filter: add SKF_AD_RXHASH and SKF_AD_CPU
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / core / filter.c
blob054e286861d25d3d678ef8aa9ecaa15ba59b6e04
1 /*
2 * Linux Socket Filter - Kernel level socket filtering
4 * Author:
5 * Jay Schulist <jschlst@samba.org>
7 * Based on the design of:
8 * - The Berkeley Packet Filter
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Andi Kleen - Fix a few bad bugs and races.
16 * Kris Katterjohn - Added many additional checks in sk_chk_filter()
19 #include <linux/module.h>
20 #include <linux/types.h>
21 #include <linux/mm.h>
22 #include <linux/fcntl.h>
23 #include <linux/socket.h>
24 #include <linux/in.h>
25 #include <linux/inet.h>
26 #include <linux/netdevice.h>
27 #include <linux/if_packet.h>
28 #include <linux/gfp.h>
29 #include <net/ip.h>
30 #include <net/protocol.h>
31 #include <net/netlink.h>
32 #include <linux/skbuff.h>
33 #include <net/sock.h>
34 #include <linux/errno.h>
35 #include <linux/timer.h>
36 #include <asm/system.h>
37 #include <asm/uaccess.h>
38 #include <asm/unaligned.h>
39 #include <linux/filter.h>
40 #include <linux/reciprocal_div.h>
42 enum {
43 BPF_S_RET_K = 1,
44 BPF_S_RET_A,
45 BPF_S_ALU_ADD_K,
46 BPF_S_ALU_ADD_X,
47 BPF_S_ALU_SUB_K,
48 BPF_S_ALU_SUB_X,
49 BPF_S_ALU_MUL_K,
50 BPF_S_ALU_MUL_X,
51 BPF_S_ALU_DIV_X,
52 BPF_S_ALU_AND_K,
53 BPF_S_ALU_AND_X,
54 BPF_S_ALU_OR_K,
55 BPF_S_ALU_OR_X,
56 BPF_S_ALU_LSH_K,
57 BPF_S_ALU_LSH_X,
58 BPF_S_ALU_RSH_K,
59 BPF_S_ALU_RSH_X,
60 BPF_S_ALU_NEG,
61 BPF_S_LD_W_ABS,
62 BPF_S_LD_H_ABS,
63 BPF_S_LD_B_ABS,
64 BPF_S_LD_W_LEN,
65 BPF_S_LD_W_IND,
66 BPF_S_LD_H_IND,
67 BPF_S_LD_B_IND,
68 BPF_S_LD_IMM,
69 BPF_S_LDX_W_LEN,
70 BPF_S_LDX_B_MSH,
71 BPF_S_LDX_IMM,
72 BPF_S_MISC_TAX,
73 BPF_S_MISC_TXA,
74 BPF_S_ALU_DIV_K,
75 BPF_S_LD_MEM,
76 BPF_S_LDX_MEM,
77 BPF_S_ST,
78 BPF_S_STX,
79 BPF_S_JMP_JA,
80 BPF_S_JMP_JEQ_K,
81 BPF_S_JMP_JEQ_X,
82 BPF_S_JMP_JGE_K,
83 BPF_S_JMP_JGE_X,
84 BPF_S_JMP_JGT_K,
85 BPF_S_JMP_JGT_X,
86 BPF_S_JMP_JSET_K,
87 BPF_S_JMP_JSET_X,
90 /* No hurry in this branch */
91 static void *__load_pointer(struct sk_buff *skb, int k)
93 u8 *ptr = NULL;
95 if (k >= SKF_NET_OFF)
96 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
97 else if (k >= SKF_LL_OFF)
98 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
100 if (ptr >= skb->head && ptr < skb_tail_pointer(skb))
101 return ptr;
102 return NULL;
105 static inline void *load_pointer(struct sk_buff *skb, int k,
106 unsigned int size, void *buffer)
108 if (k >= 0)
109 return skb_header_pointer(skb, k, size, buffer);
110 else {
111 if (k >= SKF_AD_OFF)
112 return NULL;
113 return __load_pointer(skb, k);
118 * sk_filter - run a packet through a socket filter
119 * @sk: sock associated with &sk_buff
120 * @skb: buffer to filter
122 * Run the filter code and then cut skb->data to correct size returned by
123 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
124 * than pkt_len we keep whole skb->data. This is the socket level
125 * wrapper to sk_run_filter. It returns 0 if the packet should
126 * be accepted or -EPERM if the packet should be tossed.
129 int sk_filter(struct sock *sk, struct sk_buff *skb)
131 int err;
132 struct sk_filter *filter;
134 err = security_sock_rcv_skb(sk, skb);
135 if (err)
136 return err;
138 rcu_read_lock_bh();
139 filter = rcu_dereference_bh(sk->sk_filter);
140 if (filter) {
141 unsigned int pkt_len = sk_run_filter(skb, filter->insns);
143 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
145 rcu_read_unlock_bh();
147 return err;
149 EXPORT_SYMBOL(sk_filter);
152 * sk_run_filter - run a filter on a socket
153 * @skb: buffer to run the filter on
154 * @filter: filter to apply
156 * Decode and apply filter instructions to the skb->data.
157 * Return length to keep, 0 for none. @skb is the data we are
158 * filtering, @filter is the array of filter instructions.
159 * Because all jumps are guaranteed to be before last instruction,
160 * and last instruction guaranteed to be a RET, we dont need to check
161 * flen. (We used to pass to this function the length of filter)
163 unsigned int sk_run_filter(struct sk_buff *skb, const struct sock_filter *fentry)
165 void *ptr;
166 u32 A = 0; /* Accumulator */
167 u32 X = 0; /* Index Register */
168 u32 mem[BPF_MEMWORDS]; /* Scratch Memory Store */
169 unsigned long memvalid = 0;
170 u32 tmp;
171 int k;
173 BUILD_BUG_ON(BPF_MEMWORDS > BITS_PER_LONG);
175 * Process array of filter instructions.
177 for (;; fentry++) {
178 #if defined(CONFIG_X86_32)
179 #define K (fentry->k)
180 #else
181 const u32 K = fentry->k;
182 #endif
184 switch (fentry->code) {
185 case BPF_S_ALU_ADD_X:
186 A += X;
187 continue;
188 case BPF_S_ALU_ADD_K:
189 A += K;
190 continue;
191 case BPF_S_ALU_SUB_X:
192 A -= X;
193 continue;
194 case BPF_S_ALU_SUB_K:
195 A -= K;
196 continue;
197 case BPF_S_ALU_MUL_X:
198 A *= X;
199 continue;
200 case BPF_S_ALU_MUL_K:
201 A *= K;
202 continue;
203 case BPF_S_ALU_DIV_X:
204 if (X == 0)
205 return 0;
206 A /= X;
207 continue;
208 case BPF_S_ALU_DIV_K:
209 A = reciprocal_divide(A, K);
210 continue;
211 case BPF_S_ALU_AND_X:
212 A &= X;
213 continue;
214 case BPF_S_ALU_AND_K:
215 A &= K;
216 continue;
217 case BPF_S_ALU_OR_X:
218 A |= X;
219 continue;
220 case BPF_S_ALU_OR_K:
221 A |= K;
222 continue;
223 case BPF_S_ALU_LSH_X:
224 A <<= X;
225 continue;
226 case BPF_S_ALU_LSH_K:
227 A <<= K;
228 continue;
229 case BPF_S_ALU_RSH_X:
230 A >>= X;
231 continue;
232 case BPF_S_ALU_RSH_K:
233 A >>= K;
234 continue;
235 case BPF_S_ALU_NEG:
236 A = -A;
237 continue;
238 case BPF_S_JMP_JA:
239 fentry += K;
240 continue;
241 case BPF_S_JMP_JGT_K:
242 fentry += (A > K) ? fentry->jt : fentry->jf;
243 continue;
244 case BPF_S_JMP_JGE_K:
245 fentry += (A >= K) ? fentry->jt : fentry->jf;
246 continue;
247 case BPF_S_JMP_JEQ_K:
248 fentry += (A == K) ? fentry->jt : fentry->jf;
249 continue;
250 case BPF_S_JMP_JSET_K:
251 fentry += (A & K) ? fentry->jt : fentry->jf;
252 continue;
253 case BPF_S_JMP_JGT_X:
254 fentry += (A > X) ? fentry->jt : fentry->jf;
255 continue;
256 case BPF_S_JMP_JGE_X:
257 fentry += (A >= X) ? fentry->jt : fentry->jf;
258 continue;
259 case BPF_S_JMP_JEQ_X:
260 fentry += (A == X) ? fentry->jt : fentry->jf;
261 continue;
262 case BPF_S_JMP_JSET_X:
263 fentry += (A & X) ? fentry->jt : fentry->jf;
264 continue;
265 case BPF_S_LD_W_ABS:
266 k = K;
267 load_w:
268 ptr = load_pointer(skb, k, 4, &tmp);
269 if (ptr != NULL) {
270 A = get_unaligned_be32(ptr);
271 continue;
273 break;
274 case BPF_S_LD_H_ABS:
275 k = K;
276 load_h:
277 ptr = load_pointer(skb, k, 2, &tmp);
278 if (ptr != NULL) {
279 A = get_unaligned_be16(ptr);
280 continue;
282 break;
283 case BPF_S_LD_B_ABS:
284 k = K;
285 load_b:
286 ptr = load_pointer(skb, k, 1, &tmp);
287 if (ptr != NULL) {
288 A = *(u8 *)ptr;
289 continue;
291 break;
292 case BPF_S_LD_W_LEN:
293 A = skb->len;
294 continue;
295 case BPF_S_LDX_W_LEN:
296 X = skb->len;
297 continue;
298 case BPF_S_LD_W_IND:
299 k = X + K;
300 goto load_w;
301 case BPF_S_LD_H_IND:
302 k = X + K;
303 goto load_h;
304 case BPF_S_LD_B_IND:
305 k = X + K;
306 goto load_b;
307 case BPF_S_LDX_B_MSH:
308 ptr = load_pointer(skb, K, 1, &tmp);
309 if (ptr != NULL) {
310 X = (*(u8 *)ptr & 0xf) << 2;
311 continue;
313 return 0;
314 case BPF_S_LD_IMM:
315 A = K;
316 continue;
317 case BPF_S_LDX_IMM:
318 X = K;
319 continue;
320 case BPF_S_LD_MEM:
321 A = (memvalid & (1UL << K)) ?
322 mem[K] : 0;
323 continue;
324 case BPF_S_LDX_MEM:
325 X = (memvalid & (1UL << K)) ?
326 mem[K] : 0;
327 continue;
328 case BPF_S_MISC_TAX:
329 X = A;
330 continue;
331 case BPF_S_MISC_TXA:
332 A = X;
333 continue;
334 case BPF_S_RET_K:
335 return K;
336 case BPF_S_RET_A:
337 return A;
338 case BPF_S_ST:
339 memvalid |= 1UL << K;
340 mem[K] = A;
341 continue;
342 case BPF_S_STX:
343 memvalid |= 1UL << K;
344 mem[K] = X;
345 continue;
346 default:
347 WARN_ON(1);
348 return 0;
352 * Handle ancillary data, which are impossible
353 * (or very difficult) to get parsing packet contents.
355 switch (k-SKF_AD_OFF) {
356 case SKF_AD_PROTOCOL:
357 A = ntohs(skb->protocol);
358 continue;
359 case SKF_AD_PKTTYPE:
360 A = skb->pkt_type;
361 continue;
362 case SKF_AD_IFINDEX:
363 if (!skb->dev)
364 return 0;
365 A = skb->dev->ifindex;
366 continue;
367 case SKF_AD_MARK:
368 A = skb->mark;
369 continue;
370 case SKF_AD_QUEUE:
371 A = skb->queue_mapping;
372 continue;
373 case SKF_AD_HATYPE:
374 if (!skb->dev)
375 return 0;
376 A = skb->dev->type;
377 continue;
378 case SKF_AD_RXHASH:
379 A = skb->rxhash;
380 continue;
381 case SKF_AD_CPU:
382 A = raw_smp_processor_id();
383 continue;
384 case SKF_AD_NLATTR: {
385 struct nlattr *nla;
387 if (skb_is_nonlinear(skb))
388 return 0;
389 if (A > skb->len - sizeof(struct nlattr))
390 return 0;
392 nla = nla_find((struct nlattr *)&skb->data[A],
393 skb->len - A, X);
394 if (nla)
395 A = (void *)nla - (void *)skb->data;
396 else
397 A = 0;
398 continue;
400 case SKF_AD_NLATTR_NEST: {
401 struct nlattr *nla;
403 if (skb_is_nonlinear(skb))
404 return 0;
405 if (A > skb->len - sizeof(struct nlattr))
406 return 0;
408 nla = (struct nlattr *)&skb->data[A];
409 if (nla->nla_len > A - skb->len)
410 return 0;
412 nla = nla_find_nested(nla, X);
413 if (nla)
414 A = (void *)nla - (void *)skb->data;
415 else
416 A = 0;
417 continue;
419 default:
420 return 0;
424 return 0;
426 EXPORT_SYMBOL(sk_run_filter);
429 * sk_chk_filter - verify socket filter code
430 * @filter: filter to verify
431 * @flen: length of filter
433 * Check the user's filter code. If we let some ugly
434 * filter code slip through kaboom! The filter must contain
435 * no references or jumps that are out of range, no illegal
436 * instructions, and must end with a RET instruction.
438 * All jumps are forward as they are not signed.
440 * Returns 0 if the rule set is legal or -EINVAL if not.
442 int sk_chk_filter(struct sock_filter *filter, int flen)
445 * Valid instructions are initialized to non-0.
446 * Invalid instructions are initialized to 0.
448 static const u8 codes[] = {
449 [BPF_ALU|BPF_ADD|BPF_K] = BPF_S_ALU_ADD_K,
450 [BPF_ALU|BPF_ADD|BPF_X] = BPF_S_ALU_ADD_X,
451 [BPF_ALU|BPF_SUB|BPF_K] = BPF_S_ALU_SUB_K,
452 [BPF_ALU|BPF_SUB|BPF_X] = BPF_S_ALU_SUB_X,
453 [BPF_ALU|BPF_MUL|BPF_K] = BPF_S_ALU_MUL_K,
454 [BPF_ALU|BPF_MUL|BPF_X] = BPF_S_ALU_MUL_X,
455 [BPF_ALU|BPF_DIV|BPF_X] = BPF_S_ALU_DIV_X,
456 [BPF_ALU|BPF_AND|BPF_K] = BPF_S_ALU_AND_K,
457 [BPF_ALU|BPF_AND|BPF_X] = BPF_S_ALU_AND_X,
458 [BPF_ALU|BPF_OR|BPF_K] = BPF_S_ALU_OR_K,
459 [BPF_ALU|BPF_OR|BPF_X] = BPF_S_ALU_OR_X,
460 [BPF_ALU|BPF_LSH|BPF_K] = BPF_S_ALU_LSH_K,
461 [BPF_ALU|BPF_LSH|BPF_X] = BPF_S_ALU_LSH_X,
462 [BPF_ALU|BPF_RSH|BPF_K] = BPF_S_ALU_RSH_K,
463 [BPF_ALU|BPF_RSH|BPF_X] = BPF_S_ALU_RSH_X,
464 [BPF_ALU|BPF_NEG] = BPF_S_ALU_NEG,
465 [BPF_LD|BPF_W|BPF_ABS] = BPF_S_LD_W_ABS,
466 [BPF_LD|BPF_H|BPF_ABS] = BPF_S_LD_H_ABS,
467 [BPF_LD|BPF_B|BPF_ABS] = BPF_S_LD_B_ABS,
468 [BPF_LD|BPF_W|BPF_LEN] = BPF_S_LD_W_LEN,
469 [BPF_LD|BPF_W|BPF_IND] = BPF_S_LD_W_IND,
470 [BPF_LD|BPF_H|BPF_IND] = BPF_S_LD_H_IND,
471 [BPF_LD|BPF_B|BPF_IND] = BPF_S_LD_B_IND,
472 [BPF_LD|BPF_IMM] = BPF_S_LD_IMM,
473 [BPF_LDX|BPF_W|BPF_LEN] = BPF_S_LDX_W_LEN,
474 [BPF_LDX|BPF_B|BPF_MSH] = BPF_S_LDX_B_MSH,
475 [BPF_LDX|BPF_IMM] = BPF_S_LDX_IMM,
476 [BPF_MISC|BPF_TAX] = BPF_S_MISC_TAX,
477 [BPF_MISC|BPF_TXA] = BPF_S_MISC_TXA,
478 [BPF_RET|BPF_K] = BPF_S_RET_K,
479 [BPF_RET|BPF_A] = BPF_S_RET_A,
480 [BPF_ALU|BPF_DIV|BPF_K] = BPF_S_ALU_DIV_K,
481 [BPF_LD|BPF_MEM] = BPF_S_LD_MEM,
482 [BPF_LDX|BPF_MEM] = BPF_S_LDX_MEM,
483 [BPF_ST] = BPF_S_ST,
484 [BPF_STX] = BPF_S_STX,
485 [BPF_JMP|BPF_JA] = BPF_S_JMP_JA,
486 [BPF_JMP|BPF_JEQ|BPF_K] = BPF_S_JMP_JEQ_K,
487 [BPF_JMP|BPF_JEQ|BPF_X] = BPF_S_JMP_JEQ_X,
488 [BPF_JMP|BPF_JGE|BPF_K] = BPF_S_JMP_JGE_K,
489 [BPF_JMP|BPF_JGE|BPF_X] = BPF_S_JMP_JGE_X,
490 [BPF_JMP|BPF_JGT|BPF_K] = BPF_S_JMP_JGT_K,
491 [BPF_JMP|BPF_JGT|BPF_X] = BPF_S_JMP_JGT_X,
492 [BPF_JMP|BPF_JSET|BPF_K] = BPF_S_JMP_JSET_K,
493 [BPF_JMP|BPF_JSET|BPF_X] = BPF_S_JMP_JSET_X,
495 int pc;
497 if (flen == 0 || flen > BPF_MAXINSNS)
498 return -EINVAL;
500 /* check the filter code now */
501 for (pc = 0; pc < flen; pc++) {
502 struct sock_filter *ftest = &filter[pc];
503 u16 code = ftest->code;
505 if (code >= ARRAY_SIZE(codes))
506 return -EINVAL;
507 code = codes[code];
508 if (!code)
509 return -EINVAL;
510 /* Some instructions need special checks */
511 switch (code) {
512 case BPF_S_ALU_DIV_K:
513 /* check for division by zero */
514 if (ftest->k == 0)
515 return -EINVAL;
516 ftest->k = reciprocal_value(ftest->k);
517 break;
518 case BPF_S_LD_MEM:
519 case BPF_S_LDX_MEM:
520 case BPF_S_ST:
521 case BPF_S_STX:
522 /* check for invalid memory addresses */
523 if (ftest->k >= BPF_MEMWORDS)
524 return -EINVAL;
525 break;
526 case BPF_S_JMP_JA:
528 * Note, the large ftest->k might cause loops.
529 * Compare this with conditional jumps below,
530 * where offsets are limited. --ANK (981016)
532 if (ftest->k >= (unsigned)(flen-pc-1))
533 return -EINVAL;
534 break;
535 case BPF_S_JMP_JEQ_K:
536 case BPF_S_JMP_JEQ_X:
537 case BPF_S_JMP_JGE_K:
538 case BPF_S_JMP_JGE_X:
539 case BPF_S_JMP_JGT_K:
540 case BPF_S_JMP_JGT_X:
541 case BPF_S_JMP_JSET_X:
542 case BPF_S_JMP_JSET_K:
543 /* for conditionals both must be safe */
544 if (pc + ftest->jt + 1 >= flen ||
545 pc + ftest->jf + 1 >= flen)
546 return -EINVAL;
547 break;
549 ftest->code = code;
552 /* last instruction must be a RET code */
553 switch (filter[flen - 1].code) {
554 case BPF_S_RET_K:
555 case BPF_S_RET_A:
556 return 0;
558 return -EINVAL;
560 EXPORT_SYMBOL(sk_chk_filter);
563 * sk_filter_rcu_release - Release a socket filter by rcu_head
564 * @rcu: rcu_head that contains the sk_filter to free
566 static void sk_filter_rcu_release(struct rcu_head *rcu)
568 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
570 sk_filter_release(fp);
573 static void sk_filter_delayed_uncharge(struct sock *sk, struct sk_filter *fp)
575 unsigned int size = sk_filter_len(fp);
577 atomic_sub(size, &sk->sk_omem_alloc);
578 call_rcu_bh(&fp->rcu, sk_filter_rcu_release);
582 * sk_attach_filter - attach a socket filter
583 * @fprog: the filter program
584 * @sk: the socket to use
586 * Attach the user's filter code. We first run some sanity checks on
587 * it to make sure it does not explode on us later. If an error
588 * occurs or there is insufficient memory for the filter a negative
589 * errno code is returned. On success the return is zero.
591 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
593 struct sk_filter *fp, *old_fp;
594 unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
595 int err;
597 /* Make sure new filter is there and in the right amounts. */
598 if (fprog->filter == NULL)
599 return -EINVAL;
601 fp = sock_kmalloc(sk, fsize+sizeof(*fp), GFP_KERNEL);
602 if (!fp)
603 return -ENOMEM;
604 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
605 sock_kfree_s(sk, fp, fsize+sizeof(*fp));
606 return -EFAULT;
609 atomic_set(&fp->refcnt, 1);
610 fp->len = fprog->len;
612 err = sk_chk_filter(fp->insns, fp->len);
613 if (err) {
614 sk_filter_uncharge(sk, fp);
615 return err;
618 old_fp = rcu_dereference_protected(sk->sk_filter,
619 sock_owned_by_user(sk));
620 rcu_assign_pointer(sk->sk_filter, fp);
622 if (old_fp)
623 sk_filter_delayed_uncharge(sk, old_fp);
624 return 0;
626 EXPORT_SYMBOL_GPL(sk_attach_filter);
628 int sk_detach_filter(struct sock *sk)
630 int ret = -ENOENT;
631 struct sk_filter *filter;
633 filter = rcu_dereference_protected(sk->sk_filter,
634 sock_owned_by_user(sk));
635 if (filter) {
636 rcu_assign_pointer(sk->sk_filter, NULL);
637 sk_filter_delayed_uncharge(sk, filter);
638 ret = 0;
640 return ret;
642 EXPORT_SYMBOL_GPL(sk_detach_filter);