wusb: disable verification of the key generation algorithms
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / wusbcore / crypto.c
blob0ca860305feb44cdd464e4dc2796051e4a471b50
1 /*
2 * Ultra Wide Band
3 * AES-128 CCM Encryption
5 * Copyright (C) 2007 Intel Corporation
6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301, USA.
23 * We don't do any encryption here; we use the Linux Kernel's AES-128
24 * crypto modules to construct keys and payload blocks in a way
25 * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
26 * there.
28 * Thanks a zillion to John Keys for his help and clarifications over
29 * the designed-by-a-committee text.
31 * So the idea is that there is this basic Pseudo-Random-Function
32 * defined in WUSB1.0[6.5] which is the core of everything. It works
33 * by tweaking some blocks, AES crypting them and then xoring
34 * something else with them (this seems to be called CBC(AES) -- can
35 * you tell I know jack about crypto?). So we just funnel it into the
36 * Linux Crypto API.
38 * We leave a crypto test module so we can verify that vectors match,
39 * every now and then.
41 * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
42 * am learning a lot...
44 * Conveniently, some data structures that need to be
45 * funneled through AES are...16 bytes in size!
48 #include <linux/crypto.h>
49 #include <linux/module.h>
50 #include <linux/err.h>
51 #include <linux/uwb.h>
52 #include <linux/usb/wusb.h>
53 #include <linux/scatterlist.h>
54 #define D_LOCAL 0
55 #include <linux/uwb/debug.h>
57 static int debug_crypto_verify = 0;
59 module_param(debug_crypto_verify, int, 0);
60 MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
63 * Block of data, as understood by AES-CCM
65 * The code assumes this structure is nothing but a 16 byte array
66 * (packed in a struct to avoid common mess ups that I usually do with
67 * arrays and enforcing type checking).
69 struct aes_ccm_block {
70 u8 data[16];
71 } __attribute__((packed));
74 * Counter-mode Blocks (WUSB1.0[6.4])
76 * According to CCM (or so it seems), for the purpose of calculating
77 * the MIC, the message is broken in N counter-mode blocks, B0, B1,
78 * ... BN.
80 * B0 contains flags, the CCM nonce and l(m).
82 * B1 contains l(a), the MAC header, the encryption offset and padding.
84 * If EO is nonzero, additional blocks are built from payload bytes
85 * until EO is exahusted (FIXME: padding to 16 bytes, I guess). The
86 * padding is not xmitted.
89 /* WUSB1.0[T6.4] */
90 struct aes_ccm_b0 {
91 u8 flags; /* 0x59, per CCM spec */
92 struct aes_ccm_nonce ccm_nonce;
93 __be16 lm;
94 } __attribute__((packed));
96 /* WUSB1.0[T6.5] */
97 struct aes_ccm_b1 {
98 __be16 la;
99 u8 mac_header[10];
100 __le16 eo;
101 u8 security_reserved; /* This is always zero */
102 u8 padding; /* 0 */
103 } __attribute__((packed));
106 * Encryption Blocks (WUSB1.0[6.4.4])
108 * CCM uses Ax blocks to generate a keystream with which the MIC and
109 * the message's payload are encoded. A0 always encrypts/decrypts the
110 * MIC. Ax (x>0) are used for the sucesive payload blocks.
112 * The x is the counter, and is increased for each block.
114 struct aes_ccm_a {
115 u8 flags; /* 0x01, per CCM spec */
116 struct aes_ccm_nonce ccm_nonce;
117 __be16 counter; /* Value of x */
118 } __attribute__((packed));
120 static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
121 size_t size)
123 u8 *bo = _bo;
124 const u8 *bi1 = _bi1, *bi2 = _bi2;
125 size_t itr;
126 for (itr = 0; itr < size; itr++)
127 bo[itr] = bi1[itr] ^ bi2[itr];
131 * CC-MAC function WUSB1.0[6.5]
133 * Take a data string and produce the encrypted CBC Counter-mode MIC
135 * Note the names for most function arguments are made to (more or
136 * less) match those used in the pseudo-function definition given in
137 * WUSB1.0[6.5].
139 * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
141 * @tfm_aes: AES cipher handle (initialized)
143 * @mic: buffer for placing the computed MIC (Message Integrity
144 * Code). This is exactly 8 bytes, and we expect the buffer to
145 * be at least eight bytes in length.
147 * @key: 128 bit symmetric key
149 * @n: CCM nonce
151 * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
152 * we use exactly 14 bytes).
154 * @b: data stream to be processed; cannot be a global or const local
155 * (will confuse the scatterlists)
157 * @blen: size of b...
159 * Still not very clear how this is done, but looks like this: we
160 * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
161 * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
162 * take the payload and divide it in blocks (16 bytes), xor them with
163 * the previous crypto result (16 bytes) and crypt it, repeat the next
164 * block with the output of the previous one, rinse wash (I guess this
165 * is what AES CBC mode means...but I truly have no idea). So we use
166 * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
167 * Vector) is 16 bytes and is set to zero, so
169 * See rfc3610. Linux crypto has a CBC implementation, but the
170 * documentation is scarce, to say the least, and the example code is
171 * so intricated that is difficult to understand how things work. Most
172 * of this is guess work -- bite me.
174 * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
175 * using the 14 bytes of @a to fill up
176 * b1.{mac_header,e0,security_reserved,padding}.
178 * NOTE: The definiton of l(a) in WUSB1.0[6.5] vs the definition of
179 * l(m) is orthogonal, they bear no relationship, so it is not
180 * in conflict with the parameter's relation that
181 * WUSB1.0[6.4.2]) defines.
183 * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
184 * first errata released on 2005/07.
186 * NOTE: we need to clean IV to zero at each invocation to make sure
187 * we start with a fresh empty Initial Vector, so that the CBC
188 * works ok.
190 * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
191 * what sg[4] is for. Maybe there is a smarter way to do this.
193 static int wusb_ccm_mac(struct crypto_blkcipher *tfm_cbc,
194 struct crypto_cipher *tfm_aes, void *mic,
195 const struct aes_ccm_nonce *n,
196 const struct aes_ccm_label *a, const void *b,
197 size_t blen)
199 int result = 0;
200 struct blkcipher_desc desc;
201 struct aes_ccm_b0 b0;
202 struct aes_ccm_b1 b1;
203 struct aes_ccm_a ax;
204 struct scatterlist sg[4], sg_dst;
205 void *iv, *dst_buf;
206 size_t ivsize, dst_size;
207 const u8 bzero[16] = { 0 };
208 size_t zero_padding;
210 d_fnstart(3, NULL, "(tfm_cbc %p, tfm_aes %p, mic %p, "
211 "n %p, a %p, b %p, blen %zu)\n",
212 tfm_cbc, tfm_aes, mic, n, a, b, blen);
214 * These checks should be compile time optimized out
215 * ensure @a fills b1's mac_header and following fields
217 WARN_ON(sizeof(*a) != sizeof(b1) - sizeof(b1.la));
218 WARN_ON(sizeof(b0) != sizeof(struct aes_ccm_block));
219 WARN_ON(sizeof(b1) != sizeof(struct aes_ccm_block));
220 WARN_ON(sizeof(ax) != sizeof(struct aes_ccm_block));
222 result = -ENOMEM;
223 zero_padding = sizeof(struct aes_ccm_block)
224 - blen % sizeof(struct aes_ccm_block);
225 zero_padding = blen % sizeof(struct aes_ccm_block);
226 if (zero_padding)
227 zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
228 dst_size = blen + sizeof(b0) + sizeof(b1) + zero_padding;
229 dst_buf = kzalloc(dst_size, GFP_KERNEL);
230 if (dst_buf == NULL) {
231 printk(KERN_ERR "E: can't alloc destination buffer\n");
232 goto error_dst_buf;
235 iv = crypto_blkcipher_crt(tfm_cbc)->iv;
236 ivsize = crypto_blkcipher_ivsize(tfm_cbc);
237 memset(iv, 0, ivsize);
239 /* Setup B0 */
240 b0.flags = 0x59; /* Format B0 */
241 b0.ccm_nonce = *n;
242 b0.lm = cpu_to_be16(0); /* WUSB1.0[6.5] sez l(m) is 0 */
244 /* Setup B1
246 * The WUSB spec is anything but clear! WUSB1.0[6.5]
247 * says that to initialize B1 from A with 'l(a) = blen +
248 * 14'--after clarification, it means to use A's contents
249 * for MAC Header, EO, sec reserved and padding.
251 b1.la = cpu_to_be16(blen + 14);
252 memcpy(&b1.mac_header, a, sizeof(*a));
254 d_printf(4, NULL, "I: B0 (%zu bytes)\n", sizeof(b0));
255 d_dump(4, NULL, &b0, sizeof(b0));
256 d_printf(4, NULL, "I: B1 (%zu bytes)\n", sizeof(b1));
257 d_dump(4, NULL, &b1, sizeof(b1));
258 d_printf(4, NULL, "I: B (%zu bytes)\n", blen);
259 d_dump(4, NULL, b, blen);
260 d_printf(4, NULL, "I: B 0-padding (%zu bytes)\n", zero_padding);
261 d_printf(4, NULL, "D: IV before crypto (%zu)\n", ivsize);
262 d_dump(4, NULL, iv, ivsize);
264 sg_init_table(sg, ARRAY_SIZE(sg));
265 sg_set_buf(&sg[0], &b0, sizeof(b0));
266 sg_set_buf(&sg[1], &b1, sizeof(b1));
267 sg_set_buf(&sg[2], b, blen);
268 /* 0 if well behaved :) */
269 sg_set_buf(&sg[3], bzero, zero_padding);
270 sg_init_one(&sg_dst, dst_buf, dst_size);
272 desc.tfm = tfm_cbc;
273 desc.flags = 0;
274 result = crypto_blkcipher_encrypt(&desc, &sg_dst, sg, dst_size);
275 if (result < 0) {
276 printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
277 result);
278 goto error_cbc_crypt;
280 d_printf(4, NULL, "D: MIC tag\n");
281 d_dump(4, NULL, iv, ivsize);
283 /* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
284 * The procedure is to AES crypt the A0 block and XOR the MIC
285 * Tag agains it; we only do the first 8 bytes and place it
286 * directly in the destination buffer.
288 * POS Crypto API: size is assumed to be AES's block size.
289 * Thanks for documenting it -- tip taken from airo.c
291 ax.flags = 0x01; /* as per WUSB 1.0 spec */
292 ax.ccm_nonce = *n;
293 ax.counter = 0;
294 crypto_cipher_encrypt_one(tfm_aes, (void *)&ax, (void *)&ax);
295 bytewise_xor(mic, &ax, iv, 8);
296 d_printf(4, NULL, "D: CTR[MIC]\n");
297 d_dump(4, NULL, &ax, 8);
298 d_printf(4, NULL, "D: CCM-MIC tag\n");
299 d_dump(4, NULL, mic, 8);
300 result = 8;
301 error_cbc_crypt:
302 kfree(dst_buf);
303 error_dst_buf:
304 d_fnend(3, NULL, "(tfm_cbc %p, tfm_aes %p, mic %p, "
305 "n %p, a %p, b %p, blen %zu)\n",
306 tfm_cbc, tfm_aes, mic, n, a, b, blen);
307 return result;
311 * WUSB Pseudo Random Function (WUSB1.0[6.5])
313 * @b: buffer to the source data; cannot be a global or const local
314 * (will confuse the scatterlists)
316 ssize_t wusb_prf(void *out, size_t out_size,
317 const u8 key[16], const struct aes_ccm_nonce *_n,
318 const struct aes_ccm_label *a,
319 const void *b, size_t blen, size_t len)
321 ssize_t result, bytes = 0, bitr;
322 struct aes_ccm_nonce n = *_n;
323 struct crypto_blkcipher *tfm_cbc;
324 struct crypto_cipher *tfm_aes;
325 u64 sfn = 0;
326 __le64 sfn_le;
328 d_fnstart(3, NULL, "(out %p, out_size %zu, key %p, _n %p, "
329 "a %p, b %p, blen %zu, len %zu)\n", out, out_size,
330 key, _n, a, b, blen, len);
332 tfm_cbc = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
333 if (IS_ERR(tfm_cbc)) {
334 result = PTR_ERR(tfm_cbc);
335 printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
336 goto error_alloc_cbc;
338 result = crypto_blkcipher_setkey(tfm_cbc, key, 16);
339 if (result < 0) {
340 printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
341 goto error_setkey_cbc;
344 tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
345 if (IS_ERR(tfm_aes)) {
346 result = PTR_ERR(tfm_aes);
347 printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
348 goto error_alloc_aes;
350 result = crypto_cipher_setkey(tfm_aes, key, 16);
351 if (result < 0) {
352 printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
353 goto error_setkey_aes;
356 for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
357 sfn_le = cpu_to_le64(sfn++);
358 memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */
359 result = wusb_ccm_mac(tfm_cbc, tfm_aes, out + bytes,
360 &n, a, b, blen);
361 if (result < 0)
362 goto error_ccm_mac;
363 bytes += result;
365 result = bytes;
366 error_ccm_mac:
367 error_setkey_aes:
368 crypto_free_cipher(tfm_aes);
369 error_alloc_aes:
370 error_setkey_cbc:
371 crypto_free_blkcipher(tfm_cbc);
372 error_alloc_cbc:
373 d_fnend(3, NULL, "(out %p, out_size %zu, key %p, _n %p, "
374 "a %p, b %p, blen %zu, len %zu) = %d\n", out, out_size,
375 key, _n, a, b, blen, len, (int)bytes);
376 return result;
379 /* WUSB1.0[A.2] test vectors */
380 static const u8 stv_hsmic_key[16] = {
381 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
382 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
385 static const struct aes_ccm_nonce stv_hsmic_n = {
386 .sfn = { 0 },
387 .tkid = { 0x76, 0x98, 0x01, },
388 .dest_addr = { .data = { 0xbe, 0x00 } },
389 .src_addr = { .data = { 0x76, 0x98 } },
393 * Out-of-band MIC Generation verification code
396 static int wusb_oob_mic_verify(void)
398 int result;
399 u8 mic[8];
400 /* WUSB1.0[A.2] test vectors
402 * Need to keep it in the local stack as GCC 4.1.3something
403 * messes up and generates noise.
405 struct usb_handshake stv_hsmic_hs = {
406 .bMessageNumber = 2,
407 .bStatus = 00,
408 .tTKID = { 0x76, 0x98, 0x01 },
409 .bReserved = 00,
410 .CDID = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
411 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
412 0x3c, 0x3d, 0x3e, 0x3f },
413 .nonce = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
414 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
415 0x2c, 0x2d, 0x2e, 0x2f },
416 .MIC = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
417 0x14, 0x7b } ,
419 size_t hs_size;
421 result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
422 if (result < 0)
423 printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
424 else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
425 printk(KERN_ERR "E: OOB MIC test: "
426 "mismatch between MIC result and WUSB1.0[A2]\n");
427 hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
428 printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
429 dump_bytes(NULL, &stv_hsmic_hs, hs_size);
430 printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
431 sizeof(stv_hsmic_n));
432 dump_bytes(NULL, &stv_hsmic_n, sizeof(stv_hsmic_n));
433 printk(KERN_ERR "E: MIC out:\n");
434 dump_bytes(NULL, mic, sizeof(mic));
435 printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
436 dump_bytes(NULL, stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
437 result = -EINVAL;
438 } else
439 result = 0;
440 return result;
444 * Test vectors for Key derivation
446 * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
447 * (errata corrected in 2005/07).
449 static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
450 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
451 0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
454 static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
455 .sfn = { 0 },
456 .tkid = { 0x76, 0x98, 0x01, },
457 .dest_addr = { .data = { 0xbe, 0x00 } },
458 .src_addr = { .data = { 0x76, 0x98 } },
461 static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
462 .kck = {
463 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
464 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
466 .ptk = {
467 0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
468 0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
473 * Performa a test to make sure we match the vectors defined in
474 * WUSB1.0[A.1](Errata2006/12)
476 static int wusb_key_derive_verify(void)
478 int result = 0;
479 struct wusb_keydvt_out keydvt_out;
480 /* These come from WUSB1.0[A.1] + 2006/12 errata
481 * NOTE: can't make this const or global -- somehow it seems
482 * the scatterlists for crypto get confused and we get
483 * bad data. There is no doc on this... */
484 struct wusb_keydvt_in stv_keydvt_in_a1 = {
485 .hnonce = {
486 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
487 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
489 .dnonce = {
490 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
491 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
495 result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
496 &stv_keydvt_in_a1);
497 if (result < 0)
498 printk(KERN_ERR "E: WUSB key derivation test: "
499 "derivation failed: %d\n", result);
500 if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
501 printk(KERN_ERR "E: WUSB key derivation test: "
502 "mismatch between key derivation result "
503 "and WUSB1.0[A1] Errata 2006/12\n");
504 printk(KERN_ERR "E: keydvt in: key (%zu bytes)\n",
505 sizeof(stv_key_a1));
506 dump_bytes(NULL, stv_key_a1, sizeof(stv_key_a1));
507 printk(KERN_ERR "E: keydvt in: nonce (%zu bytes)\n",
508 sizeof(stv_keydvt_n_a1));
509 dump_bytes(NULL, &stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
510 printk(KERN_ERR "E: keydvt in: hnonce & dnonce (%zu bytes)\n",
511 sizeof(stv_keydvt_in_a1));
512 dump_bytes(NULL, &stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
513 printk(KERN_ERR "E: keydvt out: KCK\n");
514 dump_bytes(NULL, &keydvt_out.kck, sizeof(keydvt_out.kck));
515 printk(KERN_ERR "E: keydvt out: PTK\n");
516 dump_bytes(NULL, &keydvt_out.ptk, sizeof(keydvt_out.ptk));
517 result = -EINVAL;
518 } else
519 result = 0;
520 return result;
524 * Initialize crypto system
526 * FIXME: we do nothing now, other than verifying. Later on we'll
527 * cache the encryption stuff, so that's why we have a separate init.
529 int wusb_crypto_init(void)
531 int result;
533 if (debug_crypto_verify) {
534 result = wusb_key_derive_verify();
535 if (result < 0)
536 return result;
537 return wusb_oob_mic_verify();
539 return 0;
542 void wusb_crypto_exit(void)
544 /* FIXME: free cached crypto transforms */