clockevents: Set noop handler in clockevents_exchange_device()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / time / timekeeping.c
blob4a71cfffd38dd50ef499de7a0ddb50252c492eca
1 /*
2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
9 */
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/sysdev.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
28 /* The shift value of the current clocksource. */
29 int shift;
31 /* Number of clock cycles in one NTP interval. */
32 cycle_t cycle_interval;
33 /* Number of clock shifted nano seconds in one NTP interval. */
34 u64 xtime_interval;
35 /* shifted nano seconds left over when rounding cycle_interval */
36 s64 xtime_remainder;
37 /* Raw nano seconds accumulated per NTP interval. */
38 u32 raw_interval;
40 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
41 u64 xtime_nsec;
42 /* Difference between accumulated time and NTP time in ntp
43 * shifted nano seconds. */
44 s64 ntp_error;
45 /* Shift conversion between clock shifted nano seconds and
46 * ntp shifted nano seconds. */
47 int ntp_error_shift;
48 /* NTP adjusted clock multiplier */
49 u32 mult;
52 struct timekeeper timekeeper;
54 /**
55 * timekeeper_setup_internals - Set up internals to use clocksource clock.
57 * @clock: Pointer to clocksource.
59 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
60 * pair and interval request.
62 * Unless you're the timekeeping code, you should not be using this!
64 static void timekeeper_setup_internals(struct clocksource *clock)
66 cycle_t interval;
67 u64 tmp, ntpinterval;
69 timekeeper.clock = clock;
70 clock->cycle_last = clock->read(clock);
72 /* Do the ns -> cycle conversion first, using original mult */
73 tmp = NTP_INTERVAL_LENGTH;
74 tmp <<= clock->shift;
75 ntpinterval = tmp;
76 tmp += clock->mult/2;
77 do_div(tmp, clock->mult);
78 if (tmp == 0)
79 tmp = 1;
81 interval = (cycle_t) tmp;
82 timekeeper.cycle_interval = interval;
84 /* Go back from cycles -> shifted ns */
85 timekeeper.xtime_interval = (u64) interval * clock->mult;
86 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
87 timekeeper.raw_interval =
88 ((u64) interval * clock->mult) >> clock->shift;
90 timekeeper.xtime_nsec = 0;
91 timekeeper.shift = clock->shift;
93 timekeeper.ntp_error = 0;
94 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
97 * The timekeeper keeps its own mult values for the currently
98 * active clocksource. These value will be adjusted via NTP
99 * to counteract clock drifting.
101 timekeeper.mult = clock->mult;
104 /* Timekeeper helper functions. */
105 static inline s64 timekeeping_get_ns(void)
107 cycle_t cycle_now, cycle_delta;
108 struct clocksource *clock;
110 /* read clocksource: */
111 clock = timekeeper.clock;
112 cycle_now = clock->read(clock);
114 /* calculate the delta since the last update_wall_time: */
115 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
117 /* return delta convert to nanoseconds using ntp adjusted mult. */
118 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
119 timekeeper.shift);
122 static inline s64 timekeeping_get_ns_raw(void)
124 cycle_t cycle_now, cycle_delta;
125 struct clocksource *clock;
127 /* read clocksource: */
128 clock = timekeeper.clock;
129 cycle_now = clock->read(clock);
131 /* calculate the delta since the last update_wall_time: */
132 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
134 /* return delta convert to nanoseconds using ntp adjusted mult. */
135 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
139 * This read-write spinlock protects us from races in SMP while
140 * playing with xtime.
142 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
146 * The current time
147 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
148 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
149 * at zero at system boot time, so wall_to_monotonic will be negative,
150 * however, we will ALWAYS keep the tv_nsec part positive so we can use
151 * the usual normalization.
153 * wall_to_monotonic is moved after resume from suspend for the monotonic
154 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
155 * to get the real boot based time offset.
157 * - wall_to_monotonic is no longer the boot time, getboottime must be
158 * used instead.
160 struct timespec xtime __attribute__ ((aligned (16)));
161 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
162 static struct timespec total_sleep_time;
165 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
167 struct timespec raw_time;
169 /* flag for if timekeeping is suspended */
170 int __read_mostly timekeeping_suspended;
172 static struct timespec xtime_cache __attribute__ ((aligned (16)));
173 void update_xtime_cache(u64 nsec)
176 * Use temporary variable so get_seconds() cannot catch
177 * an intermediate xtime_cache.tv_sec value.
178 * The ACCESS_ONCE() keeps the compiler from optimizing
179 * out the intermediate value.
181 struct timespec ts = xtime;
182 timespec_add_ns(&ts, nsec);
183 ACCESS_ONCE(xtime_cache) = ts;
186 /* must hold xtime_lock */
187 void timekeeping_leap_insert(int leapsecond)
189 xtime.tv_sec += leapsecond;
190 wall_to_monotonic.tv_sec -= leapsecond;
191 update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
194 #ifdef CONFIG_GENERIC_TIME
197 * timekeeping_forward_now - update clock to the current time
199 * Forward the current clock to update its state since the last call to
200 * update_wall_time(). This is useful before significant clock changes,
201 * as it avoids having to deal with this time offset explicitly.
203 static void timekeeping_forward_now(void)
205 cycle_t cycle_now, cycle_delta;
206 struct clocksource *clock;
207 s64 nsec;
209 clock = timekeeper.clock;
210 cycle_now = clock->read(clock);
211 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
212 clock->cycle_last = cycle_now;
214 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
215 timekeeper.shift);
217 /* If arch requires, add in gettimeoffset() */
218 nsec += arch_gettimeoffset();
220 timespec_add_ns(&xtime, nsec);
222 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
223 timespec_add_ns(&raw_time, nsec);
227 * getnstimeofday - Returns the time of day in a timespec
228 * @ts: pointer to the timespec to be set
230 * Returns the time of day in a timespec.
232 void getnstimeofday(struct timespec *ts)
234 unsigned long seq;
235 s64 nsecs;
237 WARN_ON(timekeeping_suspended);
239 do {
240 seq = read_seqbegin(&xtime_lock);
242 *ts = xtime;
243 nsecs = timekeeping_get_ns();
245 /* If arch requires, add in gettimeoffset() */
246 nsecs += arch_gettimeoffset();
248 } while (read_seqretry(&xtime_lock, seq));
250 timespec_add_ns(ts, nsecs);
253 EXPORT_SYMBOL(getnstimeofday);
255 ktime_t ktime_get(void)
257 unsigned int seq;
258 s64 secs, nsecs;
260 WARN_ON(timekeeping_suspended);
262 do {
263 seq = read_seqbegin(&xtime_lock);
264 secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
265 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
266 nsecs += timekeeping_get_ns();
267 /* If arch requires, add in gettimeoffset() */
268 nsecs += arch_gettimeoffset();
270 } while (read_seqretry(&xtime_lock, seq));
272 * Use ktime_set/ktime_add_ns to create a proper ktime on
273 * 32-bit architectures without CONFIG_KTIME_SCALAR.
275 return ktime_add_ns(ktime_set(secs, 0), nsecs);
277 EXPORT_SYMBOL_GPL(ktime_get);
280 * ktime_get_ts - get the monotonic clock in timespec format
281 * @ts: pointer to timespec variable
283 * The function calculates the monotonic clock from the realtime
284 * clock and the wall_to_monotonic offset and stores the result
285 * in normalized timespec format in the variable pointed to by @ts.
287 void ktime_get_ts(struct timespec *ts)
289 struct timespec tomono;
290 unsigned int seq;
291 s64 nsecs;
293 WARN_ON(timekeeping_suspended);
295 do {
296 seq = read_seqbegin(&xtime_lock);
297 *ts = xtime;
298 tomono = wall_to_monotonic;
299 nsecs = timekeeping_get_ns();
300 /* If arch requires, add in gettimeoffset() */
301 nsecs += arch_gettimeoffset();
303 } while (read_seqretry(&xtime_lock, seq));
305 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
306 ts->tv_nsec + tomono.tv_nsec + nsecs);
308 EXPORT_SYMBOL_GPL(ktime_get_ts);
311 * do_gettimeofday - Returns the time of day in a timeval
312 * @tv: pointer to the timeval to be set
314 * NOTE: Users should be converted to using getnstimeofday()
316 void do_gettimeofday(struct timeval *tv)
318 struct timespec now;
320 getnstimeofday(&now);
321 tv->tv_sec = now.tv_sec;
322 tv->tv_usec = now.tv_nsec/1000;
325 EXPORT_SYMBOL(do_gettimeofday);
327 * do_settimeofday - Sets the time of day
328 * @tv: pointer to the timespec variable containing the new time
330 * Sets the time of day to the new time and update NTP and notify hrtimers
332 int do_settimeofday(struct timespec *tv)
334 struct timespec ts_delta;
335 unsigned long flags;
337 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
338 return -EINVAL;
340 write_seqlock_irqsave(&xtime_lock, flags);
342 timekeeping_forward_now();
344 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
345 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
346 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
348 xtime = *tv;
350 update_xtime_cache(0);
352 timekeeper.ntp_error = 0;
353 ntp_clear();
355 update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
357 write_sequnlock_irqrestore(&xtime_lock, flags);
359 /* signal hrtimers about time change */
360 clock_was_set();
362 return 0;
365 EXPORT_SYMBOL(do_settimeofday);
368 * change_clocksource - Swaps clocksources if a new one is available
370 * Accumulates current time interval and initializes new clocksource
372 static int change_clocksource(void *data)
374 struct clocksource *new, *old;
376 new = (struct clocksource *) data;
378 timekeeping_forward_now();
379 if (!new->enable || new->enable(new) == 0) {
380 old = timekeeper.clock;
381 timekeeper_setup_internals(new);
382 if (old->disable)
383 old->disable(old);
385 return 0;
389 * timekeeping_notify - Install a new clock source
390 * @clock: pointer to the clock source
392 * This function is called from clocksource.c after a new, better clock
393 * source has been registered. The caller holds the clocksource_mutex.
395 void timekeeping_notify(struct clocksource *clock)
397 if (timekeeper.clock == clock)
398 return;
399 stop_machine(change_clocksource, clock, NULL);
400 tick_clock_notify();
403 #else /* GENERIC_TIME */
405 static inline void timekeeping_forward_now(void) { }
408 * ktime_get - get the monotonic time in ktime_t format
410 * returns the time in ktime_t format
412 ktime_t ktime_get(void)
414 struct timespec now;
416 ktime_get_ts(&now);
418 return timespec_to_ktime(now);
420 EXPORT_SYMBOL_GPL(ktime_get);
423 * ktime_get_ts - get the monotonic clock in timespec format
424 * @ts: pointer to timespec variable
426 * The function calculates the monotonic clock from the realtime
427 * clock and the wall_to_monotonic offset and stores the result
428 * in normalized timespec format in the variable pointed to by @ts.
430 void ktime_get_ts(struct timespec *ts)
432 struct timespec tomono;
433 unsigned long seq;
435 do {
436 seq = read_seqbegin(&xtime_lock);
437 getnstimeofday(ts);
438 tomono = wall_to_monotonic;
440 } while (read_seqretry(&xtime_lock, seq));
442 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
443 ts->tv_nsec + tomono.tv_nsec);
445 EXPORT_SYMBOL_GPL(ktime_get_ts);
447 #endif /* !GENERIC_TIME */
450 * ktime_get_real - get the real (wall-) time in ktime_t format
452 * returns the time in ktime_t format
454 ktime_t ktime_get_real(void)
456 struct timespec now;
458 getnstimeofday(&now);
460 return timespec_to_ktime(now);
462 EXPORT_SYMBOL_GPL(ktime_get_real);
465 * getrawmonotonic - Returns the raw monotonic time in a timespec
466 * @ts: pointer to the timespec to be set
468 * Returns the raw monotonic time (completely un-modified by ntp)
470 void getrawmonotonic(struct timespec *ts)
472 unsigned long seq;
473 s64 nsecs;
475 do {
476 seq = read_seqbegin(&xtime_lock);
477 nsecs = timekeeping_get_ns_raw();
478 *ts = raw_time;
480 } while (read_seqretry(&xtime_lock, seq));
482 timespec_add_ns(ts, nsecs);
484 EXPORT_SYMBOL(getrawmonotonic);
488 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
490 int timekeeping_valid_for_hres(void)
492 unsigned long seq;
493 int ret;
495 do {
496 seq = read_seqbegin(&xtime_lock);
498 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
500 } while (read_seqretry(&xtime_lock, seq));
502 return ret;
506 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
508 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
509 * ensure that the clocksource does not change!
511 u64 timekeeping_max_deferment(void)
513 return timekeeper.clock->max_idle_ns;
517 * read_persistent_clock - Return time from the persistent clock.
519 * Weak dummy function for arches that do not yet support it.
520 * Reads the time from the battery backed persistent clock.
521 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
523 * XXX - Do be sure to remove it once all arches implement it.
525 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
527 ts->tv_sec = 0;
528 ts->tv_nsec = 0;
532 * read_boot_clock - Return time of the system start.
534 * Weak dummy function for arches that do not yet support it.
535 * Function to read the exact time the system has been started.
536 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
538 * XXX - Do be sure to remove it once all arches implement it.
540 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
542 ts->tv_sec = 0;
543 ts->tv_nsec = 0;
547 * timekeeping_init - Initializes the clocksource and common timekeeping values
549 void __init timekeeping_init(void)
551 struct clocksource *clock;
552 unsigned long flags;
553 struct timespec now, boot;
555 read_persistent_clock(&now);
556 read_boot_clock(&boot);
558 write_seqlock_irqsave(&xtime_lock, flags);
560 ntp_init();
562 clock = clocksource_default_clock();
563 if (clock->enable)
564 clock->enable(clock);
565 timekeeper_setup_internals(clock);
567 xtime.tv_sec = now.tv_sec;
568 xtime.tv_nsec = now.tv_nsec;
569 raw_time.tv_sec = 0;
570 raw_time.tv_nsec = 0;
571 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
572 boot.tv_sec = xtime.tv_sec;
573 boot.tv_nsec = xtime.tv_nsec;
575 set_normalized_timespec(&wall_to_monotonic,
576 -boot.tv_sec, -boot.tv_nsec);
577 update_xtime_cache(0);
578 total_sleep_time.tv_sec = 0;
579 total_sleep_time.tv_nsec = 0;
580 write_sequnlock_irqrestore(&xtime_lock, flags);
583 /* time in seconds when suspend began */
584 static struct timespec timekeeping_suspend_time;
587 * timekeeping_resume - Resumes the generic timekeeping subsystem.
588 * @dev: unused
590 * This is for the generic clocksource timekeeping.
591 * xtime/wall_to_monotonic/jiffies/etc are
592 * still managed by arch specific suspend/resume code.
594 static int timekeeping_resume(struct sys_device *dev)
596 unsigned long flags;
597 struct timespec ts;
599 read_persistent_clock(&ts);
601 clocksource_resume();
603 write_seqlock_irqsave(&xtime_lock, flags);
605 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
606 ts = timespec_sub(ts, timekeeping_suspend_time);
607 xtime = timespec_add_safe(xtime, ts);
608 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
609 total_sleep_time = timespec_add_safe(total_sleep_time, ts);
611 update_xtime_cache(0);
612 /* re-base the last cycle value */
613 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
614 timekeeper.ntp_error = 0;
615 timekeeping_suspended = 0;
616 write_sequnlock_irqrestore(&xtime_lock, flags);
618 touch_softlockup_watchdog();
620 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
622 /* Resume hrtimers */
623 hres_timers_resume();
625 return 0;
628 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
630 unsigned long flags;
632 read_persistent_clock(&timekeeping_suspend_time);
634 write_seqlock_irqsave(&xtime_lock, flags);
635 timekeeping_forward_now();
636 timekeeping_suspended = 1;
637 write_sequnlock_irqrestore(&xtime_lock, flags);
639 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
641 return 0;
644 /* sysfs resume/suspend bits for timekeeping */
645 static struct sysdev_class timekeeping_sysclass = {
646 .name = "timekeeping",
647 .resume = timekeeping_resume,
648 .suspend = timekeeping_suspend,
651 static struct sys_device device_timer = {
652 .id = 0,
653 .cls = &timekeeping_sysclass,
656 static int __init timekeeping_init_device(void)
658 int error = sysdev_class_register(&timekeeping_sysclass);
659 if (!error)
660 error = sysdev_register(&device_timer);
661 return error;
664 device_initcall(timekeeping_init_device);
667 * If the error is already larger, we look ahead even further
668 * to compensate for late or lost adjustments.
670 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
671 s64 *offset)
673 s64 tick_error, i;
674 u32 look_ahead, adj;
675 s32 error2, mult;
678 * Use the current error value to determine how much to look ahead.
679 * The larger the error the slower we adjust for it to avoid problems
680 * with losing too many ticks, otherwise we would overadjust and
681 * produce an even larger error. The smaller the adjustment the
682 * faster we try to adjust for it, as lost ticks can do less harm
683 * here. This is tuned so that an error of about 1 msec is adjusted
684 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
686 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
687 error2 = abs(error2);
688 for (look_ahead = 0; error2 > 0; look_ahead++)
689 error2 >>= 2;
692 * Now calculate the error in (1 << look_ahead) ticks, but first
693 * remove the single look ahead already included in the error.
695 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
696 tick_error -= timekeeper.xtime_interval >> 1;
697 error = ((error - tick_error) >> look_ahead) + tick_error;
699 /* Finally calculate the adjustment shift value. */
700 i = *interval;
701 mult = 1;
702 if (error < 0) {
703 error = -error;
704 *interval = -*interval;
705 *offset = -*offset;
706 mult = -1;
708 for (adj = 0; error > i; adj++)
709 error >>= 1;
711 *interval <<= adj;
712 *offset <<= adj;
713 return mult << adj;
717 * Adjust the multiplier to reduce the error value,
718 * this is optimized for the most common adjustments of -1,0,1,
719 * for other values we can do a bit more work.
721 static void timekeeping_adjust(s64 offset)
723 s64 error, interval = timekeeper.cycle_interval;
724 int adj;
726 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
727 if (error > interval) {
728 error >>= 2;
729 if (likely(error <= interval))
730 adj = 1;
731 else
732 adj = timekeeping_bigadjust(error, &interval, &offset);
733 } else if (error < -interval) {
734 error >>= 2;
735 if (likely(error >= -interval)) {
736 adj = -1;
737 interval = -interval;
738 offset = -offset;
739 } else
740 adj = timekeeping_bigadjust(error, &interval, &offset);
741 } else
742 return;
744 timekeeper.mult += adj;
745 timekeeper.xtime_interval += interval;
746 timekeeper.xtime_nsec -= offset;
747 timekeeper.ntp_error -= (interval - offset) <<
748 timekeeper.ntp_error_shift;
752 * update_wall_time - Uses the current clocksource to increment the wall time
754 * Called from the timer interrupt, must hold a write on xtime_lock.
756 void update_wall_time(void)
758 struct clocksource *clock;
759 cycle_t offset;
760 u64 nsecs;
762 /* Make sure we're fully resumed: */
763 if (unlikely(timekeeping_suspended))
764 return;
766 clock = timekeeper.clock;
767 #ifdef CONFIG_GENERIC_TIME
768 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
769 #else
770 offset = timekeeper.cycle_interval;
771 #endif
772 timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
774 /* normally this loop will run just once, however in the
775 * case of lost or late ticks, it will accumulate correctly.
777 while (offset >= timekeeper.cycle_interval) {
778 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
780 /* accumulate one interval */
781 offset -= timekeeper.cycle_interval;
782 clock->cycle_last += timekeeper.cycle_interval;
784 timekeeper.xtime_nsec += timekeeper.xtime_interval;
785 if (timekeeper.xtime_nsec >= nsecps) {
786 timekeeper.xtime_nsec -= nsecps;
787 xtime.tv_sec++;
788 second_overflow();
791 raw_time.tv_nsec += timekeeper.raw_interval;
792 if (raw_time.tv_nsec >= NSEC_PER_SEC) {
793 raw_time.tv_nsec -= NSEC_PER_SEC;
794 raw_time.tv_sec++;
797 /* accumulate error between NTP and clock interval */
798 timekeeper.ntp_error += tick_length;
799 timekeeper.ntp_error -=
800 (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
801 timekeeper.ntp_error_shift;
804 /* correct the clock when NTP error is too big */
805 timekeeping_adjust(offset);
808 * Since in the loop above, we accumulate any amount of time
809 * in xtime_nsec over a second into xtime.tv_sec, its possible for
810 * xtime_nsec to be fairly small after the loop. Further, if we're
811 * slightly speeding the clocksource up in timekeeping_adjust(),
812 * its possible the required corrective factor to xtime_nsec could
813 * cause it to underflow.
815 * Now, we cannot simply roll the accumulated second back, since
816 * the NTP subsystem has been notified via second_overflow. So
817 * instead we push xtime_nsec forward by the amount we underflowed,
818 * and add that amount into the error.
820 * We'll correct this error next time through this function, when
821 * xtime_nsec is not as small.
823 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
824 s64 neg = -(s64)timekeeper.xtime_nsec;
825 timekeeper.xtime_nsec = 0;
826 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
829 /* store full nanoseconds into xtime after rounding it up and
830 * add the remainder to the error difference.
832 xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
833 timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
834 timekeeper.ntp_error += timekeeper.xtime_nsec <<
835 timekeeper.ntp_error_shift;
837 nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift);
838 update_xtime_cache(nsecs);
840 /* check to see if there is a new clocksource to use */
841 update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
845 * getboottime - Return the real time of system boot.
846 * @ts: pointer to the timespec to be set
848 * Returns the time of day in a timespec.
850 * This is based on the wall_to_monotonic offset and the total suspend
851 * time. Calls to settimeofday will affect the value returned (which
852 * basically means that however wrong your real time clock is at boot time,
853 * you get the right time here).
855 void getboottime(struct timespec *ts)
857 struct timespec boottime = {
858 .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
859 .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
862 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
864 EXPORT_SYMBOL_GPL(getboottime);
867 * monotonic_to_bootbased - Convert the monotonic time to boot based.
868 * @ts: pointer to the timespec to be converted
870 void monotonic_to_bootbased(struct timespec *ts)
872 *ts = timespec_add_safe(*ts, total_sleep_time);
874 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
876 unsigned long get_seconds(void)
878 return xtime_cache.tv_sec;
880 EXPORT_SYMBOL(get_seconds);
882 struct timespec __current_kernel_time(void)
884 return xtime_cache;
887 struct timespec current_kernel_time(void)
889 struct timespec now;
890 unsigned long seq;
892 do {
893 seq = read_seqbegin(&xtime_lock);
895 now = xtime_cache;
896 } while (read_seqretry(&xtime_lock, seq));
898 return now;
900 EXPORT_SYMBOL(current_kernel_time);
902 struct timespec get_monotonic_coarse(void)
904 struct timespec now, mono;
905 unsigned long seq;
907 do {
908 seq = read_seqbegin(&xtime_lock);
910 now = xtime_cache;
911 mono = wall_to_monotonic;
912 } while (read_seqretry(&xtime_lock, seq));
914 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
915 now.tv_nsec + mono.tv_nsec);
916 return now;