it must not do anything between resuming and
729 * running the handler. With the TIF_SIGPENDING
730 * flag set, the thread will pause and acquire the
731 * siglock that we hold now and until we've queued
732 * the pending signal.
734 * Wake up the stopped thread _after_ setting
735 * TIF_SIGPENDING
737 state = __TASK_STOPPED;
738 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
739 set_tsk_thread_flag(t, TIF_SIGPENDING);
740 state |= TASK_INTERRUPTIBLE;
742 wake_up_state(t, state);
743 } while_each_thread(p, t);
746 * Notify the parent with CLD_CONTINUED if we were stopped.
748 * If we were in the middle of a group stop, we pretend it
749 * was already finished, and then continued. Since SIGCHLD
750 * doesn't queue we report only CLD_STOPPED, as if the next
751 * CLD_CONTINUED was dropped.
753 why = 0;
754 if (signal->flags & SIGNAL_STOP_STOPPED)
755 why |= SIGNAL_CLD_CONTINUED;
756 else if (signal->group_stop_count)
757 why |= SIGNAL_CLD_STOPPED;
759 if (why) {
761 * The first thread which returns from do_signal_stop()
762 * will take ->siglock, notice SIGNAL_CLD_MASK, and
763 * notify its parent. See get_signal_to_deliver().
765 signal->flags = why | SIGNAL_STOP_CONTINUED;
766 signal->group_stop_count = 0;
767 signal->group_exit_code = 0;
768 } else {
770 * We are not stopped, but there could be a stop
771 * signal in the middle of being processed after
772 * being removed from the queue. Clear that too.
774 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
778 return !sig_ignored(p, sig, from_ancestor_ns);
782 * Test if P wants to take SIG. After we've checked all threads with this,
783 * it's equivalent to finding no threads not blocking SIG. Any threads not
784 * blocking SIG were ruled out because they are not running and already
785 * have pending signals. Such threads will dequeue from the shared queue
786 * as soon as they're available, so putting the signal on the shared queue
787 * will be equivalent to sending it to one such thread.
789 static inline int wants_signal(int sig, struct task_struct *p)
791 if (sigismember(&p->blocked, sig))
792 return 0;
793 if (p->flags & PF_EXITING)
794 return 0;
795 if (sig == SIGKILL)
796 return 1;
797 if (task_is_stopped_or_traced(p))
798 return 0;
799 return task_curr(p) || !signal_pending(p);
802 static void complete_signal(int sig, struct task_struct *p, int group)
804 struct signal_struct *signal = p->signal;
805 struct task_struct *t;
808 * Now find a thread we can wake up to take the signal off the queue.
810 * If the main thread wants the signal, it gets first crack.
811 * Probably the least surprising to the average bear.
813 if (wants_signal(sig, p))
814 t = p;
815 else if (!group || thread_group_empty(p))
817 * There is just one thread and it does not need to be woken.
818 * It will dequeue unblocked signals before it runs again.
820 return;
821 else {
823 * Otherwise try to find a suitable thread.
825 t = signal->curr_target;
826 while (!wants_signal(sig, t)) {
827 t = next_thread(t);
828 if (t == signal->curr_target)
830 * No thread needs to be woken.
831 * Any eligible threads will see
832 * the signal in the queue soon.
834 return;
836 signal->curr_target = t;
840 * Found a killable thread. If the signal will be fatal,
841 * then start taking the whole group down immediately.
843 if (sig_fatal(p, sig) &&
844 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
845 !sigismember(&t->real_blocked, sig) &&
846 (sig == SIGKILL ||
847 !tracehook_consider_fatal_signal(t, sig))) {
849 * This signal will be fatal to the whole group.
851 if (!sig_kernel_coredump(sig)) {
853 * Start a group exit and wake everybody up.
854 * This way we don't have other threads
855 * running and doing things after a slower
856 * thread has the fatal signal pending.
858 signal->flags = SIGNAL_GROUP_EXIT;
859 signal->group_exit_code = sig;
860 signal->group_stop_count = 0;
861 t = p;
862 do {
863 sigaddset(&t->pending.signal, SIGKILL);
864 signal_wake_up(t, 1);
865 } while_each_thread(p, t);
866 return;
871 * The signal is already in the shared-pending queue.
872 * Tell the chosen thread to wake up and dequeue it.
874 signal_wake_up(t, sig == SIGKILL);
875 return;
878 static inline int legacy_queue(struct sigpending *signals, int sig)
880 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
883 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
884 int group, int from_ancestor_ns)
886 struct sigpending *pending;
887 struct sigqueue *q;
888 int override_rlimit;
890 trace_signal_generate(sig, info, t);
892 assert_spin_locked(&t->sighand->siglock);
894 if (!prepare_signal(sig, t, from_ancestor_ns))
895 return 0;
897 pending = group ? &t->signal->shared_pending : &t->pending;
899 * Short-circuit ignored signals and support queuing
900 * exactly one non-rt signal, so that we can get more
901 * detailed information about the cause of the signal.
903 if (legacy_queue(pending, sig))
904 return 0;
906 * fast-pathed signals for kernel-internal things like SIGSTOP
907 * or SIGKILL.
909 if (info == SEND_SIG_FORCED)
910 goto out_set;
912 /* Real-time signals must be queued if sent by sigqueue, or
913 some other real-time mechanism. It is implementation
914 defined whether kill() does so. We attempt to do so, on
915 the principle of least surprise, but since kill is not
916 allowed to fail with EAGAIN when low on memory we just
917 make sure at least one signal gets delivered and don't
918 pass on the info struct. */
920 if (sig < SIGRTMIN)
921 override_rlimit = (is_si_special(info) || info->si_code >= 0);
922 else
923 override_rlimit = 0;
925 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
926 override_rlimit);
927 if (q) {
928 list_add_tail(&q->list, &pending->list);
929 switch ((unsigned long) info) {
930 case (unsigned long) SEND_SIG_NOINFO:
931 q->info.si_signo = sig;
932 q->info.si_errno = 0;
933 q->info.si_code = SI_USER;
934 q->info.si_pid = task_tgid_nr_ns(current,
935 task_active_pid_ns(t));
936 q->info.si_uid = current_uid();
937 break;
938 case (unsigned long) SEND_SIG_PRIV:
939 q->info.si_signo = sig;
940 q->info.si_errno = 0;
941 q->info.si_code = SI_KERNEL;
942 q->info.si_pid = 0;
943 q->info.si_uid = 0;
944 break;
945 default:
946 copy_siginfo(&q->info, info);
947 if (from_ancestor_ns)
948 q->info.si_pid = 0;
949 break;
951 } else if (!is_si_special(info)) {
952 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
954 * Queue overflow, abort. We may abort if the
955 * signal was rt and sent by user using something
956 * other than kill().
958 trace_signal_overflow_fail(sig, group, info);
959 return -EAGAIN;
960 } else {
962 * This is a silent loss of information. We still
963 * send the signal, but the *info bits are lost.
965 trace_signal_lose_info(sig, group, info);
969 out_set:
970 signalfd_notify(t, sig);
971 sigaddset(&pending->signal, sig);
972 complete_signal(sig, t, group);
973 return 0;
976 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
977 int group)
979 int from_ancestor_ns = 0;
981 #ifdef CONFIG_PID_NS
982 from_ancestor_ns = si_fromuser(info) &&
983 !task_pid_nr_ns(current, task_active_pid_ns(t));
984 #endif
986 return __send_signal(sig, info, t, group, from_ancestor_ns);
989 static void print_fatal_signal(struct pt_regs *regs, int signr)
991 printk("%s/%d: potentially unexpected fatal signal %d.\n",
992 current->comm, task_pid_nr(current), signr);
994 #if defined(__i386__) && !defined(__arch_um__)
995 printk("code at %08lx: ", regs->ip);
997 int i;
998 for (i = 0; i < 16; i++) {
999 unsigned char insn;
1001 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1002 break;
1003 printk("%02x ", insn);
1006 #endif
1007 printk("\n");
1008 preempt_disable();
1009 show_regs(regs);
1010 preempt_enable();
1013 static int __init setup_print_fatal_signals(char *str)
1015 get_option (&str, &print_fatal_signals);
1017 return 1;
1020 __setup("print-fatal-signals=", setup_print_fatal_signals);
1023 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1025 return send_signal(sig, info, p, 1);
1028 static int
1029 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1031 return send_signal(sig, info, t, 0);
1034 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1035 bool group)
1037 unsigned long flags;
1038 int ret = -ESRCH;
1040 if (lock_task_sighand(p, &flags)) {
1041 ret = send_signal(sig, info, p, group);
1042 unlock_task_sighand(p, &flags);
1045 return ret;
1049 * Force a signal that the process can't ignore: if necessary
1050 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1052 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1053 * since we do not want to have a signal handler that was blocked
1054 * be invoked when user space had explicitly blocked it.
1056 * We don't want to have recursive SIGSEGV's etc, for example,
1057 * that is why we also clear SIGNAL_UNKILLABLE.
1060 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1062 unsigned long int flags;
1063 int ret, blocked, ignored;
1064 struct k_sigaction *action;
1066 spin_lock_irqsave(&t->sighand->siglock, flags);
1067 action = &t->sighand->action[sig-1];
1068 ignored = action->sa.sa_handler == SIG_IGN;
1069 blocked = sigismember(&t->blocked, sig);
1070 if (blocked || ignored) {
1071 action->sa.sa_handler = SIG_DFL;
1072 if (blocked) {
1073 sigdelset(&t->blocked, sig);
1074 recalc_sigpending_and_wake(t);
1077 if (action->sa.sa_handler == SIG_DFL)
1078 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1079 ret = specific_send_sig_info(sig, info, t);
1080 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1082 return ret;
1086 * Nuke all other threads in the group.
1088 void zap_other_threads(struct task_struct *p)
1090 struct task_struct *t;
1092 p->signal->group_stop_count = 0;
1094 for (t = next_thread(p); t != p; t = next_thread(t)) {
1096 * Don't bother with already dead threads
1098 if (t->exit_state)
1099 continue;
1101 /* SIGKILL will be handled before any pending SIGSTOP */
1102 sigaddset(&t->pending.signal, SIGKILL);
1103 signal_wake_up(t, 1);
1107 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1109 struct sighand_struct *sighand;
1111 rcu_read_lock();
1112 for (;;) {
1113 sighand = rcu_dereference(tsk->sighand);
1114 if (unlikely(sighand == NULL))
1115 break;
1117 spin_lock_irqsave(&sighand->siglock, *flags);
1118 if (likely(sighand == tsk->sighand))
1119 break;
1120 spin_unlock_irqrestore(&sighand->siglock, *flags);
1122 rcu_read_unlock();
1124 return sighand;
1128 * send signal info to all the members of a group
1129 * - the caller must hold the RCU read lock at least
1131 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1133 int ret = check_kill_permission(sig, info, p);
1135 if (!ret && sig)
1136 ret = do_send_sig_info(sig, info, p, true);
1138 return ret;
1142 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1143 * control characters do (^C, ^Z etc)
1144 * - the caller must hold at least a readlock on tasklist_lock
1146 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1148 struct task_struct *p = NULL;
1149 int retval, success;
1151 success = 0;
1152 retval = -ESRCH;
1153 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1154 int err = group_send_sig_info(sig, info, p);
1155 success |= !err;
1156 retval = err;
1157 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1158 return success ? 0 : retval;
1161 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1163 int error = -ESRCH;
1164 struct task_struct *p;
1166 rcu_read_lock();
1167 retry:
1168 p = pid_task(pid, PIDTYPE_PID);
1169 if (p) {
1170 error = group_send_sig_info(sig, info, p);
1171 if (unlikely(error == -ESRCH))
1173 * The task was unhashed in between, try again.
1174 * If it is dead, pid_task() will return NULL,
1175 * if we race with de_thread() it will find the
1176 * new leader.
1178 goto retry;
1180 rcu_read_unlock();
1182 return error;
1186 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1188 int error;
1189 rcu_read_lock();
1190 error = kill_pid_info(sig, info, find_vpid(pid));
1191 rcu_read_unlock();
1192 return error;
1195 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1196 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1197 uid_t uid, uid_t euid, u32 secid)
1199 int ret = -EINVAL;
1200 struct task_struct *p;
1201 const struct cred *pcred;
1202 unsigned long flags;
1204 if (!valid_signal(sig))
1205 return ret;
1207 rcu_read_lock();
1208 p = pid_task(pid, PIDTYPE_PID);
1209 if (!p) {
1210 ret = -ESRCH;
1211 goto out_unlock;
1213 pcred = __task_cred(p);
1214 if (si_fromuser(info) &&
1215 euid != pcred->suid && euid != pcred->uid &&
1216 uid != pcred->suid && uid != pcred->uid) {
1217 ret = -EPERM;
1218 goto out_unlock;
1220 ret = security_task_kill(p, info, sig, secid);
1221 if (ret)
1222 goto out_unlock;
1224 if (sig) {
1225 if (lock_task_sighand(p, &flags)) {
1226 ret = __send_signal(sig, info, p, 1, 0);
1227 unlock_task_sighand(p, &flags);
1228 } else
1229 ret = -ESRCH;
1231 out_unlock:
1232 rcu_read_unlock();
1233 return ret;
1235 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1238 * kill_something_info() interprets pid in interesting ways just like kill(2).
1240 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1241 * is probably wrong. Should make it like BSD or SYSV.
1244 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1246 int ret;
1248 if (pid > 0) {
1249 rcu_read_lock();
1250 ret = kill_pid_info(sig, info, find_vpid(pid));
1251 rcu_read_unlock();
1252 return ret;
1255 read_lock(&tasklist_lock);
1256 if (pid != -1) {
1257 ret = __kill_pgrp_info(sig, info,
1258 pid ? find_vpid(-pid) : task_pgrp(current));
1259 } else {
1260 int retval = 0, count = 0;
1261 struct task_struct * p;
1263 for_each_process(p) {
1264 if (task_pid_vnr(p) > 1 &&
1265 !same_thread_group(p, current)) {
1266 int err = group_send_sig_info(sig, info, p);
1267 ++count;
1268 if (err != -EPERM)
1269 retval = err;
1272 ret = count ? retval : -ESRCH;
1274 read_unlock(&tasklist_lock);
1276 return ret;
1280 * These are for backward compatibility with the rest of the kernel source.
1284 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1287 * Make sure legacy kernel users don't send in bad values
1288 * (normal paths check this in check_kill_permission).
1290 if (!valid_signal(sig))
1291 return -EINVAL;
1293 return do_send_sig_info(sig, info, p, false);
1296 #define __si_special(priv) \
1297 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1300 send_sig(int sig, struct task_struct *p, int priv)
1302 return send_sig_info(sig, __si_special(priv), p);
1305 void
1306 force_sig(int sig, struct task_struct *p)
1308 force_sig_info(sig, SEND_SIG_PRIV, p);
1312 * When things go south during signal handling, we
1313 * will force a SIGSEGV. And if the signal that caused
1314 * the problem was already a SIGSEGV, we'll want to
1315 * make sure we don't even try to deliver the signal..
1318 force_sigsegv(int sig, struct task_struct *p)
1320 if (sig == SIGSEGV) {
1321 unsigned long flags;
1322 spin_lock_irqsave(&p->sighand->siglock, flags);
1323 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1324 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1326 force_sig(SIGSEGV, p);
1327 return 0;
1330 int kill_pgrp(struct pid *pid, int sig, int priv)
1332 int ret;
1334 read_lock(&tasklist_lock);
1335 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1336 read_unlock(&tasklist_lock);
1338 return ret;
1340 EXPORT_SYMBOL(kill_pgrp);
1342 int kill_pid(struct pid *pid, int sig, int priv)
1344 return kill_pid_info(sig, __si_special(priv), pid);
1346 EXPORT_SYMBOL(kill_pid);
1349 * These functions support sending signals using preallocated sigqueue
1350 * structures. This is needed "because realtime applications cannot
1351 * afford to lose notifications of asynchronous events, like timer
1352 * expirations or I/O completions". In the case of Posix Timers
1353 * we allocate the sigqueue structure from the timer_create. If this
1354 * allocation fails we are able to report the failure to the application
1355 * with an EAGAIN error.
1357 struct sigqueue *sigqueue_alloc(void)
1359 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1361 if (q)
1362 q->flags |= SIGQUEUE_PREALLOC;
1364 return q;
1367 void sigqueue_free(struct sigqueue *q)
1369 unsigned long flags;
1370 spinlock_t *lock = &current->sighand->siglock;
1372 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1374 * We must hold ->siglock while testing q->list
1375 * to serialize with collect_signal() or with
1376 * __exit_signal()->flush_sigqueue().
1378 spin_lock_irqsave(lock, flags);
1379 q->flags &= ~SIGQUEUE_PREALLOC;
1381 * If it is queued it will be freed when dequeued,
1382 * like the "regular" sigqueue.
1384 if (!list_empty(&q->list))
1385 q = NULL;
1386 spin_unlock_irqrestore(lock, flags);
1388 if (q)
1389 __sigqueue_free(q);
1392 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1394 int sig = q->info.si_signo;
1395 struct sigpending *pending;
1396 unsigned long flags;
1397 int ret;
1399 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1401 ret = -1;
1402 if (!likely(lock_task_sighand(t, &flags)))
1403 goto ret;
1405 ret = 1; /* the signal is ignored */
1406 if (!prepare_signal(sig, t, 0))
1407 goto out;
1409 ret = 0;
1410 if (unlikely(!list_empty(&q->list))) {
1412 * If an SI_TIMER entry is already queue just increment
1413 * the overrun count.
1415 BUG_ON(q->info.si_code != SI_TIMER);
1416 q->info.si_overrun++;
1417 goto out;
1419 q->info.si_overrun = 0;
1421 signalfd_notify(t, sig);
1422 pending = group ? &t->signal->shared_pending : &t->pending;
1423 list_add_tail(&q->list, &pending->list);
1424 sigaddset(&pending->signal, sig);
1425 complete_signal(sig, t, group);
1426 out:
1427 unlock_task_sighand(t, &flags);
1428 ret:
1429 return ret;
1433 * Let a parent know about the death of a child.
1434 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1436 * Returns -1 if our parent ignored us and so we've switched to
1437 * self-reaping, or else @sig.
1439 int do_notify_parent(struct task_struct *tsk, int sig)
1441 struct siginfo info;
1442 unsigned long flags;
1443 struct sighand_struct *psig;
1444 int ret = sig;
1446 BUG_ON(sig == -1);
1448 /* do_notify_parent_cldstop should have been called instead. */
1449 BUG_ON(task_is_stopped_or_traced(tsk));
1451 BUG_ON(!task_ptrace(tsk) &&
1452 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1454 info.si_signo = sig;
1455 info.si_errno = 0;
1457 * we are under tasklist_lock here so our parent is tied to
1458 * us and cannot exit and release its namespace.
1460 * the only it can is to switch its nsproxy with sys_unshare,
1461 * bu uncharing pid namespaces is not allowed, so we'll always
1462 * see relevant namespace
1464 * write_lock() currently calls preempt_disable() which is the
1465 * same as rcu_read_lock(), but according to Oleg, this is not
1466 * correct to rely on this
1468 rcu_read_lock();
1469 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1470 info.si_uid = __task_cred(tsk)->uid;
1471 rcu_read_unlock();
1473 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1474 tsk->signal->utime));
1475 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1476 tsk->signal->stime));
1478 info.si_status = tsk->exit_code & 0x7f;
1479 if (tsk->exit_code & 0x80)
1480 info.si_code = CLD_DUMPED;
1481 else if (tsk->exit_code & 0x7f)
1482 info.si_code = CLD_KILLED;
1483 else {
1484 info.si_code = CLD_EXITED;
1485 info.si_status = tsk->exit_code >> 8;
1488 psig = tsk->parent->sighand;
1489 spin_lock_irqsave(&psig->siglock, flags);
1490 if (!task_ptrace(tsk) && sig == SIGCHLD &&
1491 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1492 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1494 * We are exiting and our parent doesn't care. POSIX.1
1495 * defines special semantics for setting SIGCHLD to SIG_IGN
1496 * or setting the SA_NOCLDWAIT flag: we should be reaped
1497 * automatically and not left for our parent's wait4 call.
1498 * Rather than having the parent do it as a magic kind of
1499 * signal handler, we just set this to tell do_exit that we
1500 * can be cleaned up without becoming a zombie. Note that
1501 * we still call __wake_up_parent in this case, because a
1502 * blocked sys_wait4 might now return -ECHILD.
1504 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1505 * is implementation-defined: we do (if you don't want
1506 * it, just use SIG_IGN instead).
1508 ret = tsk->exit_signal = -1;
1509 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1510 sig = -1;
1512 if (valid_signal(sig) && sig > 0)
1513 __group_send_sig_info(sig, &info, tsk->parent);
1514 __wake_up_parent(tsk, tsk->parent);
1515 spin_unlock_irqrestore(&psig->siglock, flags);
1517 return ret;
1520 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1522 struct siginfo info;
1523 unsigned long flags;
1524 struct task_struct *parent;
1525 struct sighand_struct *sighand;
1527 if (task_ptrace(tsk))
1528 parent = tsk->parent;
1529 else {
1530 tsk = tsk->group_leader;
1531 parent = tsk->real_parent;
1534 info.si_signo = SIGCHLD;
1535 info.si_errno = 0;
1537 * see comment in do_notify_parent() abot the following 3 lines
1539 rcu_read_lock();
1540 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1541 info.si_uid = __task_cred(tsk)->uid;
1542 rcu_read_unlock();
1544 info.si_utime = cputime_to_clock_t(tsk->utime);
1545 info.si_stime = cputime_to_clock_t(tsk->stime);
1547 info.si_code = why;
1548 switch (why) {
1549 case CLD_CONTINUED:
1550 info.si_status = SIGCONT;
1551 break;
1552 case CLD_STOPPED:
1553 info.si_status = tsk->signal->group_exit_code & 0x7f;
1554 break;
1555 case CLD_TRAPPED:
1556 info.si_status = tsk->exit_code & 0x7f;
1557 break;
1558 default:
1559 BUG();
1562 sighand = parent->sighand;
1563 spin_lock_irqsave(&sighand->siglock, flags);
1564 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1565 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1566 __group_send_sig_info(SIGCHLD, &info, parent);
1568 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1570 __wake_up_parent(tsk, parent);
1571 spin_unlock_irqrestore(&sighand->siglock, flags);
1574 static inline int may_ptrace_stop(void)
1576 if (!likely(task_ptrace(current)))
1577 return 0;
1579 * Are we in the middle of do_coredump?
1580 * If so and our tracer is also part of the coredump stopping
1581 * is a deadlock situation, and pointless because our tracer
1582 * is dead so don't allow us to stop.
1583 * If SIGKILL was already sent before the caller unlocked
1584 * ->siglock we must see ->core_state != NULL. Otherwise it
1585 * is safe to enter schedule().
1587 if (unlikely(current->mm->core_state) &&
1588 unlikely(current->mm == current->parent->mm))
1589 return 0;
1591 return 1;
1595 * Return nonzero if there is a SIGKILL that should be waking us up.
1596 * Called with the siglock held.
1598 static int sigkill_pending(struct task_struct *tsk)
1600 return sigismember(&tsk->pending.signal, SIGKILL) ||
1601 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1605 * This must be called with current->sighand->siglock held.
1607 * This should be the path for all ptrace stops.
1608 * We always set current->last_siginfo while stopped here.
1609 * That makes it a way to test a stopped process for
1610 * being ptrace-stopped vs being job-control-stopped.
1612 * If we actually decide not to stop at all because the tracer
1613 * is gone, we keep current->exit_code unless clear_code.
1615 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1617 if (arch_ptrace_stop_needed(exit_code, info)) {
1619 * The arch code has something special to do before a
1620 * ptrace stop. This is allowed to block, e.g. for faults
1621 * on user stack pages. We can't keep the siglock while
1622 * calling arch_ptrace_stop, so we must release it now.
1623 * To preserve proper semantics, we must do this before
1624 * any signal bookkeeping like checking group_stop_count.
1625 * Meanwhile, a SIGKILL could come in before we retake the
1626 * siglock. That must prevent us from sleeping in TASK_TRACED.
1627 * So after regaining the lock, we must check for SIGKILL.
1629 spin_unlock_irq(&current->sighand->siglock);
1630 arch_ptrace_stop(exit_code, info);
1631 spin_lock_irq(&current->sighand->siglock);
1632 if (sigkill_pending(current))
1633 return;
1637 * If there is a group stop in progress,
1638 * we must participate in the bookkeeping.
1640 if (current->signal->group_stop_count > 0)
1641 --current->signal->group_stop_count;
1643 current->last_siginfo = info;
1644 current->exit_code = exit_code;
1646 /* Let the debugger run. */
1647 __set_current_state(TASK_TRACED);
1648 spin_unlock_irq(&current->sighand->siglock);
1649 read_lock(&tasklist_lock);
1650 if (may_ptrace_stop()) {
1651 do_notify_parent_cldstop(current, CLD_TRAPPED);
1653 * Don't want to allow preemption here, because
1654 * sys_ptrace() needs this task to be inactive.
1656 * XXX: implement read_unlock_no_resched().
1658 preempt_disable();
1659 read_unlock(&tasklist_lock);
1660 preempt_enable_no_resched();
1661 schedule();
1662 } else {
1664 * By the time we got the lock, our tracer went away.
1665 * Don't drop the lock yet, another tracer may come.
1667 __set_current_state(TASK_RUNNING);
1668 if (clear_code)
1669 current->exit_code = 0;
1670 read_unlock(&tasklist_lock);
1674 * While in TASK_TRACED, we were considered "frozen enough".
1675 * Now that we woke up, it's crucial if we're supposed to be
1676 * frozen that we freeze now before running anything substantial.
1678 try_to_freeze();
1681 * We are back. Now reacquire the siglock before touching
1682 * last_siginfo, so that we are sure to have synchronized with
1683 * any signal-sending on another CPU that wants to examine it.
1685 spin_lock_irq(&current->sighand->siglock);
1686 current->last_siginfo = NULL;
1689 * Queued signals ignored us while we were stopped for tracing.
1690 * So check for any that we should take before resuming user mode.
1691 * This sets TIF_SIGPENDING, but never clears it.
1693 recalc_sigpending_tsk(current);
1696 void ptrace_notify(int exit_code)
1698 siginfo_t info;
1700 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1702 memset(&info, 0, sizeof info);
1703 info.si_signo = SIGTRAP;
1704 info.si_code = exit_code;
1705 info.si_pid = task_pid_vnr(current);
1706 info.si_uid = current_uid();
1708 /* Let the debugger run. */
1709 spin_lock_irq(&current->sighand->siglock);
1710 ptrace_stop(exit_code, 1, &info);
1711 spin_unlock_irq(&current->sighand->siglock);
1715 * This performs the stopping for SIGSTOP and other stop signals.
1716 * We have to stop all threads in the thread group.
1717 * Returns nonzero if we've actually stopped and released the siglock.
1718 * Returns zero if we didn't stop and still hold the siglock.
1720 static int do_signal_stop(int signr)
1722 struct signal_struct *sig = current->signal;
1723 int notify;
1725 if (!sig->group_stop_count) {
1726 struct task_struct *t;
1728 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1729 unlikely(signal_group_exit(sig)))
1730 return 0;
1732 * There is no group stop already in progress.
1733 * We must initiate one now.
1735 sig->group_exit_code = signr;
1737 sig->group_stop_count = 1;
1738 for (t = next_thread(current); t != current; t = next_thread(t))
1740 * Setting state to TASK_STOPPED for a group
1741 * stop is always done with the siglock held,
1742 * so this check has no races.
1744 if (!(t->flags & PF_EXITING) &&
1745 !task_is_stopped_or_traced(t)) {
1746 sig->group_stop_count++;
1747 signal_wake_up(t, 0);
1751 * If there are no other threads in the group, or if there is
1752 * a group stop in progress and we are the last to stop, report
1753 * to the parent. When ptraced, every thread reports itself.
1755 notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0;
1756 notify = tracehook_notify_jctl(notify, CLD_STOPPED);
1758 * tracehook_notify_jctl() can drop and reacquire siglock, so
1759 * we keep ->group_stop_count != 0 before the call. If SIGCONT
1760 * or SIGKILL comes in between ->group_stop_count == 0.
1762 if (sig->group_stop_count) {
1763 if (!--sig->group_stop_count)
1764 sig->flags = SIGNAL_STOP_STOPPED;
1765 current->exit_code = sig->group_exit_code;
1766 __set_current_state(TASK_STOPPED);
1768 spin_unlock_irq(&current->sighand->siglock);
1770 if (notify) {
1771 read_lock(&tasklist_lock);
1772 do_notify_parent_cldstop(current, notify);
1773 read_unlock(&tasklist_lock);
1776 /* Now we don't run again until woken by SIGCONT or SIGKILL */
1777 do {
1778 schedule();
1779 } while (try_to_freeze());
1781 tracehook_finish_jctl();
1782 current->exit_code = 0;
1784 return 1;
1787 static int ptrace_signal(int signr, siginfo_t *info,
1788 struct pt_regs *regs, void *cookie)
1790 if (!task_ptrace(current))
1791 return signr;
1793 ptrace_signal_deliver(regs, cookie);
1795 /* Let the debugger run. */
1796 ptrace_stop(signr, 0, info);
1798 /* We're back. Did the debugger cancel the sig? */
1799 signr = current->exit_code;
1800 if (signr == 0)
1801 return signr;
1803 current->exit_code = 0;
1805 /* Update the siginfo structure if the signal has
1806 changed. If the debugger wanted something
1807 specific in the siginfo structure then it should
1808 have updated *info via PTRACE_SETSIGINFO. */
1809 if (signr != info->si_signo) {
1810 info->si_signo = signr;
1811 info->si_errno = 0;
1812 info->si_code = SI_USER;
1813 info->si_pid = task_pid_vnr(current->parent);
1814 info->si_uid = task_uid(current->parent);
1817 /* If the (new) signal is now blocked, requeue it. */
1818 if (sigismember(&current->blocked, signr)) {
1819 specific_send_sig_info(signr, info, current);
1820 signr = 0;
1823 return signr;
1826 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1827 struct pt_regs *regs, void *cookie)
1829 struct sighand_struct *sighand = current->sighand;
1830 struct signal_struct *signal = current->signal;
1831 int signr;
1833 relock:
1835 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1836 * While in TASK_STOPPED, we were considered "frozen enough".
1837 * Now that we woke up, it's crucial if we're supposed to be
1838 * frozen that we freeze now before running anything substantial.
1840 try_to_freeze();
1842 spin_lock_irq(&sighand->siglock);
1844 * Every stopped thread goes here after wakeup. Check to see if
1845 * we should notify the parent, prepare_signal(SIGCONT) encodes
1846 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1848 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1849 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1850 ? CLD_CONTINUED : CLD_STOPPED;
1851 signal->flags &= ~SIGNAL_CLD_MASK;
1853 why = tracehook_notify_jctl(why, CLD_CONTINUED);
1854 spin_unlock_irq(&sighand->siglock);
1856 if (why) {
1857 read_lock(&tasklist_lock);
1858 do_notify_parent_cldstop(current->group_leader, why);
1859 read_unlock(&tasklist_lock);
1861 goto relock;
1864 for (;;) {
1865 struct k_sigaction *ka;
1867 * Tracing can induce an artifical signal and choose sigaction.
1868 * The return value in @signr determines the default action,
1869 * but @info->si_signo is the signal number we will report.
1871 signr = tracehook_get_signal(current, regs, info, return_ka);
1872 if (unlikely(signr < 0))
1873 goto relock;
1874 if (unlikely(signr != 0))
1875 ka = return_ka;
1876 else {
1877 if (unlikely(signal->group_stop_count > 0) &&
1878 do_signal_stop(0))
1879 goto relock;
1881 signr = dequeue_signal(current, &current->blocked,
1882 info);
1884 if (!signr)
1885 break; /* will return 0 */
1887 if (signr != SIGKILL) {
1888 signr = ptrace_signal(signr, info,
1889 regs, cookie);
1890 if (!signr)
1891 continue;
1894 ka = &sighand->action[signr-1];
1897 /* Trace actually delivered signals. */
1898 trace_signal_deliver(signr, info, ka);
1900 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1901 continue;
1902 if (ka->sa.sa_handler != SIG_DFL) {
1903 /* Run the handler. */
1904 *return_ka = *ka;
1906 if (ka->sa.sa_flags & SA_ONESHOT)
1907 ka->sa.sa_handler = SIG_DFL;
1909 break; /* will return non-zero "signr" value */
1913 * Now we are doing the default action for this signal.
1915 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1916 continue;
1919 * Global init gets no signals it doesn't want.
1920 * Container-init gets no signals it doesn't want from same
1921 * container.
1923 * Note that if global/container-init sees a sig_kernel_only()
1924 * signal here, the signal must have been generated internally
1925 * or must have come from an ancestor namespace. In either
1926 * case, the signal cannot be dropped.
1928 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1929 !sig_kernel_only(signr))
1930 continue;
1932 if (sig_kernel_stop(signr)) {
1934 * The default action is to stop all threads in
1935 * the thread group. The job control signals
1936 * do nothing in an orphaned pgrp, but SIGSTOP
1937 * always works. Note that siglock needs to be
1938 * dropped during the call to is_orphaned_pgrp()
1939 * because of lock ordering with tasklist_lock.
1940 * This allows an intervening SIGCONT to be posted.
1941 * We need to check for that and bail out if necessary.
1943 if (signr != SIGSTOP) {
1944 spin_unlock_irq(&sighand->siglock);
1946 /* signals can be posted during this window */
1948 if (is_current_pgrp_orphaned())
1949 goto relock;
1951 spin_lock_irq(&sighand->siglock);
1954 if (likely(do_signal_stop(info->si_signo))) {
1955 /* It released the siglock. */
1956 goto relock;
1960 * We didn't actually stop, due to a race
1961 * with SIGCONT or something like that.
1963 continue;
1966 spin_unlock_irq(&sighand->siglock);
1969 * Anything else is fatal, maybe with a core dump.
1971 current->flags |= PF_SIGNALED;
1973 if (sig_kernel_coredump(signr)) {
1974 if (print_fatal_signals)
1975 print_fatal_signal(regs, info->si_signo);
1977 * If it was able to dump core, this kills all
1978 * other threads in the group and synchronizes with
1979 * their demise. If we lost the race with another
1980 * thread getting here, it set group_exit_code
1981 * first and our do_group_exit call below will use
1982 * that value and ignore the one we pass it.
1984 do_coredump(info->si_signo, info->si_signo, regs);
1988 * Death signals, no core dump.
1990 do_group_exit(info->si_signo);
1991 /* NOTREACHED */
1993 spin_unlock_irq(&sighand->siglock);
1994 return signr;
1997 void exit_signals(struct task_struct *tsk)
1999 int group_stop = 0;
2000 struct task_struct *t;
2002 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2003 tsk->flags |= PF_EXITING;
2004 return;
2007 spin_lock_irq(&tsk->sighand->siglock);
2009 * From now this task is not visible for group-wide signals,
2010 * see wants_signal(), do_signal_stop().
2012 tsk->flags |= PF_EXITING;
2013 if (!signal_pending(tsk))
2014 goto out;
2016 /* It could be that __group_complete_signal() choose us to
2017 * notify about group-wide signal. Another thread should be
2018 * woken now to take the signal since we will not.
2020 for (t = tsk; (t = next_thread(t)) != tsk; )
2021 if (!signal_pending(t) && !(t->flags & PF_EXITING))
2022 recalc_sigpending_and_wake(t);
2024 if (unlikely(tsk->signal->group_stop_count) &&
2025 !--tsk->signal->group_stop_count) {
2026 tsk->signal->flags = SIGNAL_STOP_STOPPED;
2027 group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED);
2029 out:
2030 spin_unlock_irq(&tsk->sighand->siglock);
2032 if (unlikely(group_stop)) {
2033 read_lock(&tasklist_lock);
2034 do_notify_parent_cldstop(tsk, group_stop);
2035 read_unlock(&tasklist_lock);
2039 EXPORT_SYMBOL(recalc_sigpending);
2040 EXPORT_SYMBOL_GPL(dequeue_signal);
2041 EXPORT_SYMBOL(flush_signals);
2042 EXPORT_SYMBOL(force_sig);
2043 EXPORT_SYMBOL(send_sig);
2044 EXPORT_SYMBOL(send_sig_info);
2045 EXPORT_SYMBOL(sigprocmask);
2046 EXPORT_SYMBOL(block_all_signals);
2047 EXPORT_SYMBOL(unblock_all_signals);
2051 * System call entry points.
2054 SYSCALL_DEFINE0(restart_syscall)
2056 struct restart_block *restart = &current_thread_info()->restart_block;
2057 return restart->fn(restart);
2060 long do_no_restart_syscall(struct restart_block *param)
2062 return -EINTR;
2066 * We don't need to get the kernel lock - this is all local to this
2067 * particular thread.. (and that's good, because this is _heavily_
2068 * used by various programs)
2072 * This is also useful for kernel threads that want to temporarily
2073 * (or permanently) block certain signals.
2075 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2076 * interface happily blocks "unblockable" signals like SIGKILL
2077 * and friends.
2079 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2081 int error;
2083 spin_lock_irq(&current->sighand->siglock);
2084 if (oldset)
2085 *oldset = current->blocked;
2087 error = 0;
2088 switch (how) {
2089 case SIG_BLOCK:
2090 sigorsets(&current->blocked, &current->blocked, set);
2091 break;
2092 case SIG_UNBLOCK:
2093 signandsets(&current->blocked, &current->blocked, set);
2094 break;
2095 case SIG_SETMASK:
2096 current->blocked = *set;
2097 break;
2098 default:
2099 error = -EINVAL;
2101 recalc_sigpending();
2102 spin_unlock_irq(&current->sighand->siglock);
2104 return error;
2107 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
2108 sigset_t __user *, oset, size_t, sigsetsize)
2110 int error = -EINVAL;
2111 sigset_t old_set, new_set;
2113 /* XXX: Don't preclude handling different sized sigset_t's. */
2114 if (sigsetsize != sizeof(sigset_t))
2115 goto out;
2117 if (set) {
2118 error = -EFAULT;
2119 if (copy_from_user(&new_set, set, sizeof(*set)))
2120 goto out;
2121 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2123 error = sigprocmask(how, &new_set, &old_set);
2124 if (error)
2125 goto out;
2126 if (oset)
2127 goto set_old;
2128 } else if (oset) {
2129 spin_lock_irq(&current->sighand->siglock);
2130 old_set = current->blocked;
2131 spin_unlock_irq(&current->sighand->siglock);
2133 set_old:
2134 error = -EFAULT;
2135 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2136 goto out;
2138 error = 0;
2139 out:
2140 return error;
2143 long do_sigpending(void __user *set, unsigned long sigsetsize)
2145 long error = -EINVAL;
2146 sigset_t pending;
2148 if (sigsetsize > sizeof(sigset_t))
2149 goto out;
2151 spin_lock_irq(&current->sighand->siglock);
2152 sigorsets(&pending, &current->pending.signal,
2153 &current->signal->shared_pending.signal);
2154 spin_unlock_irq(&current->sighand->siglock);
2156 /* Outside the lock because only this thread touches it. */
2157 sigandsets(&pending, &current->blocked, &pending);
2159 error = -EFAULT;
2160 if (!copy_to_user(set, &pending, sigsetsize))
2161 error = 0;
2163 out:
2164 return error;
2167 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2169 return do_sigpending(set, sigsetsize);
2172 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2174 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2176 int err;
2178 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2179 return -EFAULT;
2180 if (from->si_code < 0)
2181 return __copy_to_user(to, from, sizeof(siginfo_t))
2182 ? -EFAULT : 0;
2184 * If you change siginfo_t structure, please be sure
2185 * this code is fixed accordingly.
2186 * Please remember to update the signalfd_copyinfo() function
2187 * inside fs/signalfd.c too, in case siginfo_t changes.
2188 * It should never copy any pad contained in the structure
2189 * to avoid security leaks, but must copy the generic
2190 * 3 ints plus the relevant union member.
2192 err = __put_user(from->si_signo, &to->si_signo);
2193 err |= __put_user(from->si_errno, &to->si_errno);
2194 err |= __put_user((short)from->si_code, &to->si_code);
2195 switch (from->si_code & __SI_MASK) {
2196 case __SI_KILL:
2197 err |= __put_user(from->si_pid, &to->si_pid);
2198 err |= __put_user(from->si_uid, &to->si_uid);
2199 break;
2200 case __SI_TIMER:
2201 err |= __put_user(from->si_tid, &to->si_tid);
2202 err |= __put_user(from->si_overrun, &to->si_overrun);
2203 err |= __put_user(from->si_ptr, &to->si_ptr);
2204 break;
2205 case __SI_POLL:
2206 err |= __put_user(from->si_band, &to->si_band);
2207 err |= __put_user(from->si_fd, &to->si_fd);
2208 break;
2209 case __SI_FAULT:
2210 err |= __put_user(from->si_addr, &to->si_addr);
2211 #ifdef __ARCH_SI_TRAPNO
2212 err |= __put_user(from->si_trapno, &to->si_trapno);
2213 #endif
2214 break;
2215 case __SI_CHLD:
2216 err |= __put_user(from->si_pid, &to->si_pid);
2217 err |= __put_user(from->si_uid, &to->si_uid);
2218 err |= __put_user(from->si_status, &to->si_status);
2219 err |= __put_user(from->si_utime, &to->si_utime);
2220 err |= __put_user(from->si_stime, &to->si_stime);
2221 break;
2222 case __SI_RT: /* This is not generated by the kernel as of now. */
2223 case __SI_MESGQ: /* But this is */
2224 err |= __put_user(from->si_pid, &to->si_pid);
2225 err |= __put_user(from->si_uid, &to->si_uid);
2226 err |= __put_user(from->si_ptr, &to->si_ptr);
2227 break;
2228 default: /* this is just in case for now ... */
2229 err |= __put_user(from->si_pid, &to->si_pid);
2230 err |= __put_user(from->si_uid, &to->si_uid);
2231 break;
2233 return err;
2236 #endif
2238 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2239 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2240 size_t, sigsetsize)
2242 int ret, sig;
2243 sigset_t these;
2244 struct timespec ts;
2245 siginfo_t info;
2246 long timeout = 0;
2248 /* XXX: Don't preclude handling different sized sigset_t's. */
2249 if (sigsetsize != sizeof(sigset_t))
2250 return -EINVAL;
2252 if (copy_from_user(&these, uthese, sizeof(these)))
2253 return -EFAULT;
2256 * Invert the set of allowed signals to get those we
2257 * want to block.
2259 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2260 signotset(&these);
2262 if (uts) {
2263 if (copy_from_user(&ts, uts, sizeof(ts)))
2264 return -EFAULT;
2265 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2266 || ts.tv_sec < 0)
2267 return -EINVAL;
2270 spin_lock_irq(&current->sighand->siglock);
2271 sig = dequeue_signal(current, &these, &info);
2272 if (!sig) {
2273 timeout = MAX_SCHEDULE_TIMEOUT;
2274 if (uts)
2275 timeout = (timespec_to_jiffies(&ts)
2276 + (ts.tv_sec || ts.tv_nsec));
2278 if (timeout) {
2279 /* None ready -- temporarily unblock those we're
2280 * interested while we are sleeping in so that we'll
2281 * be awakened when they arrive. */
2282 current->real_blocked = current->blocked;
2283 sigandsets(&current->blocked, &current->blocked, &these);
2284 recalc_sigpending();
2285 spin_unlock_irq(&current->sighand->siglock);
2287 timeout = schedule_timeout_interruptible(timeout);
2289 spin_lock_irq(&current->sighand->siglock);
2290 sig = dequeue_signal(current, &these, &info);
2291 current->blocked = current->real_blocked;
2292 siginitset(&current->real_blocked, 0);
2293 recalc_sigpending();
2296 spin_unlock_irq(&current->sighand->siglock);
2298 if (sig) {
2299 ret = sig;
2300 if (uinfo) {
2301 if (copy_siginfo_to_user(uinfo, &info))
2302 ret = -EFAULT;
2304 } else {
2305 ret = -EAGAIN;
2306 if (timeout)
2307 ret = -EINTR;
2310 return ret;
2313 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2315 struct siginfo info;
2317 info.si_signo = sig;
2318 info.si_errno = 0;
2319 info.si_code = SI_USER;
2320 info.si_pid = task_tgid_vnr(current);
2321 info.si_uid = current_uid();
2323 return kill_something_info(sig, &info, pid);
2326 static int
2327 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2329 struct task_struct *p;
2330 int error = -ESRCH;
2332 rcu_read_lock();
2333 p = find_task_by_vpid(pid);
2334 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2335 error = check_kill_permission(sig, info, p);
2337 * The null signal is a permissions and process existence
2338 * probe. No signal is actually delivered.
2340 if (!error && sig) {
2341 error = do_send_sig_info(sig, info, p, false);
2343 * If lock_task_sighand() failed we pretend the task
2344 * dies after receiving the signal. The window is tiny,
2345 * and the signal is private anyway.
2347 if (unlikely(error == -ESRCH))
2348 error = 0;
2351 rcu_read_unlock();
2353 return error;
2356 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2358 struct siginfo info;
2360 info.si_signo = sig;
2361 info.si_errno = 0;
2362 info.si_code = SI_TKILL;
2363 info.si_pid = task_tgid_vnr(current);
2364 info.si_uid = current_uid();
2366 return do_send_specific(tgid, pid, sig, &info);
2370 * sys_tgkill - send signal to one specific thread
2371 * @tgid: the thread group ID of the thread
2372 * @pid: the PID of the thread
2373 * @sig: signal to be sent
2375 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2376 * exists but it's not belonging to the target process anymore. This
2377 * method solves the problem of threads exiting and PIDs getting reused.
2379 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2381 /* This is only valid for single tasks */
2382 if (pid <= 0 || tgid <= 0)
2383 return -EINVAL;
2385 return do_tkill(tgid, pid, sig);
2389 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2391 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2393 /* This is only valid for single tasks */
2394 if (pid <= 0)
2395 return -EINVAL;
2397 return do_tkill(0, pid, sig);
2400 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2401 siginfo_t __user *, uinfo)
2403 siginfo_t info;
2405 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2406 return -EFAULT;
2408 /* Not even root can pretend to send signals from the kernel.
2409 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2411 if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2412 /* We used to allow any < 0 si_code */
2413 WARN_ON_ONCE(info.si_code < 0);
2414 return -EPERM;
2416 info.si_signo = sig;
2418 /* POSIX.1b doesn't mention process groups. */
2419 return kill_proc_info(sig, &info, pid);
2422 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2424 /* This is only valid for single tasks */
2425 if (pid <= 0 || tgid <= 0)
2426 return -EINVAL;
2428 /* Not even root can pretend to send signals from the kernel.
2429 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2431 if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2432 /* We used to allow any < 0 si_code */
2433 WARN_ON_ONCE(info->si_code < 0);
2434 return -EPERM;
2436 info->si_signo = sig;
2438 return do_send_specific(tgid, pid, sig, info);
2441 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2442 siginfo_t __user *, uinfo)
2444 siginfo_t info;
2446 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2447 return -EFAULT;
2449 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2452 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2454 struct task_struct *t = current;
2455 struct k_sigaction *k;
2456 sigset_t mask;
2458 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2459 return -EINVAL;
2461 k = &t->sighand->action[sig-1];
2463 spin_lock_irq(&current->sighand->siglock);
2464 if (oact)
2465 *oact = *k;
2467 if (act) {
2468 sigdelsetmask(&act->sa.sa_mask,
2469 sigmask(SIGKILL) | sigmask(SIGSTOP));
2470 *k = *act;
2472 * POSIX 3.3.1.3:
2473 * "Setting a signal action to SIG_IGN for a signal that is
2474 * pending shall cause the pending signal to be discarded,
2475 * whether or not it is blocked."
2477 * "Setting a signal action to SIG_DFL for a signal that is
2478 * pending and whose default action is to ignore the signal
2479 * (for example, SIGCHLD), shall cause the pending signal to
2480 * be discarded, whether or not it is blocked"
2482 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2483 sigemptyset(&mask);
2484 sigaddset(&mask, sig);
2485 rm_from_queue_full(&mask, &t->signal->shared_pending);
2486 do {
2487 rm_from_queue_full(&mask, &t->pending);
2488 t = next_thread(t);
2489 } while (t != current);
2493 spin_unlock_irq(&current->sighand->siglock);
2494 return 0;
2497 int
2498 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2500 stack_t oss;
2501 int error;
2503 oss.ss_sp = (void __user *) current->sas_ss_sp;
2504 oss.ss_size = current->sas_ss_size;
2505 oss.ss_flags = sas_ss_flags(sp);
2507 if (uss) {
2508 void __user *ss_sp;
2509 size_t ss_size;
2510 int ss_flags;
2512 error = -EFAULT;
2513 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2514 goto out;
2515 error = __get_user(ss_sp, &uss->ss_sp) |
2516 __get_user(ss_flags, &uss->ss_flags) |
2517 __get_user(ss_size, &uss->ss_size);
2518 if (error)
2519 goto out;
2521 error = -EPERM;
2522 if (on_sig_stack(sp))
2523 goto out;
2525 error = -EINVAL;
2528 * Note - this code used to test ss_flags incorrectly
2529 * old code may have been written using ss_flags==0
2530 * to mean ss_flags==SS_ONSTACK (as this was the only
2531 * way that worked) - this fix preserves that older
2532 * mechanism
2534 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2535 goto out;
2537 if (ss_flags == SS_DISABLE) {
2538 ss_size = 0;
2539 ss_sp = NULL;
2540 } else {
2541 error = -ENOMEM;
2542 if (ss_size < MINSIGSTKSZ)
2543 goto out;
2546 current->sas_ss_sp = (unsigned long) ss_sp;
2547 current->sas_ss_size = ss_size;
2550 error = 0;
2551 if (uoss) {
2552 error = -EFAULT;
2553 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2554 goto out;
2555 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2556 __put_user(oss.ss_size, &uoss->ss_size) |
2557 __put_user(oss.ss_flags, &uoss->ss_flags);
2560 out:
2561 return error;
2564 #ifdef __ARCH_WANT_SYS_SIGPENDING
2566 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2568 return do_sigpending(set, sizeof(*set));
2571 #endif
2573 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2574 /* Some platforms have their own version with special arguments others
2575 support only sys_rt_sigprocmask. */
2577 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
2578 old_sigset_t __user *, oset)
2580 int error;
2581 old_sigset_t old_set, new_set;
2583 if (set) {
2584 error = -EFAULT;
2585 if (copy_from_user(&new_set, set, sizeof(*set)))
2586 goto out;
2587 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2589 spin_lock_irq(&current->sighand->siglock);
2590 old_set = current->blocked.sig[0];
2592 error = 0;
2593 switch (how) {
2594 default:
2595 error = -EINVAL;
2596 break;
2597 case SIG_BLOCK:
2598 sigaddsetmask(&current->blocked, new_set);
2599 break;
2600 case SIG_UNBLOCK:
2601 sigdelsetmask(&current->blocked, new_set);
2602 break;
2603 case SIG_SETMASK:
2604 current->blocked.sig[0] = new_set;
2605 break;
2608 recalc_sigpending();
2609 spin_unlock_irq(&current->sighand->siglock);
2610 if (error)
2611 goto out;
2612 if (oset)
2613 goto set_old;
2614 } else if (oset) {
2615 old_set = current->blocked.sig[0];
2616 set_old:
2617 error = -EFAULT;
2618 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2619 goto out;
2621 error = 0;
2622 out:
2623 return error;
2625 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2627 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2628 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2629 const struct sigaction __user *, act,
2630 struct sigaction __user *, oact,
2631 size_t, sigsetsize)
2633 struct k_sigaction new_sa, old_sa;
2634 int ret = -EINVAL;
2636 /* XXX: Don't preclude handling different sized sigset_t's. */
2637 if (sigsetsize != sizeof(sigset_t))
2638 goto out;
2640 if (act) {
2641 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2642 return -EFAULT;
2645 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2647 if (!ret && oact) {
2648 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2649 return -EFAULT;
2651 out:
2652 return ret;
2654 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2656 #ifdef __ARCH_WANT_SYS_SGETMASK
2659 * For backwards compatibility. Functionality superseded by sigprocmask.
2661 SYSCALL_DEFINE0(sgetmask)
2663 /* SMP safe */
2664 return current->blocked.sig[0];
2667 SYSCALL_DEFINE1(ssetmask, int, newmask)
2669 int old;
2671 spin_lock_irq(&current->sighand->siglock);
2672 old = current->blocked.sig[0];
2674 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2675 sigmask(SIGSTOP)));
2676 recalc_sigpending();
2677 spin_unlock_irq(&current->sighand->siglock);
2679 return old;
2681 #endif /* __ARCH_WANT_SGETMASK */
2683 #ifdef __ARCH_WANT_SYS_SIGNAL
2685 * For backwards compatibility. Functionality superseded by sigaction.
2687 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
2689 struct k_sigaction new_sa, old_sa;
2690 int ret;
2692 new_sa.sa.sa_handler = handler;
2693 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2694 sigemptyset(&new_sa.sa.sa_mask);
2696 ret = do_sigaction(sig, &new_sa, &old_sa);
2698 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2700 #endif /* __ARCH_WANT_SYS_SIGNAL */
2702 #ifdef __ARCH_WANT_SYS_PAUSE
2704 SYSCALL_DEFINE0(pause)
2706 current->state = TASK_INTERRUPTIBLE;
2707 schedule();
2708 return -ERESTARTNOHAND;
2711 #endif
2713 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2714 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
2716 sigset_t newset;
2718 /* XXX: Don't preclude handling different sized sigset_t's. */
2719 if (sigsetsize != sizeof(sigset_t))
2720 return -EINVAL;
2722 if (copy_from_user(&newset, unewset, sizeof(newset)))
2723 return -EFAULT;
2724 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2726 spin_lock_irq(&current->sighand->siglock);
2727 current->saved_sigmask = current->blocked;
2728 current->blocked = newset;
2729 recalc_sigpending();
2730 spin_unlock_irq(&current->sighand->siglock);
2732 current->state = TASK_INTERRUPTIBLE;
2733 schedule();
2734 set_restore_sigmask();
2735 return -ERESTARTNOHAND;
2737 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2739 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2741 return NULL;
2744 void __init signals_init(void)
2746 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);