Add KEY_MICMUTE and enable it on Lenovo X220
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / Documentation / edac.txt
blob249822cde82bcc8609b3c459d0ad3d8b9193ff35
3 EDAC - Error Detection And Correction
5 Written by Doug Thompson <dougthompson@xmission.com>
6 7 Dec 2005
7 17 Jul 2007     Updated
9 (c) Mauro Carvalho Chehab <mchehab@redhat.com>
10 05 Aug 2009     Nehalem interface
12 EDAC is maintained and written by:
14         Doug Thompson, Dave Jiang, Dave Peterson et al,
15         original author: Thayne Harbaugh,
17 Contact:
18         website:        bluesmoke.sourceforge.net
19         mailing list:   bluesmoke-devel@lists.sourceforge.net
21 "bluesmoke" was the name for this device driver when it was "out-of-tree"
22 and maintained at sourceforge.net.  When it was pushed into 2.6.16 for the
23 first time, it was renamed to 'EDAC'.
25 The bluesmoke project at sourceforge.net is now utilized as a 'staging area'
26 for EDAC development, before it is sent upstream to kernel.org
28 At the bluesmoke/EDAC project site is a series of quilt patches against
29 recent kernels, stored in a SVN repository. For easier downloading, there
30 is also a tarball snapshot available.
32 ============================================================================
33 EDAC PURPOSE
35 The 'edac' kernel module goal is to detect and report errors that occur
36 within the computer system running under linux.
38 MEMORY
40 In the initial release, memory Correctable Errors (CE) and Uncorrectable
41 Errors (UE) are the primary errors being harvested. These types of errors
42 are harvested by the 'edac_mc' class of device.
44 Detecting CE events, then harvesting those events and reporting them,
45 CAN be a predictor of future UE events.  With CE events, the system can
46 continue to operate, but with less safety. Preventive maintenance and
47 proactive part replacement of memory DIMMs exhibiting CEs can reduce
48 the likelihood of the dreaded UE events and system 'panics'.
50 NON-MEMORY
52 A new feature for EDAC, the edac_device class of device, was added in
53 the 2.6.23 version of the kernel.
55 This new device type allows for non-memory type of ECC hardware detectors
56 to have their states harvested and presented to userspace via the sysfs
57 interface.
59 Some architectures have ECC detectors for L1, L2 and L3 caches, along with DMA
60 engines, fabric switches, main data path switches, interconnections,
61 and various other hardware data paths. If the hardware reports it, then
62 a edac_device device probably can be constructed to harvest and present
63 that to userspace.
66 PCI BUS SCANNING
68 In addition, PCI Bus Parity and SERR Errors are scanned for on PCI devices
69 in order to determine if errors are occurring on data transfers.
71 The presence of PCI Parity errors must be examined with a grain of salt.
72 There are several add-in adapters that do NOT follow the PCI specification
73 with regards to Parity generation and reporting. The specification says
74 the vendor should tie the parity status bits to 0 if they do not intend
75 to generate parity.  Some vendors do not do this, and thus the parity bit
76 can "float" giving false positives.
78 In the kernel there is a PCI device attribute located in sysfs that is
79 checked by the EDAC PCI scanning code. If that attribute is set,
80 PCI parity/error scanning is skipped for that device. The attribute
81 is:
83         broken_parity_status
85 as is located in /sys/devices/pci<XXX>/0000:XX:YY.Z directories for
86 PCI devices.
88 FUTURE HARDWARE SCANNING
90 EDAC will have future error detectors that will be integrated with
91 EDAC or added to it, in the following list:
93         MCE     Machine Check Exception
94         MCA     Machine Check Architecture
95         NMI     NMI notification of ECC errors
96         MSRs    Machine Specific Register error cases
97         and other mechanisms.
99 These errors are usually bus errors, ECC errors, thermal throttling
100 and the like.
103 ============================================================================
104 EDAC VERSIONING
106 EDAC is composed of a "core" module (edac_core.ko) and several Memory
107 Controller (MC) driver modules. On a given system, the CORE
108 is loaded and one MC driver will be loaded. Both the CORE and
109 the MC driver (or edac_device driver) have individual versions that reflect
110 current release level of their respective modules.
112 Thus, to "report" on what version a system is running, one must report both
113 the CORE's and the MC driver's versions.
116 LOADING
118 If 'edac' was statically linked with the kernel then no loading is
119 necessary.  If 'edac' was built as modules then simply modprobe the
120 'edac' pieces that you need.  You should be able to modprobe
121 hardware-specific modules and have the dependencies load the necessary core
122 modules.
124 Example:
126 $> modprobe amd76x_edac
128 loads both the amd76x_edac.ko memory controller module and the edac_mc.ko
129 core module.
132 ============================================================================
133 EDAC sysfs INTERFACE
135 EDAC presents a 'sysfs' interface for control, reporting and attribute
136 reporting purposes.
138 EDAC lives in the /sys/devices/system/edac directory.
140 Within this directory there currently reside 2 'edac' components:
142         mc      memory controller(s) system
143         pci     PCI control and status system
146 ============================================================================
147 Memory Controller (mc) Model
149 First a background on the memory controller's model abstracted in EDAC.
150 Each 'mc' device controls a set of DIMM memory modules. These modules are
151 laid out in a Chip-Select Row (csrowX) and Channel table (chX). There can
152 be multiple csrows and multiple channels.
154 Memory controllers allow for several csrows, with 8 csrows being a typical value.
155 Yet, the actual number of csrows depends on the electrical "loading"
156 of a given motherboard, memory controller and DIMM characteristics.
158 Dual channels allows for 128 bit data transfers to the CPU from memory.
159 Some newer chipsets allow for more than 2 channels, like Fully Buffered DIMMs
160 (FB-DIMMs). The following example will assume 2 channels:
163                 Channel 0       Channel 1
164         ===================================
165         csrow0  | DIMM_A0       | DIMM_B0 |
166         csrow1  | DIMM_A0       | DIMM_B0 |
167         ===================================
169         ===================================
170         csrow2  | DIMM_A1       | DIMM_B1 |
171         csrow3  | DIMM_A1       | DIMM_B1 |
172         ===================================
174 In the above example table there are 4 physical slots on the motherboard
175 for memory DIMMs:
177         DIMM_A0
178         DIMM_B0
179         DIMM_A1
180         DIMM_B1
182 Labels for these slots are usually silk screened on the motherboard. Slots
183 labeled 'A' are channel 0 in this example. Slots labeled 'B'
184 are channel 1. Notice that there are two csrows possible on a
185 physical DIMM. These csrows are allocated their csrow assignment
186 based on the slot into which the memory DIMM is placed. Thus, when 1 DIMM
187 is placed in each Channel, the csrows cross both DIMMs.
189 Memory DIMMs come single or dual "ranked". A rank is a populated csrow.
190 Thus, 2 single ranked DIMMs, placed in slots DIMM_A0 and DIMM_B0 above
191 will have 1 csrow, csrow0. csrow1 will be empty. On the other hand,
192 when 2 dual ranked DIMMs are similarly placed, then both csrow0 and
193 csrow1 will be populated. The pattern repeats itself for csrow2 and
194 csrow3.
196 The representation of the above is reflected in the directory tree
197 in EDAC's sysfs interface. Starting in directory
198 /sys/devices/system/edac/mc each memory controller will be represented
199 by its own 'mcX' directory, where 'X' is the index of the MC.
202         ..../edac/mc/
203                    |
204                    |->mc0
205                    |->mc1
206                    |->mc2
207                    ....
209 Under each 'mcX' directory each 'csrowX' is again represented by a
210 'csrowX', where 'X' is the csrow index:
213         .../mc/mc0/
214                 |
215                 |->csrow0
216                 |->csrow2
217                 |->csrow3
218                 ....
220 Notice that there is no csrow1, which indicates that csrow0 is
221 composed of a single ranked DIMMs. This should also apply in both
222 Channels, in order to have dual-channel mode be operational. Since
223 both csrow2 and csrow3 are populated, this indicates a dual ranked
224 set of DIMMs for channels 0 and 1.
227 Within each of the 'mcX' and 'csrowX' directories are several
228 EDAC control and attribute files.
230 ============================================================================
231 'mcX' DIRECTORIES
234 In 'mcX' directories are EDAC control and attribute files for
235 this 'X' instance of the memory controllers:
238 Counter reset control file:
240         'reset_counters'
242         This write-only control file will zero all the statistical counters
243         for UE and CE errors.  Zeroing the counters will also reset the timer
244         indicating how long since the last counter zero.  This is useful
245         for computing errors/time.  Since the counters are always reset at
246         driver initialization time, no module/kernel parameter is available.
248         RUN TIME: echo "anything" >/sys/devices/system/edac/mc/mc0/counter_reset
250                 This resets the counters on memory controller 0
253 Seconds since last counter reset control file:
255         'seconds_since_reset'
257         This attribute file displays how many seconds have elapsed since the
258         last counter reset. This can be used with the error counters to
259         measure error rates.
263 Memory Controller name attribute file:
265         'mc_name'
267         This attribute file displays the type of memory controller
268         that is being utilized.
271 Total memory managed by this memory controller attribute file:
273         'size_mb'
275         This attribute file displays, in count of megabytes, of memory
276         that this instance of memory controller manages.
279 Total Uncorrectable Errors count attribute file:
281         'ue_count'
283         This attribute file displays the total count of uncorrectable
284         errors that have occurred on this memory controller. If panic_on_ue
285         is set this counter will not have a chance to increment,
286         since EDAC will panic the system.
289 Total UE count that had no information attribute fileY:
291         'ue_noinfo_count'
293         This attribute file displays the number of UEs that have occurred
294         with no information as to which DIMM slot is having errors.
297 Total Correctable Errors count attribute file:
299         'ce_count'
301         This attribute file displays the total count of correctable
302         errors that have occurred on this memory controller. This
303         count is very important to examine. CEs provide early
304         indications that a DIMM is beginning to fail. This count
305         field should be monitored for non-zero values and report
306         such information to the system administrator.
309 Total Correctable Errors count attribute file:
311         'ce_noinfo_count'
313         This attribute file displays the number of CEs that
314         have occurred wherewith no information as to which DIMM slot
315         is having errors. Memory is handicapped, but operational,
316         yet no information is available to indicate which slot
317         the failing memory is in. This count field should be also
318         be monitored for non-zero values.
320 Device Symlink:
322         'device'
324         Symlink to the memory controller device.
326 Sdram memory scrubbing rate:
328         'sdram_scrub_rate'
330         Read/Write attribute file that controls memory scrubbing. The scrubbing
331         rate is set by writing a minimum bandwidth in bytes/sec to the attribute
332         file. The rate will be translated to an internal value that gives at
333         least the specified rate.
335         Reading the file will return the actual scrubbing rate employed.
337         If configuration fails or memory scrubbing is not implemented, the value
338         of the attribute file will be -1.
342 ============================================================================
343 'csrowX' DIRECTORIES
345 In the 'csrowX' directories are EDAC control and attribute files for
346 this 'X' instance of csrow:
349 Total Uncorrectable Errors count attribute file:
351         'ue_count'
353         This attribute file displays the total count of uncorrectable
354         errors that have occurred on this csrow. If panic_on_ue is set
355         this counter will not have a chance to increment, since EDAC
356         will panic the system.
359 Total Correctable Errors count attribute file:
361         'ce_count'
363         This attribute file displays the total count of correctable
364         errors that have occurred on this csrow. This
365         count is very important to examine. CEs provide early
366         indications that a DIMM is beginning to fail. This count
367         field should be monitored for non-zero values and report
368         such information to the system administrator.
371 Total memory managed by this csrow attribute file:
373         'size_mb'
375         This attribute file displays, in count of megabytes, of memory
376         that this csrow contains.
379 Memory Type attribute file:
381         'mem_type'
383         This attribute file will display what type of memory is currently
384         on this csrow. Normally, either buffered or unbuffered memory.
385         Examples:
386                 Registered-DDR
387                 Unbuffered-DDR
390 EDAC Mode of operation attribute file:
392         'edac_mode'
394         This attribute file will display what type of Error detection
395         and correction is being utilized.
398 Device type attribute file:
400         'dev_type'
402         This attribute file will display what type of DRAM device is
403         being utilized on this DIMM.
404         Examples:
405                 x1
406                 x2
407                 x4
408                 x8
411 Channel 0 CE Count attribute file:
413         'ch0_ce_count'
415         This attribute file will display the count of CEs on this
416         DIMM located in channel 0.
419 Channel 0 UE Count attribute file:
421         'ch0_ue_count'
423         This attribute file will display the count of UEs on this
424         DIMM located in channel 0.
427 Channel 0 DIMM Label control file:
429         'ch0_dimm_label'
431         This control file allows this DIMM to have a label assigned
432         to it. With this label in the module, when errors occur
433         the output can provide the DIMM label in the system log.
434         This becomes vital for panic events to isolate the
435         cause of the UE event.
437         DIMM Labels must be assigned after booting, with information
438         that correctly identifies the physical slot with its
439         silk screen label. This information is currently very
440         motherboard specific and determination of this information
441         must occur in userland at this time.
444 Channel 1 CE Count attribute file:
446         'ch1_ce_count'
448         This attribute file will display the count of CEs on this
449         DIMM located in channel 1.
452 Channel 1 UE Count attribute file:
454         'ch1_ue_count'
456         This attribute file will display the count of UEs on this
457         DIMM located in channel 0.
460 Channel 1 DIMM Label control file:
462         'ch1_dimm_label'
464         This control file allows this DIMM to have a label assigned
465         to it. With this label in the module, when errors occur
466         the output can provide the DIMM label in the system log.
467         This becomes vital for panic events to isolate the
468         cause of the UE event.
470         DIMM Labels must be assigned after booting, with information
471         that correctly identifies the physical slot with its
472         silk screen label. This information is currently very
473         motherboard specific and determination of this information
474         must occur in userland at this time.
476 ============================================================================
477 SYSTEM LOGGING
479 If logging for UEs and CEs are enabled then system logs will have
480 error notices indicating errors that have been detected:
482 EDAC MC0: CE page 0x283, offset 0xce0, grain 8, syndrome 0x6ec3, row 0,
483 channel 1 "DIMM_B1": amd76x_edac
485 EDAC MC0: CE page 0x1e5, offset 0xfb0, grain 8, syndrome 0xb741, row 0,
486 channel 1 "DIMM_B1": amd76x_edac
489 The structure of the message is:
490         the memory controller                   (MC0)
491         Error type                              (CE)
492         memory page                             (0x283)
493         offset in the page                      (0xce0)
494         the byte granularity                    (grain 8)
495                 or resolution of the error
496         the error syndrome                      (0xb741)
497         memory row                              (row 0)
498         memory channel                          (channel 1)
499         DIMM label, if set prior                (DIMM B1
500         and then an optional, driver-specific message that may
501                 have additional information.
503 Both UEs and CEs with no info will lack all but memory controller,
504 error type, a notice of "no info" and then an optional,
505 driver-specific error message.
508 ============================================================================
509 PCI Bus Parity Detection
512 On Header Type 00 devices the primary status is looked at
513 for any parity error regardless of whether Parity is enabled on the
514 device.  (The spec indicates parity is generated in some cases).
515 On Header Type 01 bridges, the secondary status register is also
516 looked at to see if parity occurred on the bus on the other side of
517 the bridge.
520 SYSFS CONFIGURATION
522 Under /sys/devices/system/edac/pci are control and attribute files as follows:
525 Enable/Disable PCI Parity checking control file:
527         'check_pci_parity'
530         This control file enables or disables the PCI Bus Parity scanning
531         operation. Writing a 1 to this file enables the scanning. Writing
532         a 0 to this file disables the scanning.
534         Enable:
535         echo "1" >/sys/devices/system/edac/pci/check_pci_parity
537         Disable:
538         echo "0" >/sys/devices/system/edac/pci/check_pci_parity
541 Parity Count:
543         'pci_parity_count'
545         This attribute file will display the number of parity errors that
546         have been detected.
549 ============================================================================
550 MODULE PARAMETERS
552 Panic on UE control file:
554         'edac_mc_panic_on_ue'
556         An uncorrectable error will cause a machine panic.  This is usually
557         desirable.  It is a bad idea to continue when an uncorrectable error
558         occurs - it is indeterminate what was uncorrected and the operating
559         system context might be so mangled that continuing will lead to further
560         corruption. If the kernel has MCE configured, then EDAC will never
561         notice the UE.
563         LOAD TIME: module/kernel parameter: edac_mc_panic_on_ue=[0|1]
565         RUN TIME:  echo "1" > /sys/module/edac_core/parameters/edac_mc_panic_on_ue
568 Log UE control file:
570         'edac_mc_log_ue'
572         Generate kernel messages describing uncorrectable errors.  These errors
573         are reported through the system message log system.  UE statistics
574         will be accumulated even when UE logging is disabled.
576         LOAD TIME: module/kernel parameter: edac_mc_log_ue=[0|1]
578         RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ue
581 Log CE control file:
583         'edac_mc_log_ce'
585         Generate kernel messages describing correctable errors.  These
586         errors are reported through the system message log system.
587         CE statistics will be accumulated even when CE logging is disabled.
589         LOAD TIME: module/kernel parameter: edac_mc_log_ce=[0|1]
591         RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ce
594 Polling period control file:
596         'edac_mc_poll_msec'
598         The time period, in milliseconds, for polling for error information.
599         Too small a value wastes resources.  Too large a value might delay
600         necessary handling of errors and might loose valuable information for
601         locating the error.  1000 milliseconds (once each second) is the current
602         default. Systems which require all the bandwidth they can get, may
603         increase this.
605         LOAD TIME: module/kernel parameter: edac_mc_poll_msec=[0|1]
607         RUN TIME: echo "1000" > /sys/module/edac_core/parameters/edac_mc_poll_msec
610 Panic on PCI PARITY Error:
612         'panic_on_pci_parity'
615         This control files enables or disables panicking when a parity
616         error has been detected.
619         module/kernel parameter: edac_panic_on_pci_pe=[0|1]
621         Enable:
622         echo "1" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe
624         Disable:
625         echo "0" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe
629 =======================================================================
632 EDAC_DEVICE type of device
634 In the header file, edac_core.h, there is a series of edac_device structures
635 and APIs for the EDAC_DEVICE.
637 User space access to an edac_device is through the sysfs interface.
639 At the location /sys/devices/system/edac (sysfs) new edac_device devices will
640 appear.
642 There is a three level tree beneath the above 'edac' directory. For example,
643 the 'test_device_edac' device (found at the bluesmoke.sourceforget.net website)
644 installs itself as:
646         /sys/devices/systm/edac/test-instance
648 in this directory are various controls, a symlink and one or more 'instance'
649 directorys.
651 The standard default controls are:
653         log_ce          boolean to log CE events
654         log_ue          boolean to log UE events
655         panic_on_ue     boolean to 'panic' the system if an UE is encountered
656                         (default off, can be set true via startup script)
657         poll_msec       time period between POLL cycles for events
659 The test_device_edac device adds at least one of its own custom control:
661         test_bits       which in the current test driver does nothing but
662                         show how it is installed. A ported driver can
663                         add one or more such controls and/or attributes
664                         for specific uses.
665                         One out-of-tree driver uses controls here to allow
666                         for ERROR INJECTION operations to hardware
667                         injection registers
669 The symlink points to the 'struct dev' that is registered for this edac_device.
671 INSTANCES
673 One or more instance directories are present. For the 'test_device_edac' case:
675         test-instance0
678 In this directory there are two default counter attributes, which are totals of
679 counter in deeper subdirectories.
681         ce_count        total of CE events of subdirectories
682         ue_count        total of UE events of subdirectories
684 BLOCKS
686 At the lowest directory level is the 'block' directory. There can be 0, 1
687 or more blocks specified in each instance.
689         test-block0
692 In this directory the default attributes are:
694         ce_count        which is counter of CE events for this 'block'
695                         of hardware being monitored
696         ue_count        which is counter of UE events for this 'block'
697                         of hardware being monitored
700 The 'test_device_edac' device adds 4 attributes and 1 control:
702         test-block-bits-0       for every POLL cycle this counter
703                                 is incremented
704         test-block-bits-1       every 10 cycles, this counter is bumped once,
705                                 and test-block-bits-0 is set to 0
706         test-block-bits-2       every 100 cycles, this counter is bumped once,
707                                 and test-block-bits-1 is set to 0
708         test-block-bits-3       every 1000 cycles, this counter is bumped once,
709                                 and test-block-bits-2 is set to 0
712         reset-counters          writing ANY thing to this control will
713                                 reset all the above counters.
716 Use of the 'test_device_edac' driver should any others to create their own
717 unique drivers for their hardware systems.
719 The 'test_device_edac' sample driver is located at the
720 bluesmoke.sourceforge.net project site for EDAC.
722 =======================================================================
723 NEHALEM USAGE OF EDAC APIs
725 This chapter documents some EXPERIMENTAL mappings for EDAC API to handle
726 Nehalem EDAC driver. They will likely be changed on future versions
727 of the driver.
729 Due to the way Nehalem exports Memory Controller data, some adjustments
730 were done at i7core_edac driver. This chapter will cover those differences
732 1) On Nehalem, there are one Memory Controller per Quick Patch Interconnect
733    (QPI). At the driver, the term "socket" means one QPI. This is
734    associated with a physical CPU socket.
736    Each MC have 3 physical read channels, 3 physical write channels and
737    3 logic channels. The driver currenty sees it as just 3 channels.
738    Each channel can have up to 3 DIMMs.
740    The minimum known unity is DIMMs. There are no information about csrows.
741    As EDAC API maps the minimum unity is csrows, the driver sequencially
742    maps channel/dimm into different csrows.
744    For example, supposing the following layout:
745         Ch0 phy rd0, wr0 (0x063f4031): 2 ranks, UDIMMs
746           dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
747           dimm 1 1024 Mb offset: 4, bank: 8, rank: 1, row: 0x4000, col: 0x400
748         Ch1 phy rd1, wr1 (0x063f4031): 2 ranks, UDIMMs
749           dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
750         Ch2 phy rd3, wr3 (0x063f4031): 2 ranks, UDIMMs
751           dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
752    The driver will map it as:
753         csrow0: channel 0, dimm0
754         csrow1: channel 0, dimm1
755         csrow2: channel 1, dimm0
756         csrow3: channel 2, dimm0
758 exports one
759    DIMM per csrow.
761    Each QPI is exported as a different memory controller.
763 2) Nehalem MC has the hability to generate errors. The driver implements this
764    functionality via some error injection nodes:
766    For injecting a memory error, there are some sysfs nodes, under
767    /sys/devices/system/edac/mc/mc?/:
769    inject_addrmatch/*:
770       Controls the error injection mask register. It is possible to specify
771       several characteristics of the address to match an error code:
772          dimm = the affected dimm. Numbers are relative to a channel;
773          rank = the memory rank;
774          channel = the channel that will generate an error;
775          bank = the affected bank;
776          page = the page address;
777          column (or col) = the address column.
778       each of the above values can be set to "any" to match any valid value.
780       At driver init, all values are set to any.
782       For example, to generate an error at rank 1 of dimm 2, for any channel,
783       any bank, any page, any column:
784                 echo 2 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/dimm
785                 echo 1 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/rank
787         To return to the default behaviour of matching any, you can do:
788                 echo any >/sys/devices/system/edac/mc/mc0/inject_addrmatch/dimm
789                 echo any >/sys/devices/system/edac/mc/mc0/inject_addrmatch/rank
791    inject_eccmask:
792        specifies what bits will have troubles,
794    inject_section:
795        specifies what ECC cache section will get the error:
796                 3 for both
797                 2 for the highest
798                 1 for the lowest
800    inject_type:
801        specifies the type of error, being a combination of the following bits:
802                 bit 0 - repeat
803                 bit 1 - ecc
804                 bit 2 - parity
806        inject_enable starts the error generation when something different
807        than 0 is written.
809    All inject vars can be read. root permission is needed for write.
811    Datasheet states that the error will only be generated after a write on an
812    address that matches inject_addrmatch. It seems, however, that reading will
813    also produce an error.
815    For example, the following code will generate an error for any write access
816    at socket 0, on any DIMM/address on channel 2:
818    echo 2 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/channel
819    echo 2 >/sys/devices/system/edac/mc/mc0/inject_type
820    echo 64 >/sys/devices/system/edac/mc/mc0/inject_eccmask
821    echo 3 >/sys/devices/system/edac/mc/mc0/inject_section
822    echo 1 >/sys/devices/system/edac/mc/mc0/inject_enable
823    dd if=/dev/mem of=/dev/null seek=16k bs=4k count=1 >& /dev/null
825    For socket 1, it is needed to replace "mc0" by "mc1" at the above
826    commands.
828    The generated error message will look like:
830    EDAC MC0: UE row 0, channel-a= 0 channel-b= 0 labels "-": NON_FATAL (addr = 0x0075b980, socket=0, Dimm=0, Channel=2, syndrome=0x00000040, count=1, Err=8c0000400001009f:4000080482 (read error: read ECC error))
832 3) Nehalem specific Corrected Error memory counters
834    Nehalem have some registers to count memory errors. The driver uses those
835    registers to report Corrected Errors on devices with Registered Dimms.
837    However, those counters don't work with Unregistered Dimms. As the chipset
838    offers some counters that also work with UDIMMS (but with a worse level of
839    granularity than the default ones), the driver exposes those registers for
840    UDIMM memories.
842    They can be read by looking at the contents of all_channel_counts/
844    $ for i in /sys/devices/system/edac/mc/mc0/all_channel_counts/*; do echo $i; cat $i; done
845         /sys/devices/system/edac/mc/mc0/all_channel_counts/udimm0
846         0
847         /sys/devices/system/edac/mc/mc0/all_channel_counts/udimm1
848         0
849         /sys/devices/system/edac/mc/mc0/all_channel_counts/udimm2
850         0
852    What happens here is that errors on different csrows, but at the same
853    dimm number will increment the same counter.
854    So, in this memory mapping:
855         csrow0: channel 0, dimm0
856         csrow1: channel 0, dimm1
857         csrow2: channel 1, dimm0
858         csrow3: channel 2, dimm0
859    The hardware will increment udimm0 for an error at the first dimm at either
860         csrow0, csrow2  or csrow3;
861    The hardware will increment udimm1 for an error at the second dimm at either
862         csrow0, csrow2  or csrow3;
863    The hardware will increment udimm2 for an error at the third dimm at either
864         csrow0, csrow2  or csrow3;
866 4) Standard error counters
868    The standard error counters are generated when an mcelog error is received
869    by the driver. Since, with udimm, this is counted by software, it is
870    possible that some errors could be lost. With rdimm's, they displays the
871    contents of the registers