memcg: do not try to drain per-cpu caches without pages
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memcontrol.c
blob2f5534e1968ca65962142ca9d5292676c1c10d26
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
54 #include <asm/uaccess.h>
56 #include <trace/events/vmscan.h>
58 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
59 #define MEM_CGROUP_RECLAIM_RETRIES 5
60 struct mem_cgroup *root_mem_cgroup __read_mostly;
62 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
63 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64 int do_swap_account __read_mostly;
66 /* for remember boot option*/
67 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
68 static int really_do_swap_account __initdata = 1;
69 #else
70 static int really_do_swap_account __initdata = 0;
71 #endif
73 #else
74 #define do_swap_account (0)
75 #endif
79 * Statistics for memory cgroup.
81 enum mem_cgroup_stat_index {
83 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
85 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
86 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
87 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
88 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
91 MEM_CGROUP_STAT_NSTATS,
94 enum mem_cgroup_events_index {
95 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
96 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
97 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
98 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
99 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
100 MEM_CGROUP_EVENTS_NSTATS,
103 * Per memcg event counter is incremented at every pagein/pageout. With THP,
104 * it will be incremated by the number of pages. This counter is used for
105 * for trigger some periodic events. This is straightforward and better
106 * than using jiffies etc. to handle periodic memcg event.
108 enum mem_cgroup_events_target {
109 MEM_CGROUP_TARGET_THRESH,
110 MEM_CGROUP_TARGET_SOFTLIMIT,
111 MEM_CGROUP_TARGET_NUMAINFO,
112 MEM_CGROUP_NTARGETS,
114 #define THRESHOLDS_EVENTS_TARGET (128)
115 #define SOFTLIMIT_EVENTS_TARGET (1024)
116 #define NUMAINFO_EVENTS_TARGET (1024)
118 struct mem_cgroup_stat_cpu {
119 long count[MEM_CGROUP_STAT_NSTATS];
120 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121 unsigned long targets[MEM_CGROUP_NTARGETS];
125 * per-zone information in memory controller.
127 struct mem_cgroup_per_zone {
129 * spin_lock to protect the per cgroup LRU
131 struct list_head lists[NR_LRU_LISTS];
132 unsigned long count[NR_LRU_LISTS];
134 struct zone_reclaim_stat reclaim_stat;
135 struct rb_node tree_node; /* RB tree node */
136 unsigned long long usage_in_excess;/* Set to the value by which */
137 /* the soft limit is exceeded*/
138 bool on_tree;
139 struct mem_cgroup *mem; /* Back pointer, we cannot */
140 /* use container_of */
142 /* Macro for accessing counter */
143 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
145 struct mem_cgroup_per_node {
146 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
149 struct mem_cgroup_lru_info {
150 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
154 * Cgroups above their limits are maintained in a RB-Tree, independent of
155 * their hierarchy representation
158 struct mem_cgroup_tree_per_zone {
159 struct rb_root rb_root;
160 spinlock_t lock;
163 struct mem_cgroup_tree_per_node {
164 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
167 struct mem_cgroup_tree {
168 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
171 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
173 struct mem_cgroup_threshold {
174 struct eventfd_ctx *eventfd;
175 u64 threshold;
178 /* For threshold */
179 struct mem_cgroup_threshold_ary {
180 /* An array index points to threshold just below usage. */
181 int current_threshold;
182 /* Size of entries[] */
183 unsigned int size;
184 /* Array of thresholds */
185 struct mem_cgroup_threshold entries[0];
188 struct mem_cgroup_thresholds {
189 /* Primary thresholds array */
190 struct mem_cgroup_threshold_ary *primary;
192 * Spare threshold array.
193 * This is needed to make mem_cgroup_unregister_event() "never fail".
194 * It must be able to store at least primary->size - 1 entries.
196 struct mem_cgroup_threshold_ary *spare;
199 /* for OOM */
200 struct mem_cgroup_eventfd_list {
201 struct list_head list;
202 struct eventfd_ctx *eventfd;
205 static void mem_cgroup_threshold(struct mem_cgroup *mem);
206 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
208 enum {
209 SCAN_BY_LIMIT,
210 SCAN_BY_SYSTEM,
211 NR_SCAN_CONTEXT,
212 SCAN_BY_SHRINK, /* not recorded now */
215 enum {
216 SCAN,
217 SCAN_ANON,
218 SCAN_FILE,
219 ROTATE,
220 ROTATE_ANON,
221 ROTATE_FILE,
222 FREED,
223 FREED_ANON,
224 FREED_FILE,
225 ELAPSED,
226 NR_SCANSTATS,
229 struct scanstat {
230 spinlock_t lock;
231 unsigned long stats[NR_SCAN_CONTEXT][NR_SCANSTATS];
232 unsigned long rootstats[NR_SCAN_CONTEXT][NR_SCANSTATS];
235 const char *scanstat_string[NR_SCANSTATS] = {
236 "scanned_pages",
237 "scanned_anon_pages",
238 "scanned_file_pages",
239 "rotated_pages",
240 "rotated_anon_pages",
241 "rotated_file_pages",
242 "freed_pages",
243 "freed_anon_pages",
244 "freed_file_pages",
245 "elapsed_ns",
247 #define SCANSTAT_WORD_LIMIT "_by_limit"
248 #define SCANSTAT_WORD_SYSTEM "_by_system"
249 #define SCANSTAT_WORD_HIERARCHY "_under_hierarchy"
253 * The memory controller data structure. The memory controller controls both
254 * page cache and RSS per cgroup. We would eventually like to provide
255 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
256 * to help the administrator determine what knobs to tune.
258 * TODO: Add a water mark for the memory controller. Reclaim will begin when
259 * we hit the water mark. May be even add a low water mark, such that
260 * no reclaim occurs from a cgroup at it's low water mark, this is
261 * a feature that will be implemented much later in the future.
263 struct mem_cgroup {
264 struct cgroup_subsys_state css;
266 * the counter to account for memory usage
268 struct res_counter res;
270 * the counter to account for mem+swap usage.
272 struct res_counter memsw;
274 * Per cgroup active and inactive list, similar to the
275 * per zone LRU lists.
277 struct mem_cgroup_lru_info info;
279 * While reclaiming in a hierarchy, we cache the last child we
280 * reclaimed from.
282 int last_scanned_child;
283 int last_scanned_node;
284 #if MAX_NUMNODES > 1
285 nodemask_t scan_nodes;
286 atomic_t numainfo_events;
287 atomic_t numainfo_updating;
288 #endif
290 * Should the accounting and control be hierarchical, per subtree?
292 bool use_hierarchy;
294 bool oom_lock;
295 atomic_t under_oom;
297 atomic_t refcnt;
299 int swappiness;
300 /* OOM-Killer disable */
301 int oom_kill_disable;
303 /* set when res.limit == memsw.limit */
304 bool memsw_is_minimum;
306 /* protect arrays of thresholds */
307 struct mutex thresholds_lock;
309 /* thresholds for memory usage. RCU-protected */
310 struct mem_cgroup_thresholds thresholds;
312 /* thresholds for mem+swap usage. RCU-protected */
313 struct mem_cgroup_thresholds memsw_thresholds;
315 /* For oom notifier event fd */
316 struct list_head oom_notify;
317 /* For recording LRU-scan statistics */
318 struct scanstat scanstat;
320 * Should we move charges of a task when a task is moved into this
321 * mem_cgroup ? And what type of charges should we move ?
323 unsigned long move_charge_at_immigrate;
325 * percpu counter.
327 struct mem_cgroup_stat_cpu *stat;
329 * used when a cpu is offlined or other synchronizations
330 * See mem_cgroup_read_stat().
332 struct mem_cgroup_stat_cpu nocpu_base;
333 spinlock_t pcp_counter_lock;
336 /* Stuffs for move charges at task migration. */
338 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
339 * left-shifted bitmap of these types.
341 enum move_type {
342 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
343 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
344 NR_MOVE_TYPE,
347 /* "mc" and its members are protected by cgroup_mutex */
348 static struct move_charge_struct {
349 spinlock_t lock; /* for from, to */
350 struct mem_cgroup *from;
351 struct mem_cgroup *to;
352 unsigned long precharge;
353 unsigned long moved_charge;
354 unsigned long moved_swap;
355 struct task_struct *moving_task; /* a task moving charges */
356 wait_queue_head_t waitq; /* a waitq for other context */
357 } mc = {
358 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
359 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
362 static bool move_anon(void)
364 return test_bit(MOVE_CHARGE_TYPE_ANON,
365 &mc.to->move_charge_at_immigrate);
368 static bool move_file(void)
370 return test_bit(MOVE_CHARGE_TYPE_FILE,
371 &mc.to->move_charge_at_immigrate);
375 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
376 * limit reclaim to prevent infinite loops, if they ever occur.
378 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
379 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
381 enum charge_type {
382 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
383 MEM_CGROUP_CHARGE_TYPE_MAPPED,
384 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
385 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
386 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
387 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
388 NR_CHARGE_TYPE,
391 /* for encoding cft->private value on file */
392 #define _MEM (0)
393 #define _MEMSWAP (1)
394 #define _OOM_TYPE (2)
395 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
396 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
397 #define MEMFILE_ATTR(val) ((val) & 0xffff)
398 /* Used for OOM nofiier */
399 #define OOM_CONTROL (0)
402 * Reclaim flags for mem_cgroup_hierarchical_reclaim
404 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
405 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
406 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
407 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
408 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
409 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
411 static void mem_cgroup_get(struct mem_cgroup *mem);
412 static void mem_cgroup_put(struct mem_cgroup *mem);
413 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
414 static void drain_all_stock_async(struct mem_cgroup *mem);
416 static struct mem_cgroup_per_zone *
417 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
419 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
422 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
424 return &mem->css;
427 static struct mem_cgroup_per_zone *
428 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
430 int nid = page_to_nid(page);
431 int zid = page_zonenum(page);
433 return mem_cgroup_zoneinfo(mem, nid, zid);
436 static struct mem_cgroup_tree_per_zone *
437 soft_limit_tree_node_zone(int nid, int zid)
439 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
442 static struct mem_cgroup_tree_per_zone *
443 soft_limit_tree_from_page(struct page *page)
445 int nid = page_to_nid(page);
446 int zid = page_zonenum(page);
448 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
451 static void
452 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
453 struct mem_cgroup_per_zone *mz,
454 struct mem_cgroup_tree_per_zone *mctz,
455 unsigned long long new_usage_in_excess)
457 struct rb_node **p = &mctz->rb_root.rb_node;
458 struct rb_node *parent = NULL;
459 struct mem_cgroup_per_zone *mz_node;
461 if (mz->on_tree)
462 return;
464 mz->usage_in_excess = new_usage_in_excess;
465 if (!mz->usage_in_excess)
466 return;
467 while (*p) {
468 parent = *p;
469 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
470 tree_node);
471 if (mz->usage_in_excess < mz_node->usage_in_excess)
472 p = &(*p)->rb_left;
474 * We can't avoid mem cgroups that are over their soft
475 * limit by the same amount
477 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
478 p = &(*p)->rb_right;
480 rb_link_node(&mz->tree_node, parent, p);
481 rb_insert_color(&mz->tree_node, &mctz->rb_root);
482 mz->on_tree = true;
485 static void
486 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
487 struct mem_cgroup_per_zone *mz,
488 struct mem_cgroup_tree_per_zone *mctz)
490 if (!mz->on_tree)
491 return;
492 rb_erase(&mz->tree_node, &mctz->rb_root);
493 mz->on_tree = false;
496 static void
497 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
498 struct mem_cgroup_per_zone *mz,
499 struct mem_cgroup_tree_per_zone *mctz)
501 spin_lock(&mctz->lock);
502 __mem_cgroup_remove_exceeded(mem, mz, mctz);
503 spin_unlock(&mctz->lock);
507 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
509 unsigned long long excess;
510 struct mem_cgroup_per_zone *mz;
511 struct mem_cgroup_tree_per_zone *mctz;
512 int nid = page_to_nid(page);
513 int zid = page_zonenum(page);
514 mctz = soft_limit_tree_from_page(page);
517 * Necessary to update all ancestors when hierarchy is used.
518 * because their event counter is not touched.
520 for (; mem; mem = parent_mem_cgroup(mem)) {
521 mz = mem_cgroup_zoneinfo(mem, nid, zid);
522 excess = res_counter_soft_limit_excess(&mem->res);
524 * We have to update the tree if mz is on RB-tree or
525 * mem is over its softlimit.
527 if (excess || mz->on_tree) {
528 spin_lock(&mctz->lock);
529 /* if on-tree, remove it */
530 if (mz->on_tree)
531 __mem_cgroup_remove_exceeded(mem, mz, mctz);
533 * Insert again. mz->usage_in_excess will be updated.
534 * If excess is 0, no tree ops.
536 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
537 spin_unlock(&mctz->lock);
542 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
544 int node, zone;
545 struct mem_cgroup_per_zone *mz;
546 struct mem_cgroup_tree_per_zone *mctz;
548 for_each_node_state(node, N_POSSIBLE) {
549 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
550 mz = mem_cgroup_zoneinfo(mem, node, zone);
551 mctz = soft_limit_tree_node_zone(node, zone);
552 mem_cgroup_remove_exceeded(mem, mz, mctz);
557 static struct mem_cgroup_per_zone *
558 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
560 struct rb_node *rightmost = NULL;
561 struct mem_cgroup_per_zone *mz;
563 retry:
564 mz = NULL;
565 rightmost = rb_last(&mctz->rb_root);
566 if (!rightmost)
567 goto done; /* Nothing to reclaim from */
569 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
571 * Remove the node now but someone else can add it back,
572 * we will to add it back at the end of reclaim to its correct
573 * position in the tree.
575 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
576 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
577 !css_tryget(&mz->mem->css))
578 goto retry;
579 done:
580 return mz;
583 static struct mem_cgroup_per_zone *
584 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
586 struct mem_cgroup_per_zone *mz;
588 spin_lock(&mctz->lock);
589 mz = __mem_cgroup_largest_soft_limit_node(mctz);
590 spin_unlock(&mctz->lock);
591 return mz;
595 * Implementation Note: reading percpu statistics for memcg.
597 * Both of vmstat[] and percpu_counter has threshold and do periodic
598 * synchronization to implement "quick" read. There are trade-off between
599 * reading cost and precision of value. Then, we may have a chance to implement
600 * a periodic synchronizion of counter in memcg's counter.
602 * But this _read() function is used for user interface now. The user accounts
603 * memory usage by memory cgroup and he _always_ requires exact value because
604 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
605 * have to visit all online cpus and make sum. So, for now, unnecessary
606 * synchronization is not implemented. (just implemented for cpu hotplug)
608 * If there are kernel internal actions which can make use of some not-exact
609 * value, and reading all cpu value can be performance bottleneck in some
610 * common workload, threashold and synchonization as vmstat[] should be
611 * implemented.
613 static long mem_cgroup_read_stat(struct mem_cgroup *mem,
614 enum mem_cgroup_stat_index idx)
616 long val = 0;
617 int cpu;
619 get_online_cpus();
620 for_each_online_cpu(cpu)
621 val += per_cpu(mem->stat->count[idx], cpu);
622 #ifdef CONFIG_HOTPLUG_CPU
623 spin_lock(&mem->pcp_counter_lock);
624 val += mem->nocpu_base.count[idx];
625 spin_unlock(&mem->pcp_counter_lock);
626 #endif
627 put_online_cpus();
628 return val;
631 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
632 bool charge)
634 int val = (charge) ? 1 : -1;
635 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
638 void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
640 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
643 void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
645 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
648 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
649 enum mem_cgroup_events_index idx)
651 unsigned long val = 0;
652 int cpu;
654 for_each_online_cpu(cpu)
655 val += per_cpu(mem->stat->events[idx], cpu);
656 #ifdef CONFIG_HOTPLUG_CPU
657 spin_lock(&mem->pcp_counter_lock);
658 val += mem->nocpu_base.events[idx];
659 spin_unlock(&mem->pcp_counter_lock);
660 #endif
661 return val;
664 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
665 bool file, int nr_pages)
667 preempt_disable();
669 if (file)
670 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
671 else
672 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
674 /* pagein of a big page is an event. So, ignore page size */
675 if (nr_pages > 0)
676 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
677 else {
678 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
679 nr_pages = -nr_pages; /* for event */
682 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
684 preempt_enable();
687 unsigned long
688 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
689 unsigned int lru_mask)
691 struct mem_cgroup_per_zone *mz;
692 enum lru_list l;
693 unsigned long ret = 0;
695 mz = mem_cgroup_zoneinfo(mem, nid, zid);
697 for_each_lru(l) {
698 if (BIT(l) & lru_mask)
699 ret += MEM_CGROUP_ZSTAT(mz, l);
701 return ret;
704 static unsigned long
705 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
706 int nid, unsigned int lru_mask)
708 u64 total = 0;
709 int zid;
711 for (zid = 0; zid < MAX_NR_ZONES; zid++)
712 total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
714 return total;
717 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
718 unsigned int lru_mask)
720 int nid;
721 u64 total = 0;
723 for_each_node_state(nid, N_HIGH_MEMORY)
724 total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
725 return total;
728 static bool __memcg_event_check(struct mem_cgroup *mem, int target)
730 unsigned long val, next;
732 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
733 next = this_cpu_read(mem->stat->targets[target]);
734 /* from time_after() in jiffies.h */
735 return ((long)next - (long)val < 0);
738 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
740 unsigned long val, next;
742 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
744 switch (target) {
745 case MEM_CGROUP_TARGET_THRESH:
746 next = val + THRESHOLDS_EVENTS_TARGET;
747 break;
748 case MEM_CGROUP_TARGET_SOFTLIMIT:
749 next = val + SOFTLIMIT_EVENTS_TARGET;
750 break;
751 case MEM_CGROUP_TARGET_NUMAINFO:
752 next = val + NUMAINFO_EVENTS_TARGET;
753 break;
754 default:
755 return;
758 this_cpu_write(mem->stat->targets[target], next);
762 * Check events in order.
765 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
767 /* threshold event is triggered in finer grain than soft limit */
768 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
769 mem_cgroup_threshold(mem);
770 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
771 if (unlikely(__memcg_event_check(mem,
772 MEM_CGROUP_TARGET_SOFTLIMIT))) {
773 mem_cgroup_update_tree(mem, page);
774 __mem_cgroup_target_update(mem,
775 MEM_CGROUP_TARGET_SOFTLIMIT);
777 #if MAX_NUMNODES > 1
778 if (unlikely(__memcg_event_check(mem,
779 MEM_CGROUP_TARGET_NUMAINFO))) {
780 atomic_inc(&mem->numainfo_events);
781 __mem_cgroup_target_update(mem,
782 MEM_CGROUP_TARGET_NUMAINFO);
784 #endif
788 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
790 return container_of(cgroup_subsys_state(cont,
791 mem_cgroup_subsys_id), struct mem_cgroup,
792 css);
795 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
798 * mm_update_next_owner() may clear mm->owner to NULL
799 * if it races with swapoff, page migration, etc.
800 * So this can be called with p == NULL.
802 if (unlikely(!p))
803 return NULL;
805 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
806 struct mem_cgroup, css);
809 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
811 struct mem_cgroup *mem = NULL;
813 if (!mm)
814 return NULL;
816 * Because we have no locks, mm->owner's may be being moved to other
817 * cgroup. We use css_tryget() here even if this looks
818 * pessimistic (rather than adding locks here).
820 rcu_read_lock();
821 do {
822 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
823 if (unlikely(!mem))
824 break;
825 } while (!css_tryget(&mem->css));
826 rcu_read_unlock();
827 return mem;
830 /* The caller has to guarantee "mem" exists before calling this */
831 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
833 struct cgroup_subsys_state *css;
834 int found;
836 if (!mem) /* ROOT cgroup has the smallest ID */
837 return root_mem_cgroup; /*css_put/get against root is ignored*/
838 if (!mem->use_hierarchy) {
839 if (css_tryget(&mem->css))
840 return mem;
841 return NULL;
843 rcu_read_lock();
845 * searching a memory cgroup which has the smallest ID under given
846 * ROOT cgroup. (ID >= 1)
848 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
849 if (css && css_tryget(css))
850 mem = container_of(css, struct mem_cgroup, css);
851 else
852 mem = NULL;
853 rcu_read_unlock();
854 return mem;
857 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
858 struct mem_cgroup *root,
859 bool cond)
861 int nextid = css_id(&iter->css) + 1;
862 int found;
863 int hierarchy_used;
864 struct cgroup_subsys_state *css;
866 hierarchy_used = iter->use_hierarchy;
868 css_put(&iter->css);
869 /* If no ROOT, walk all, ignore hierarchy */
870 if (!cond || (root && !hierarchy_used))
871 return NULL;
873 if (!root)
874 root = root_mem_cgroup;
876 do {
877 iter = NULL;
878 rcu_read_lock();
880 css = css_get_next(&mem_cgroup_subsys, nextid,
881 &root->css, &found);
882 if (css && css_tryget(css))
883 iter = container_of(css, struct mem_cgroup, css);
884 rcu_read_unlock();
885 /* If css is NULL, no more cgroups will be found */
886 nextid = found + 1;
887 } while (css && !iter);
889 return iter;
892 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
893 * be careful that "break" loop is not allowed. We have reference count.
894 * Instead of that modify "cond" to be false and "continue" to exit the loop.
896 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
897 for (iter = mem_cgroup_start_loop(root);\
898 iter != NULL;\
899 iter = mem_cgroup_get_next(iter, root, cond))
901 #define for_each_mem_cgroup_tree(iter, root) \
902 for_each_mem_cgroup_tree_cond(iter, root, true)
904 #define for_each_mem_cgroup_all(iter) \
905 for_each_mem_cgroup_tree_cond(iter, NULL, true)
908 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
910 return (mem == root_mem_cgroup);
913 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
915 struct mem_cgroup *mem;
917 if (!mm)
918 return;
920 rcu_read_lock();
921 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
922 if (unlikely(!mem))
923 goto out;
925 switch (idx) {
926 case PGMAJFAULT:
927 mem_cgroup_pgmajfault(mem, 1);
928 break;
929 case PGFAULT:
930 mem_cgroup_pgfault(mem, 1);
931 break;
932 default:
933 BUG();
935 out:
936 rcu_read_unlock();
938 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
941 * Following LRU functions are allowed to be used without PCG_LOCK.
942 * Operations are called by routine of global LRU independently from memcg.
943 * What we have to take care of here is validness of pc->mem_cgroup.
945 * Changes to pc->mem_cgroup happens when
946 * 1. charge
947 * 2. moving account
948 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
949 * It is added to LRU before charge.
950 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
951 * When moving account, the page is not on LRU. It's isolated.
954 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
956 struct page_cgroup *pc;
957 struct mem_cgroup_per_zone *mz;
959 if (mem_cgroup_disabled())
960 return;
961 pc = lookup_page_cgroup(page);
962 /* can happen while we handle swapcache. */
963 if (!TestClearPageCgroupAcctLRU(pc))
964 return;
965 VM_BUG_ON(!pc->mem_cgroup);
967 * We don't check PCG_USED bit. It's cleared when the "page" is finally
968 * removed from global LRU.
970 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
971 /* huge page split is done under lru_lock. so, we have no races. */
972 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
973 if (mem_cgroup_is_root(pc->mem_cgroup))
974 return;
975 VM_BUG_ON(list_empty(&pc->lru));
976 list_del_init(&pc->lru);
979 void mem_cgroup_del_lru(struct page *page)
981 mem_cgroup_del_lru_list(page, page_lru(page));
985 * Writeback is about to end against a page which has been marked for immediate
986 * reclaim. If it still appears to be reclaimable, move it to the tail of the
987 * inactive list.
989 void mem_cgroup_rotate_reclaimable_page(struct page *page)
991 struct mem_cgroup_per_zone *mz;
992 struct page_cgroup *pc;
993 enum lru_list lru = page_lru(page);
995 if (mem_cgroup_disabled())
996 return;
998 pc = lookup_page_cgroup(page);
999 /* unused or root page is not rotated. */
1000 if (!PageCgroupUsed(pc))
1001 return;
1002 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1003 smp_rmb();
1004 if (mem_cgroup_is_root(pc->mem_cgroup))
1005 return;
1006 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1007 list_move_tail(&pc->lru, &mz->lists[lru]);
1010 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1012 struct mem_cgroup_per_zone *mz;
1013 struct page_cgroup *pc;
1015 if (mem_cgroup_disabled())
1016 return;
1018 pc = lookup_page_cgroup(page);
1019 /* unused or root page is not rotated. */
1020 if (!PageCgroupUsed(pc))
1021 return;
1022 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1023 smp_rmb();
1024 if (mem_cgroup_is_root(pc->mem_cgroup))
1025 return;
1026 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1027 list_move(&pc->lru, &mz->lists[lru]);
1030 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1032 struct page_cgroup *pc;
1033 struct mem_cgroup_per_zone *mz;
1035 if (mem_cgroup_disabled())
1036 return;
1037 pc = lookup_page_cgroup(page);
1038 VM_BUG_ON(PageCgroupAcctLRU(pc));
1039 if (!PageCgroupUsed(pc))
1040 return;
1041 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1042 smp_rmb();
1043 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1044 /* huge page split is done under lru_lock. so, we have no races. */
1045 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1046 SetPageCgroupAcctLRU(pc);
1047 if (mem_cgroup_is_root(pc->mem_cgroup))
1048 return;
1049 list_add(&pc->lru, &mz->lists[lru]);
1053 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1054 * while it's linked to lru because the page may be reused after it's fully
1055 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1056 * It's done under lock_page and expected that zone->lru_lock isnever held.
1058 static void mem_cgroup_lru_del_before_commit(struct page *page)
1060 unsigned long flags;
1061 struct zone *zone = page_zone(page);
1062 struct page_cgroup *pc = lookup_page_cgroup(page);
1065 * Doing this check without taking ->lru_lock seems wrong but this
1066 * is safe. Because if page_cgroup's USED bit is unset, the page
1067 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1068 * set, the commit after this will fail, anyway.
1069 * This all charge/uncharge is done under some mutual execustion.
1070 * So, we don't need to taking care of changes in USED bit.
1072 if (likely(!PageLRU(page)))
1073 return;
1075 spin_lock_irqsave(&zone->lru_lock, flags);
1077 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1078 * is guarded by lock_page() because the page is SwapCache.
1080 if (!PageCgroupUsed(pc))
1081 mem_cgroup_del_lru_list(page, page_lru(page));
1082 spin_unlock_irqrestore(&zone->lru_lock, flags);
1085 static void mem_cgroup_lru_add_after_commit(struct page *page)
1087 unsigned long flags;
1088 struct zone *zone = page_zone(page);
1089 struct page_cgroup *pc = lookup_page_cgroup(page);
1091 /* taking care of that the page is added to LRU while we commit it */
1092 if (likely(!PageLRU(page)))
1093 return;
1094 spin_lock_irqsave(&zone->lru_lock, flags);
1095 /* link when the page is linked to LRU but page_cgroup isn't */
1096 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1097 mem_cgroup_add_lru_list(page, page_lru(page));
1098 spin_unlock_irqrestore(&zone->lru_lock, flags);
1102 void mem_cgroup_move_lists(struct page *page,
1103 enum lru_list from, enum lru_list to)
1105 if (mem_cgroup_disabled())
1106 return;
1107 mem_cgroup_del_lru_list(page, from);
1108 mem_cgroup_add_lru_list(page, to);
1111 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1113 int ret;
1114 struct mem_cgroup *curr = NULL;
1115 struct task_struct *p;
1117 p = find_lock_task_mm(task);
1118 if (!p)
1119 return 0;
1120 curr = try_get_mem_cgroup_from_mm(p->mm);
1121 task_unlock(p);
1122 if (!curr)
1123 return 0;
1125 * We should check use_hierarchy of "mem" not "curr". Because checking
1126 * use_hierarchy of "curr" here make this function true if hierarchy is
1127 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1128 * hierarchy(even if use_hierarchy is disabled in "mem").
1130 if (mem->use_hierarchy)
1131 ret = css_is_ancestor(&curr->css, &mem->css);
1132 else
1133 ret = (curr == mem);
1134 css_put(&curr->css);
1135 return ret;
1138 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1140 unsigned long active;
1141 unsigned long inactive;
1142 unsigned long gb;
1143 unsigned long inactive_ratio;
1145 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1146 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1148 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1149 if (gb)
1150 inactive_ratio = int_sqrt(10 * gb);
1151 else
1152 inactive_ratio = 1;
1154 if (present_pages) {
1155 present_pages[0] = inactive;
1156 present_pages[1] = active;
1159 return inactive_ratio;
1162 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1164 unsigned long active;
1165 unsigned long inactive;
1166 unsigned long present_pages[2];
1167 unsigned long inactive_ratio;
1169 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1171 inactive = present_pages[0];
1172 active = present_pages[1];
1174 if (inactive * inactive_ratio < active)
1175 return 1;
1177 return 0;
1180 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1182 unsigned long active;
1183 unsigned long inactive;
1185 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1186 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1188 return (active > inactive);
1191 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1192 struct zone *zone)
1194 int nid = zone_to_nid(zone);
1195 int zid = zone_idx(zone);
1196 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1198 return &mz->reclaim_stat;
1201 struct zone_reclaim_stat *
1202 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1204 struct page_cgroup *pc;
1205 struct mem_cgroup_per_zone *mz;
1207 if (mem_cgroup_disabled())
1208 return NULL;
1210 pc = lookup_page_cgroup(page);
1211 if (!PageCgroupUsed(pc))
1212 return NULL;
1213 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1214 smp_rmb();
1215 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1216 return &mz->reclaim_stat;
1219 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1220 struct list_head *dst,
1221 unsigned long *scanned, int order,
1222 int mode, struct zone *z,
1223 struct mem_cgroup *mem_cont,
1224 int active, int file)
1226 unsigned long nr_taken = 0;
1227 struct page *page;
1228 unsigned long scan;
1229 LIST_HEAD(pc_list);
1230 struct list_head *src;
1231 struct page_cgroup *pc, *tmp;
1232 int nid = zone_to_nid(z);
1233 int zid = zone_idx(z);
1234 struct mem_cgroup_per_zone *mz;
1235 int lru = LRU_FILE * file + active;
1236 int ret;
1238 BUG_ON(!mem_cont);
1239 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1240 src = &mz->lists[lru];
1242 scan = 0;
1243 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1244 if (scan >= nr_to_scan)
1245 break;
1247 if (unlikely(!PageCgroupUsed(pc)))
1248 continue;
1250 page = lookup_cgroup_page(pc);
1252 if (unlikely(!PageLRU(page)))
1253 continue;
1255 scan++;
1256 ret = __isolate_lru_page(page, mode, file);
1257 switch (ret) {
1258 case 0:
1259 list_move(&page->lru, dst);
1260 mem_cgroup_del_lru(page);
1261 nr_taken += hpage_nr_pages(page);
1262 break;
1263 case -EBUSY:
1264 /* we don't affect global LRU but rotate in our LRU */
1265 mem_cgroup_rotate_lru_list(page, page_lru(page));
1266 break;
1267 default:
1268 break;
1272 *scanned = scan;
1274 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1275 0, 0, 0, mode);
1277 return nr_taken;
1280 #define mem_cgroup_from_res_counter(counter, member) \
1281 container_of(counter, struct mem_cgroup, member)
1284 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1285 * @mem: the memory cgroup
1287 * Returns the maximum amount of memory @mem can be charged with, in
1288 * pages.
1290 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1292 unsigned long long margin;
1294 margin = res_counter_margin(&mem->res);
1295 if (do_swap_account)
1296 margin = min(margin, res_counter_margin(&mem->memsw));
1297 return margin >> PAGE_SHIFT;
1300 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1302 struct cgroup *cgrp = memcg->css.cgroup;
1304 /* root ? */
1305 if (cgrp->parent == NULL)
1306 return vm_swappiness;
1308 return memcg->swappiness;
1311 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1313 int cpu;
1315 get_online_cpus();
1316 spin_lock(&mem->pcp_counter_lock);
1317 for_each_online_cpu(cpu)
1318 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1319 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1320 spin_unlock(&mem->pcp_counter_lock);
1321 put_online_cpus();
1323 synchronize_rcu();
1326 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1328 int cpu;
1330 if (!mem)
1331 return;
1332 get_online_cpus();
1333 spin_lock(&mem->pcp_counter_lock);
1334 for_each_online_cpu(cpu)
1335 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1336 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1337 spin_unlock(&mem->pcp_counter_lock);
1338 put_online_cpus();
1341 * 2 routines for checking "mem" is under move_account() or not.
1343 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1344 * for avoiding race in accounting. If true,
1345 * pc->mem_cgroup may be overwritten.
1347 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1348 * under hierarchy of moving cgroups. This is for
1349 * waiting at hith-memory prressure caused by "move".
1352 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1354 VM_BUG_ON(!rcu_read_lock_held());
1355 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1358 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1360 struct mem_cgroup *from;
1361 struct mem_cgroup *to;
1362 bool ret = false;
1364 * Unlike task_move routines, we access mc.to, mc.from not under
1365 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1367 spin_lock(&mc.lock);
1368 from = mc.from;
1369 to = mc.to;
1370 if (!from)
1371 goto unlock;
1372 if (from == mem || to == mem
1373 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1374 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1375 ret = true;
1376 unlock:
1377 spin_unlock(&mc.lock);
1378 return ret;
1381 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1383 if (mc.moving_task && current != mc.moving_task) {
1384 if (mem_cgroup_under_move(mem)) {
1385 DEFINE_WAIT(wait);
1386 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1387 /* moving charge context might have finished. */
1388 if (mc.moving_task)
1389 schedule();
1390 finish_wait(&mc.waitq, &wait);
1391 return true;
1394 return false;
1398 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1399 * @memcg: The memory cgroup that went over limit
1400 * @p: Task that is going to be killed
1402 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1403 * enabled
1405 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1407 struct cgroup *task_cgrp;
1408 struct cgroup *mem_cgrp;
1410 * Need a buffer in BSS, can't rely on allocations. The code relies
1411 * on the assumption that OOM is serialized for memory controller.
1412 * If this assumption is broken, revisit this code.
1414 static char memcg_name[PATH_MAX];
1415 int ret;
1417 if (!memcg || !p)
1418 return;
1421 rcu_read_lock();
1423 mem_cgrp = memcg->css.cgroup;
1424 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1426 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1427 if (ret < 0) {
1429 * Unfortunately, we are unable to convert to a useful name
1430 * But we'll still print out the usage information
1432 rcu_read_unlock();
1433 goto done;
1435 rcu_read_unlock();
1437 printk(KERN_INFO "Task in %s killed", memcg_name);
1439 rcu_read_lock();
1440 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1441 if (ret < 0) {
1442 rcu_read_unlock();
1443 goto done;
1445 rcu_read_unlock();
1448 * Continues from above, so we don't need an KERN_ level
1450 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1451 done:
1453 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1454 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1455 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1456 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1457 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1458 "failcnt %llu\n",
1459 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1460 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1461 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1465 * This function returns the number of memcg under hierarchy tree. Returns
1466 * 1(self count) if no children.
1468 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1470 int num = 0;
1471 struct mem_cgroup *iter;
1473 for_each_mem_cgroup_tree(iter, mem)
1474 num++;
1475 return num;
1479 * Return the memory (and swap, if configured) limit for a memcg.
1481 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1483 u64 limit;
1484 u64 memsw;
1486 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1487 limit += total_swap_pages << PAGE_SHIFT;
1489 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1491 * If memsw is finite and limits the amount of swap space available
1492 * to this memcg, return that limit.
1494 return min(limit, memsw);
1498 * Visit the first child (need not be the first child as per the ordering
1499 * of the cgroup list, since we track last_scanned_child) of @mem and use
1500 * that to reclaim free pages from.
1502 static struct mem_cgroup *
1503 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1505 struct mem_cgroup *ret = NULL;
1506 struct cgroup_subsys_state *css;
1507 int nextid, found;
1509 if (!root_mem->use_hierarchy) {
1510 css_get(&root_mem->css);
1511 ret = root_mem;
1514 while (!ret) {
1515 rcu_read_lock();
1516 nextid = root_mem->last_scanned_child + 1;
1517 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1518 &found);
1519 if (css && css_tryget(css))
1520 ret = container_of(css, struct mem_cgroup, css);
1522 rcu_read_unlock();
1523 /* Updates scanning parameter */
1524 if (!css) {
1525 /* this means start scan from ID:1 */
1526 root_mem->last_scanned_child = 0;
1527 } else
1528 root_mem->last_scanned_child = found;
1531 return ret;
1535 * test_mem_cgroup_node_reclaimable
1536 * @mem: the target memcg
1537 * @nid: the node ID to be checked.
1538 * @noswap : specify true here if the user wants flle only information.
1540 * This function returns whether the specified memcg contains any
1541 * reclaimable pages on a node. Returns true if there are any reclaimable
1542 * pages in the node.
1544 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1545 int nid, bool noswap)
1547 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1548 return true;
1549 if (noswap || !total_swap_pages)
1550 return false;
1551 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1552 return true;
1553 return false;
1556 #if MAX_NUMNODES > 1
1559 * Always updating the nodemask is not very good - even if we have an empty
1560 * list or the wrong list here, we can start from some node and traverse all
1561 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1564 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1566 int nid;
1568 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1569 * pagein/pageout changes since the last update.
1571 if (!atomic_read(&mem->numainfo_events))
1572 return;
1573 if (atomic_inc_return(&mem->numainfo_updating) > 1)
1574 return;
1576 /* make a nodemask where this memcg uses memory from */
1577 mem->scan_nodes = node_states[N_HIGH_MEMORY];
1579 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1581 if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1582 node_clear(nid, mem->scan_nodes);
1585 atomic_set(&mem->numainfo_events, 0);
1586 atomic_set(&mem->numainfo_updating, 0);
1590 * Selecting a node where we start reclaim from. Because what we need is just
1591 * reducing usage counter, start from anywhere is O,K. Considering
1592 * memory reclaim from current node, there are pros. and cons.
1594 * Freeing memory from current node means freeing memory from a node which
1595 * we'll use or we've used. So, it may make LRU bad. And if several threads
1596 * hit limits, it will see a contention on a node. But freeing from remote
1597 * node means more costs for memory reclaim because of memory latency.
1599 * Now, we use round-robin. Better algorithm is welcomed.
1601 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1603 int node;
1605 mem_cgroup_may_update_nodemask(mem);
1606 node = mem->last_scanned_node;
1608 node = next_node(node, mem->scan_nodes);
1609 if (node == MAX_NUMNODES)
1610 node = first_node(mem->scan_nodes);
1612 * We call this when we hit limit, not when pages are added to LRU.
1613 * No LRU may hold pages because all pages are UNEVICTABLE or
1614 * memcg is too small and all pages are not on LRU. In that case,
1615 * we use curret node.
1617 if (unlikely(node == MAX_NUMNODES))
1618 node = numa_node_id();
1620 mem->last_scanned_node = node;
1621 return node;
1625 * Check all nodes whether it contains reclaimable pages or not.
1626 * For quick scan, we make use of scan_nodes. This will allow us to skip
1627 * unused nodes. But scan_nodes is lazily updated and may not cotain
1628 * enough new information. We need to do double check.
1630 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1632 int nid;
1635 * quick check...making use of scan_node.
1636 * We can skip unused nodes.
1638 if (!nodes_empty(mem->scan_nodes)) {
1639 for (nid = first_node(mem->scan_nodes);
1640 nid < MAX_NUMNODES;
1641 nid = next_node(nid, mem->scan_nodes)) {
1643 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1644 return true;
1648 * Check rest of nodes.
1650 for_each_node_state(nid, N_HIGH_MEMORY) {
1651 if (node_isset(nid, mem->scan_nodes))
1652 continue;
1653 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1654 return true;
1656 return false;
1659 #else
1660 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1662 return 0;
1665 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1667 return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1669 #endif
1671 static void __mem_cgroup_record_scanstat(unsigned long *stats,
1672 struct memcg_scanrecord *rec)
1675 stats[SCAN] += rec->nr_scanned[0] + rec->nr_scanned[1];
1676 stats[SCAN_ANON] += rec->nr_scanned[0];
1677 stats[SCAN_FILE] += rec->nr_scanned[1];
1679 stats[ROTATE] += rec->nr_rotated[0] + rec->nr_rotated[1];
1680 stats[ROTATE_ANON] += rec->nr_rotated[0];
1681 stats[ROTATE_FILE] += rec->nr_rotated[1];
1683 stats[FREED] += rec->nr_freed[0] + rec->nr_freed[1];
1684 stats[FREED_ANON] += rec->nr_freed[0];
1685 stats[FREED_FILE] += rec->nr_freed[1];
1687 stats[ELAPSED] += rec->elapsed;
1690 static void mem_cgroup_record_scanstat(struct memcg_scanrecord *rec)
1692 struct mem_cgroup *mem;
1693 int context = rec->context;
1695 if (context >= NR_SCAN_CONTEXT)
1696 return;
1698 mem = rec->mem;
1699 spin_lock(&mem->scanstat.lock);
1700 __mem_cgroup_record_scanstat(mem->scanstat.stats[context], rec);
1701 spin_unlock(&mem->scanstat.lock);
1703 mem = rec->root;
1704 spin_lock(&mem->scanstat.lock);
1705 __mem_cgroup_record_scanstat(mem->scanstat.rootstats[context], rec);
1706 spin_unlock(&mem->scanstat.lock);
1710 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1711 * we reclaimed from, so that we don't end up penalizing one child extensively
1712 * based on its position in the children list.
1714 * root_mem is the original ancestor that we've been reclaim from.
1716 * We give up and return to the caller when we visit root_mem twice.
1717 * (other groups can be removed while we're walking....)
1719 * If shrink==true, for avoiding to free too much, this returns immedieately.
1721 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1722 struct zone *zone,
1723 gfp_t gfp_mask,
1724 unsigned long reclaim_options,
1725 unsigned long *total_scanned)
1727 struct mem_cgroup *victim;
1728 int ret, total = 0;
1729 int loop = 0;
1730 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1731 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1732 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1733 struct memcg_scanrecord rec;
1734 unsigned long excess;
1735 unsigned long scanned;
1737 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1739 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1740 if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1741 noswap = true;
1743 if (shrink)
1744 rec.context = SCAN_BY_SHRINK;
1745 else if (check_soft)
1746 rec.context = SCAN_BY_SYSTEM;
1747 else
1748 rec.context = SCAN_BY_LIMIT;
1750 rec.root = root_mem;
1752 while (1) {
1753 victim = mem_cgroup_select_victim(root_mem);
1754 if (victim == root_mem) {
1755 loop++;
1757 * We are not draining per cpu cached charges during
1758 * soft limit reclaim because global reclaim doesn't
1759 * care about charges. It tries to free some memory and
1760 * charges will not give any.
1762 if (!check_soft && loop >= 1)
1763 drain_all_stock_async(root_mem);
1764 if (loop >= 2) {
1766 * If we have not been able to reclaim
1767 * anything, it might because there are
1768 * no reclaimable pages under this hierarchy
1770 if (!check_soft || !total) {
1771 css_put(&victim->css);
1772 break;
1775 * We want to do more targeted reclaim.
1776 * excess >> 2 is not to excessive so as to
1777 * reclaim too much, nor too less that we keep
1778 * coming back to reclaim from this cgroup
1780 if (total >= (excess >> 2) ||
1781 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1782 css_put(&victim->css);
1783 break;
1787 if (!mem_cgroup_reclaimable(victim, noswap)) {
1788 /* this cgroup's local usage == 0 */
1789 css_put(&victim->css);
1790 continue;
1792 rec.mem = victim;
1793 rec.nr_scanned[0] = 0;
1794 rec.nr_scanned[1] = 0;
1795 rec.nr_rotated[0] = 0;
1796 rec.nr_rotated[1] = 0;
1797 rec.nr_freed[0] = 0;
1798 rec.nr_freed[1] = 0;
1799 rec.elapsed = 0;
1800 /* we use swappiness of local cgroup */
1801 if (check_soft) {
1802 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1803 noswap, zone, &rec, &scanned);
1804 *total_scanned += scanned;
1805 } else
1806 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1807 noswap, &rec);
1808 mem_cgroup_record_scanstat(&rec);
1809 css_put(&victim->css);
1811 * At shrinking usage, we can't check we should stop here or
1812 * reclaim more. It's depends on callers. last_scanned_child
1813 * will work enough for keeping fairness under tree.
1815 if (shrink)
1816 return ret;
1817 total += ret;
1818 if (check_soft) {
1819 if (!res_counter_soft_limit_excess(&root_mem->res))
1820 return total;
1821 } else if (mem_cgroup_margin(root_mem))
1822 return total;
1824 return total;
1828 * Check OOM-Killer is already running under our hierarchy.
1829 * If someone is running, return false.
1830 * Has to be called with memcg_oom_lock
1832 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1834 int lock_count = -1;
1835 struct mem_cgroup *iter, *failed = NULL;
1836 bool cond = true;
1838 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1839 bool locked = iter->oom_lock;
1841 iter->oom_lock = true;
1842 if (lock_count == -1)
1843 lock_count = iter->oom_lock;
1844 else if (lock_count != locked) {
1846 * this subtree of our hierarchy is already locked
1847 * so we cannot give a lock.
1849 lock_count = 0;
1850 failed = iter;
1851 cond = false;
1855 if (!failed)
1856 goto done;
1859 * OK, we failed to lock the whole subtree so we have to clean up
1860 * what we set up to the failing subtree
1862 cond = true;
1863 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1864 if (iter == failed) {
1865 cond = false;
1866 continue;
1868 iter->oom_lock = false;
1870 done:
1871 return lock_count;
1875 * Has to be called with memcg_oom_lock
1877 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1879 struct mem_cgroup *iter;
1881 for_each_mem_cgroup_tree(iter, mem)
1882 iter->oom_lock = false;
1883 return 0;
1886 static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1888 struct mem_cgroup *iter;
1890 for_each_mem_cgroup_tree(iter, mem)
1891 atomic_inc(&iter->under_oom);
1894 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1896 struct mem_cgroup *iter;
1899 * When a new child is created while the hierarchy is under oom,
1900 * mem_cgroup_oom_lock() may not be called. We have to use
1901 * atomic_add_unless() here.
1903 for_each_mem_cgroup_tree(iter, mem)
1904 atomic_add_unless(&iter->under_oom, -1, 0);
1907 static DEFINE_SPINLOCK(memcg_oom_lock);
1908 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1910 struct oom_wait_info {
1911 struct mem_cgroup *mem;
1912 wait_queue_t wait;
1915 static int memcg_oom_wake_function(wait_queue_t *wait,
1916 unsigned mode, int sync, void *arg)
1918 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1919 struct oom_wait_info *oom_wait_info;
1921 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1923 if (oom_wait_info->mem == wake_mem)
1924 goto wakeup;
1925 /* if no hierarchy, no match */
1926 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1927 return 0;
1929 * Both of oom_wait_info->mem and wake_mem are stable under us.
1930 * Then we can use css_is_ancestor without taking care of RCU.
1932 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1933 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1934 return 0;
1936 wakeup:
1937 return autoremove_wake_function(wait, mode, sync, arg);
1940 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1942 /* for filtering, pass "mem" as argument. */
1943 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1946 static void memcg_oom_recover(struct mem_cgroup *mem)
1948 if (mem && atomic_read(&mem->under_oom))
1949 memcg_wakeup_oom(mem);
1953 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1955 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1957 struct oom_wait_info owait;
1958 bool locked, need_to_kill;
1960 owait.mem = mem;
1961 owait.wait.flags = 0;
1962 owait.wait.func = memcg_oom_wake_function;
1963 owait.wait.private = current;
1964 INIT_LIST_HEAD(&owait.wait.task_list);
1965 need_to_kill = true;
1966 mem_cgroup_mark_under_oom(mem);
1968 /* At first, try to OOM lock hierarchy under mem.*/
1969 spin_lock(&memcg_oom_lock);
1970 locked = mem_cgroup_oom_lock(mem);
1972 * Even if signal_pending(), we can't quit charge() loop without
1973 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1974 * under OOM is always welcomed, use TASK_KILLABLE here.
1976 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1977 if (!locked || mem->oom_kill_disable)
1978 need_to_kill = false;
1979 if (locked)
1980 mem_cgroup_oom_notify(mem);
1981 spin_unlock(&memcg_oom_lock);
1983 if (need_to_kill) {
1984 finish_wait(&memcg_oom_waitq, &owait.wait);
1985 mem_cgroup_out_of_memory(mem, mask);
1986 } else {
1987 schedule();
1988 finish_wait(&memcg_oom_waitq, &owait.wait);
1990 spin_lock(&memcg_oom_lock);
1991 if (locked)
1992 mem_cgroup_oom_unlock(mem);
1993 memcg_wakeup_oom(mem);
1994 spin_unlock(&memcg_oom_lock);
1996 mem_cgroup_unmark_under_oom(mem);
1998 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1999 return false;
2000 /* Give chance to dying process */
2001 schedule_timeout(1);
2002 return true;
2006 * Currently used to update mapped file statistics, but the routine can be
2007 * generalized to update other statistics as well.
2009 * Notes: Race condition
2011 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2012 * it tends to be costly. But considering some conditions, we doesn't need
2013 * to do so _always_.
2015 * Considering "charge", lock_page_cgroup() is not required because all
2016 * file-stat operations happen after a page is attached to radix-tree. There
2017 * are no race with "charge".
2019 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2020 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2021 * if there are race with "uncharge". Statistics itself is properly handled
2022 * by flags.
2024 * Considering "move", this is an only case we see a race. To make the race
2025 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
2026 * possibility of race condition. If there is, we take a lock.
2029 void mem_cgroup_update_page_stat(struct page *page,
2030 enum mem_cgroup_page_stat_item idx, int val)
2032 struct mem_cgroup *mem;
2033 struct page_cgroup *pc = lookup_page_cgroup(page);
2034 bool need_unlock = false;
2035 unsigned long uninitialized_var(flags);
2037 if (unlikely(!pc))
2038 return;
2040 rcu_read_lock();
2041 mem = pc->mem_cgroup;
2042 if (unlikely(!mem || !PageCgroupUsed(pc)))
2043 goto out;
2044 /* pc->mem_cgroup is unstable ? */
2045 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
2046 /* take a lock against to access pc->mem_cgroup */
2047 move_lock_page_cgroup(pc, &flags);
2048 need_unlock = true;
2049 mem = pc->mem_cgroup;
2050 if (!mem || !PageCgroupUsed(pc))
2051 goto out;
2054 switch (idx) {
2055 case MEMCG_NR_FILE_MAPPED:
2056 if (val > 0)
2057 SetPageCgroupFileMapped(pc);
2058 else if (!page_mapped(page))
2059 ClearPageCgroupFileMapped(pc);
2060 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2061 break;
2062 default:
2063 BUG();
2066 this_cpu_add(mem->stat->count[idx], val);
2068 out:
2069 if (unlikely(need_unlock))
2070 move_unlock_page_cgroup(pc, &flags);
2071 rcu_read_unlock();
2072 return;
2074 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2077 * size of first charge trial. "32" comes from vmscan.c's magic value.
2078 * TODO: maybe necessary to use big numbers in big irons.
2080 #define CHARGE_BATCH 32U
2081 struct memcg_stock_pcp {
2082 struct mem_cgroup *cached; /* this never be root cgroup */
2083 unsigned int nr_pages;
2084 struct work_struct work;
2085 unsigned long flags;
2086 #define FLUSHING_CACHED_CHARGE (0)
2088 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2089 static DEFINE_MUTEX(percpu_charge_mutex);
2092 * Try to consume stocked charge on this cpu. If success, one page is consumed
2093 * from local stock and true is returned. If the stock is 0 or charges from a
2094 * cgroup which is not current target, returns false. This stock will be
2095 * refilled.
2097 static bool consume_stock(struct mem_cgroup *mem)
2099 struct memcg_stock_pcp *stock;
2100 bool ret = true;
2102 stock = &get_cpu_var(memcg_stock);
2103 if (mem == stock->cached && stock->nr_pages)
2104 stock->nr_pages--;
2105 else /* need to call res_counter_charge */
2106 ret = false;
2107 put_cpu_var(memcg_stock);
2108 return ret;
2112 * Returns stocks cached in percpu to res_counter and reset cached information.
2114 static void drain_stock(struct memcg_stock_pcp *stock)
2116 struct mem_cgroup *old = stock->cached;
2118 if (stock->nr_pages) {
2119 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2121 res_counter_uncharge(&old->res, bytes);
2122 if (do_swap_account)
2123 res_counter_uncharge(&old->memsw, bytes);
2124 stock->nr_pages = 0;
2126 stock->cached = NULL;
2130 * This must be called under preempt disabled or must be called by
2131 * a thread which is pinned to local cpu.
2133 static void drain_local_stock(struct work_struct *dummy)
2135 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2136 drain_stock(stock);
2137 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2141 * Cache charges(val) which is from res_counter, to local per_cpu area.
2142 * This will be consumed by consume_stock() function, later.
2144 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2146 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2148 if (stock->cached != mem) { /* reset if necessary */
2149 drain_stock(stock);
2150 stock->cached = mem;
2152 stock->nr_pages += nr_pages;
2153 put_cpu_var(memcg_stock);
2157 * Tries to drain stocked charges in other cpus. This function is asynchronous
2158 * and just put a work per cpu for draining localy on each cpu. Caller can
2159 * expects some charges will be back to res_counter later but cannot wait for
2160 * it.
2162 static void drain_all_stock_async(struct mem_cgroup *root_mem)
2164 int cpu, curcpu;
2166 * If someone calls draining, avoid adding more kworker runs.
2168 if (!mutex_trylock(&percpu_charge_mutex))
2169 return;
2170 /* Notify other cpus that system-wide "drain" is running */
2171 get_online_cpus();
2173 * Get a hint for avoiding draining charges on the current cpu,
2174 * which must be exhausted by our charging. It is not required that
2175 * this be a precise check, so we use raw_smp_processor_id() instead of
2176 * getcpu()/putcpu().
2178 curcpu = raw_smp_processor_id();
2179 for_each_online_cpu(cpu) {
2180 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2181 struct mem_cgroup *mem;
2183 mem = stock->cached;
2184 if (!mem || !stock->nr_pages)
2185 continue;
2186 if (mem != root_mem) {
2187 if (!root_mem->use_hierarchy)
2188 continue;
2189 /* check whether "mem" is under tree of "root_mem" */
2190 if (!css_is_ancestor(&mem->css, &root_mem->css))
2191 continue;
2193 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2194 if (cpu == curcpu)
2195 drain_local_stock(&stock->work);
2196 else
2197 schedule_work_on(cpu, &stock->work);
2200 put_online_cpus();
2201 mutex_unlock(&percpu_charge_mutex);
2202 /* We don't wait for flush_work */
2205 /* This is a synchronous drain interface. */
2206 static void drain_all_stock_sync(void)
2208 /* called when force_empty is called */
2209 mutex_lock(&percpu_charge_mutex);
2210 schedule_on_each_cpu(drain_local_stock);
2211 mutex_unlock(&percpu_charge_mutex);
2215 * This function drains percpu counter value from DEAD cpu and
2216 * move it to local cpu. Note that this function can be preempted.
2218 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2220 int i;
2222 spin_lock(&mem->pcp_counter_lock);
2223 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2224 long x = per_cpu(mem->stat->count[i], cpu);
2226 per_cpu(mem->stat->count[i], cpu) = 0;
2227 mem->nocpu_base.count[i] += x;
2229 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2230 unsigned long x = per_cpu(mem->stat->events[i], cpu);
2232 per_cpu(mem->stat->events[i], cpu) = 0;
2233 mem->nocpu_base.events[i] += x;
2235 /* need to clear ON_MOVE value, works as a kind of lock. */
2236 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2237 spin_unlock(&mem->pcp_counter_lock);
2240 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2242 int idx = MEM_CGROUP_ON_MOVE;
2244 spin_lock(&mem->pcp_counter_lock);
2245 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2246 spin_unlock(&mem->pcp_counter_lock);
2249 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2250 unsigned long action,
2251 void *hcpu)
2253 int cpu = (unsigned long)hcpu;
2254 struct memcg_stock_pcp *stock;
2255 struct mem_cgroup *iter;
2257 if ((action == CPU_ONLINE)) {
2258 for_each_mem_cgroup_all(iter)
2259 synchronize_mem_cgroup_on_move(iter, cpu);
2260 return NOTIFY_OK;
2263 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2264 return NOTIFY_OK;
2266 for_each_mem_cgroup_all(iter)
2267 mem_cgroup_drain_pcp_counter(iter, cpu);
2269 stock = &per_cpu(memcg_stock, cpu);
2270 drain_stock(stock);
2271 return NOTIFY_OK;
2275 /* See __mem_cgroup_try_charge() for details */
2276 enum {
2277 CHARGE_OK, /* success */
2278 CHARGE_RETRY, /* need to retry but retry is not bad */
2279 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2280 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2281 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2284 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2285 unsigned int nr_pages, bool oom_check)
2287 unsigned long csize = nr_pages * PAGE_SIZE;
2288 struct mem_cgroup *mem_over_limit;
2289 struct res_counter *fail_res;
2290 unsigned long flags = 0;
2291 int ret;
2293 ret = res_counter_charge(&mem->res, csize, &fail_res);
2295 if (likely(!ret)) {
2296 if (!do_swap_account)
2297 return CHARGE_OK;
2298 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2299 if (likely(!ret))
2300 return CHARGE_OK;
2302 res_counter_uncharge(&mem->res, csize);
2303 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2304 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2305 } else
2306 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2308 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2309 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2311 * Never reclaim on behalf of optional batching, retry with a
2312 * single page instead.
2314 if (nr_pages == CHARGE_BATCH)
2315 return CHARGE_RETRY;
2317 if (!(gfp_mask & __GFP_WAIT))
2318 return CHARGE_WOULDBLOCK;
2320 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2321 gfp_mask, flags, NULL);
2322 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2323 return CHARGE_RETRY;
2325 * Even though the limit is exceeded at this point, reclaim
2326 * may have been able to free some pages. Retry the charge
2327 * before killing the task.
2329 * Only for regular pages, though: huge pages are rather
2330 * unlikely to succeed so close to the limit, and we fall back
2331 * to regular pages anyway in case of failure.
2333 if (nr_pages == 1 && ret)
2334 return CHARGE_RETRY;
2337 * At task move, charge accounts can be doubly counted. So, it's
2338 * better to wait until the end of task_move if something is going on.
2340 if (mem_cgroup_wait_acct_move(mem_over_limit))
2341 return CHARGE_RETRY;
2343 /* If we don't need to call oom-killer at el, return immediately */
2344 if (!oom_check)
2345 return CHARGE_NOMEM;
2346 /* check OOM */
2347 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2348 return CHARGE_OOM_DIE;
2350 return CHARGE_RETRY;
2354 * Unlike exported interface, "oom" parameter is added. if oom==true,
2355 * oom-killer can be invoked.
2357 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2358 gfp_t gfp_mask,
2359 unsigned int nr_pages,
2360 struct mem_cgroup **memcg,
2361 bool oom)
2363 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2364 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2365 struct mem_cgroup *mem = NULL;
2366 int ret;
2369 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2370 * in system level. So, allow to go ahead dying process in addition to
2371 * MEMDIE process.
2373 if (unlikely(test_thread_flag(TIF_MEMDIE)
2374 || fatal_signal_pending(current)))
2375 goto bypass;
2378 * We always charge the cgroup the mm_struct belongs to.
2379 * The mm_struct's mem_cgroup changes on task migration if the
2380 * thread group leader migrates. It's possible that mm is not
2381 * set, if so charge the init_mm (happens for pagecache usage).
2383 if (!*memcg && !mm)
2384 goto bypass;
2385 again:
2386 if (*memcg) { /* css should be a valid one */
2387 mem = *memcg;
2388 VM_BUG_ON(css_is_removed(&mem->css));
2389 if (mem_cgroup_is_root(mem))
2390 goto done;
2391 if (nr_pages == 1 && consume_stock(mem))
2392 goto done;
2393 css_get(&mem->css);
2394 } else {
2395 struct task_struct *p;
2397 rcu_read_lock();
2398 p = rcu_dereference(mm->owner);
2400 * Because we don't have task_lock(), "p" can exit.
2401 * In that case, "mem" can point to root or p can be NULL with
2402 * race with swapoff. Then, we have small risk of mis-accouning.
2403 * But such kind of mis-account by race always happens because
2404 * we don't have cgroup_mutex(). It's overkill and we allo that
2405 * small race, here.
2406 * (*) swapoff at el will charge against mm-struct not against
2407 * task-struct. So, mm->owner can be NULL.
2409 mem = mem_cgroup_from_task(p);
2410 if (!mem || mem_cgroup_is_root(mem)) {
2411 rcu_read_unlock();
2412 goto done;
2414 if (nr_pages == 1 && consume_stock(mem)) {
2416 * It seems dagerous to access memcg without css_get().
2417 * But considering how consume_stok works, it's not
2418 * necessary. If consume_stock success, some charges
2419 * from this memcg are cached on this cpu. So, we
2420 * don't need to call css_get()/css_tryget() before
2421 * calling consume_stock().
2423 rcu_read_unlock();
2424 goto done;
2426 /* after here, we may be blocked. we need to get refcnt */
2427 if (!css_tryget(&mem->css)) {
2428 rcu_read_unlock();
2429 goto again;
2431 rcu_read_unlock();
2434 do {
2435 bool oom_check;
2437 /* If killed, bypass charge */
2438 if (fatal_signal_pending(current)) {
2439 css_put(&mem->css);
2440 goto bypass;
2443 oom_check = false;
2444 if (oom && !nr_oom_retries) {
2445 oom_check = true;
2446 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2449 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2450 switch (ret) {
2451 case CHARGE_OK:
2452 break;
2453 case CHARGE_RETRY: /* not in OOM situation but retry */
2454 batch = nr_pages;
2455 css_put(&mem->css);
2456 mem = NULL;
2457 goto again;
2458 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2459 css_put(&mem->css);
2460 goto nomem;
2461 case CHARGE_NOMEM: /* OOM routine works */
2462 if (!oom) {
2463 css_put(&mem->css);
2464 goto nomem;
2466 /* If oom, we never return -ENOMEM */
2467 nr_oom_retries--;
2468 break;
2469 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2470 css_put(&mem->css);
2471 goto bypass;
2473 } while (ret != CHARGE_OK);
2475 if (batch > nr_pages)
2476 refill_stock(mem, batch - nr_pages);
2477 css_put(&mem->css);
2478 done:
2479 *memcg = mem;
2480 return 0;
2481 nomem:
2482 *memcg = NULL;
2483 return -ENOMEM;
2484 bypass:
2485 *memcg = NULL;
2486 return 0;
2490 * Somemtimes we have to undo a charge we got by try_charge().
2491 * This function is for that and do uncharge, put css's refcnt.
2492 * gotten by try_charge().
2494 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2495 unsigned int nr_pages)
2497 if (!mem_cgroup_is_root(mem)) {
2498 unsigned long bytes = nr_pages * PAGE_SIZE;
2500 res_counter_uncharge(&mem->res, bytes);
2501 if (do_swap_account)
2502 res_counter_uncharge(&mem->memsw, bytes);
2507 * A helper function to get mem_cgroup from ID. must be called under
2508 * rcu_read_lock(). The caller must check css_is_removed() or some if
2509 * it's concern. (dropping refcnt from swap can be called against removed
2510 * memcg.)
2512 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2514 struct cgroup_subsys_state *css;
2516 /* ID 0 is unused ID */
2517 if (!id)
2518 return NULL;
2519 css = css_lookup(&mem_cgroup_subsys, id);
2520 if (!css)
2521 return NULL;
2522 return container_of(css, struct mem_cgroup, css);
2525 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2527 struct mem_cgroup *mem = NULL;
2528 struct page_cgroup *pc;
2529 unsigned short id;
2530 swp_entry_t ent;
2532 VM_BUG_ON(!PageLocked(page));
2534 pc = lookup_page_cgroup(page);
2535 lock_page_cgroup(pc);
2536 if (PageCgroupUsed(pc)) {
2537 mem = pc->mem_cgroup;
2538 if (mem && !css_tryget(&mem->css))
2539 mem = NULL;
2540 } else if (PageSwapCache(page)) {
2541 ent.val = page_private(page);
2542 id = lookup_swap_cgroup(ent);
2543 rcu_read_lock();
2544 mem = mem_cgroup_lookup(id);
2545 if (mem && !css_tryget(&mem->css))
2546 mem = NULL;
2547 rcu_read_unlock();
2549 unlock_page_cgroup(pc);
2550 return mem;
2553 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2554 struct page *page,
2555 unsigned int nr_pages,
2556 struct page_cgroup *pc,
2557 enum charge_type ctype)
2559 lock_page_cgroup(pc);
2560 if (unlikely(PageCgroupUsed(pc))) {
2561 unlock_page_cgroup(pc);
2562 __mem_cgroup_cancel_charge(mem, nr_pages);
2563 return;
2566 * we don't need page_cgroup_lock about tail pages, becase they are not
2567 * accessed by any other context at this point.
2569 pc->mem_cgroup = mem;
2571 * We access a page_cgroup asynchronously without lock_page_cgroup().
2572 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2573 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2574 * before USED bit, we need memory barrier here.
2575 * See mem_cgroup_add_lru_list(), etc.
2577 smp_wmb();
2578 switch (ctype) {
2579 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2580 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2581 SetPageCgroupCache(pc);
2582 SetPageCgroupUsed(pc);
2583 break;
2584 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2585 ClearPageCgroupCache(pc);
2586 SetPageCgroupUsed(pc);
2587 break;
2588 default:
2589 break;
2592 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2593 unlock_page_cgroup(pc);
2595 * "charge_statistics" updated event counter. Then, check it.
2596 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2597 * if they exceeds softlimit.
2599 memcg_check_events(mem, page);
2602 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2604 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2605 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2607 * Because tail pages are not marked as "used", set it. We're under
2608 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2610 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2612 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2613 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2614 unsigned long flags;
2616 if (mem_cgroup_disabled())
2617 return;
2619 * We have no races with charge/uncharge but will have races with
2620 * page state accounting.
2622 move_lock_page_cgroup(head_pc, &flags);
2624 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2625 smp_wmb(); /* see __commit_charge() */
2626 if (PageCgroupAcctLRU(head_pc)) {
2627 enum lru_list lru;
2628 struct mem_cgroup_per_zone *mz;
2631 * LRU flags cannot be copied because we need to add tail
2632 *.page to LRU by generic call and our hook will be called.
2633 * We hold lru_lock, then, reduce counter directly.
2635 lru = page_lru(head);
2636 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2637 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2639 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2640 move_unlock_page_cgroup(head_pc, &flags);
2642 #endif
2645 * mem_cgroup_move_account - move account of the page
2646 * @page: the page
2647 * @nr_pages: number of regular pages (>1 for huge pages)
2648 * @pc: page_cgroup of the page.
2649 * @from: mem_cgroup which the page is moved from.
2650 * @to: mem_cgroup which the page is moved to. @from != @to.
2651 * @uncharge: whether we should call uncharge and css_put against @from.
2653 * The caller must confirm following.
2654 * - page is not on LRU (isolate_page() is useful.)
2655 * - compound_lock is held when nr_pages > 1
2657 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2658 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2659 * true, this function does "uncharge" from old cgroup, but it doesn't if
2660 * @uncharge is false, so a caller should do "uncharge".
2662 static int mem_cgroup_move_account(struct page *page,
2663 unsigned int nr_pages,
2664 struct page_cgroup *pc,
2665 struct mem_cgroup *from,
2666 struct mem_cgroup *to,
2667 bool uncharge)
2669 unsigned long flags;
2670 int ret;
2672 VM_BUG_ON(from == to);
2673 VM_BUG_ON(PageLRU(page));
2675 * The page is isolated from LRU. So, collapse function
2676 * will not handle this page. But page splitting can happen.
2677 * Do this check under compound_page_lock(). The caller should
2678 * hold it.
2680 ret = -EBUSY;
2681 if (nr_pages > 1 && !PageTransHuge(page))
2682 goto out;
2684 lock_page_cgroup(pc);
2686 ret = -EINVAL;
2687 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2688 goto unlock;
2690 move_lock_page_cgroup(pc, &flags);
2692 if (PageCgroupFileMapped(pc)) {
2693 /* Update mapped_file data for mem_cgroup */
2694 preempt_disable();
2695 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2696 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2697 preempt_enable();
2699 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2700 if (uncharge)
2701 /* This is not "cancel", but cancel_charge does all we need. */
2702 __mem_cgroup_cancel_charge(from, nr_pages);
2704 /* caller should have done css_get */
2705 pc->mem_cgroup = to;
2706 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2708 * We charges against "to" which may not have any tasks. Then, "to"
2709 * can be under rmdir(). But in current implementation, caller of
2710 * this function is just force_empty() and move charge, so it's
2711 * guaranteed that "to" is never removed. So, we don't check rmdir
2712 * status here.
2714 move_unlock_page_cgroup(pc, &flags);
2715 ret = 0;
2716 unlock:
2717 unlock_page_cgroup(pc);
2719 * check events
2721 memcg_check_events(to, page);
2722 memcg_check_events(from, page);
2723 out:
2724 return ret;
2728 * move charges to its parent.
2731 static int mem_cgroup_move_parent(struct page *page,
2732 struct page_cgroup *pc,
2733 struct mem_cgroup *child,
2734 gfp_t gfp_mask)
2736 struct cgroup *cg = child->css.cgroup;
2737 struct cgroup *pcg = cg->parent;
2738 struct mem_cgroup *parent;
2739 unsigned int nr_pages;
2740 unsigned long uninitialized_var(flags);
2741 int ret;
2743 /* Is ROOT ? */
2744 if (!pcg)
2745 return -EINVAL;
2747 ret = -EBUSY;
2748 if (!get_page_unless_zero(page))
2749 goto out;
2750 if (isolate_lru_page(page))
2751 goto put;
2753 nr_pages = hpage_nr_pages(page);
2755 parent = mem_cgroup_from_cont(pcg);
2756 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2757 if (ret || !parent)
2758 goto put_back;
2760 if (nr_pages > 1)
2761 flags = compound_lock_irqsave(page);
2763 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2764 if (ret)
2765 __mem_cgroup_cancel_charge(parent, nr_pages);
2767 if (nr_pages > 1)
2768 compound_unlock_irqrestore(page, flags);
2769 put_back:
2770 putback_lru_page(page);
2771 put:
2772 put_page(page);
2773 out:
2774 return ret;
2778 * Charge the memory controller for page usage.
2779 * Return
2780 * 0 if the charge was successful
2781 * < 0 if the cgroup is over its limit
2783 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2784 gfp_t gfp_mask, enum charge_type ctype)
2786 struct mem_cgroup *mem = NULL;
2787 unsigned int nr_pages = 1;
2788 struct page_cgroup *pc;
2789 bool oom = true;
2790 int ret;
2792 if (PageTransHuge(page)) {
2793 nr_pages <<= compound_order(page);
2794 VM_BUG_ON(!PageTransHuge(page));
2796 * Never OOM-kill a process for a huge page. The
2797 * fault handler will fall back to regular pages.
2799 oom = false;
2802 pc = lookup_page_cgroup(page);
2803 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2805 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2806 if (ret || !mem)
2807 return ret;
2809 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2810 return 0;
2813 int mem_cgroup_newpage_charge(struct page *page,
2814 struct mm_struct *mm, gfp_t gfp_mask)
2816 if (mem_cgroup_disabled())
2817 return 0;
2819 * If already mapped, we don't have to account.
2820 * If page cache, page->mapping has address_space.
2821 * But page->mapping may have out-of-use anon_vma pointer,
2822 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2823 * is NULL.
2825 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2826 return 0;
2827 if (unlikely(!mm))
2828 mm = &init_mm;
2829 return mem_cgroup_charge_common(page, mm, gfp_mask,
2830 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2833 static void
2834 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2835 enum charge_type ctype);
2837 static void
2838 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2839 enum charge_type ctype)
2841 struct page_cgroup *pc = lookup_page_cgroup(page);
2843 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2844 * is already on LRU. It means the page may on some other page_cgroup's
2845 * LRU. Take care of it.
2847 mem_cgroup_lru_del_before_commit(page);
2848 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2849 mem_cgroup_lru_add_after_commit(page);
2850 return;
2853 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2854 gfp_t gfp_mask)
2856 struct mem_cgroup *mem = NULL;
2857 int ret;
2859 if (mem_cgroup_disabled())
2860 return 0;
2861 if (PageCompound(page))
2862 return 0;
2864 * Corner case handling. This is called from add_to_page_cache()
2865 * in usual. But some FS (shmem) precharges this page before calling it
2866 * and call add_to_page_cache() with GFP_NOWAIT.
2868 * For GFP_NOWAIT case, the page may be pre-charged before calling
2869 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2870 * charge twice. (It works but has to pay a bit larger cost.)
2871 * And when the page is SwapCache, it should take swap information
2872 * into account. This is under lock_page() now.
2874 if (!(gfp_mask & __GFP_WAIT)) {
2875 struct page_cgroup *pc;
2877 pc = lookup_page_cgroup(page);
2878 if (!pc)
2879 return 0;
2880 lock_page_cgroup(pc);
2881 if (PageCgroupUsed(pc)) {
2882 unlock_page_cgroup(pc);
2883 return 0;
2885 unlock_page_cgroup(pc);
2888 if (unlikely(!mm))
2889 mm = &init_mm;
2891 if (page_is_file_cache(page)) {
2892 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2893 if (ret || !mem)
2894 return ret;
2897 * FUSE reuses pages without going through the final
2898 * put that would remove them from the LRU list, make
2899 * sure that they get relinked properly.
2901 __mem_cgroup_commit_charge_lrucare(page, mem,
2902 MEM_CGROUP_CHARGE_TYPE_CACHE);
2903 return ret;
2905 /* shmem */
2906 if (PageSwapCache(page)) {
2907 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2908 if (!ret)
2909 __mem_cgroup_commit_charge_swapin(page, mem,
2910 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2911 } else
2912 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2913 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2915 return ret;
2919 * While swap-in, try_charge -> commit or cancel, the page is locked.
2920 * And when try_charge() successfully returns, one refcnt to memcg without
2921 * struct page_cgroup is acquired. This refcnt will be consumed by
2922 * "commit()" or removed by "cancel()"
2924 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2925 struct page *page,
2926 gfp_t mask, struct mem_cgroup **ptr)
2928 struct mem_cgroup *mem;
2929 int ret;
2931 *ptr = NULL;
2933 if (mem_cgroup_disabled())
2934 return 0;
2936 if (!do_swap_account)
2937 goto charge_cur_mm;
2939 * A racing thread's fault, or swapoff, may have already updated
2940 * the pte, and even removed page from swap cache: in those cases
2941 * do_swap_page()'s pte_same() test will fail; but there's also a
2942 * KSM case which does need to charge the page.
2944 if (!PageSwapCache(page))
2945 goto charge_cur_mm;
2946 mem = try_get_mem_cgroup_from_page(page);
2947 if (!mem)
2948 goto charge_cur_mm;
2949 *ptr = mem;
2950 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2951 css_put(&mem->css);
2952 return ret;
2953 charge_cur_mm:
2954 if (unlikely(!mm))
2955 mm = &init_mm;
2956 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2959 static void
2960 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2961 enum charge_type ctype)
2963 if (mem_cgroup_disabled())
2964 return;
2965 if (!ptr)
2966 return;
2967 cgroup_exclude_rmdir(&ptr->css);
2969 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2971 * Now swap is on-memory. This means this page may be
2972 * counted both as mem and swap....double count.
2973 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2974 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2975 * may call delete_from_swap_cache() before reach here.
2977 if (do_swap_account && PageSwapCache(page)) {
2978 swp_entry_t ent = {.val = page_private(page)};
2979 unsigned short id;
2980 struct mem_cgroup *memcg;
2982 id = swap_cgroup_record(ent, 0);
2983 rcu_read_lock();
2984 memcg = mem_cgroup_lookup(id);
2985 if (memcg) {
2987 * This recorded memcg can be obsolete one. So, avoid
2988 * calling css_tryget
2990 if (!mem_cgroup_is_root(memcg))
2991 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2992 mem_cgroup_swap_statistics(memcg, false);
2993 mem_cgroup_put(memcg);
2995 rcu_read_unlock();
2998 * At swapin, we may charge account against cgroup which has no tasks.
2999 * So, rmdir()->pre_destroy() can be called while we do this charge.
3000 * In that case, we need to call pre_destroy() again. check it here.
3002 cgroup_release_and_wakeup_rmdir(&ptr->css);
3005 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
3007 __mem_cgroup_commit_charge_swapin(page, ptr,
3008 MEM_CGROUP_CHARGE_TYPE_MAPPED);
3011 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
3013 if (mem_cgroup_disabled())
3014 return;
3015 if (!mem)
3016 return;
3017 __mem_cgroup_cancel_charge(mem, 1);
3020 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
3021 unsigned int nr_pages,
3022 const enum charge_type ctype)
3024 struct memcg_batch_info *batch = NULL;
3025 bool uncharge_memsw = true;
3027 /* If swapout, usage of swap doesn't decrease */
3028 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3029 uncharge_memsw = false;
3031 batch = &current->memcg_batch;
3033 * In usual, we do css_get() when we remember memcg pointer.
3034 * But in this case, we keep res->usage until end of a series of
3035 * uncharges. Then, it's ok to ignore memcg's refcnt.
3037 if (!batch->memcg)
3038 batch->memcg = mem;
3040 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3041 * In those cases, all pages freed continuously can be expected to be in
3042 * the same cgroup and we have chance to coalesce uncharges.
3043 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3044 * because we want to do uncharge as soon as possible.
3047 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3048 goto direct_uncharge;
3050 if (nr_pages > 1)
3051 goto direct_uncharge;
3054 * In typical case, batch->memcg == mem. This means we can
3055 * merge a series of uncharges to an uncharge of res_counter.
3056 * If not, we uncharge res_counter ony by one.
3058 if (batch->memcg != mem)
3059 goto direct_uncharge;
3060 /* remember freed charge and uncharge it later */
3061 batch->nr_pages++;
3062 if (uncharge_memsw)
3063 batch->memsw_nr_pages++;
3064 return;
3065 direct_uncharge:
3066 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
3067 if (uncharge_memsw)
3068 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3069 if (unlikely(batch->memcg != mem))
3070 memcg_oom_recover(mem);
3071 return;
3075 * uncharge if !page_mapped(page)
3077 static struct mem_cgroup *
3078 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3080 struct mem_cgroup *mem = NULL;
3081 unsigned int nr_pages = 1;
3082 struct page_cgroup *pc;
3084 if (mem_cgroup_disabled())
3085 return NULL;
3087 if (PageSwapCache(page))
3088 return NULL;
3090 if (PageTransHuge(page)) {
3091 nr_pages <<= compound_order(page);
3092 VM_BUG_ON(!PageTransHuge(page));
3095 * Check if our page_cgroup is valid
3097 pc = lookup_page_cgroup(page);
3098 if (unlikely(!pc || !PageCgroupUsed(pc)))
3099 return NULL;
3101 lock_page_cgroup(pc);
3103 mem = pc->mem_cgroup;
3105 if (!PageCgroupUsed(pc))
3106 goto unlock_out;
3108 switch (ctype) {
3109 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3110 case MEM_CGROUP_CHARGE_TYPE_DROP:
3111 /* See mem_cgroup_prepare_migration() */
3112 if (page_mapped(page) || PageCgroupMigration(pc))
3113 goto unlock_out;
3114 break;
3115 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3116 if (!PageAnon(page)) { /* Shared memory */
3117 if (page->mapping && !page_is_file_cache(page))
3118 goto unlock_out;
3119 } else if (page_mapped(page)) /* Anon */
3120 goto unlock_out;
3121 break;
3122 default:
3123 break;
3126 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
3128 ClearPageCgroupUsed(pc);
3130 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3131 * freed from LRU. This is safe because uncharged page is expected not
3132 * to be reused (freed soon). Exception is SwapCache, it's handled by
3133 * special functions.
3136 unlock_page_cgroup(pc);
3138 * even after unlock, we have mem->res.usage here and this memcg
3139 * will never be freed.
3141 memcg_check_events(mem, page);
3142 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3143 mem_cgroup_swap_statistics(mem, true);
3144 mem_cgroup_get(mem);
3146 if (!mem_cgroup_is_root(mem))
3147 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3149 return mem;
3151 unlock_out:
3152 unlock_page_cgroup(pc);
3153 return NULL;
3156 void mem_cgroup_uncharge_page(struct page *page)
3158 /* early check. */
3159 if (page_mapped(page))
3160 return;
3161 if (page->mapping && !PageAnon(page))
3162 return;
3163 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3166 void mem_cgroup_uncharge_cache_page(struct page *page)
3168 VM_BUG_ON(page_mapped(page));
3169 VM_BUG_ON(page->mapping);
3170 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3174 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3175 * In that cases, pages are freed continuously and we can expect pages
3176 * are in the same memcg. All these calls itself limits the number of
3177 * pages freed at once, then uncharge_start/end() is called properly.
3178 * This may be called prural(2) times in a context,
3181 void mem_cgroup_uncharge_start(void)
3183 current->memcg_batch.do_batch++;
3184 /* We can do nest. */
3185 if (current->memcg_batch.do_batch == 1) {
3186 current->memcg_batch.memcg = NULL;
3187 current->memcg_batch.nr_pages = 0;
3188 current->memcg_batch.memsw_nr_pages = 0;
3192 void mem_cgroup_uncharge_end(void)
3194 struct memcg_batch_info *batch = &current->memcg_batch;
3196 if (!batch->do_batch)
3197 return;
3199 batch->do_batch--;
3200 if (batch->do_batch) /* If stacked, do nothing. */
3201 return;
3203 if (!batch->memcg)
3204 return;
3206 * This "batch->memcg" is valid without any css_get/put etc...
3207 * bacause we hide charges behind us.
3209 if (batch->nr_pages)
3210 res_counter_uncharge(&batch->memcg->res,
3211 batch->nr_pages * PAGE_SIZE);
3212 if (batch->memsw_nr_pages)
3213 res_counter_uncharge(&batch->memcg->memsw,
3214 batch->memsw_nr_pages * PAGE_SIZE);
3215 memcg_oom_recover(batch->memcg);
3216 /* forget this pointer (for sanity check) */
3217 batch->memcg = NULL;
3220 #ifdef CONFIG_SWAP
3222 * called after __delete_from_swap_cache() and drop "page" account.
3223 * memcg information is recorded to swap_cgroup of "ent"
3225 void
3226 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3228 struct mem_cgroup *memcg;
3229 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3231 if (!swapout) /* this was a swap cache but the swap is unused ! */
3232 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3234 memcg = __mem_cgroup_uncharge_common(page, ctype);
3237 * record memcg information, if swapout && memcg != NULL,
3238 * mem_cgroup_get() was called in uncharge().
3240 if (do_swap_account && swapout && memcg)
3241 swap_cgroup_record(ent, css_id(&memcg->css));
3243 #endif
3245 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3247 * called from swap_entry_free(). remove record in swap_cgroup and
3248 * uncharge "memsw" account.
3250 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3252 struct mem_cgroup *memcg;
3253 unsigned short id;
3255 if (!do_swap_account)
3256 return;
3258 id = swap_cgroup_record(ent, 0);
3259 rcu_read_lock();
3260 memcg = mem_cgroup_lookup(id);
3261 if (memcg) {
3263 * We uncharge this because swap is freed.
3264 * This memcg can be obsolete one. We avoid calling css_tryget
3266 if (!mem_cgroup_is_root(memcg))
3267 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3268 mem_cgroup_swap_statistics(memcg, false);
3269 mem_cgroup_put(memcg);
3271 rcu_read_unlock();
3275 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3276 * @entry: swap entry to be moved
3277 * @from: mem_cgroup which the entry is moved from
3278 * @to: mem_cgroup which the entry is moved to
3279 * @need_fixup: whether we should fixup res_counters and refcounts.
3281 * It succeeds only when the swap_cgroup's record for this entry is the same
3282 * as the mem_cgroup's id of @from.
3284 * Returns 0 on success, -EINVAL on failure.
3286 * The caller must have charged to @to, IOW, called res_counter_charge() about
3287 * both res and memsw, and called css_get().
3289 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3290 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3292 unsigned short old_id, new_id;
3294 old_id = css_id(&from->css);
3295 new_id = css_id(&to->css);
3297 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3298 mem_cgroup_swap_statistics(from, false);
3299 mem_cgroup_swap_statistics(to, true);
3301 * This function is only called from task migration context now.
3302 * It postpones res_counter and refcount handling till the end
3303 * of task migration(mem_cgroup_clear_mc()) for performance
3304 * improvement. But we cannot postpone mem_cgroup_get(to)
3305 * because if the process that has been moved to @to does
3306 * swap-in, the refcount of @to might be decreased to 0.
3308 mem_cgroup_get(to);
3309 if (need_fixup) {
3310 if (!mem_cgroup_is_root(from))
3311 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3312 mem_cgroup_put(from);
3314 * we charged both to->res and to->memsw, so we should
3315 * uncharge to->res.
3317 if (!mem_cgroup_is_root(to))
3318 res_counter_uncharge(&to->res, PAGE_SIZE);
3320 return 0;
3322 return -EINVAL;
3324 #else
3325 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3326 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3328 return -EINVAL;
3330 #endif
3333 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3334 * page belongs to.
3336 int mem_cgroup_prepare_migration(struct page *page,
3337 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3339 struct mem_cgroup *mem = NULL;
3340 struct page_cgroup *pc;
3341 enum charge_type ctype;
3342 int ret = 0;
3344 *ptr = NULL;
3346 VM_BUG_ON(PageTransHuge(page));
3347 if (mem_cgroup_disabled())
3348 return 0;
3350 pc = lookup_page_cgroup(page);
3351 lock_page_cgroup(pc);
3352 if (PageCgroupUsed(pc)) {
3353 mem = pc->mem_cgroup;
3354 css_get(&mem->css);
3356 * At migrating an anonymous page, its mapcount goes down
3357 * to 0 and uncharge() will be called. But, even if it's fully
3358 * unmapped, migration may fail and this page has to be
3359 * charged again. We set MIGRATION flag here and delay uncharge
3360 * until end_migration() is called
3362 * Corner Case Thinking
3363 * A)
3364 * When the old page was mapped as Anon and it's unmap-and-freed
3365 * while migration was ongoing.
3366 * If unmap finds the old page, uncharge() of it will be delayed
3367 * until end_migration(). If unmap finds a new page, it's
3368 * uncharged when it make mapcount to be 1->0. If unmap code
3369 * finds swap_migration_entry, the new page will not be mapped
3370 * and end_migration() will find it(mapcount==0).
3372 * B)
3373 * When the old page was mapped but migraion fails, the kernel
3374 * remaps it. A charge for it is kept by MIGRATION flag even
3375 * if mapcount goes down to 0. We can do remap successfully
3376 * without charging it again.
3378 * C)
3379 * The "old" page is under lock_page() until the end of
3380 * migration, so, the old page itself will not be swapped-out.
3381 * If the new page is swapped out before end_migraton, our
3382 * hook to usual swap-out path will catch the event.
3384 if (PageAnon(page))
3385 SetPageCgroupMigration(pc);
3387 unlock_page_cgroup(pc);
3389 * If the page is not charged at this point,
3390 * we return here.
3392 if (!mem)
3393 return 0;
3395 *ptr = mem;
3396 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3397 css_put(&mem->css);/* drop extra refcnt */
3398 if (ret || *ptr == NULL) {
3399 if (PageAnon(page)) {
3400 lock_page_cgroup(pc);
3401 ClearPageCgroupMigration(pc);
3402 unlock_page_cgroup(pc);
3404 * The old page may be fully unmapped while we kept it.
3406 mem_cgroup_uncharge_page(page);
3408 return -ENOMEM;
3411 * We charge new page before it's used/mapped. So, even if unlock_page()
3412 * is called before end_migration, we can catch all events on this new
3413 * page. In the case new page is migrated but not remapped, new page's
3414 * mapcount will be finally 0 and we call uncharge in end_migration().
3416 pc = lookup_page_cgroup(newpage);
3417 if (PageAnon(page))
3418 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3419 else if (page_is_file_cache(page))
3420 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3421 else
3422 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3423 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3424 return ret;
3427 /* remove redundant charge if migration failed*/
3428 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3429 struct page *oldpage, struct page *newpage, bool migration_ok)
3431 struct page *used, *unused;
3432 struct page_cgroup *pc;
3434 if (!mem)
3435 return;
3436 /* blocks rmdir() */
3437 cgroup_exclude_rmdir(&mem->css);
3438 if (!migration_ok) {
3439 used = oldpage;
3440 unused = newpage;
3441 } else {
3442 used = newpage;
3443 unused = oldpage;
3446 * We disallowed uncharge of pages under migration because mapcount
3447 * of the page goes down to zero, temporarly.
3448 * Clear the flag and check the page should be charged.
3450 pc = lookup_page_cgroup(oldpage);
3451 lock_page_cgroup(pc);
3452 ClearPageCgroupMigration(pc);
3453 unlock_page_cgroup(pc);
3455 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3458 * If a page is a file cache, radix-tree replacement is very atomic
3459 * and we can skip this check. When it was an Anon page, its mapcount
3460 * goes down to 0. But because we added MIGRATION flage, it's not
3461 * uncharged yet. There are several case but page->mapcount check
3462 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3463 * check. (see prepare_charge() also)
3465 if (PageAnon(used))
3466 mem_cgroup_uncharge_page(used);
3468 * At migration, we may charge account against cgroup which has no
3469 * tasks.
3470 * So, rmdir()->pre_destroy() can be called while we do this charge.
3471 * In that case, we need to call pre_destroy() again. check it here.
3473 cgroup_release_and_wakeup_rmdir(&mem->css);
3477 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3478 * Calling hierarchical_reclaim is not enough because we should update
3479 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3480 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3481 * not from the memcg which this page would be charged to.
3482 * try_charge_swapin does all of these works properly.
3484 int mem_cgroup_shmem_charge_fallback(struct page *page,
3485 struct mm_struct *mm,
3486 gfp_t gfp_mask)
3488 struct mem_cgroup *mem;
3489 int ret;
3491 if (mem_cgroup_disabled())
3492 return 0;
3494 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3495 if (!ret)
3496 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3498 return ret;
3501 #ifdef CONFIG_DEBUG_VM
3502 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3504 struct page_cgroup *pc;
3506 pc = lookup_page_cgroup(page);
3507 if (likely(pc) && PageCgroupUsed(pc))
3508 return pc;
3509 return NULL;
3512 bool mem_cgroup_bad_page_check(struct page *page)
3514 if (mem_cgroup_disabled())
3515 return false;
3517 return lookup_page_cgroup_used(page) != NULL;
3520 void mem_cgroup_print_bad_page(struct page *page)
3522 struct page_cgroup *pc;
3524 pc = lookup_page_cgroup_used(page);
3525 if (pc) {
3526 int ret = -1;
3527 char *path;
3529 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3530 pc, pc->flags, pc->mem_cgroup);
3532 path = kmalloc(PATH_MAX, GFP_KERNEL);
3533 if (path) {
3534 rcu_read_lock();
3535 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3536 path, PATH_MAX);
3537 rcu_read_unlock();
3540 printk(KERN_CONT "(%s)\n",
3541 (ret < 0) ? "cannot get the path" : path);
3542 kfree(path);
3545 #endif
3547 static DEFINE_MUTEX(set_limit_mutex);
3549 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3550 unsigned long long val)
3552 int retry_count;
3553 u64 memswlimit, memlimit;
3554 int ret = 0;
3555 int children = mem_cgroup_count_children(memcg);
3556 u64 curusage, oldusage;
3557 int enlarge;
3560 * For keeping hierarchical_reclaim simple, how long we should retry
3561 * is depends on callers. We set our retry-count to be function
3562 * of # of children which we should visit in this loop.
3564 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3566 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3568 enlarge = 0;
3569 while (retry_count) {
3570 if (signal_pending(current)) {
3571 ret = -EINTR;
3572 break;
3575 * Rather than hide all in some function, I do this in
3576 * open coded manner. You see what this really does.
3577 * We have to guarantee mem->res.limit < mem->memsw.limit.
3579 mutex_lock(&set_limit_mutex);
3580 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3581 if (memswlimit < val) {
3582 ret = -EINVAL;
3583 mutex_unlock(&set_limit_mutex);
3584 break;
3587 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3588 if (memlimit < val)
3589 enlarge = 1;
3591 ret = res_counter_set_limit(&memcg->res, val);
3592 if (!ret) {
3593 if (memswlimit == val)
3594 memcg->memsw_is_minimum = true;
3595 else
3596 memcg->memsw_is_minimum = false;
3598 mutex_unlock(&set_limit_mutex);
3600 if (!ret)
3601 break;
3603 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3604 MEM_CGROUP_RECLAIM_SHRINK,
3605 NULL);
3606 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3607 /* Usage is reduced ? */
3608 if (curusage >= oldusage)
3609 retry_count--;
3610 else
3611 oldusage = curusage;
3613 if (!ret && enlarge)
3614 memcg_oom_recover(memcg);
3616 return ret;
3619 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3620 unsigned long long val)
3622 int retry_count;
3623 u64 memlimit, memswlimit, oldusage, curusage;
3624 int children = mem_cgroup_count_children(memcg);
3625 int ret = -EBUSY;
3626 int enlarge = 0;
3628 /* see mem_cgroup_resize_res_limit */
3629 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3630 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3631 while (retry_count) {
3632 if (signal_pending(current)) {
3633 ret = -EINTR;
3634 break;
3637 * Rather than hide all in some function, I do this in
3638 * open coded manner. You see what this really does.
3639 * We have to guarantee mem->res.limit < mem->memsw.limit.
3641 mutex_lock(&set_limit_mutex);
3642 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3643 if (memlimit > val) {
3644 ret = -EINVAL;
3645 mutex_unlock(&set_limit_mutex);
3646 break;
3648 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3649 if (memswlimit < val)
3650 enlarge = 1;
3651 ret = res_counter_set_limit(&memcg->memsw, val);
3652 if (!ret) {
3653 if (memlimit == val)
3654 memcg->memsw_is_minimum = true;
3655 else
3656 memcg->memsw_is_minimum = false;
3658 mutex_unlock(&set_limit_mutex);
3660 if (!ret)
3661 break;
3663 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3664 MEM_CGROUP_RECLAIM_NOSWAP |
3665 MEM_CGROUP_RECLAIM_SHRINK,
3666 NULL);
3667 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3668 /* Usage is reduced ? */
3669 if (curusage >= oldusage)
3670 retry_count--;
3671 else
3672 oldusage = curusage;
3674 if (!ret && enlarge)
3675 memcg_oom_recover(memcg);
3676 return ret;
3679 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3680 gfp_t gfp_mask,
3681 unsigned long *total_scanned)
3683 unsigned long nr_reclaimed = 0;
3684 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3685 unsigned long reclaimed;
3686 int loop = 0;
3687 struct mem_cgroup_tree_per_zone *mctz;
3688 unsigned long long excess;
3689 unsigned long nr_scanned;
3691 if (order > 0)
3692 return 0;
3694 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3696 * This loop can run a while, specially if mem_cgroup's continuously
3697 * keep exceeding their soft limit and putting the system under
3698 * pressure
3700 do {
3701 if (next_mz)
3702 mz = next_mz;
3703 else
3704 mz = mem_cgroup_largest_soft_limit_node(mctz);
3705 if (!mz)
3706 break;
3708 nr_scanned = 0;
3709 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3710 gfp_mask,
3711 MEM_CGROUP_RECLAIM_SOFT,
3712 &nr_scanned);
3713 nr_reclaimed += reclaimed;
3714 *total_scanned += nr_scanned;
3715 spin_lock(&mctz->lock);
3718 * If we failed to reclaim anything from this memory cgroup
3719 * it is time to move on to the next cgroup
3721 next_mz = NULL;
3722 if (!reclaimed) {
3723 do {
3725 * Loop until we find yet another one.
3727 * By the time we get the soft_limit lock
3728 * again, someone might have aded the
3729 * group back on the RB tree. Iterate to
3730 * make sure we get a different mem.
3731 * mem_cgroup_largest_soft_limit_node returns
3732 * NULL if no other cgroup is present on
3733 * the tree
3735 next_mz =
3736 __mem_cgroup_largest_soft_limit_node(mctz);
3737 if (next_mz == mz)
3738 css_put(&next_mz->mem->css);
3739 else /* next_mz == NULL or other memcg */
3740 break;
3741 } while (1);
3743 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3744 excess = res_counter_soft_limit_excess(&mz->mem->res);
3746 * One school of thought says that we should not add
3747 * back the node to the tree if reclaim returns 0.
3748 * But our reclaim could return 0, simply because due
3749 * to priority we are exposing a smaller subset of
3750 * memory to reclaim from. Consider this as a longer
3751 * term TODO.
3753 /* If excess == 0, no tree ops */
3754 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3755 spin_unlock(&mctz->lock);
3756 css_put(&mz->mem->css);
3757 loop++;
3759 * Could not reclaim anything and there are no more
3760 * mem cgroups to try or we seem to be looping without
3761 * reclaiming anything.
3763 if (!nr_reclaimed &&
3764 (next_mz == NULL ||
3765 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3766 break;
3767 } while (!nr_reclaimed);
3768 if (next_mz)
3769 css_put(&next_mz->mem->css);
3770 return nr_reclaimed;
3774 * This routine traverse page_cgroup in given list and drop them all.
3775 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3777 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3778 int node, int zid, enum lru_list lru)
3780 struct zone *zone;
3781 struct mem_cgroup_per_zone *mz;
3782 struct page_cgroup *pc, *busy;
3783 unsigned long flags, loop;
3784 struct list_head *list;
3785 int ret = 0;
3787 zone = &NODE_DATA(node)->node_zones[zid];
3788 mz = mem_cgroup_zoneinfo(mem, node, zid);
3789 list = &mz->lists[lru];
3791 loop = MEM_CGROUP_ZSTAT(mz, lru);
3792 /* give some margin against EBUSY etc...*/
3793 loop += 256;
3794 busy = NULL;
3795 while (loop--) {
3796 struct page *page;
3798 ret = 0;
3799 spin_lock_irqsave(&zone->lru_lock, flags);
3800 if (list_empty(list)) {
3801 spin_unlock_irqrestore(&zone->lru_lock, flags);
3802 break;
3804 pc = list_entry(list->prev, struct page_cgroup, lru);
3805 if (busy == pc) {
3806 list_move(&pc->lru, list);
3807 busy = NULL;
3808 spin_unlock_irqrestore(&zone->lru_lock, flags);
3809 continue;
3811 spin_unlock_irqrestore(&zone->lru_lock, flags);
3813 page = lookup_cgroup_page(pc);
3815 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3816 if (ret == -ENOMEM)
3817 break;
3819 if (ret == -EBUSY || ret == -EINVAL) {
3820 /* found lock contention or "pc" is obsolete. */
3821 busy = pc;
3822 cond_resched();
3823 } else
3824 busy = NULL;
3827 if (!ret && !list_empty(list))
3828 return -EBUSY;
3829 return ret;
3833 * make mem_cgroup's charge to be 0 if there is no task.
3834 * This enables deleting this mem_cgroup.
3836 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3838 int ret;
3839 int node, zid, shrink;
3840 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3841 struct cgroup *cgrp = mem->css.cgroup;
3843 css_get(&mem->css);
3845 shrink = 0;
3846 /* should free all ? */
3847 if (free_all)
3848 goto try_to_free;
3849 move_account:
3850 do {
3851 ret = -EBUSY;
3852 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3853 goto out;
3854 ret = -EINTR;
3855 if (signal_pending(current))
3856 goto out;
3857 /* This is for making all *used* pages to be on LRU. */
3858 lru_add_drain_all();
3859 drain_all_stock_sync();
3860 ret = 0;
3861 mem_cgroup_start_move(mem);
3862 for_each_node_state(node, N_HIGH_MEMORY) {
3863 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3864 enum lru_list l;
3865 for_each_lru(l) {
3866 ret = mem_cgroup_force_empty_list(mem,
3867 node, zid, l);
3868 if (ret)
3869 break;
3872 if (ret)
3873 break;
3875 mem_cgroup_end_move(mem);
3876 memcg_oom_recover(mem);
3877 /* it seems parent cgroup doesn't have enough mem */
3878 if (ret == -ENOMEM)
3879 goto try_to_free;
3880 cond_resched();
3881 /* "ret" should also be checked to ensure all lists are empty. */
3882 } while (mem->res.usage > 0 || ret);
3883 out:
3884 css_put(&mem->css);
3885 return ret;
3887 try_to_free:
3888 /* returns EBUSY if there is a task or if we come here twice. */
3889 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3890 ret = -EBUSY;
3891 goto out;
3893 /* we call try-to-free pages for make this cgroup empty */
3894 lru_add_drain_all();
3895 /* try to free all pages in this cgroup */
3896 shrink = 1;
3897 while (nr_retries && mem->res.usage > 0) {
3898 struct memcg_scanrecord rec;
3899 int progress;
3901 if (signal_pending(current)) {
3902 ret = -EINTR;
3903 goto out;
3905 rec.context = SCAN_BY_SHRINK;
3906 rec.mem = mem;
3907 rec.root = mem;
3908 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3909 false, &rec);
3910 if (!progress) {
3911 nr_retries--;
3912 /* maybe some writeback is necessary */
3913 congestion_wait(BLK_RW_ASYNC, HZ/10);
3917 lru_add_drain();
3918 /* try move_account...there may be some *locked* pages. */
3919 goto move_account;
3922 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3924 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3928 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3930 return mem_cgroup_from_cont(cont)->use_hierarchy;
3933 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3934 u64 val)
3936 int retval = 0;
3937 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3938 struct cgroup *parent = cont->parent;
3939 struct mem_cgroup *parent_mem = NULL;
3941 if (parent)
3942 parent_mem = mem_cgroup_from_cont(parent);
3944 cgroup_lock();
3946 * If parent's use_hierarchy is set, we can't make any modifications
3947 * in the child subtrees. If it is unset, then the change can
3948 * occur, provided the current cgroup has no children.
3950 * For the root cgroup, parent_mem is NULL, we allow value to be
3951 * set if there are no children.
3953 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3954 (val == 1 || val == 0)) {
3955 if (list_empty(&cont->children))
3956 mem->use_hierarchy = val;
3957 else
3958 retval = -EBUSY;
3959 } else
3960 retval = -EINVAL;
3961 cgroup_unlock();
3963 return retval;
3967 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3968 enum mem_cgroup_stat_index idx)
3970 struct mem_cgroup *iter;
3971 long val = 0;
3973 /* Per-cpu values can be negative, use a signed accumulator */
3974 for_each_mem_cgroup_tree(iter, mem)
3975 val += mem_cgroup_read_stat(iter, idx);
3977 if (val < 0) /* race ? */
3978 val = 0;
3979 return val;
3982 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3984 u64 val;
3986 if (!mem_cgroup_is_root(mem)) {
3987 if (!swap)
3988 return res_counter_read_u64(&mem->res, RES_USAGE);
3989 else
3990 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3993 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3994 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3996 if (swap)
3997 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3999 return val << PAGE_SHIFT;
4002 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
4004 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4005 u64 val;
4006 int type, name;
4008 type = MEMFILE_TYPE(cft->private);
4009 name = MEMFILE_ATTR(cft->private);
4010 switch (type) {
4011 case _MEM:
4012 if (name == RES_USAGE)
4013 val = mem_cgroup_usage(mem, false);
4014 else
4015 val = res_counter_read_u64(&mem->res, name);
4016 break;
4017 case _MEMSWAP:
4018 if (name == RES_USAGE)
4019 val = mem_cgroup_usage(mem, true);
4020 else
4021 val = res_counter_read_u64(&mem->memsw, name);
4022 break;
4023 default:
4024 BUG();
4025 break;
4027 return val;
4030 * The user of this function is...
4031 * RES_LIMIT.
4033 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
4034 const char *buffer)
4036 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4037 int type, name;
4038 unsigned long long val;
4039 int ret;
4041 type = MEMFILE_TYPE(cft->private);
4042 name = MEMFILE_ATTR(cft->private);
4043 switch (name) {
4044 case RES_LIMIT:
4045 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4046 ret = -EINVAL;
4047 break;
4049 /* This function does all necessary parse...reuse it */
4050 ret = res_counter_memparse_write_strategy(buffer, &val);
4051 if (ret)
4052 break;
4053 if (type == _MEM)
4054 ret = mem_cgroup_resize_limit(memcg, val);
4055 else
4056 ret = mem_cgroup_resize_memsw_limit(memcg, val);
4057 break;
4058 case RES_SOFT_LIMIT:
4059 ret = res_counter_memparse_write_strategy(buffer, &val);
4060 if (ret)
4061 break;
4063 * For memsw, soft limits are hard to implement in terms
4064 * of semantics, for now, we support soft limits for
4065 * control without swap
4067 if (type == _MEM)
4068 ret = res_counter_set_soft_limit(&memcg->res, val);
4069 else
4070 ret = -EINVAL;
4071 break;
4072 default:
4073 ret = -EINVAL; /* should be BUG() ? */
4074 break;
4076 return ret;
4079 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4080 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4082 struct cgroup *cgroup;
4083 unsigned long long min_limit, min_memsw_limit, tmp;
4085 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4086 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4087 cgroup = memcg->css.cgroup;
4088 if (!memcg->use_hierarchy)
4089 goto out;
4091 while (cgroup->parent) {
4092 cgroup = cgroup->parent;
4093 memcg = mem_cgroup_from_cont(cgroup);
4094 if (!memcg->use_hierarchy)
4095 break;
4096 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4097 min_limit = min(min_limit, tmp);
4098 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4099 min_memsw_limit = min(min_memsw_limit, tmp);
4101 out:
4102 *mem_limit = min_limit;
4103 *memsw_limit = min_memsw_limit;
4104 return;
4107 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4109 struct mem_cgroup *mem;
4110 int type, name;
4112 mem = mem_cgroup_from_cont(cont);
4113 type = MEMFILE_TYPE(event);
4114 name = MEMFILE_ATTR(event);
4115 switch (name) {
4116 case RES_MAX_USAGE:
4117 if (type == _MEM)
4118 res_counter_reset_max(&mem->res);
4119 else
4120 res_counter_reset_max(&mem->memsw);
4121 break;
4122 case RES_FAILCNT:
4123 if (type == _MEM)
4124 res_counter_reset_failcnt(&mem->res);
4125 else
4126 res_counter_reset_failcnt(&mem->memsw);
4127 break;
4130 return 0;
4133 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4134 struct cftype *cft)
4136 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4139 #ifdef CONFIG_MMU
4140 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4141 struct cftype *cft, u64 val)
4143 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4145 if (val >= (1 << NR_MOVE_TYPE))
4146 return -EINVAL;
4148 * We check this value several times in both in can_attach() and
4149 * attach(), so we need cgroup lock to prevent this value from being
4150 * inconsistent.
4152 cgroup_lock();
4153 mem->move_charge_at_immigrate = val;
4154 cgroup_unlock();
4156 return 0;
4158 #else
4159 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4160 struct cftype *cft, u64 val)
4162 return -ENOSYS;
4164 #endif
4167 /* For read statistics */
4168 enum {
4169 MCS_CACHE,
4170 MCS_RSS,
4171 MCS_FILE_MAPPED,
4172 MCS_PGPGIN,
4173 MCS_PGPGOUT,
4174 MCS_SWAP,
4175 MCS_PGFAULT,
4176 MCS_PGMAJFAULT,
4177 MCS_INACTIVE_ANON,
4178 MCS_ACTIVE_ANON,
4179 MCS_INACTIVE_FILE,
4180 MCS_ACTIVE_FILE,
4181 MCS_UNEVICTABLE,
4182 NR_MCS_STAT,
4185 struct mcs_total_stat {
4186 s64 stat[NR_MCS_STAT];
4189 struct {
4190 char *local_name;
4191 char *total_name;
4192 } memcg_stat_strings[NR_MCS_STAT] = {
4193 {"cache", "total_cache"},
4194 {"rss", "total_rss"},
4195 {"mapped_file", "total_mapped_file"},
4196 {"pgpgin", "total_pgpgin"},
4197 {"pgpgout", "total_pgpgout"},
4198 {"swap", "total_swap"},
4199 {"pgfault", "total_pgfault"},
4200 {"pgmajfault", "total_pgmajfault"},
4201 {"inactive_anon", "total_inactive_anon"},
4202 {"active_anon", "total_active_anon"},
4203 {"inactive_file", "total_inactive_file"},
4204 {"active_file", "total_active_file"},
4205 {"unevictable", "total_unevictable"}
4209 static void
4210 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4212 s64 val;
4214 /* per cpu stat */
4215 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4216 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4217 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4218 s->stat[MCS_RSS] += val * PAGE_SIZE;
4219 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4220 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4221 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4222 s->stat[MCS_PGPGIN] += val;
4223 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4224 s->stat[MCS_PGPGOUT] += val;
4225 if (do_swap_account) {
4226 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4227 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4229 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4230 s->stat[MCS_PGFAULT] += val;
4231 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4232 s->stat[MCS_PGMAJFAULT] += val;
4234 /* per zone stat */
4235 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
4236 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4237 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
4238 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4239 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
4240 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4241 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
4242 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4243 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
4244 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4247 static void
4248 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4250 struct mem_cgroup *iter;
4252 for_each_mem_cgroup_tree(iter, mem)
4253 mem_cgroup_get_local_stat(iter, s);
4256 #ifdef CONFIG_NUMA
4257 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4259 int nid;
4260 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4261 unsigned long node_nr;
4262 struct cgroup *cont = m->private;
4263 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4265 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4266 seq_printf(m, "total=%lu", total_nr);
4267 for_each_node_state(nid, N_HIGH_MEMORY) {
4268 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4269 seq_printf(m, " N%d=%lu", nid, node_nr);
4271 seq_putc(m, '\n');
4273 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4274 seq_printf(m, "file=%lu", file_nr);
4275 for_each_node_state(nid, N_HIGH_MEMORY) {
4276 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4277 LRU_ALL_FILE);
4278 seq_printf(m, " N%d=%lu", nid, node_nr);
4280 seq_putc(m, '\n');
4282 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4283 seq_printf(m, "anon=%lu", anon_nr);
4284 for_each_node_state(nid, N_HIGH_MEMORY) {
4285 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4286 LRU_ALL_ANON);
4287 seq_printf(m, " N%d=%lu", nid, node_nr);
4289 seq_putc(m, '\n');
4291 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4292 seq_printf(m, "unevictable=%lu", unevictable_nr);
4293 for_each_node_state(nid, N_HIGH_MEMORY) {
4294 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4295 BIT(LRU_UNEVICTABLE));
4296 seq_printf(m, " N%d=%lu", nid, node_nr);
4298 seq_putc(m, '\n');
4299 return 0;
4301 #endif /* CONFIG_NUMA */
4303 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4304 struct cgroup_map_cb *cb)
4306 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4307 struct mcs_total_stat mystat;
4308 int i;
4310 memset(&mystat, 0, sizeof(mystat));
4311 mem_cgroup_get_local_stat(mem_cont, &mystat);
4314 for (i = 0; i < NR_MCS_STAT; i++) {
4315 if (i == MCS_SWAP && !do_swap_account)
4316 continue;
4317 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4320 /* Hierarchical information */
4322 unsigned long long limit, memsw_limit;
4323 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4324 cb->fill(cb, "hierarchical_memory_limit", limit);
4325 if (do_swap_account)
4326 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4329 memset(&mystat, 0, sizeof(mystat));
4330 mem_cgroup_get_total_stat(mem_cont, &mystat);
4331 for (i = 0; i < NR_MCS_STAT; i++) {
4332 if (i == MCS_SWAP && !do_swap_account)
4333 continue;
4334 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4337 #ifdef CONFIG_DEBUG_VM
4338 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4341 int nid, zid;
4342 struct mem_cgroup_per_zone *mz;
4343 unsigned long recent_rotated[2] = {0, 0};
4344 unsigned long recent_scanned[2] = {0, 0};
4346 for_each_online_node(nid)
4347 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4348 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4350 recent_rotated[0] +=
4351 mz->reclaim_stat.recent_rotated[0];
4352 recent_rotated[1] +=
4353 mz->reclaim_stat.recent_rotated[1];
4354 recent_scanned[0] +=
4355 mz->reclaim_stat.recent_scanned[0];
4356 recent_scanned[1] +=
4357 mz->reclaim_stat.recent_scanned[1];
4359 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4360 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4361 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4362 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4364 #endif
4366 return 0;
4369 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4371 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4373 return mem_cgroup_swappiness(memcg);
4376 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4377 u64 val)
4379 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4380 struct mem_cgroup *parent;
4382 if (val > 100)
4383 return -EINVAL;
4385 if (cgrp->parent == NULL)
4386 return -EINVAL;
4388 parent = mem_cgroup_from_cont(cgrp->parent);
4390 cgroup_lock();
4392 /* If under hierarchy, only empty-root can set this value */
4393 if ((parent->use_hierarchy) ||
4394 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4395 cgroup_unlock();
4396 return -EINVAL;
4399 memcg->swappiness = val;
4401 cgroup_unlock();
4403 return 0;
4406 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4408 struct mem_cgroup_threshold_ary *t;
4409 u64 usage;
4410 int i;
4412 rcu_read_lock();
4413 if (!swap)
4414 t = rcu_dereference(memcg->thresholds.primary);
4415 else
4416 t = rcu_dereference(memcg->memsw_thresholds.primary);
4418 if (!t)
4419 goto unlock;
4421 usage = mem_cgroup_usage(memcg, swap);
4424 * current_threshold points to threshold just below usage.
4425 * If it's not true, a threshold was crossed after last
4426 * call of __mem_cgroup_threshold().
4428 i = t->current_threshold;
4431 * Iterate backward over array of thresholds starting from
4432 * current_threshold and check if a threshold is crossed.
4433 * If none of thresholds below usage is crossed, we read
4434 * only one element of the array here.
4436 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4437 eventfd_signal(t->entries[i].eventfd, 1);
4439 /* i = current_threshold + 1 */
4440 i++;
4443 * Iterate forward over array of thresholds starting from
4444 * current_threshold+1 and check if a threshold is crossed.
4445 * If none of thresholds above usage is crossed, we read
4446 * only one element of the array here.
4448 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4449 eventfd_signal(t->entries[i].eventfd, 1);
4451 /* Update current_threshold */
4452 t->current_threshold = i - 1;
4453 unlock:
4454 rcu_read_unlock();
4457 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4459 while (memcg) {
4460 __mem_cgroup_threshold(memcg, false);
4461 if (do_swap_account)
4462 __mem_cgroup_threshold(memcg, true);
4464 memcg = parent_mem_cgroup(memcg);
4468 static int compare_thresholds(const void *a, const void *b)
4470 const struct mem_cgroup_threshold *_a = a;
4471 const struct mem_cgroup_threshold *_b = b;
4473 return _a->threshold - _b->threshold;
4476 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4478 struct mem_cgroup_eventfd_list *ev;
4480 list_for_each_entry(ev, &mem->oom_notify, list)
4481 eventfd_signal(ev->eventfd, 1);
4482 return 0;
4485 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4487 struct mem_cgroup *iter;
4489 for_each_mem_cgroup_tree(iter, mem)
4490 mem_cgroup_oom_notify_cb(iter);
4493 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4494 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4496 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4497 struct mem_cgroup_thresholds *thresholds;
4498 struct mem_cgroup_threshold_ary *new;
4499 int type = MEMFILE_TYPE(cft->private);
4500 u64 threshold, usage;
4501 int i, size, ret;
4503 ret = res_counter_memparse_write_strategy(args, &threshold);
4504 if (ret)
4505 return ret;
4507 mutex_lock(&memcg->thresholds_lock);
4509 if (type == _MEM)
4510 thresholds = &memcg->thresholds;
4511 else if (type == _MEMSWAP)
4512 thresholds = &memcg->memsw_thresholds;
4513 else
4514 BUG();
4516 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4518 /* Check if a threshold crossed before adding a new one */
4519 if (thresholds->primary)
4520 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4522 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4524 /* Allocate memory for new array of thresholds */
4525 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4526 GFP_KERNEL);
4527 if (!new) {
4528 ret = -ENOMEM;
4529 goto unlock;
4531 new->size = size;
4533 /* Copy thresholds (if any) to new array */
4534 if (thresholds->primary) {
4535 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4536 sizeof(struct mem_cgroup_threshold));
4539 /* Add new threshold */
4540 new->entries[size - 1].eventfd = eventfd;
4541 new->entries[size - 1].threshold = threshold;
4543 /* Sort thresholds. Registering of new threshold isn't time-critical */
4544 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4545 compare_thresholds, NULL);
4547 /* Find current threshold */
4548 new->current_threshold = -1;
4549 for (i = 0; i < size; i++) {
4550 if (new->entries[i].threshold < usage) {
4552 * new->current_threshold will not be used until
4553 * rcu_assign_pointer(), so it's safe to increment
4554 * it here.
4556 ++new->current_threshold;
4560 /* Free old spare buffer and save old primary buffer as spare */
4561 kfree(thresholds->spare);
4562 thresholds->spare = thresholds->primary;
4564 rcu_assign_pointer(thresholds->primary, new);
4566 /* To be sure that nobody uses thresholds */
4567 synchronize_rcu();
4569 unlock:
4570 mutex_unlock(&memcg->thresholds_lock);
4572 return ret;
4575 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4576 struct cftype *cft, struct eventfd_ctx *eventfd)
4578 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4579 struct mem_cgroup_thresholds *thresholds;
4580 struct mem_cgroup_threshold_ary *new;
4581 int type = MEMFILE_TYPE(cft->private);
4582 u64 usage;
4583 int i, j, size;
4585 mutex_lock(&memcg->thresholds_lock);
4586 if (type == _MEM)
4587 thresholds = &memcg->thresholds;
4588 else if (type == _MEMSWAP)
4589 thresholds = &memcg->memsw_thresholds;
4590 else
4591 BUG();
4594 * Something went wrong if we trying to unregister a threshold
4595 * if we don't have thresholds
4597 BUG_ON(!thresholds);
4599 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4601 /* Check if a threshold crossed before removing */
4602 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4604 /* Calculate new number of threshold */
4605 size = 0;
4606 for (i = 0; i < thresholds->primary->size; i++) {
4607 if (thresholds->primary->entries[i].eventfd != eventfd)
4608 size++;
4611 new = thresholds->spare;
4613 /* Set thresholds array to NULL if we don't have thresholds */
4614 if (!size) {
4615 kfree(new);
4616 new = NULL;
4617 goto swap_buffers;
4620 new->size = size;
4622 /* Copy thresholds and find current threshold */
4623 new->current_threshold = -1;
4624 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4625 if (thresholds->primary->entries[i].eventfd == eventfd)
4626 continue;
4628 new->entries[j] = thresholds->primary->entries[i];
4629 if (new->entries[j].threshold < usage) {
4631 * new->current_threshold will not be used
4632 * until rcu_assign_pointer(), so it's safe to increment
4633 * it here.
4635 ++new->current_threshold;
4637 j++;
4640 swap_buffers:
4641 /* Swap primary and spare array */
4642 thresholds->spare = thresholds->primary;
4643 rcu_assign_pointer(thresholds->primary, new);
4645 /* To be sure that nobody uses thresholds */
4646 synchronize_rcu();
4648 mutex_unlock(&memcg->thresholds_lock);
4651 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4652 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4654 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4655 struct mem_cgroup_eventfd_list *event;
4656 int type = MEMFILE_TYPE(cft->private);
4658 BUG_ON(type != _OOM_TYPE);
4659 event = kmalloc(sizeof(*event), GFP_KERNEL);
4660 if (!event)
4661 return -ENOMEM;
4663 spin_lock(&memcg_oom_lock);
4665 event->eventfd = eventfd;
4666 list_add(&event->list, &memcg->oom_notify);
4668 /* already in OOM ? */
4669 if (atomic_read(&memcg->under_oom))
4670 eventfd_signal(eventfd, 1);
4671 spin_unlock(&memcg_oom_lock);
4673 return 0;
4676 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4677 struct cftype *cft, struct eventfd_ctx *eventfd)
4679 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4680 struct mem_cgroup_eventfd_list *ev, *tmp;
4681 int type = MEMFILE_TYPE(cft->private);
4683 BUG_ON(type != _OOM_TYPE);
4685 spin_lock(&memcg_oom_lock);
4687 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4688 if (ev->eventfd == eventfd) {
4689 list_del(&ev->list);
4690 kfree(ev);
4694 spin_unlock(&memcg_oom_lock);
4697 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4698 struct cftype *cft, struct cgroup_map_cb *cb)
4700 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4702 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4704 if (atomic_read(&mem->under_oom))
4705 cb->fill(cb, "under_oom", 1);
4706 else
4707 cb->fill(cb, "under_oom", 0);
4708 return 0;
4711 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4712 struct cftype *cft, u64 val)
4714 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4715 struct mem_cgroup *parent;
4717 /* cannot set to root cgroup and only 0 and 1 are allowed */
4718 if (!cgrp->parent || !((val == 0) || (val == 1)))
4719 return -EINVAL;
4721 parent = mem_cgroup_from_cont(cgrp->parent);
4723 cgroup_lock();
4724 /* oom-kill-disable is a flag for subhierarchy. */
4725 if ((parent->use_hierarchy) ||
4726 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4727 cgroup_unlock();
4728 return -EINVAL;
4730 mem->oom_kill_disable = val;
4731 if (!val)
4732 memcg_oom_recover(mem);
4733 cgroup_unlock();
4734 return 0;
4737 #ifdef CONFIG_NUMA
4738 static const struct file_operations mem_control_numa_stat_file_operations = {
4739 .read = seq_read,
4740 .llseek = seq_lseek,
4741 .release = single_release,
4744 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4746 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4748 file->f_op = &mem_control_numa_stat_file_operations;
4749 return single_open(file, mem_control_numa_stat_show, cont);
4751 #endif /* CONFIG_NUMA */
4753 static int mem_cgroup_vmscan_stat_read(struct cgroup *cgrp,
4754 struct cftype *cft,
4755 struct cgroup_map_cb *cb)
4757 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4758 char string[64];
4759 int i;
4761 for (i = 0; i < NR_SCANSTATS; i++) {
4762 strcpy(string, scanstat_string[i]);
4763 strcat(string, SCANSTAT_WORD_LIMIT);
4764 cb->fill(cb, string, mem->scanstat.stats[SCAN_BY_LIMIT][i]);
4767 for (i = 0; i < NR_SCANSTATS; i++) {
4768 strcpy(string, scanstat_string[i]);
4769 strcat(string, SCANSTAT_WORD_SYSTEM);
4770 cb->fill(cb, string, mem->scanstat.stats[SCAN_BY_SYSTEM][i]);
4773 for (i = 0; i < NR_SCANSTATS; i++) {
4774 strcpy(string, scanstat_string[i]);
4775 strcat(string, SCANSTAT_WORD_LIMIT);
4776 strcat(string, SCANSTAT_WORD_HIERARCHY);
4777 cb->fill(cb, string, mem->scanstat.rootstats[SCAN_BY_LIMIT][i]);
4779 for (i = 0; i < NR_SCANSTATS; i++) {
4780 strcpy(string, scanstat_string[i]);
4781 strcat(string, SCANSTAT_WORD_SYSTEM);
4782 strcat(string, SCANSTAT_WORD_HIERARCHY);
4783 cb->fill(cb, string, mem->scanstat.rootstats[SCAN_BY_SYSTEM][i]);
4785 return 0;
4788 static int mem_cgroup_reset_vmscan_stat(struct cgroup *cgrp,
4789 unsigned int event)
4791 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4793 spin_lock(&mem->scanstat.lock);
4794 memset(&mem->scanstat.stats, 0, sizeof(mem->scanstat.stats));
4795 memset(&mem->scanstat.rootstats, 0, sizeof(mem->scanstat.rootstats));
4796 spin_unlock(&mem->scanstat.lock);
4797 return 0;
4801 static struct cftype mem_cgroup_files[] = {
4803 .name = "usage_in_bytes",
4804 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4805 .read_u64 = mem_cgroup_read,
4806 .register_event = mem_cgroup_usage_register_event,
4807 .unregister_event = mem_cgroup_usage_unregister_event,
4810 .name = "max_usage_in_bytes",
4811 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4812 .trigger = mem_cgroup_reset,
4813 .read_u64 = mem_cgroup_read,
4816 .name = "limit_in_bytes",
4817 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4818 .write_string = mem_cgroup_write,
4819 .read_u64 = mem_cgroup_read,
4822 .name = "soft_limit_in_bytes",
4823 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4824 .write_string = mem_cgroup_write,
4825 .read_u64 = mem_cgroup_read,
4828 .name = "failcnt",
4829 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4830 .trigger = mem_cgroup_reset,
4831 .read_u64 = mem_cgroup_read,
4834 .name = "stat",
4835 .read_map = mem_control_stat_show,
4838 .name = "force_empty",
4839 .trigger = mem_cgroup_force_empty_write,
4842 .name = "use_hierarchy",
4843 .write_u64 = mem_cgroup_hierarchy_write,
4844 .read_u64 = mem_cgroup_hierarchy_read,
4847 .name = "swappiness",
4848 .read_u64 = mem_cgroup_swappiness_read,
4849 .write_u64 = mem_cgroup_swappiness_write,
4852 .name = "move_charge_at_immigrate",
4853 .read_u64 = mem_cgroup_move_charge_read,
4854 .write_u64 = mem_cgroup_move_charge_write,
4857 .name = "oom_control",
4858 .read_map = mem_cgroup_oom_control_read,
4859 .write_u64 = mem_cgroup_oom_control_write,
4860 .register_event = mem_cgroup_oom_register_event,
4861 .unregister_event = mem_cgroup_oom_unregister_event,
4862 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4864 #ifdef CONFIG_NUMA
4866 .name = "numa_stat",
4867 .open = mem_control_numa_stat_open,
4868 .mode = S_IRUGO,
4870 #endif
4872 .name = "vmscan_stat",
4873 .read_map = mem_cgroup_vmscan_stat_read,
4874 .trigger = mem_cgroup_reset_vmscan_stat,
4878 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4879 static struct cftype memsw_cgroup_files[] = {
4881 .name = "memsw.usage_in_bytes",
4882 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4883 .read_u64 = mem_cgroup_read,
4884 .register_event = mem_cgroup_usage_register_event,
4885 .unregister_event = mem_cgroup_usage_unregister_event,
4888 .name = "memsw.max_usage_in_bytes",
4889 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4890 .trigger = mem_cgroup_reset,
4891 .read_u64 = mem_cgroup_read,
4894 .name = "memsw.limit_in_bytes",
4895 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4896 .write_string = mem_cgroup_write,
4897 .read_u64 = mem_cgroup_read,
4900 .name = "memsw.failcnt",
4901 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4902 .trigger = mem_cgroup_reset,
4903 .read_u64 = mem_cgroup_read,
4907 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4909 if (!do_swap_account)
4910 return 0;
4911 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4912 ARRAY_SIZE(memsw_cgroup_files));
4914 #else
4915 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4917 return 0;
4919 #endif
4921 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4923 struct mem_cgroup_per_node *pn;
4924 struct mem_cgroup_per_zone *mz;
4925 enum lru_list l;
4926 int zone, tmp = node;
4928 * This routine is called against possible nodes.
4929 * But it's BUG to call kmalloc() against offline node.
4931 * TODO: this routine can waste much memory for nodes which will
4932 * never be onlined. It's better to use memory hotplug callback
4933 * function.
4935 if (!node_state(node, N_NORMAL_MEMORY))
4936 tmp = -1;
4937 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4938 if (!pn)
4939 return 1;
4941 mem->info.nodeinfo[node] = pn;
4942 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4943 mz = &pn->zoneinfo[zone];
4944 for_each_lru(l)
4945 INIT_LIST_HEAD(&mz->lists[l]);
4946 mz->usage_in_excess = 0;
4947 mz->on_tree = false;
4948 mz->mem = mem;
4950 return 0;
4953 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4955 kfree(mem->info.nodeinfo[node]);
4958 static struct mem_cgroup *mem_cgroup_alloc(void)
4960 struct mem_cgroup *mem;
4961 int size = sizeof(struct mem_cgroup);
4963 /* Can be very big if MAX_NUMNODES is very big */
4964 if (size < PAGE_SIZE)
4965 mem = kzalloc(size, GFP_KERNEL);
4966 else
4967 mem = vzalloc(size);
4969 if (!mem)
4970 return NULL;
4972 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4973 if (!mem->stat)
4974 goto out_free;
4975 spin_lock_init(&mem->pcp_counter_lock);
4976 return mem;
4978 out_free:
4979 if (size < PAGE_SIZE)
4980 kfree(mem);
4981 else
4982 vfree(mem);
4983 return NULL;
4987 * At destroying mem_cgroup, references from swap_cgroup can remain.
4988 * (scanning all at force_empty is too costly...)
4990 * Instead of clearing all references at force_empty, we remember
4991 * the number of reference from swap_cgroup and free mem_cgroup when
4992 * it goes down to 0.
4994 * Removal of cgroup itself succeeds regardless of refs from swap.
4997 static void __mem_cgroup_free(struct mem_cgroup *mem)
4999 int node;
5001 mem_cgroup_remove_from_trees(mem);
5002 free_css_id(&mem_cgroup_subsys, &mem->css);
5004 for_each_node_state(node, N_POSSIBLE)
5005 free_mem_cgroup_per_zone_info(mem, node);
5007 free_percpu(mem->stat);
5008 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
5009 kfree(mem);
5010 else
5011 vfree(mem);
5014 static void mem_cgroup_get(struct mem_cgroup *mem)
5016 atomic_inc(&mem->refcnt);
5019 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
5021 if (atomic_sub_and_test(count, &mem->refcnt)) {
5022 struct mem_cgroup *parent = parent_mem_cgroup(mem);
5023 __mem_cgroup_free(mem);
5024 if (parent)
5025 mem_cgroup_put(parent);
5029 static void mem_cgroup_put(struct mem_cgroup *mem)
5031 __mem_cgroup_put(mem, 1);
5035 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5037 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
5039 if (!mem->res.parent)
5040 return NULL;
5041 return mem_cgroup_from_res_counter(mem->res.parent, res);
5044 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5045 static void __init enable_swap_cgroup(void)
5047 if (!mem_cgroup_disabled() && really_do_swap_account)
5048 do_swap_account = 1;
5050 #else
5051 static void __init enable_swap_cgroup(void)
5054 #endif
5056 static int mem_cgroup_soft_limit_tree_init(void)
5058 struct mem_cgroup_tree_per_node *rtpn;
5059 struct mem_cgroup_tree_per_zone *rtpz;
5060 int tmp, node, zone;
5062 for_each_node_state(node, N_POSSIBLE) {
5063 tmp = node;
5064 if (!node_state(node, N_NORMAL_MEMORY))
5065 tmp = -1;
5066 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5067 if (!rtpn)
5068 return 1;
5070 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5072 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5073 rtpz = &rtpn->rb_tree_per_zone[zone];
5074 rtpz->rb_root = RB_ROOT;
5075 spin_lock_init(&rtpz->lock);
5078 return 0;
5081 static struct cgroup_subsys_state * __ref
5082 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5084 struct mem_cgroup *mem, *parent;
5085 long error = -ENOMEM;
5086 int node;
5088 mem = mem_cgroup_alloc();
5089 if (!mem)
5090 return ERR_PTR(error);
5092 for_each_node_state(node, N_POSSIBLE)
5093 if (alloc_mem_cgroup_per_zone_info(mem, node))
5094 goto free_out;
5096 /* root ? */
5097 if (cont->parent == NULL) {
5098 int cpu;
5099 enable_swap_cgroup();
5100 parent = NULL;
5101 root_mem_cgroup = mem;
5102 if (mem_cgroup_soft_limit_tree_init())
5103 goto free_out;
5104 for_each_possible_cpu(cpu) {
5105 struct memcg_stock_pcp *stock =
5106 &per_cpu(memcg_stock, cpu);
5107 INIT_WORK(&stock->work, drain_local_stock);
5109 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5110 } else {
5111 parent = mem_cgroup_from_cont(cont->parent);
5112 mem->use_hierarchy = parent->use_hierarchy;
5113 mem->oom_kill_disable = parent->oom_kill_disable;
5116 if (parent && parent->use_hierarchy) {
5117 res_counter_init(&mem->res, &parent->res);
5118 res_counter_init(&mem->memsw, &parent->memsw);
5120 * We increment refcnt of the parent to ensure that we can
5121 * safely access it on res_counter_charge/uncharge.
5122 * This refcnt will be decremented when freeing this
5123 * mem_cgroup(see mem_cgroup_put).
5125 mem_cgroup_get(parent);
5126 } else {
5127 res_counter_init(&mem->res, NULL);
5128 res_counter_init(&mem->memsw, NULL);
5130 mem->last_scanned_child = 0;
5131 mem->last_scanned_node = MAX_NUMNODES;
5132 INIT_LIST_HEAD(&mem->oom_notify);
5134 if (parent)
5135 mem->swappiness = mem_cgroup_swappiness(parent);
5136 atomic_set(&mem->refcnt, 1);
5137 mem->move_charge_at_immigrate = 0;
5138 mutex_init(&mem->thresholds_lock);
5139 spin_lock_init(&mem->scanstat.lock);
5140 return &mem->css;
5141 free_out:
5142 __mem_cgroup_free(mem);
5143 root_mem_cgroup = NULL;
5144 return ERR_PTR(error);
5147 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5148 struct cgroup *cont)
5150 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5152 return mem_cgroup_force_empty(mem, false);
5155 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5156 struct cgroup *cont)
5158 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5160 mem_cgroup_put(mem);
5163 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5164 struct cgroup *cont)
5166 int ret;
5168 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5169 ARRAY_SIZE(mem_cgroup_files));
5171 if (!ret)
5172 ret = register_memsw_files(cont, ss);
5173 return ret;
5176 #ifdef CONFIG_MMU
5177 /* Handlers for move charge at task migration. */
5178 #define PRECHARGE_COUNT_AT_ONCE 256
5179 static int mem_cgroup_do_precharge(unsigned long count)
5181 int ret = 0;
5182 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5183 struct mem_cgroup *mem = mc.to;
5185 if (mem_cgroup_is_root(mem)) {
5186 mc.precharge += count;
5187 /* we don't need css_get for root */
5188 return ret;
5190 /* try to charge at once */
5191 if (count > 1) {
5192 struct res_counter *dummy;
5194 * "mem" cannot be under rmdir() because we've already checked
5195 * by cgroup_lock_live_cgroup() that it is not removed and we
5196 * are still under the same cgroup_mutex. So we can postpone
5197 * css_get().
5199 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
5200 goto one_by_one;
5201 if (do_swap_account && res_counter_charge(&mem->memsw,
5202 PAGE_SIZE * count, &dummy)) {
5203 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5204 goto one_by_one;
5206 mc.precharge += count;
5207 return ret;
5209 one_by_one:
5210 /* fall back to one by one charge */
5211 while (count--) {
5212 if (signal_pending(current)) {
5213 ret = -EINTR;
5214 break;
5216 if (!batch_count--) {
5217 batch_count = PRECHARGE_COUNT_AT_ONCE;
5218 cond_resched();
5220 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5221 if (ret || !mem)
5222 /* mem_cgroup_clear_mc() will do uncharge later */
5223 return -ENOMEM;
5224 mc.precharge++;
5226 return ret;
5230 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5231 * @vma: the vma the pte to be checked belongs
5232 * @addr: the address corresponding to the pte to be checked
5233 * @ptent: the pte to be checked
5234 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5236 * Returns
5237 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5238 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5239 * move charge. if @target is not NULL, the page is stored in target->page
5240 * with extra refcnt got(Callers should handle it).
5241 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5242 * target for charge migration. if @target is not NULL, the entry is stored
5243 * in target->ent.
5245 * Called with pte lock held.
5247 union mc_target {
5248 struct page *page;
5249 swp_entry_t ent;
5252 enum mc_target_type {
5253 MC_TARGET_NONE, /* not used */
5254 MC_TARGET_PAGE,
5255 MC_TARGET_SWAP,
5258 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5259 unsigned long addr, pte_t ptent)
5261 struct page *page = vm_normal_page(vma, addr, ptent);
5263 if (!page || !page_mapped(page))
5264 return NULL;
5265 if (PageAnon(page)) {
5266 /* we don't move shared anon */
5267 if (!move_anon() || page_mapcount(page) > 2)
5268 return NULL;
5269 } else if (!move_file())
5270 /* we ignore mapcount for file pages */
5271 return NULL;
5272 if (!get_page_unless_zero(page))
5273 return NULL;
5275 return page;
5278 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5279 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5281 int usage_count;
5282 struct page *page = NULL;
5283 swp_entry_t ent = pte_to_swp_entry(ptent);
5285 if (!move_anon() || non_swap_entry(ent))
5286 return NULL;
5287 usage_count = mem_cgroup_count_swap_user(ent, &page);
5288 if (usage_count > 1) { /* we don't move shared anon */
5289 if (page)
5290 put_page(page);
5291 return NULL;
5293 if (do_swap_account)
5294 entry->val = ent.val;
5296 return page;
5299 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5300 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5302 struct page *page = NULL;
5303 struct inode *inode;
5304 struct address_space *mapping;
5305 pgoff_t pgoff;
5307 if (!vma->vm_file) /* anonymous vma */
5308 return NULL;
5309 if (!move_file())
5310 return NULL;
5312 inode = vma->vm_file->f_path.dentry->d_inode;
5313 mapping = vma->vm_file->f_mapping;
5314 if (pte_none(ptent))
5315 pgoff = linear_page_index(vma, addr);
5316 else /* pte_file(ptent) is true */
5317 pgoff = pte_to_pgoff(ptent);
5319 /* page is moved even if it's not RSS of this task(page-faulted). */
5320 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
5321 page = find_get_page(mapping, pgoff);
5322 } else { /* shmem/tmpfs file. we should take account of swap too. */
5323 swp_entry_t ent;
5324 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
5325 if (do_swap_account)
5326 entry->val = ent.val;
5329 return page;
5332 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5333 unsigned long addr, pte_t ptent, union mc_target *target)
5335 struct page *page = NULL;
5336 struct page_cgroup *pc;
5337 int ret = 0;
5338 swp_entry_t ent = { .val = 0 };
5340 if (pte_present(ptent))
5341 page = mc_handle_present_pte(vma, addr, ptent);
5342 else if (is_swap_pte(ptent))
5343 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5344 else if (pte_none(ptent) || pte_file(ptent))
5345 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5347 if (!page && !ent.val)
5348 return 0;
5349 if (page) {
5350 pc = lookup_page_cgroup(page);
5352 * Do only loose check w/o page_cgroup lock.
5353 * mem_cgroup_move_account() checks the pc is valid or not under
5354 * the lock.
5356 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5357 ret = MC_TARGET_PAGE;
5358 if (target)
5359 target->page = page;
5361 if (!ret || !target)
5362 put_page(page);
5364 /* There is a swap entry and a page doesn't exist or isn't charged */
5365 if (ent.val && !ret &&
5366 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5367 ret = MC_TARGET_SWAP;
5368 if (target)
5369 target->ent = ent;
5371 return ret;
5374 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5375 unsigned long addr, unsigned long end,
5376 struct mm_walk *walk)
5378 struct vm_area_struct *vma = walk->private;
5379 pte_t *pte;
5380 spinlock_t *ptl;
5382 split_huge_page_pmd(walk->mm, pmd);
5384 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5385 for (; addr != end; pte++, addr += PAGE_SIZE)
5386 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5387 mc.precharge++; /* increment precharge temporarily */
5388 pte_unmap_unlock(pte - 1, ptl);
5389 cond_resched();
5391 return 0;
5394 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5396 unsigned long precharge;
5397 struct vm_area_struct *vma;
5399 down_read(&mm->mmap_sem);
5400 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5401 struct mm_walk mem_cgroup_count_precharge_walk = {
5402 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5403 .mm = mm,
5404 .private = vma,
5406 if (is_vm_hugetlb_page(vma))
5407 continue;
5408 walk_page_range(vma->vm_start, vma->vm_end,
5409 &mem_cgroup_count_precharge_walk);
5411 up_read(&mm->mmap_sem);
5413 precharge = mc.precharge;
5414 mc.precharge = 0;
5416 return precharge;
5419 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5421 unsigned long precharge = mem_cgroup_count_precharge(mm);
5423 VM_BUG_ON(mc.moving_task);
5424 mc.moving_task = current;
5425 return mem_cgroup_do_precharge(precharge);
5428 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5429 static void __mem_cgroup_clear_mc(void)
5431 struct mem_cgroup *from = mc.from;
5432 struct mem_cgroup *to = mc.to;
5434 /* we must uncharge all the leftover precharges from mc.to */
5435 if (mc.precharge) {
5436 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5437 mc.precharge = 0;
5440 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5441 * we must uncharge here.
5443 if (mc.moved_charge) {
5444 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5445 mc.moved_charge = 0;
5447 /* we must fixup refcnts and charges */
5448 if (mc.moved_swap) {
5449 /* uncharge swap account from the old cgroup */
5450 if (!mem_cgroup_is_root(mc.from))
5451 res_counter_uncharge(&mc.from->memsw,
5452 PAGE_SIZE * mc.moved_swap);
5453 __mem_cgroup_put(mc.from, mc.moved_swap);
5455 if (!mem_cgroup_is_root(mc.to)) {
5457 * we charged both to->res and to->memsw, so we should
5458 * uncharge to->res.
5460 res_counter_uncharge(&mc.to->res,
5461 PAGE_SIZE * mc.moved_swap);
5463 /* we've already done mem_cgroup_get(mc.to) */
5464 mc.moved_swap = 0;
5466 memcg_oom_recover(from);
5467 memcg_oom_recover(to);
5468 wake_up_all(&mc.waitq);
5471 static void mem_cgroup_clear_mc(void)
5473 struct mem_cgroup *from = mc.from;
5476 * we must clear moving_task before waking up waiters at the end of
5477 * task migration.
5479 mc.moving_task = NULL;
5480 __mem_cgroup_clear_mc();
5481 spin_lock(&mc.lock);
5482 mc.from = NULL;
5483 mc.to = NULL;
5484 spin_unlock(&mc.lock);
5485 mem_cgroup_end_move(from);
5488 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5489 struct cgroup *cgroup,
5490 struct task_struct *p)
5492 int ret = 0;
5493 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5495 if (mem->move_charge_at_immigrate) {
5496 struct mm_struct *mm;
5497 struct mem_cgroup *from = mem_cgroup_from_task(p);
5499 VM_BUG_ON(from == mem);
5501 mm = get_task_mm(p);
5502 if (!mm)
5503 return 0;
5504 /* We move charges only when we move a owner of the mm */
5505 if (mm->owner == p) {
5506 VM_BUG_ON(mc.from);
5507 VM_BUG_ON(mc.to);
5508 VM_BUG_ON(mc.precharge);
5509 VM_BUG_ON(mc.moved_charge);
5510 VM_BUG_ON(mc.moved_swap);
5511 mem_cgroup_start_move(from);
5512 spin_lock(&mc.lock);
5513 mc.from = from;
5514 mc.to = mem;
5515 spin_unlock(&mc.lock);
5516 /* We set mc.moving_task later */
5518 ret = mem_cgroup_precharge_mc(mm);
5519 if (ret)
5520 mem_cgroup_clear_mc();
5522 mmput(mm);
5524 return ret;
5527 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5528 struct cgroup *cgroup,
5529 struct task_struct *p)
5531 mem_cgroup_clear_mc();
5534 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5535 unsigned long addr, unsigned long end,
5536 struct mm_walk *walk)
5538 int ret = 0;
5539 struct vm_area_struct *vma = walk->private;
5540 pte_t *pte;
5541 spinlock_t *ptl;
5543 split_huge_page_pmd(walk->mm, pmd);
5544 retry:
5545 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5546 for (; addr != end; addr += PAGE_SIZE) {
5547 pte_t ptent = *(pte++);
5548 union mc_target target;
5549 int type;
5550 struct page *page;
5551 struct page_cgroup *pc;
5552 swp_entry_t ent;
5554 if (!mc.precharge)
5555 break;
5557 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5558 switch (type) {
5559 case MC_TARGET_PAGE:
5560 page = target.page;
5561 if (isolate_lru_page(page))
5562 goto put;
5563 pc = lookup_page_cgroup(page);
5564 if (!mem_cgroup_move_account(page, 1, pc,
5565 mc.from, mc.to, false)) {
5566 mc.precharge--;
5567 /* we uncharge from mc.from later. */
5568 mc.moved_charge++;
5570 putback_lru_page(page);
5571 put: /* is_target_pte_for_mc() gets the page */
5572 put_page(page);
5573 break;
5574 case MC_TARGET_SWAP:
5575 ent = target.ent;
5576 if (!mem_cgroup_move_swap_account(ent,
5577 mc.from, mc.to, false)) {
5578 mc.precharge--;
5579 /* we fixup refcnts and charges later. */
5580 mc.moved_swap++;
5582 break;
5583 default:
5584 break;
5587 pte_unmap_unlock(pte - 1, ptl);
5588 cond_resched();
5590 if (addr != end) {
5592 * We have consumed all precharges we got in can_attach().
5593 * We try charge one by one, but don't do any additional
5594 * charges to mc.to if we have failed in charge once in attach()
5595 * phase.
5597 ret = mem_cgroup_do_precharge(1);
5598 if (!ret)
5599 goto retry;
5602 return ret;
5605 static void mem_cgroup_move_charge(struct mm_struct *mm)
5607 struct vm_area_struct *vma;
5609 lru_add_drain_all();
5610 retry:
5611 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5613 * Someone who are holding the mmap_sem might be waiting in
5614 * waitq. So we cancel all extra charges, wake up all waiters,
5615 * and retry. Because we cancel precharges, we might not be able
5616 * to move enough charges, but moving charge is a best-effort
5617 * feature anyway, so it wouldn't be a big problem.
5619 __mem_cgroup_clear_mc();
5620 cond_resched();
5621 goto retry;
5623 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5624 int ret;
5625 struct mm_walk mem_cgroup_move_charge_walk = {
5626 .pmd_entry = mem_cgroup_move_charge_pte_range,
5627 .mm = mm,
5628 .private = vma,
5630 if (is_vm_hugetlb_page(vma))
5631 continue;
5632 ret = walk_page_range(vma->vm_start, vma->vm_end,
5633 &mem_cgroup_move_charge_walk);
5634 if (ret)
5636 * means we have consumed all precharges and failed in
5637 * doing additional charge. Just abandon here.
5639 break;
5641 up_read(&mm->mmap_sem);
5644 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5645 struct cgroup *cont,
5646 struct cgroup *old_cont,
5647 struct task_struct *p)
5649 struct mm_struct *mm = get_task_mm(p);
5651 if (mm) {
5652 if (mc.to)
5653 mem_cgroup_move_charge(mm);
5654 put_swap_token(mm);
5655 mmput(mm);
5657 if (mc.to)
5658 mem_cgroup_clear_mc();
5660 #else /* !CONFIG_MMU */
5661 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5662 struct cgroup *cgroup,
5663 struct task_struct *p)
5665 return 0;
5667 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5668 struct cgroup *cgroup,
5669 struct task_struct *p)
5672 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5673 struct cgroup *cont,
5674 struct cgroup *old_cont,
5675 struct task_struct *p)
5678 #endif
5680 struct cgroup_subsys mem_cgroup_subsys = {
5681 .name = "memory",
5682 .subsys_id = mem_cgroup_subsys_id,
5683 .create = mem_cgroup_create,
5684 .pre_destroy = mem_cgroup_pre_destroy,
5685 .destroy = mem_cgroup_destroy,
5686 .populate = mem_cgroup_populate,
5687 .can_attach = mem_cgroup_can_attach,
5688 .cancel_attach = mem_cgroup_cancel_attach,
5689 .attach = mem_cgroup_move_task,
5690 .early_init = 0,
5691 .use_id = 1,
5694 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5695 static int __init enable_swap_account(char *s)
5697 /* consider enabled if no parameter or 1 is given */
5698 if (!strcmp(s, "1"))
5699 really_do_swap_account = 1;
5700 else if (!strcmp(s, "0"))
5701 really_do_swap_account = 0;
5702 return 1;
5704 __setup("swapaccount=", enable_swap_account);
5706 #endif