[PATCH] mv643xx_eth: use MII library for ethtool functions
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / mv643xx_eth.c
blobff2b613a74367d7e73e25490c744b8f963cad01f
1 /*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
9 * written by Manish Lachwani
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
13 * Copyright (C) 2004-2005 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
33 #include <linux/init.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/tcp.h>
36 #include <linux/udp.h>
37 #include <linux/etherdevice.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
41 #include <linux/bitops.h>
42 #include <linux/delay.h>
43 #include <linux/ethtool.h>
44 #include <linux/platform_device.h>
46 #include <asm/io.h>
47 #include <asm/types.h>
48 #include <asm/pgtable.h>
49 #include <asm/system.h>
50 #include <asm/delay.h>
51 #include "mv643xx_eth.h"
54 * The first part is the high level driver of the gigE ethernet ports.
57 /* Constants */
58 #define VLAN_HLEN 4
59 #define FCS_LEN 4
60 #define DMA_ALIGN 8 /* hw requires 8-byte alignment */
61 #define HW_IP_ALIGN 2 /* hw aligns IP header */
62 #define WRAP HW_IP_ALIGN + ETH_HLEN + VLAN_HLEN + FCS_LEN
63 #define RX_SKB_SIZE ((dev->mtu + WRAP + 7) & ~0x7)
65 #define INT_UNMASK_ALL 0x0007ffff
66 #define INT_UNMASK_ALL_EXT 0x0011ffff
67 #define INT_MASK_ALL 0x00000000
68 #define INT_MASK_ALL_EXT 0x00000000
69 #define INT_CAUSE_CHECK_BITS INT_CAUSE_UNMASK_ALL
70 #define INT_CAUSE_CHECK_BITS_EXT INT_CAUSE_UNMASK_ALL_EXT
72 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
73 #define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1)
74 #else
75 #define MAX_DESCS_PER_SKB 1
76 #endif
78 #define PHY_WAIT_ITERATIONS 1000 /* 1000 iterations * 10uS = 10mS max */
79 #define PHY_WAIT_MICRO_SECONDS 10
81 /* Static function declarations */
82 static void eth_port_uc_addr_get(struct net_device *dev,
83 unsigned char *MacAddr);
84 static void eth_port_set_multicast_list(struct net_device *);
85 static void mv643xx_eth_port_enable_tx(unsigned int port_num,
86 unsigned int channels);
87 static void mv643xx_eth_port_enable_rx(unsigned int port_num,
88 unsigned int channels);
89 static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num);
90 static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num);
91 static int mv643xx_eth_open(struct net_device *);
92 static int mv643xx_eth_stop(struct net_device *);
93 static int mv643xx_eth_change_mtu(struct net_device *, int);
94 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
95 static void eth_port_init_mac_tables(unsigned int eth_port_num);
96 #ifdef MV643XX_NAPI
97 static int mv643xx_poll(struct net_device *dev, int *budget);
98 #endif
99 static int ethernet_phy_get(unsigned int eth_port_num);
100 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
101 static int ethernet_phy_detect(unsigned int eth_port_num);
102 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location);
103 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val);
104 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
105 static struct ethtool_ops mv643xx_ethtool_ops;
107 static char mv643xx_driver_name[] = "mv643xx_eth";
108 static char mv643xx_driver_version[] = "1.0";
110 static void __iomem *mv643xx_eth_shared_base;
112 /* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
113 static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
115 static inline u32 mv_read(int offset)
117 void __iomem *reg_base;
119 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
121 return readl(reg_base + offset);
124 static inline void mv_write(int offset, u32 data)
126 void __iomem *reg_base;
128 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
129 writel(data, reg_base + offset);
133 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
135 * Input : pointer to ethernet interface network device structure
136 * new mtu size
137 * Output : 0 upon success, -EINVAL upon failure
139 static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
141 if ((new_mtu > 9500) || (new_mtu < 64))
142 return -EINVAL;
144 dev->mtu = new_mtu;
146 * Stop then re-open the interface. This will allocate RX skb's with
147 * the new MTU.
148 * There is a possible danger that the open will not successed, due
149 * to memory is full, which might fail the open function.
151 if (netif_running(dev)) {
152 mv643xx_eth_stop(dev);
153 if (mv643xx_eth_open(dev))
154 printk(KERN_ERR
155 "%s: Fatal error on opening device\n",
156 dev->name);
159 return 0;
163 * mv643xx_eth_rx_task
165 * Fills / refills RX queue on a certain gigabit ethernet port
167 * Input : pointer to ethernet interface network device structure
168 * Output : N/A
170 static void mv643xx_eth_rx_task(void *data)
172 struct net_device *dev = (struct net_device *)data;
173 struct mv643xx_private *mp = netdev_priv(dev);
174 struct pkt_info pkt_info;
175 struct sk_buff *skb;
176 int unaligned;
178 if (test_and_set_bit(0, &mp->rx_task_busy))
179 panic("%s: Error in test_set_bit / clear_bit", dev->name);
181 while (mp->rx_desc_count < (mp->rx_ring_size - 5)) {
182 skb = dev_alloc_skb(RX_SKB_SIZE + DMA_ALIGN);
183 if (!skb)
184 break;
185 mp->rx_desc_count++;
186 unaligned = (u32)skb->data & (DMA_ALIGN - 1);
187 if (unaligned)
188 skb_reserve(skb, DMA_ALIGN - unaligned);
189 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
190 pkt_info.byte_cnt = RX_SKB_SIZE;
191 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, RX_SKB_SIZE,
192 DMA_FROM_DEVICE);
193 pkt_info.return_info = skb;
194 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
195 printk(KERN_ERR
196 "%s: Error allocating RX Ring\n", dev->name);
197 break;
199 skb_reserve(skb, HW_IP_ALIGN);
201 clear_bit(0, &mp->rx_task_busy);
203 * If RX ring is empty of SKB, set a timer to try allocating
204 * again in a later time .
206 if ((mp->rx_desc_count == 0) && (mp->rx_timer_flag == 0)) {
207 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
208 /* After 100mSec */
209 mp->timeout.expires = jiffies + (HZ / 10);
210 add_timer(&mp->timeout);
211 mp->rx_timer_flag = 1;
213 #ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
214 else {
215 /* Return interrupts */
216 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(mp->port_num),
217 INT_UNMASK_ALL);
219 #endif
223 * mv643xx_eth_rx_task_timer_wrapper
225 * Timer routine to wake up RX queue filling task. This function is
226 * used only in case the RX queue is empty, and all alloc_skb has
227 * failed (due to out of memory event).
229 * Input : pointer to ethernet interface network device structure
230 * Output : N/A
232 static void mv643xx_eth_rx_task_timer_wrapper(unsigned long data)
234 struct net_device *dev = (struct net_device *)data;
235 struct mv643xx_private *mp = netdev_priv(dev);
237 mp->rx_timer_flag = 0;
238 mv643xx_eth_rx_task((void *)data);
242 * mv643xx_eth_update_mac_address
244 * Update the MAC address of the port in the address table
246 * Input : pointer to ethernet interface network device structure
247 * Output : N/A
249 static void mv643xx_eth_update_mac_address(struct net_device *dev)
251 struct mv643xx_private *mp = netdev_priv(dev);
252 unsigned int port_num = mp->port_num;
254 eth_port_init_mac_tables(port_num);
255 eth_port_uc_addr_set(port_num, dev->dev_addr);
259 * mv643xx_eth_set_rx_mode
261 * Change from promiscuos to regular rx mode
263 * Input : pointer to ethernet interface network device structure
264 * Output : N/A
266 static void mv643xx_eth_set_rx_mode(struct net_device *dev)
268 struct mv643xx_private *mp = netdev_priv(dev);
270 if (dev->flags & IFF_PROMISC)
271 mp->port_config |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
272 else
273 mp->port_config &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
275 mv_write(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num), mp->port_config);
277 eth_port_set_multicast_list(dev);
281 * mv643xx_eth_set_mac_address
283 * Change the interface's mac address.
284 * No special hardware thing should be done because interface is always
285 * put in promiscuous mode.
287 * Input : pointer to ethernet interface network device structure and
288 * a pointer to the designated entry to be added to the cache.
289 * Output : zero upon success, negative upon failure
291 static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
293 int i;
295 for (i = 0; i < 6; i++)
296 /* +2 is for the offset of the HW addr type */
297 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
298 mv643xx_eth_update_mac_address(dev);
299 return 0;
303 * mv643xx_eth_tx_timeout
305 * Called upon a timeout on transmitting a packet
307 * Input : pointer to ethernet interface network device structure.
308 * Output : N/A
310 static void mv643xx_eth_tx_timeout(struct net_device *dev)
312 struct mv643xx_private *mp = netdev_priv(dev);
314 printk(KERN_INFO "%s: TX timeout ", dev->name);
316 /* Do the reset outside of interrupt context */
317 schedule_work(&mp->tx_timeout_task);
321 * mv643xx_eth_tx_timeout_task
323 * Actual routine to reset the adapter when a timeout on Tx has occurred
325 static void mv643xx_eth_tx_timeout_task(struct net_device *dev)
327 struct mv643xx_private *mp = netdev_priv(dev);
329 netif_device_detach(dev);
330 eth_port_reset(mp->port_num);
331 eth_port_start(dev);
332 netif_device_attach(dev);
336 * mv643xx_eth_free_tx_queue
338 * Input : dev - a pointer to the required interface
340 * Output : 0 if was able to release skb , nonzero otherwise
342 static int mv643xx_eth_free_tx_queue(struct net_device *dev,
343 unsigned int eth_int_cause_ext)
345 struct mv643xx_private *mp = netdev_priv(dev);
346 struct net_device_stats *stats = &mp->stats;
347 struct pkt_info pkt_info;
348 int released = 1;
350 if (!(eth_int_cause_ext & (BIT0 | BIT8)))
351 return released;
353 /* Check only queue 0 */
354 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
355 if (pkt_info.cmd_sts & BIT0) {
356 printk("%s: Error in TX\n", dev->name);
357 stats->tx_errors++;
360 if (pkt_info.cmd_sts & ETH_TX_FIRST_DESC)
361 dma_unmap_single(NULL, pkt_info.buf_ptr,
362 pkt_info.byte_cnt,
363 DMA_TO_DEVICE);
364 else
365 dma_unmap_page(NULL, pkt_info.buf_ptr,
366 pkt_info.byte_cnt,
367 DMA_TO_DEVICE);
369 if (pkt_info.return_info) {
370 dev_kfree_skb_irq(pkt_info.return_info);
371 released = 0;
375 return released;
379 * mv643xx_eth_receive
381 * This function is forward packets that are received from the port's
382 * queues toward kernel core or FastRoute them to another interface.
384 * Input : dev - a pointer to the required interface
385 * max - maximum number to receive (0 means unlimted)
387 * Output : number of served packets
389 #ifdef MV643XX_NAPI
390 static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
391 #else
392 static int mv643xx_eth_receive_queue(struct net_device *dev)
393 #endif
395 struct mv643xx_private *mp = netdev_priv(dev);
396 struct net_device_stats *stats = &mp->stats;
397 unsigned int received_packets = 0;
398 struct sk_buff *skb;
399 struct pkt_info pkt_info;
401 #ifdef MV643XX_NAPI
402 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
403 #else
404 while (eth_port_receive(mp, &pkt_info) == ETH_OK) {
405 #endif
406 mp->rx_desc_count--;
407 received_packets++;
409 /* Update statistics. Note byte count includes 4 byte CRC count */
410 stats->rx_packets++;
411 stats->rx_bytes += pkt_info.byte_cnt;
412 skb = pkt_info.return_info;
414 * In case received a packet without first / last bits on OR
415 * the error summary bit is on, the packets needs to be dropeed.
417 if (((pkt_info.cmd_sts
418 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
419 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
420 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
421 stats->rx_dropped++;
422 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
423 ETH_RX_LAST_DESC)) !=
424 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
425 if (net_ratelimit())
426 printk(KERN_ERR
427 "%s: Received packet spread "
428 "on multiple descriptors\n",
429 dev->name);
431 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
432 stats->rx_errors++;
434 dev_kfree_skb_irq(skb);
435 } else {
437 * The -4 is for the CRC in the trailer of the
438 * received packet
440 skb_put(skb, pkt_info.byte_cnt - 4);
441 skb->dev = dev;
443 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
444 skb->ip_summed = CHECKSUM_UNNECESSARY;
445 skb->csum = htons(
446 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
448 skb->protocol = eth_type_trans(skb, dev);
449 #ifdef MV643XX_NAPI
450 netif_receive_skb(skb);
451 #else
452 netif_rx(skb);
453 #endif
455 dev->last_rx = jiffies;
458 return received_packets;
461 /* Set the mv643xx port configuration register for the speed/duplex mode. */
462 static void mv643xx_eth_update_pscr(struct net_device *dev,
463 struct ethtool_cmd *ecmd)
465 struct mv643xx_private *mp = netdev_priv(dev);
466 int port_num = mp->port_num;
467 u32 o_pscr, n_pscr;
468 unsigned int channels;
470 o_pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
471 n_pscr = o_pscr;
473 /* clear speed, duplex and rx buffer size fields */
474 n_pscr &= ~(MV643XX_ETH_SET_MII_SPEED_TO_100 |
475 MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
476 MV643XX_ETH_SET_FULL_DUPLEX_MODE |
477 MV643XX_ETH_MAX_RX_PACKET_MASK);
479 if (ecmd->duplex == DUPLEX_FULL)
480 n_pscr |= MV643XX_ETH_SET_FULL_DUPLEX_MODE;
482 if (ecmd->speed == SPEED_1000)
483 n_pscr |= MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
484 MV643XX_ETH_MAX_RX_PACKET_9700BYTE;
485 else {
486 if (ecmd->speed == SPEED_100)
487 n_pscr |= MV643XX_ETH_SET_MII_SPEED_TO_100;
488 n_pscr |= MV643XX_ETH_MAX_RX_PACKET_1522BYTE;
491 if (n_pscr != o_pscr) {
492 if ((o_pscr & MV643XX_ETH_SERIAL_PORT_ENABLE) == 0)
493 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
494 n_pscr);
495 else {
496 channels = mv643xx_eth_port_disable_tx(port_num);
498 o_pscr &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
499 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
500 o_pscr);
501 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
502 n_pscr);
503 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
504 n_pscr);
505 if (channels)
506 mv643xx_eth_port_enable_tx(port_num, channels);
512 * mv643xx_eth_int_handler
514 * Main interrupt handler for the gigbit ethernet ports
516 * Input : irq - irq number (not used)
517 * dev_id - a pointer to the required interface's data structure
518 * regs - not used
519 * Output : N/A
522 static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id,
523 struct pt_regs *regs)
525 struct net_device *dev = (struct net_device *)dev_id;
526 struct mv643xx_private *mp = netdev_priv(dev);
527 u32 eth_int_cause, eth_int_cause_ext = 0;
528 unsigned int port_num = mp->port_num;
530 /* Read interrupt cause registers */
531 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
532 INT_UNMASK_ALL;
534 if (eth_int_cause & BIT1)
535 eth_int_cause_ext = mv_read(
536 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
537 INT_UNMASK_ALL_EXT;
539 #ifdef MV643XX_NAPI
540 if (!(eth_int_cause & 0x0007fffd)) {
541 /* Dont ack the Rx interrupt */
542 #endif
544 * Clear specific ethernet port intrerrupt registers by
545 * acknowleding relevant bits.
547 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num),
548 ~eth_int_cause);
549 if (eth_int_cause_ext != 0x0)
550 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG
551 (port_num), ~eth_int_cause_ext);
553 /* UDP change : We may need this */
554 if ((eth_int_cause_ext & 0x0000ffff) &&
555 (mv643xx_eth_free_tx_queue(dev, eth_int_cause_ext) == 0) &&
556 (mp->tx_ring_size > mp->tx_desc_count + MAX_DESCS_PER_SKB))
557 netif_wake_queue(dev);
558 #ifdef MV643XX_NAPI
559 } else {
560 if (netif_rx_schedule_prep(dev)) {
561 /* Mask all the interrupts */
562 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
563 INT_MASK_ALL);
564 /* wait for previous write to complete */
565 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
566 __netif_rx_schedule(dev);
568 #else
569 if (eth_int_cause & (BIT2 | BIT11))
570 mv643xx_eth_receive_queue(dev, 0);
573 * After forwarded received packets to upper layer, add a task
574 * in an interrupts enabled context that refills the RX ring
575 * with skb's.
577 #ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
578 /* Mask all interrupts on ethernet port */
579 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
580 INT_MASK_ALL);
581 /* wait for previous write to take effect */
582 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
584 queue_task(&mp->rx_task, &tq_immediate);
585 mark_bh(IMMEDIATE_BH);
586 #else
587 mp->rx_task.func(dev);
588 #endif
589 #endif
591 /* PHY status changed */
592 if (eth_int_cause_ext & (BIT16 | BIT20)) {
593 struct ethtool_cmd cmd;
595 if (mii_link_ok(&mp->mii)) {
596 mii_ethtool_gset(&mp->mii, &cmd);
597 mv643xx_eth_update_pscr(dev, &cmd);
598 if (!netif_carrier_ok(dev)) {
599 netif_carrier_on(dev);
600 if (mp->tx_ring_size > mp->tx_desc_count +
601 MAX_DESCS_PER_SKB) {
602 netif_wake_queue(dev);
603 /* Start TX queue */
604 mv643xx_eth_port_enable_tx(port_num, mp->port_tx_queue_command);
607 } else if (netif_carrier_ok(dev)) {
608 netif_stop_queue(dev);
609 netif_carrier_off(dev);
614 * If no real interrupt occured, exit.
615 * This can happen when using gigE interrupt coalescing mechanism.
617 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
618 return IRQ_NONE;
620 return IRQ_HANDLED;
623 #ifdef MV643XX_COAL
626 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
628 * DESCRIPTION:
629 * This routine sets the RX coalescing interrupt mechanism parameter.
630 * This parameter is a timeout counter, that counts in 64 t_clk
631 * chunks ; that when timeout event occurs a maskable interrupt
632 * occurs.
633 * The parameter is calculated using the tClk of the MV-643xx chip
634 * , and the required delay of the interrupt in usec.
636 * INPUT:
637 * unsigned int eth_port_num Ethernet port number
638 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
639 * unsigned int delay Delay in usec
641 * OUTPUT:
642 * Interrupt coalescing mechanism value is set in MV-643xx chip.
644 * RETURN:
645 * The interrupt coalescing value set in the gigE port.
648 static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
649 unsigned int t_clk, unsigned int delay)
651 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
653 /* Set RX Coalescing mechanism */
654 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
655 ((coal & 0x3fff) << 8) |
656 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
657 & 0xffc000ff));
659 return coal;
661 #endif
664 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
666 * DESCRIPTION:
667 * This routine sets the TX coalescing interrupt mechanism parameter.
668 * This parameter is a timeout counter, that counts in 64 t_clk
669 * chunks ; that when timeout event occurs a maskable interrupt
670 * occurs.
671 * The parameter is calculated using the t_cLK frequency of the
672 * MV-643xx chip and the required delay in the interrupt in uSec
674 * INPUT:
675 * unsigned int eth_port_num Ethernet port number
676 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
677 * unsigned int delay Delay in uSeconds
679 * OUTPUT:
680 * Interrupt coalescing mechanism value is set in MV-643xx chip.
682 * RETURN:
683 * The interrupt coalescing value set in the gigE port.
686 static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
687 unsigned int t_clk, unsigned int delay)
689 unsigned int coal;
690 coal = ((t_clk / 1000000) * delay) / 64;
691 /* Set TX Coalescing mechanism */
692 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
693 coal << 4);
694 return coal;
698 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
700 * DESCRIPTION:
701 * This function prepares a Rx chained list of descriptors and packet
702 * buffers in a form of a ring. The routine must be called after port
703 * initialization routine and before port start routine.
704 * The Ethernet SDMA engine uses CPU bus addresses to access the various
705 * devices in the system (i.e. DRAM). This function uses the ethernet
706 * struct 'virtual to physical' routine (set by the user) to set the ring
707 * with physical addresses.
709 * INPUT:
710 * struct mv643xx_private *mp Ethernet Port Control srtuct.
712 * OUTPUT:
713 * The routine updates the Ethernet port control struct with information
714 * regarding the Rx descriptors and buffers.
716 * RETURN:
717 * None.
719 static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
721 volatile struct eth_rx_desc *p_rx_desc;
722 int rx_desc_num = mp->rx_ring_size;
723 int i;
725 /* initialize the next_desc_ptr links in the Rx descriptors ring */
726 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
727 for (i = 0; i < rx_desc_num; i++) {
728 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
729 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
732 /* Save Rx desc pointer to driver struct. */
733 mp->rx_curr_desc_q = 0;
734 mp->rx_used_desc_q = 0;
736 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
738 /* Enable queue 0 for this port */
739 mp->port_rx_queue_command = 1;
743 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
745 * DESCRIPTION:
746 * This function prepares a Tx chained list of descriptors and packet
747 * buffers in a form of a ring. The routine must be called after port
748 * initialization routine and before port start routine.
749 * The Ethernet SDMA engine uses CPU bus addresses to access the various
750 * devices in the system (i.e. DRAM). This function uses the ethernet
751 * struct 'virtual to physical' routine (set by the user) to set the ring
752 * with physical addresses.
754 * INPUT:
755 * struct mv643xx_private *mp Ethernet Port Control srtuct.
757 * OUTPUT:
758 * The routine updates the Ethernet port control struct with information
759 * regarding the Tx descriptors and buffers.
761 * RETURN:
762 * None.
764 static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
766 int tx_desc_num = mp->tx_ring_size;
767 struct eth_tx_desc *p_tx_desc;
768 int i;
770 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
771 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
772 for (i = 0; i < tx_desc_num; i++) {
773 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
774 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
777 mp->tx_curr_desc_q = 0;
778 mp->tx_used_desc_q = 0;
779 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
780 mp->tx_first_desc_q = 0;
781 #endif
783 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
785 /* Enable queue 0 for this port */
786 mp->port_tx_queue_command = 1;
789 static int mv643xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
791 struct mv643xx_private *mp = netdev_priv(dev);
792 int err;
794 spin_lock_irq(&mp->lock);
795 err = mii_ethtool_sset(&mp->mii, cmd);
796 spin_unlock_irq(&mp->lock);
798 return err;
801 static int mv643xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
803 struct mv643xx_private *mp = netdev_priv(dev);
804 int err;
806 spin_lock_irq(&mp->lock);
807 err = mii_ethtool_gset(&mp->mii, cmd);
808 spin_unlock_irq(&mp->lock);
810 /* The PHY may support 1000baseT_Half, but the mv643xx does not */
811 cmd->supported &= ~SUPPORTED_1000baseT_Half;
812 cmd->advertising &= ~ADVERTISED_1000baseT_Half;
814 return err;
818 * mv643xx_eth_open
820 * This function is called when openning the network device. The function
821 * should initialize all the hardware, initialize cyclic Rx/Tx
822 * descriptors chain and buffers and allocate an IRQ to the network
823 * device.
825 * Input : a pointer to the network device structure
827 * Output : zero of success , nonzero if fails.
830 static int mv643xx_eth_open(struct net_device *dev)
832 struct mv643xx_private *mp = netdev_priv(dev);
833 unsigned int port_num = mp->port_num;
834 unsigned int size;
835 int err;
837 err = request_irq(dev->irq, mv643xx_eth_int_handler,
838 SA_SHIRQ | SA_SAMPLE_RANDOM, dev->name, dev);
839 if (err) {
840 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
841 port_num);
842 return -EAGAIN;
845 eth_port_init(mp);
847 INIT_WORK(&mp->rx_task, (void (*)(void *))mv643xx_eth_rx_task, dev);
849 memset(&mp->timeout, 0, sizeof(struct timer_list));
850 mp->timeout.function = mv643xx_eth_rx_task_timer_wrapper;
851 mp->timeout.data = (unsigned long)dev;
853 mp->rx_task_busy = 0;
854 mp->rx_timer_flag = 0;
856 /* Allocate RX and TX skb rings */
857 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
858 GFP_KERNEL);
859 if (!mp->rx_skb) {
860 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
861 err = -ENOMEM;
862 goto out_free_irq;
864 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
865 GFP_KERNEL);
866 if (!mp->tx_skb) {
867 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
868 err = -ENOMEM;
869 goto out_free_rx_skb;
872 /* Allocate TX ring */
873 mp->tx_desc_count = 0;
874 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
875 mp->tx_desc_area_size = size;
877 if (mp->tx_sram_size) {
878 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
879 mp->tx_sram_size);
880 mp->tx_desc_dma = mp->tx_sram_addr;
881 } else
882 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
883 &mp->tx_desc_dma,
884 GFP_KERNEL);
886 if (!mp->p_tx_desc_area) {
887 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
888 dev->name, size);
889 err = -ENOMEM;
890 goto out_free_tx_skb;
892 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
893 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
895 ether_init_tx_desc_ring(mp);
897 /* Allocate RX ring */
898 mp->rx_desc_count = 0;
899 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
900 mp->rx_desc_area_size = size;
902 if (mp->rx_sram_size) {
903 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
904 mp->rx_sram_size);
905 mp->rx_desc_dma = mp->rx_sram_addr;
906 } else
907 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
908 &mp->rx_desc_dma,
909 GFP_KERNEL);
911 if (!mp->p_rx_desc_area) {
912 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
913 dev->name, size);
914 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
915 dev->name);
916 if (mp->rx_sram_size)
917 iounmap(mp->p_tx_desc_area);
918 else
919 dma_free_coherent(NULL, mp->tx_desc_area_size,
920 mp->p_tx_desc_area, mp->tx_desc_dma);
921 err = -ENOMEM;
922 goto out_free_tx_skb;
924 memset((void *)mp->p_rx_desc_area, 0, size);
926 ether_init_rx_desc_ring(mp);
928 mv643xx_eth_rx_task(dev); /* Fill RX ring with skb's */
930 /* Clear any pending ethernet port interrupts */
931 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
932 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
934 eth_port_start(dev);
936 /* Interrupt Coalescing */
938 #ifdef MV643XX_COAL
939 mp->rx_int_coal =
940 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
941 #endif
943 mp->tx_int_coal =
944 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
946 /* Unmask phy and link status changes interrupts */
947 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
948 INT_UNMASK_ALL_EXT);
950 /* Unmask RX buffer and TX end interrupt */
951 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_UNMASK_ALL);
953 return 0;
955 out_free_tx_skb:
956 kfree(mp->tx_skb);
957 out_free_rx_skb:
958 kfree(mp->rx_skb);
959 out_free_irq:
960 free_irq(dev->irq, dev);
962 return err;
965 static void mv643xx_eth_free_tx_rings(struct net_device *dev)
967 struct mv643xx_private *mp = netdev_priv(dev);
968 unsigned int port_num = mp->port_num;
969 unsigned int curr;
970 struct sk_buff *skb;
972 /* Stop Tx Queues */
973 mv643xx_eth_port_disable_tx(port_num);
975 /* Free outstanding skb's on TX rings */
976 for (curr = 0; mp->tx_desc_count && curr < mp->tx_ring_size; curr++) {
977 skb = mp->tx_skb[curr];
978 if (skb) {
979 mp->tx_desc_count -= skb_shinfo(skb)->nr_frags;
980 dev_kfree_skb(skb);
981 mp->tx_desc_count--;
984 if (mp->tx_desc_count)
985 printk("%s: Error on Tx descriptor free - could not free %d"
986 " descriptors\n", dev->name, mp->tx_desc_count);
988 /* Free TX ring */
989 if (mp->tx_sram_size)
990 iounmap(mp->p_tx_desc_area);
991 else
992 dma_free_coherent(NULL, mp->tx_desc_area_size,
993 mp->p_tx_desc_area, mp->tx_desc_dma);
996 static void mv643xx_eth_free_rx_rings(struct net_device *dev)
998 struct mv643xx_private *mp = netdev_priv(dev);
999 unsigned int port_num = mp->port_num;
1000 int curr;
1002 /* Stop RX Queues */
1003 mv643xx_eth_port_disable_rx(port_num);
1005 /* Free preallocated skb's on RX rings */
1006 for (curr = 0; mp->rx_desc_count && curr < mp->rx_ring_size; curr++) {
1007 if (mp->rx_skb[curr]) {
1008 dev_kfree_skb(mp->rx_skb[curr]);
1009 mp->rx_desc_count--;
1013 if (mp->rx_desc_count)
1014 printk(KERN_ERR
1015 "%s: Error in freeing Rx Ring. %d skb's still"
1016 " stuck in RX Ring - ignoring them\n", dev->name,
1017 mp->rx_desc_count);
1018 /* Free RX ring */
1019 if (mp->rx_sram_size)
1020 iounmap(mp->p_rx_desc_area);
1021 else
1022 dma_free_coherent(NULL, mp->rx_desc_area_size,
1023 mp->p_rx_desc_area, mp->rx_desc_dma);
1027 * mv643xx_eth_stop
1029 * This function is used when closing the network device.
1030 * It updates the hardware,
1031 * release all memory that holds buffers and descriptors and release the IRQ.
1032 * Input : a pointer to the device structure
1033 * Output : zero if success , nonzero if fails
1036 static int mv643xx_eth_stop(struct net_device *dev)
1038 struct mv643xx_private *mp = netdev_priv(dev);
1039 unsigned int port_num = mp->port_num;
1041 /* Mask all interrupts on ethernet port */
1042 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_MASK_ALL);
1043 /* wait for previous write to complete */
1044 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1046 #ifdef MV643XX_NAPI
1047 netif_poll_disable(dev);
1048 #endif
1049 netif_carrier_off(dev);
1050 netif_stop_queue(dev);
1052 eth_port_reset(mp->port_num);
1054 mv643xx_eth_free_tx_rings(dev);
1055 mv643xx_eth_free_rx_rings(dev);
1057 #ifdef MV643XX_NAPI
1058 netif_poll_enable(dev);
1059 #endif
1061 free_irq(dev->irq, dev);
1063 return 0;
1066 #ifdef MV643XX_NAPI
1067 static void mv643xx_tx(struct net_device *dev)
1069 struct mv643xx_private *mp = netdev_priv(dev);
1070 struct pkt_info pkt_info;
1072 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
1073 if (pkt_info.cmd_sts & ETH_TX_FIRST_DESC)
1074 dma_unmap_single(NULL, pkt_info.buf_ptr,
1075 pkt_info.byte_cnt,
1076 DMA_TO_DEVICE);
1077 else
1078 dma_unmap_page(NULL, pkt_info.buf_ptr,
1079 pkt_info.byte_cnt,
1080 DMA_TO_DEVICE);
1082 if (pkt_info.return_info)
1083 dev_kfree_skb_irq(pkt_info.return_info);
1086 if (netif_queue_stopped(dev) &&
1087 mp->tx_ring_size >
1088 mp->tx_desc_count + MAX_DESCS_PER_SKB)
1089 netif_wake_queue(dev);
1093 * mv643xx_poll
1095 * This function is used in case of NAPI
1097 static int mv643xx_poll(struct net_device *dev, int *budget)
1099 struct mv643xx_private *mp = netdev_priv(dev);
1100 int done = 1, orig_budget, work_done;
1101 unsigned int port_num = mp->port_num;
1103 #ifdef MV643XX_TX_FAST_REFILL
1104 if (++mp->tx_clean_threshold > 5) {
1105 mv643xx_tx(dev);
1106 mp->tx_clean_threshold = 0;
1108 #endif
1110 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1111 != (u32) mp->rx_used_desc_q) {
1112 orig_budget = *budget;
1113 if (orig_budget > dev->quota)
1114 orig_budget = dev->quota;
1115 work_done = mv643xx_eth_receive_queue(dev, orig_budget);
1116 mp->rx_task.func(dev);
1117 *budget -= work_done;
1118 dev->quota -= work_done;
1119 if (work_done >= orig_budget)
1120 done = 0;
1123 if (done) {
1124 netif_rx_complete(dev);
1125 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1126 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1127 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1128 INT_UNMASK_ALL);
1131 return done ? 0 : 1;
1133 #endif
1135 /* Hardware can't handle unaligned fragments smaller than 9 bytes.
1136 * This helper function detects that case.
1139 static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
1141 unsigned int frag;
1142 skb_frag_t *fragp;
1144 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1145 fragp = &skb_shinfo(skb)->frags[frag];
1146 if (fragp->size <= 8 && fragp->page_offset & 0x7)
1147 return 1;
1149 return 0;
1154 * mv643xx_eth_start_xmit
1156 * This function is queues a packet in the Tx descriptor for
1157 * required port.
1159 * Input : skb - a pointer to socket buffer
1160 * dev - a pointer to the required port
1162 * Output : zero upon success
1164 static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1166 struct mv643xx_private *mp = netdev_priv(dev);
1167 struct net_device_stats *stats = &mp->stats;
1168 ETH_FUNC_RET_STATUS status;
1169 unsigned long flags;
1170 struct pkt_info pkt_info;
1172 if (netif_queue_stopped(dev)) {
1173 printk(KERN_ERR
1174 "%s: Tried sending packet when interface is stopped\n",
1175 dev->name);
1176 return 1;
1179 /* This is a hard error, log it. */
1180 if ((mp->tx_ring_size - mp->tx_desc_count) <=
1181 (skb_shinfo(skb)->nr_frags + 1)) {
1182 netif_stop_queue(dev);
1183 printk(KERN_ERR
1184 "%s: Bug in mv643xx_eth - Trying to transmit when"
1185 " queue full !\n", dev->name);
1186 return 1;
1189 /* Paranoid check - this shouldn't happen */
1190 if (skb == NULL) {
1191 stats->tx_dropped++;
1192 printk(KERN_ERR "mv64320_eth paranoid check failed\n");
1193 return 1;
1196 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1197 if (has_tiny_unaligned_frags(skb)) {
1198 if ((skb_linearize(skb, GFP_ATOMIC) != 0)) {
1199 stats->tx_dropped++;
1200 printk(KERN_DEBUG "%s: failed to linearize tiny "
1201 "unaligned fragment\n", dev->name);
1202 return 1;
1206 spin_lock_irqsave(&mp->lock, flags);
1208 if (!skb_shinfo(skb)->nr_frags) {
1209 if (skb->ip_summed != CHECKSUM_HW) {
1210 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1211 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
1212 ETH_TX_FIRST_DESC |
1213 ETH_TX_LAST_DESC |
1214 5 << ETH_TX_IHL_SHIFT;
1215 pkt_info.l4i_chk = 0;
1216 } else {
1217 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
1218 ETH_TX_FIRST_DESC |
1219 ETH_TX_LAST_DESC |
1220 ETH_GEN_TCP_UDP_CHECKSUM |
1221 ETH_GEN_IP_V_4_CHECKSUM |
1222 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1223 /* CPU already calculated pseudo header checksum. */
1224 if ((skb->protocol == ETH_P_IP) &&
1225 (skb->nh.iph->protocol == IPPROTO_UDP) ) {
1226 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1227 pkt_info.l4i_chk = skb->h.uh->check;
1228 } else if ((skb->protocol == ETH_P_IP) &&
1229 (skb->nh.iph->protocol == IPPROTO_TCP))
1230 pkt_info.l4i_chk = skb->h.th->check;
1231 else {
1232 printk(KERN_ERR
1233 "%s: chksum proto != IPv4 TCP or UDP\n",
1234 dev->name);
1235 spin_unlock_irqrestore(&mp->lock, flags);
1236 return 1;
1239 pkt_info.byte_cnt = skb->len;
1240 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1241 DMA_TO_DEVICE);
1242 pkt_info.return_info = skb;
1243 status = eth_port_send(mp, &pkt_info);
1244 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1245 printk(KERN_ERR "%s: Error on transmitting packet\n",
1246 dev->name);
1247 stats->tx_bytes += pkt_info.byte_cnt;
1248 } else {
1249 unsigned int frag;
1251 /* first frag which is skb header */
1252 pkt_info.byte_cnt = skb_headlen(skb);
1253 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
1254 skb_headlen(skb),
1255 DMA_TO_DEVICE);
1256 pkt_info.l4i_chk = 0;
1257 pkt_info.return_info = 0;
1259 if (skb->ip_summed != CHECKSUM_HW)
1260 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1261 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1262 5 << ETH_TX_IHL_SHIFT;
1263 else {
1264 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1265 ETH_GEN_TCP_UDP_CHECKSUM |
1266 ETH_GEN_IP_V_4_CHECKSUM |
1267 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1268 /* CPU already calculated pseudo header checksum. */
1269 if ((skb->protocol == ETH_P_IP) &&
1270 (skb->nh.iph->protocol == IPPROTO_UDP)) {
1271 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1272 pkt_info.l4i_chk = skb->h.uh->check;
1273 } else if ((skb->protocol == ETH_P_IP) &&
1274 (skb->nh.iph->protocol == IPPROTO_TCP))
1275 pkt_info.l4i_chk = skb->h.th->check;
1276 else {
1277 printk(KERN_ERR
1278 "%s: chksum proto != IPv4 TCP or UDP\n",
1279 dev->name);
1280 spin_unlock_irqrestore(&mp->lock, flags);
1281 return 1;
1285 status = eth_port_send(mp, &pkt_info);
1286 if (status != ETH_OK) {
1287 if ((status == ETH_ERROR))
1288 printk(KERN_ERR
1289 "%s: Error on transmitting packet\n",
1290 dev->name);
1291 if (status == ETH_QUEUE_FULL)
1292 printk("Error on Queue Full \n");
1293 if (status == ETH_QUEUE_LAST_RESOURCE)
1294 printk("Tx resource error \n");
1296 stats->tx_bytes += pkt_info.byte_cnt;
1298 /* Check for the remaining frags */
1299 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1300 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1301 pkt_info.l4i_chk = 0x0000;
1302 pkt_info.cmd_sts = 0x00000000;
1304 /* Last Frag enables interrupt and frees the skb */
1305 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1306 pkt_info.cmd_sts |= ETH_TX_ENABLE_INTERRUPT |
1307 ETH_TX_LAST_DESC;
1308 pkt_info.return_info = skb;
1309 } else {
1310 pkt_info.return_info = 0;
1312 pkt_info.l4i_chk = 0;
1313 pkt_info.byte_cnt = this_frag->size;
1315 pkt_info.buf_ptr = dma_map_page(NULL, this_frag->page,
1316 this_frag->page_offset,
1317 this_frag->size,
1318 DMA_TO_DEVICE);
1320 status = eth_port_send(mp, &pkt_info);
1322 if (status != ETH_OK) {
1323 if ((status == ETH_ERROR))
1324 printk(KERN_ERR "%s: Error on "
1325 "transmitting packet\n",
1326 dev->name);
1328 if (status == ETH_QUEUE_LAST_RESOURCE)
1329 printk("Tx resource error \n");
1331 if (status == ETH_QUEUE_FULL)
1332 printk("Queue is full \n");
1334 stats->tx_bytes += pkt_info.byte_cnt;
1337 #else
1338 spin_lock_irqsave(&mp->lock, flags);
1340 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT | ETH_TX_FIRST_DESC |
1341 ETH_TX_LAST_DESC;
1342 pkt_info.l4i_chk = 0;
1343 pkt_info.byte_cnt = skb->len;
1344 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1345 DMA_TO_DEVICE);
1346 pkt_info.return_info = skb;
1347 status = eth_port_send(mp, &pkt_info);
1348 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1349 printk(KERN_ERR "%s: Error on transmitting packet\n",
1350 dev->name);
1351 stats->tx_bytes += pkt_info.byte_cnt;
1352 #endif
1354 /* Check if TX queue can handle another skb. If not, then
1355 * signal higher layers to stop requesting TX
1357 if (mp->tx_ring_size <= (mp->tx_desc_count + MAX_DESCS_PER_SKB))
1359 * Stop getting skb's from upper layers.
1360 * Getting skb's from upper layers will be enabled again after
1361 * packets are released.
1363 netif_stop_queue(dev);
1365 /* Update statistics and start of transmittion time */
1366 stats->tx_packets++;
1367 dev->trans_start = jiffies;
1369 spin_unlock_irqrestore(&mp->lock, flags);
1371 return 0; /* success */
1375 * mv643xx_eth_get_stats
1377 * Returns a pointer to the interface statistics.
1379 * Input : dev - a pointer to the required interface
1381 * Output : a pointer to the interface's statistics
1384 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1386 struct mv643xx_private *mp = netdev_priv(dev);
1388 return &mp->stats;
1391 #ifdef CONFIG_NET_POLL_CONTROLLER
1392 static void mv643xx_netpoll(struct net_device *netdev)
1394 struct mv643xx_private *mp = netdev_priv(netdev);
1395 int port_num = mp->port_num;
1397 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_MASK_ALL);
1398 /* wait for previous write to complete */
1399 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1401 mv643xx_eth_int_handler(netdev->irq, netdev, NULL);
1403 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_UNMASK_ALL);
1405 #endif
1407 static void mv643xx_init_ethtool_cmd(struct net_device *dev, int phy_address,
1408 int speed, int duplex,
1409 struct ethtool_cmd *cmd)
1411 struct mv643xx_private *mp = netdev_priv(dev);
1413 memset(cmd, 0, sizeof(*cmd));
1415 cmd->port = PORT_MII;
1416 cmd->transceiver = XCVR_INTERNAL;
1417 cmd->phy_address = phy_address;
1419 if (speed == 0) {
1420 cmd->autoneg = AUTONEG_ENABLE;
1421 /* mii lib checks, but doesn't use speed on AUTONEG_ENABLE */
1422 cmd->speed = SPEED_100;
1423 cmd->advertising = ADVERTISED_10baseT_Half |
1424 ADVERTISED_10baseT_Full |
1425 ADVERTISED_100baseT_Half |
1426 ADVERTISED_100baseT_Full;
1427 if (mp->mii.supports_gmii)
1428 cmd->advertising |= ADVERTISED_1000baseT_Full;
1429 } else {
1430 cmd->autoneg = AUTONEG_DISABLE;
1431 cmd->speed = speed;
1432 cmd->duplex = duplex;
1437 * mv643xx_eth_probe
1439 * First function called after registering the network device.
1440 * It's purpose is to initialize the device as an ethernet device,
1441 * fill the ethernet device structure with pointers * to functions,
1442 * and set the MAC address of the interface
1444 * Input : struct device *
1445 * Output : -ENOMEM if failed , 0 if success
1447 static int mv643xx_eth_probe(struct platform_device *pdev)
1449 struct mv643xx_eth_platform_data *pd;
1450 int port_num = pdev->id;
1451 struct mv643xx_private *mp;
1452 struct net_device *dev;
1453 u8 *p;
1454 struct resource *res;
1455 int err;
1456 struct ethtool_cmd cmd;
1457 u32 pscr;
1458 int duplex;
1459 int speed;
1461 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1462 if (!dev)
1463 return -ENOMEM;
1465 platform_set_drvdata(pdev, dev);
1467 mp = netdev_priv(dev);
1469 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1470 BUG_ON(!res);
1471 dev->irq = res->start;
1473 mp->port_num = port_num;
1475 dev->open = mv643xx_eth_open;
1476 dev->stop = mv643xx_eth_stop;
1477 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1478 dev->get_stats = mv643xx_eth_get_stats;
1479 dev->set_mac_address = mv643xx_eth_set_mac_address;
1480 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1482 /* No need to Tx Timeout */
1483 dev->tx_timeout = mv643xx_eth_tx_timeout;
1484 #ifdef MV643XX_NAPI
1485 dev->poll = mv643xx_poll;
1486 dev->weight = 64;
1487 #endif
1489 #ifdef CONFIG_NET_POLL_CONTROLLER
1490 dev->poll_controller = mv643xx_netpoll;
1491 #endif
1493 dev->watchdog_timeo = 2 * HZ;
1494 dev->tx_queue_len = mp->tx_ring_size;
1495 dev->base_addr = 0;
1496 dev->change_mtu = mv643xx_eth_change_mtu;
1497 dev->do_ioctl = mv643xx_eth_do_ioctl;
1498 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1500 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1501 #ifdef MAX_SKB_FRAGS
1503 * Zero copy can only work if we use Discovery II memory. Else, we will
1504 * have to map the buffers to ISA memory which is only 16 MB
1506 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
1507 #endif
1508 #endif
1510 /* Configure the timeout task */
1511 INIT_WORK(&mp->tx_timeout_task,
1512 (void (*)(void *))mv643xx_eth_tx_timeout_task, dev);
1514 spin_lock_init(&mp->lock);
1516 /* set default config values */
1517 eth_port_uc_addr_get(dev, dev->dev_addr);
1518 mp->port_config = MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE;
1519 mp->port_config_extend = MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE;
1520 mp->port_sdma_config = MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE;
1521 mp->port_serial_control = MV643XX_ETH_PORT_SERIAL_CONTROL_DEFAULT_VALUE;
1522 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1523 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1525 pd = pdev->dev.platform_data;
1526 if (pd) {
1527 if (pd->mac_addr != NULL)
1528 memcpy(dev->dev_addr, pd->mac_addr, 6);
1530 if (pd->phy_addr || pd->force_phy_addr)
1531 ethernet_phy_set(port_num, pd->phy_addr);
1533 if (pd->port_config || pd->force_port_config)
1534 mp->port_config = pd->port_config;
1536 if (pd->port_config_extend || pd->force_port_config_extend)
1537 mp->port_config_extend = pd->port_config_extend;
1539 if (pd->port_sdma_config || pd->force_port_sdma_config)
1540 mp->port_sdma_config = pd->port_sdma_config;
1542 if (pd->port_serial_control || pd->force_port_serial_control)
1543 mp->port_serial_control = pd->port_serial_control;
1545 if (pd->rx_queue_size)
1546 mp->rx_ring_size = pd->rx_queue_size;
1548 if (pd->tx_queue_size)
1549 mp->tx_ring_size = pd->tx_queue_size;
1551 if (pd->tx_sram_size) {
1552 mp->tx_sram_size = pd->tx_sram_size;
1553 mp->tx_sram_addr = pd->tx_sram_addr;
1556 if (pd->rx_sram_size) {
1557 mp->rx_sram_size = pd->rx_sram_size;
1558 mp->rx_sram_addr = pd->rx_sram_addr;
1562 /* Hook up MII support for ethtool */
1563 mp->mii.dev = dev;
1564 mp->mii.mdio_read = mv643xx_mdio_read;
1565 mp->mii.mdio_write = mv643xx_mdio_write;
1566 mp->mii.phy_id = ethernet_phy_get(port_num);
1567 mp->mii.phy_id_mask = 0x3f;
1568 mp->mii.reg_num_mask = 0x1f;
1570 err = ethernet_phy_detect(port_num);
1571 if (err) {
1572 pr_debug("MV643xx ethernet port %d: "
1573 "No PHY detected at addr %d\n",
1574 port_num, ethernet_phy_get(port_num));
1575 goto out;
1578 pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
1579 pscr &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
1580 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1581 pscr = mp->port_serial_control;
1582 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1584 if (!(pscr & MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX) &&
1585 !(pscr & MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII))
1586 speed = 0;
1587 else if (pscr & MV643XX_ETH_PORT_STATUS_GMII_1000)
1588 speed = SPEED_1000;
1589 else if (pscr & MV643XX_ETH_PORT_STATUS_MII_100)
1590 speed = SPEED_100;
1591 else
1592 speed = SPEED_10;
1594 if (pscr & MV643XX_ETH_PORT_STATUS_FULL_DUPLEX)
1595 duplex = DUPLEX_FULL;
1596 else
1597 duplex = DUPLEX_HALF;
1599 ethernet_phy_reset(mp->port_num);
1600 mp->mii.supports_gmii = mii_check_gmii_support(&mp->mii);
1601 mv643xx_init_ethtool_cmd(dev, mp->mii.phy_id, speed, duplex, &cmd);
1602 mv643xx_eth_update_pscr(dev, &cmd);
1603 mv643xx_set_settings(dev, &cmd);
1605 err = register_netdev(dev);
1606 if (err)
1607 goto out;
1609 p = dev->dev_addr;
1610 printk(KERN_NOTICE
1611 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1612 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1614 if (dev->features & NETIF_F_SG)
1615 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1617 if (dev->features & NETIF_F_IP_CSUM)
1618 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1619 dev->name);
1621 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1622 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1623 #endif
1625 #ifdef MV643XX_COAL
1626 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1627 dev->name);
1628 #endif
1630 #ifdef MV643XX_NAPI
1631 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1632 #endif
1634 if (mp->tx_sram_size > 0)
1635 printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1637 return 0;
1639 out:
1640 free_netdev(dev);
1642 return err;
1645 static int mv643xx_eth_remove(struct platform_device *pdev)
1647 struct net_device *dev = platform_get_drvdata(pdev);
1649 unregister_netdev(dev);
1650 flush_scheduled_work();
1652 free_netdev(dev);
1653 platform_set_drvdata(pdev, NULL);
1654 return 0;
1657 static int mv643xx_eth_shared_probe(struct platform_device *pdev)
1659 struct resource *res;
1661 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1663 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1664 if (res == NULL)
1665 return -ENODEV;
1667 mv643xx_eth_shared_base = ioremap(res->start,
1668 MV643XX_ETH_SHARED_REGS_SIZE);
1669 if (mv643xx_eth_shared_base == NULL)
1670 return -ENOMEM;
1672 return 0;
1676 static int mv643xx_eth_shared_remove(struct platform_device *pdev)
1678 iounmap(mv643xx_eth_shared_base);
1679 mv643xx_eth_shared_base = NULL;
1681 return 0;
1684 static struct platform_driver mv643xx_eth_driver = {
1685 .probe = mv643xx_eth_probe,
1686 .remove = mv643xx_eth_remove,
1687 .driver = {
1688 .name = MV643XX_ETH_NAME,
1692 static struct platform_driver mv643xx_eth_shared_driver = {
1693 .probe = mv643xx_eth_shared_probe,
1694 .remove = mv643xx_eth_shared_remove,
1695 .driver = {
1696 .name = MV643XX_ETH_SHARED_NAME,
1701 * mv643xx_init_module
1703 * Registers the network drivers into the Linux kernel
1705 * Input : N/A
1707 * Output : N/A
1709 static int __init mv643xx_init_module(void)
1711 int rc;
1713 rc = platform_driver_register(&mv643xx_eth_shared_driver);
1714 if (!rc) {
1715 rc = platform_driver_register(&mv643xx_eth_driver);
1716 if (rc)
1717 platform_driver_unregister(&mv643xx_eth_shared_driver);
1719 return rc;
1723 * mv643xx_cleanup_module
1725 * Registers the network drivers into the Linux kernel
1727 * Input : N/A
1729 * Output : N/A
1731 static void __exit mv643xx_cleanup_module(void)
1733 platform_driver_unregister(&mv643xx_eth_driver);
1734 platform_driver_unregister(&mv643xx_eth_shared_driver);
1737 module_init(mv643xx_init_module);
1738 module_exit(mv643xx_cleanup_module);
1740 MODULE_LICENSE("GPL");
1741 MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1742 " and Dale Farnsworth");
1743 MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1746 * The second part is the low level driver of the gigE ethernet ports.
1750 * Marvell's Gigabit Ethernet controller low level driver
1752 * DESCRIPTION:
1753 * This file introduce low level API to Marvell's Gigabit Ethernet
1754 * controller. This Gigabit Ethernet Controller driver API controls
1755 * 1) Operations (i.e. port init, start, reset etc').
1756 * 2) Data flow (i.e. port send, receive etc').
1757 * Each Gigabit Ethernet port is controlled via
1758 * struct mv643xx_private.
1759 * This struct includes user configuration information as well as
1760 * driver internal data needed for its operations.
1762 * Supported Features:
1763 * - This low level driver is OS independent. Allocating memory for
1764 * the descriptor rings and buffers are not within the scope of
1765 * this driver.
1766 * - The user is free from Rx/Tx queue managing.
1767 * - This low level driver introduce functionality API that enable
1768 * the to operate Marvell's Gigabit Ethernet Controller in a
1769 * convenient way.
1770 * - Simple Gigabit Ethernet port operation API.
1771 * - Simple Gigabit Ethernet port data flow API.
1772 * - Data flow and operation API support per queue functionality.
1773 * - Support cached descriptors for better performance.
1774 * - Enable access to all four DRAM banks and internal SRAM memory
1775 * spaces.
1776 * - PHY access and control API.
1777 * - Port control register configuration API.
1778 * - Full control over Unicast and Multicast MAC configurations.
1780 * Operation flow:
1782 * Initialization phase
1783 * This phase complete the initialization of the the
1784 * mv643xx_private struct.
1785 * User information regarding port configuration has to be set
1786 * prior to calling the port initialization routine.
1788 * In this phase any port Tx/Rx activity is halted, MIB counters
1789 * are cleared, PHY address is set according to user parameter and
1790 * access to DRAM and internal SRAM memory spaces.
1792 * Driver ring initialization
1793 * Allocating memory for the descriptor rings and buffers is not
1794 * within the scope of this driver. Thus, the user is required to
1795 * allocate memory for the descriptors ring and buffers. Those
1796 * memory parameters are used by the Rx and Tx ring initialization
1797 * routines in order to curve the descriptor linked list in a form
1798 * of a ring.
1799 * Note: Pay special attention to alignment issues when using
1800 * cached descriptors/buffers. In this phase the driver store
1801 * information in the mv643xx_private struct regarding each queue
1802 * ring.
1804 * Driver start
1805 * This phase prepares the Ethernet port for Rx and Tx activity.
1806 * It uses the information stored in the mv643xx_private struct to
1807 * initialize the various port registers.
1809 * Data flow:
1810 * All packet references to/from the driver are done using
1811 * struct pkt_info.
1812 * This struct is a unified struct used with Rx and Tx operations.
1813 * This way the user is not required to be familiar with neither
1814 * Tx nor Rx descriptors structures.
1815 * The driver's descriptors rings are management by indexes.
1816 * Those indexes controls the ring resources and used to indicate
1817 * a SW resource error:
1818 * 'current'
1819 * This index points to the current available resource for use. For
1820 * example in Rx process this index will point to the descriptor
1821 * that will be passed to the user upon calling the receive
1822 * routine. In Tx process, this index will point to the descriptor
1823 * that will be assigned with the user packet info and transmitted.
1824 * 'used'
1825 * This index points to the descriptor that need to restore its
1826 * resources. For example in Rx process, using the Rx buffer return
1827 * API will attach the buffer returned in packet info to the
1828 * descriptor pointed by 'used'. In Tx process, using the Tx
1829 * descriptor return will merely return the user packet info with
1830 * the command status of the transmitted buffer pointed by the
1831 * 'used' index. Nevertheless, it is essential to use this routine
1832 * to update the 'used' index.
1833 * 'first'
1834 * This index supports Tx Scatter-Gather. It points to the first
1835 * descriptor of a packet assembled of multiple buffers. For
1836 * example when in middle of Such packet we have a Tx resource
1837 * error the 'curr' index get the value of 'first' to indicate
1838 * that the ring returned to its state before trying to transmit
1839 * this packet.
1841 * Receive operation:
1842 * The eth_port_receive API set the packet information struct,
1843 * passed by the caller, with received information from the
1844 * 'current' SDMA descriptor.
1845 * It is the user responsibility to return this resource back
1846 * to the Rx descriptor ring to enable the reuse of this source.
1847 * Return Rx resource is done using the eth_rx_return_buff API.
1849 * Transmit operation:
1850 * The eth_port_send API supports Scatter-Gather which enables to
1851 * send a packet spanned over multiple buffers. This means that
1852 * for each packet info structure given by the user and put into
1853 * the Tx descriptors ring, will be transmitted only if the 'LAST'
1854 * bit will be set in the packet info command status field. This
1855 * API also consider restriction regarding buffer alignments and
1856 * sizes.
1857 * The user must return a Tx resource after ensuring the buffer
1858 * has been transmitted to enable the Tx ring indexes to update.
1860 * BOARD LAYOUT
1861 * This device is on-board. No jumper diagram is necessary.
1863 * EXTERNAL INTERFACE
1865 * Prior to calling the initialization routine eth_port_init() the user
1866 * must set the following fields under mv643xx_private struct:
1867 * port_num User Ethernet port number.
1868 * port_config User port configuration value.
1869 * port_config_extend User port config extend value.
1870 * port_sdma_config User port SDMA config value.
1871 * port_serial_control User port serial control value.
1873 * This driver data flow is done using the struct pkt_info which
1874 * is a unified struct for Rx and Tx operations:
1876 * byte_cnt Tx/Rx descriptor buffer byte count.
1877 * l4i_chk CPU provided TCP Checksum. For Tx operation
1878 * only.
1879 * cmd_sts Tx/Rx descriptor command status.
1880 * buf_ptr Tx/Rx descriptor buffer pointer.
1881 * return_info Tx/Rx user resource return information.
1884 /* PHY routines */
1885 static int ethernet_phy_get(unsigned int eth_port_num);
1886 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1888 /* Ethernet Port routines */
1889 static void eth_port_set_filter_table_entry(int table, unsigned char entry);
1892 * eth_port_init - Initialize the Ethernet port driver
1894 * DESCRIPTION:
1895 * This function prepares the ethernet port to start its activity:
1896 * 1) Completes the ethernet port driver struct initialization toward port
1897 * start routine.
1898 * 2) Resets the device to a quiescent state in case of warm reboot.
1899 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1900 * 4) Clean MAC tables. The reset status of those tables is unknown.
1901 * 5) Set PHY address.
1902 * Note: Call this routine prior to eth_port_start routine and after
1903 * setting user values in the user fields of Ethernet port control
1904 * struct.
1906 * INPUT:
1907 * struct mv643xx_private *mp Ethernet port control struct
1909 * OUTPUT:
1910 * See description.
1912 * RETURN:
1913 * None.
1915 static void eth_port_init(struct mv643xx_private *mp)
1917 mp->rx_resource_err = 0;
1918 mp->tx_resource_err = 0;
1920 eth_port_reset(mp->port_num);
1922 eth_port_init_mac_tables(mp->port_num);
1926 * eth_port_start - Start the Ethernet port activity.
1928 * DESCRIPTION:
1929 * This routine prepares the Ethernet port for Rx and Tx activity:
1930 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1931 * has been initialized a descriptor's ring (using
1932 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1933 * 2. Initialize and enable the Ethernet configuration port by writing to
1934 * the port's configuration and command registers.
1935 * 3. Initialize and enable the SDMA by writing to the SDMA's
1936 * configuration and command registers. After completing these steps,
1937 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1939 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1940 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1941 * and ether_init_rx_desc_ring for Rx queues).
1943 * INPUT:
1944 * dev - a pointer to the required interface
1946 * OUTPUT:
1947 * Ethernet port is ready to receive and transmit.
1949 * RETURN:
1950 * None.
1952 static void eth_port_start(struct net_device *dev)
1954 struct mv643xx_private *mp = netdev_priv(dev);
1955 unsigned int port_num = mp->port_num;
1956 int tx_curr_desc, rx_curr_desc;
1957 u32 pscr;
1958 struct ethtool_cmd ethtool_cmd;
1960 /* Assignment of Tx CTRP of given queue */
1961 tx_curr_desc = mp->tx_curr_desc_q;
1962 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1963 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1965 /* Assignment of Rx CRDP of given queue */
1966 rx_curr_desc = mp->rx_curr_desc_q;
1967 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1968 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1970 /* Add the assigned Ethernet address to the port's address table */
1971 eth_port_uc_addr_set(port_num, dev->dev_addr);
1973 /* Assign port configuration and command. */
1974 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num), mp->port_config);
1976 pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
1977 pscr &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
1978 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1980 pscr &= ~MV643XX_ETH_FORCE_LINK_PASS;
1981 pscr |= MV643XX_ETH_DISABLE_AUTO_NEG_FOR_FLOW_CTRL |
1982 MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII |
1983 MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX |
1984 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
1985 MV643XX_ETH_SERIAL_PORT_CONTROL_RESERVED;
1987 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1989 pscr |= MV643XX_ETH_SERIAL_PORT_ENABLE;
1990 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1992 /* Assign port SDMA configuration */
1993 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num), mp->port_sdma_config);
1995 /* Enable port Rx. */
1996 mv643xx_eth_port_enable_rx(port_num, mp->port_rx_queue_command);
1998 /* Disable port bandwidth limits by clearing MTU register */
1999 mv_write(MV643XX_ETH_MAXIMUM_TRANSMIT_UNIT(port_num), 0);
2001 /* save phy settings across reset */
2002 mv643xx_get_settings(dev, &ethtool_cmd);
2003 ethernet_phy_reset(mp->port_num);
2004 mv643xx_set_settings(dev, &ethtool_cmd);
2008 * eth_port_uc_addr_set - This function Set the port Unicast address.
2010 * DESCRIPTION:
2011 * This function Set the port Ethernet MAC address.
2013 * INPUT:
2014 * unsigned int eth_port_num Port number.
2015 * char * p_addr Address to be set
2017 * OUTPUT:
2018 * Set MAC address low and high registers. also calls
2019 * eth_port_set_filter_table_entry() to set the unicast
2020 * table with the proper information.
2022 * RETURN:
2023 * N/A.
2026 static void eth_port_uc_addr_set(unsigned int eth_port_num,
2027 unsigned char *p_addr)
2029 unsigned int mac_h;
2030 unsigned int mac_l;
2031 int table;
2033 mac_l = (p_addr[4] << 8) | (p_addr[5]);
2034 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
2035 (p_addr[3] << 0);
2037 mv_write(MV643XX_ETH_MAC_ADDR_LOW(eth_port_num), mac_l);
2038 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(eth_port_num), mac_h);
2040 /* Accept frames of this address */
2041 table = MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE(eth_port_num);
2042 eth_port_set_filter_table_entry(table, p_addr[5] & 0x0f);
2046 * eth_port_uc_addr_get - This function retrieves the port Unicast address
2047 * (MAC address) from the ethernet hw registers.
2049 * DESCRIPTION:
2050 * This function retrieves the port Ethernet MAC address.
2052 * INPUT:
2053 * unsigned int eth_port_num Port number.
2054 * char *MacAddr pointer where the MAC address is stored
2056 * OUTPUT:
2057 * Copy the MAC address to the location pointed to by MacAddr
2059 * RETURN:
2060 * N/A.
2063 static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *p_addr)
2065 struct mv643xx_private *mp = netdev_priv(dev);
2066 unsigned int mac_h;
2067 unsigned int mac_l;
2069 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(mp->port_num));
2070 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(mp->port_num));
2072 p_addr[0] = (mac_h >> 24) & 0xff;
2073 p_addr[1] = (mac_h >> 16) & 0xff;
2074 p_addr[2] = (mac_h >> 8) & 0xff;
2075 p_addr[3] = mac_h & 0xff;
2076 p_addr[4] = (mac_l >> 8) & 0xff;
2077 p_addr[5] = mac_l & 0xff;
2081 * The entries in each table are indexed by a hash of a packet's MAC
2082 * address. One bit in each entry determines whether the packet is
2083 * accepted. There are 4 entries (each 8 bits wide) in each register
2084 * of the table. The bits in each entry are defined as follows:
2085 * 0 Accept=1, Drop=0
2086 * 3-1 Queue (ETH_Q0=0)
2087 * 7-4 Reserved = 0;
2089 static void eth_port_set_filter_table_entry(int table, unsigned char entry)
2091 unsigned int table_reg;
2092 unsigned int tbl_offset;
2093 unsigned int reg_offset;
2095 tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
2096 reg_offset = entry % 4; /* Entry offset within the register */
2098 /* Set "accepts frame bit" at specified table entry */
2099 table_reg = mv_read(table + tbl_offset);
2100 table_reg |= 0x01 << (8 * reg_offset);
2101 mv_write(table + tbl_offset, table_reg);
2105 * eth_port_mc_addr - Multicast address settings.
2107 * The MV device supports multicast using two tables:
2108 * 1) Special Multicast Table for MAC addresses of the form
2109 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
2110 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2111 * Table entries in the DA-Filter table.
2112 * 2) Other Multicast Table for multicast of another type. A CRC-8bit
2113 * is used as an index to the Other Multicast Table entries in the
2114 * DA-Filter table. This function calculates the CRC-8bit value.
2115 * In either case, eth_port_set_filter_table_entry() is then called
2116 * to set to set the actual table entry.
2118 static void eth_port_mc_addr(unsigned int eth_port_num, unsigned char *p_addr)
2120 unsigned int mac_h;
2121 unsigned int mac_l;
2122 unsigned char crc_result = 0;
2123 int table;
2124 int mac_array[48];
2125 int crc[8];
2126 int i;
2128 if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
2129 (p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
2130 table = MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2131 (eth_port_num);
2132 eth_port_set_filter_table_entry(table, p_addr[5]);
2133 return;
2136 /* Calculate CRC-8 out of the given address */
2137 mac_h = (p_addr[0] << 8) | (p_addr[1]);
2138 mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
2139 (p_addr[4] << 8) | (p_addr[5] << 0);
2141 for (i = 0; i < 32; i++)
2142 mac_array[i] = (mac_l >> i) & 0x1;
2143 for (i = 32; i < 48; i++)
2144 mac_array[i] = (mac_h >> (i - 32)) & 0x1;
2146 crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
2147 mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
2148 mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
2149 mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
2150 mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
2152 crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
2153 mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
2154 mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
2155 mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
2156 mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
2157 mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
2158 mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
2160 crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
2161 mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
2162 mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
2163 mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
2164 mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
2165 mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
2167 crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
2168 mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
2169 mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
2170 mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
2171 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
2172 mac_array[3] ^ mac_array[2] ^ mac_array[1];
2174 crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
2175 mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
2176 mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
2177 mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
2178 mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
2179 mac_array[3] ^ mac_array[2];
2181 crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
2182 mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
2183 mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
2184 mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
2185 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
2186 mac_array[4] ^ mac_array[3];
2188 crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
2189 mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
2190 mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
2191 mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
2192 mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
2193 mac_array[4];
2195 crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
2196 mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
2197 mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
2198 mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
2199 mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
2201 for (i = 0; i < 8; i++)
2202 crc_result = crc_result | (crc[i] << i);
2204 table = MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num);
2205 eth_port_set_filter_table_entry(table, crc_result);
2209 * Set the entire multicast list based on dev->mc_list.
2211 static void eth_port_set_multicast_list(struct net_device *dev)
2214 struct dev_mc_list *mc_list;
2215 int i;
2216 int table_index;
2217 struct mv643xx_private *mp = netdev_priv(dev);
2218 unsigned int eth_port_num = mp->port_num;
2220 /* If the device is in promiscuous mode or in all multicast mode,
2221 * we will fully populate both multicast tables with accept.
2222 * This is guaranteed to yield a match on all multicast addresses...
2224 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
2225 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2226 /* Set all entries in DA filter special multicast
2227 * table (Ex_dFSMT)
2228 * Set for ETH_Q0 for now
2229 * Bits
2230 * 0 Accept=1, Drop=0
2231 * 3-1 Queue ETH_Q0=0
2232 * 7-4 Reserved = 0;
2234 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2236 /* Set all entries in DA filter other multicast
2237 * table (Ex_dFOMT)
2238 * Set for ETH_Q0 for now
2239 * Bits
2240 * 0 Accept=1, Drop=0
2241 * 3-1 Queue ETH_Q0=0
2242 * 7-4 Reserved = 0;
2244 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2246 return;
2249 /* We will clear out multicast tables every time we get the list.
2250 * Then add the entire new list...
2252 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2253 /* Clear DA filter special multicast table (Ex_dFSMT) */
2254 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2255 (eth_port_num) + table_index, 0);
2257 /* Clear DA filter other multicast table (Ex_dFOMT) */
2258 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2259 (eth_port_num) + table_index, 0);
2262 /* Get pointer to net_device multicast list and add each one... */
2263 for (i = 0, mc_list = dev->mc_list;
2264 (i < 256) && (mc_list != NULL) && (i < dev->mc_count);
2265 i++, mc_list = mc_list->next)
2266 if (mc_list->dmi_addrlen == 6)
2267 eth_port_mc_addr(eth_port_num, mc_list->dmi_addr);
2271 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2273 * DESCRIPTION:
2274 * Go through all the DA filter tables (Unicast, Special Multicast &
2275 * Other Multicast) and set each entry to 0.
2277 * INPUT:
2278 * unsigned int eth_port_num Ethernet Port number.
2280 * OUTPUT:
2281 * Multicast and Unicast packets are rejected.
2283 * RETURN:
2284 * None.
2286 static void eth_port_init_mac_tables(unsigned int eth_port_num)
2288 int table_index;
2290 /* Clear DA filter unicast table (Ex_dFUT) */
2291 for (table_index = 0; table_index <= 0xC; table_index += 4)
2292 mv_write(MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2293 (eth_port_num) + table_index, 0);
2295 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2296 /* Clear DA filter special multicast table (Ex_dFSMT) */
2297 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2298 (eth_port_num) + table_index, 0);
2299 /* Clear DA filter other multicast table (Ex_dFOMT) */
2300 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2301 (eth_port_num) + table_index, 0);
2306 * eth_clear_mib_counters - Clear all MIB counters
2308 * DESCRIPTION:
2309 * This function clears all MIB counters of a specific ethernet port.
2310 * A read from the MIB counter will reset the counter.
2312 * INPUT:
2313 * unsigned int eth_port_num Ethernet Port number.
2315 * OUTPUT:
2316 * After reading all MIB counters, the counters resets.
2318 * RETURN:
2319 * MIB counter value.
2322 static void eth_clear_mib_counters(unsigned int eth_port_num)
2324 int i;
2326 /* Perform dummy reads from MIB counters */
2327 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2328 i += 4)
2329 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2332 static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2334 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2337 static void eth_update_mib_counters(struct mv643xx_private *mp)
2339 struct mv643xx_mib_counters *p = &mp->mib_counters;
2340 int offset;
2342 p->good_octets_received +=
2343 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2344 p->good_octets_received +=
2345 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2347 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2348 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2349 offset += 4)
2350 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2352 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2353 p->good_octets_sent +=
2354 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2356 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2357 offset <= ETH_MIB_LATE_COLLISION;
2358 offset += 4)
2359 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2363 * ethernet_phy_detect - Detect whether a phy is present
2365 * DESCRIPTION:
2366 * This function tests whether there is a PHY present on
2367 * the specified port.
2369 * INPUT:
2370 * unsigned int eth_port_num Ethernet Port number.
2372 * OUTPUT:
2373 * None
2375 * RETURN:
2376 * 0 on success
2377 * -ENODEV on failure
2380 static int ethernet_phy_detect(unsigned int port_num)
2382 unsigned int phy_reg_data0;
2383 int auto_neg;
2385 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2386 auto_neg = phy_reg_data0 & 0x1000;
2387 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2388 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2390 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2391 if ((phy_reg_data0 & 0x1000) == auto_neg)
2392 return -ENODEV; /* change didn't take */
2394 phy_reg_data0 ^= 0x1000;
2395 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2396 return 0;
2400 * ethernet_phy_get - Get the ethernet port PHY address.
2402 * DESCRIPTION:
2403 * This routine returns the given ethernet port PHY address.
2405 * INPUT:
2406 * unsigned int eth_port_num Ethernet Port number.
2408 * OUTPUT:
2409 * None.
2411 * RETURN:
2412 * PHY address.
2415 static int ethernet_phy_get(unsigned int eth_port_num)
2417 unsigned int reg_data;
2419 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2421 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2425 * ethernet_phy_set - Set the ethernet port PHY address.
2427 * DESCRIPTION:
2428 * This routine sets the given ethernet port PHY address.
2430 * INPUT:
2431 * unsigned int eth_port_num Ethernet Port number.
2432 * int phy_addr PHY address.
2434 * OUTPUT:
2435 * None.
2437 * RETURN:
2438 * None.
2441 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2443 u32 reg_data;
2444 int addr_shift = 5 * eth_port_num;
2446 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2447 reg_data &= ~(0x1f << addr_shift);
2448 reg_data |= (phy_addr & 0x1f) << addr_shift;
2449 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2453 * ethernet_phy_reset - Reset Ethernet port PHY.
2455 * DESCRIPTION:
2456 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2458 * INPUT:
2459 * unsigned int eth_port_num Ethernet Port number.
2461 * OUTPUT:
2462 * The PHY is reset.
2464 * RETURN:
2465 * None.
2468 static void ethernet_phy_reset(unsigned int eth_port_num)
2470 unsigned int phy_reg_data;
2472 /* Reset the PHY */
2473 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2474 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2475 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2477 /* wait for PHY to come out of reset */
2478 do {
2479 udelay(1);
2480 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2481 } while (phy_reg_data & 0x8000);
2484 static void mv643xx_eth_port_enable_tx(unsigned int port_num,
2485 unsigned int channels)
2487 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), channels);
2490 static void mv643xx_eth_port_enable_rx(unsigned int port_num,
2491 unsigned int channels)
2493 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), channels);
2496 static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num)
2498 u32 channels;
2500 /* Stop Tx port activity. Check port Tx activity. */
2501 channels = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2502 & 0xFF;
2503 if (channels) {
2504 /* Issue stop command for active channels only */
2505 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
2506 (channels << 8));
2508 /* Wait for all Tx activity to terminate. */
2509 /* Check port cause register that all Tx queues are stopped */
2510 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2511 & 0xFF)
2512 udelay(PHY_WAIT_MICRO_SECONDS);
2514 /* Wait for Tx FIFO to empty */
2515 while (mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num)) &
2516 ETH_PORT_TX_FIFO_EMPTY)
2517 udelay(PHY_WAIT_MICRO_SECONDS);
2520 return channels;
2523 static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num)
2525 u32 channels;
2527 /* Stop Rx port activity. Check port Rx activity. */
2528 channels = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num)
2529 & 0xFF);
2530 if (channels) {
2531 /* Issue stop command for active channels only */
2532 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
2533 (channels << 8));
2535 /* Wait for all Rx activity to terminate. */
2536 /* Check port cause register that all Rx queues are stopped */
2537 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2538 & 0xFF)
2539 udelay(PHY_WAIT_MICRO_SECONDS);
2542 return channels;
2546 * eth_port_reset - Reset Ethernet port
2548 * DESCRIPTION:
2549 * This routine resets the chip by aborting any SDMA engine activity and
2550 * clearing the MIB counters. The Receiver and the Transmit unit are in
2551 * idle state after this command is performed and the port is disabled.
2553 * INPUT:
2554 * unsigned int eth_port_num Ethernet Port number.
2556 * OUTPUT:
2557 * Channel activity is halted.
2559 * RETURN:
2560 * None.
2563 static void eth_port_reset(unsigned int port_num)
2565 unsigned int reg_data;
2567 mv643xx_eth_port_disable_tx(port_num);
2568 mv643xx_eth_port_disable_rx(port_num);
2570 /* Clear all MIB counters */
2571 eth_clear_mib_counters(port_num);
2573 /* Reset the Enable bit in the Configuration Register */
2574 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2575 reg_data &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE |
2576 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
2577 MV643XX_ETH_FORCE_LINK_PASS);
2578 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2583 * eth_port_read_smi_reg - Read PHY registers
2585 * DESCRIPTION:
2586 * This routine utilize the SMI interface to interact with the PHY in
2587 * order to perform PHY register read.
2589 * INPUT:
2590 * unsigned int port_num Ethernet Port number.
2591 * unsigned int phy_reg PHY register address offset.
2592 * unsigned int *value Register value buffer.
2594 * OUTPUT:
2595 * Write the value of a specified PHY register into given buffer.
2597 * RETURN:
2598 * false if the PHY is busy or read data is not in valid state.
2599 * true otherwise.
2602 static void eth_port_read_smi_reg(unsigned int port_num,
2603 unsigned int phy_reg, unsigned int *value)
2605 int phy_addr = ethernet_phy_get(port_num);
2606 unsigned long flags;
2607 int i;
2609 /* the SMI register is a shared resource */
2610 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2612 /* wait for the SMI register to become available */
2613 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2614 if (i == PHY_WAIT_ITERATIONS) {
2615 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2616 goto out;
2618 udelay(PHY_WAIT_MICRO_SECONDS);
2621 mv_write(MV643XX_ETH_SMI_REG,
2622 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2624 /* now wait for the data to be valid */
2625 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2626 if (i == PHY_WAIT_ITERATIONS) {
2627 printk("mv643xx PHY read timeout, port %d\n", port_num);
2628 goto out;
2630 udelay(PHY_WAIT_MICRO_SECONDS);
2633 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2634 out:
2635 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2639 * eth_port_write_smi_reg - Write to PHY registers
2641 * DESCRIPTION:
2642 * This routine utilize the SMI interface to interact with the PHY in
2643 * order to perform writes to PHY registers.
2645 * INPUT:
2646 * unsigned int eth_port_num Ethernet Port number.
2647 * unsigned int phy_reg PHY register address offset.
2648 * unsigned int value Register value.
2650 * OUTPUT:
2651 * Write the given value to the specified PHY register.
2653 * RETURN:
2654 * false if the PHY is busy.
2655 * true otherwise.
2658 static void eth_port_write_smi_reg(unsigned int eth_port_num,
2659 unsigned int phy_reg, unsigned int value)
2661 int phy_addr;
2662 int i;
2663 unsigned long flags;
2665 phy_addr = ethernet_phy_get(eth_port_num);
2667 /* the SMI register is a shared resource */
2668 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2670 /* wait for the SMI register to become available */
2671 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2672 if (i == PHY_WAIT_ITERATIONS) {
2673 printk("mv643xx PHY busy timeout, port %d\n",
2674 eth_port_num);
2675 goto out;
2677 udelay(PHY_WAIT_MICRO_SECONDS);
2680 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2681 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2682 out:
2683 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2687 * Wrappers for MII support library.
2689 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location)
2691 int val;
2692 struct mv643xx_private *mp = netdev_priv(dev);
2694 eth_port_read_smi_reg(mp->port_num, location, &val);
2695 return val;
2698 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val)
2700 struct mv643xx_private *mp = netdev_priv(dev);
2701 eth_port_write_smi_reg(mp->port_num, location, val);
2705 * eth_port_send - Send an Ethernet packet
2707 * DESCRIPTION:
2708 * This routine send a given packet described by p_pktinfo parameter. It
2709 * supports transmitting of a packet spaned over multiple buffers. The
2710 * routine updates 'curr' and 'first' indexes according to the packet
2711 * segment passed to the routine. In case the packet segment is first,
2712 * the 'first' index is update. In any case, the 'curr' index is updated.
2713 * If the routine get into Tx resource error it assigns 'curr' index as
2714 * 'first'. This way the function can abort Tx process of multiple
2715 * descriptors per packet.
2717 * INPUT:
2718 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2719 * struct pkt_info *p_pkt_info User packet buffer.
2721 * OUTPUT:
2722 * Tx ring 'curr' and 'first' indexes are updated.
2724 * RETURN:
2725 * ETH_QUEUE_FULL in case of Tx resource error.
2726 * ETH_ERROR in case the routine can not access Tx desc ring.
2727 * ETH_QUEUE_LAST_RESOURCE if the routine uses the last Tx resource.
2728 * ETH_OK otherwise.
2731 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
2733 * Modified to include the first descriptor pointer in case of SG
2735 static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2736 struct pkt_info *p_pkt_info)
2738 int tx_desc_curr, tx_desc_used, tx_first_desc, tx_next_desc;
2739 struct eth_tx_desc *current_descriptor;
2740 struct eth_tx_desc *first_descriptor;
2741 u32 command;
2743 /* Do not process Tx ring in case of Tx ring resource error */
2744 if (mp->tx_resource_err)
2745 return ETH_QUEUE_FULL;
2748 * The hardware requires that each buffer that is <= 8 bytes
2749 * in length must be aligned on an 8 byte boundary.
2751 if (p_pkt_info->byte_cnt <= 8 && p_pkt_info->buf_ptr & 0x7) {
2752 printk(KERN_ERR
2753 "mv643xx_eth port %d: packet size <= 8 problem\n",
2754 mp->port_num);
2755 return ETH_ERROR;
2758 mp->tx_desc_count++;
2759 BUG_ON(mp->tx_desc_count > mp->tx_ring_size);
2761 /* Get the Tx Desc ring indexes */
2762 tx_desc_curr = mp->tx_curr_desc_q;
2763 tx_desc_used = mp->tx_used_desc_q;
2765 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2767 tx_next_desc = (tx_desc_curr + 1) % mp->tx_ring_size;
2769 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2770 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2771 current_descriptor->l4i_chk = p_pkt_info->l4i_chk;
2772 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2774 command = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC |
2775 ETH_BUFFER_OWNED_BY_DMA;
2776 if (command & ETH_TX_FIRST_DESC) {
2777 tx_first_desc = tx_desc_curr;
2778 mp->tx_first_desc_q = tx_first_desc;
2779 first_descriptor = current_descriptor;
2780 mp->tx_first_command = command;
2781 } else {
2782 tx_first_desc = mp->tx_first_desc_q;
2783 first_descriptor = &mp->p_tx_desc_area[tx_first_desc];
2784 BUG_ON(first_descriptor == NULL);
2785 current_descriptor->cmd_sts = command;
2788 if (command & ETH_TX_LAST_DESC) {
2789 wmb();
2790 first_descriptor->cmd_sts = mp->tx_first_command;
2792 wmb();
2793 mv643xx_eth_port_enable_tx(mp->port_num, mp->port_tx_queue_command);
2796 * Finish Tx packet. Update first desc in case of Tx resource
2797 * error */
2798 tx_first_desc = tx_next_desc;
2799 mp->tx_first_desc_q = tx_first_desc;
2802 /* Check for ring index overlap in the Tx desc ring */
2803 if (tx_next_desc == tx_desc_used) {
2804 mp->tx_resource_err = 1;
2805 mp->tx_curr_desc_q = tx_first_desc;
2807 return ETH_QUEUE_LAST_RESOURCE;
2810 mp->tx_curr_desc_q = tx_next_desc;
2812 return ETH_OK;
2814 #else
2815 static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2816 struct pkt_info *p_pkt_info)
2818 int tx_desc_curr;
2819 int tx_desc_used;
2820 struct eth_tx_desc *current_descriptor;
2821 unsigned int command_status;
2823 /* Do not process Tx ring in case of Tx ring resource error */
2824 if (mp->tx_resource_err)
2825 return ETH_QUEUE_FULL;
2827 mp->tx_desc_count++;
2828 BUG_ON(mp->tx_desc_count > mp->tx_ring_size);
2830 /* Get the Tx Desc ring indexes */
2831 tx_desc_curr = mp->tx_curr_desc_q;
2832 tx_desc_used = mp->tx_used_desc_q;
2833 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2835 command_status = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC;
2836 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2837 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2838 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2840 /* Set last desc with DMA ownership and interrupt enable. */
2841 wmb();
2842 current_descriptor->cmd_sts = command_status |
2843 ETH_BUFFER_OWNED_BY_DMA | ETH_TX_ENABLE_INTERRUPT;
2845 wmb();
2846 mv643xx_eth_port_enable_tx(mp->port_num, mp->port_tx_queue_command);
2848 /* Finish Tx packet. Update first desc in case of Tx resource error */
2849 tx_desc_curr = (tx_desc_curr + 1) % mp->tx_ring_size;
2851 /* Update the current descriptor */
2852 mp->tx_curr_desc_q = tx_desc_curr;
2854 /* Check for ring index overlap in the Tx desc ring */
2855 if (tx_desc_curr == tx_desc_used) {
2856 mp->tx_resource_err = 1;
2857 return ETH_QUEUE_LAST_RESOURCE;
2860 return ETH_OK;
2862 #endif
2865 * eth_tx_return_desc - Free all used Tx descriptors
2867 * DESCRIPTION:
2868 * This routine returns the transmitted packet information to the caller.
2869 * It uses the 'first' index to support Tx desc return in case a transmit
2870 * of a packet spanned over multiple buffer still in process.
2871 * In case the Tx queue was in "resource error" condition, where there are
2872 * no available Tx resources, the function resets the resource error flag.
2874 * INPUT:
2875 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2876 * struct pkt_info *p_pkt_info User packet buffer.
2878 * OUTPUT:
2879 * Tx ring 'first' and 'used' indexes are updated.
2881 * RETURN:
2882 * ETH_OK on success
2883 * ETH_ERROR otherwise.
2886 static ETH_FUNC_RET_STATUS eth_tx_return_desc(struct mv643xx_private *mp,
2887 struct pkt_info *p_pkt_info)
2889 int tx_desc_used;
2890 int tx_busy_desc;
2891 struct eth_tx_desc *p_tx_desc_used;
2892 unsigned int command_status;
2893 unsigned long flags;
2894 int err = ETH_OK;
2896 spin_lock_irqsave(&mp->lock, flags);
2898 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
2899 tx_busy_desc = mp->tx_first_desc_q;
2900 #else
2901 tx_busy_desc = mp->tx_curr_desc_q;
2902 #endif
2904 /* Get the Tx Desc ring indexes */
2905 tx_desc_used = mp->tx_used_desc_q;
2907 p_tx_desc_used = &mp->p_tx_desc_area[tx_desc_used];
2909 /* Sanity check */
2910 if (p_tx_desc_used == NULL) {
2911 err = ETH_ERROR;
2912 goto out;
2915 /* Stop release. About to overlap the current available Tx descriptor */
2916 if (tx_desc_used == tx_busy_desc && !mp->tx_resource_err) {
2917 err = ETH_ERROR;
2918 goto out;
2921 command_status = p_tx_desc_used->cmd_sts;
2923 /* Still transmitting... */
2924 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2925 err = ETH_ERROR;
2926 goto out;
2929 /* Pass the packet information to the caller */
2930 p_pkt_info->cmd_sts = command_status;
2931 p_pkt_info->return_info = mp->tx_skb[tx_desc_used];
2932 p_pkt_info->buf_ptr = p_tx_desc_used->buf_ptr;
2933 p_pkt_info->byte_cnt = p_tx_desc_used->byte_cnt;
2934 mp->tx_skb[tx_desc_used] = NULL;
2936 /* Update the next descriptor to release. */
2937 mp->tx_used_desc_q = (tx_desc_used + 1) % mp->tx_ring_size;
2939 /* Any Tx return cancels the Tx resource error status */
2940 mp->tx_resource_err = 0;
2942 BUG_ON(mp->tx_desc_count == 0);
2943 mp->tx_desc_count--;
2945 out:
2946 spin_unlock_irqrestore(&mp->lock, flags);
2948 return err;
2952 * eth_port_receive - Get received information from Rx ring.
2954 * DESCRIPTION:
2955 * This routine returns the received data to the caller. There is no
2956 * data copying during routine operation. All information is returned
2957 * using pointer to packet information struct passed from the caller.
2958 * If the routine exhausts Rx ring resources then the resource error flag
2959 * is set.
2961 * INPUT:
2962 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2963 * struct pkt_info *p_pkt_info User packet buffer.
2965 * OUTPUT:
2966 * Rx ring current and used indexes are updated.
2968 * RETURN:
2969 * ETH_ERROR in case the routine can not access Rx desc ring.
2970 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2971 * ETH_END_OF_JOB if there is no received data.
2972 * ETH_OK otherwise.
2974 static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2975 struct pkt_info *p_pkt_info)
2977 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2978 volatile struct eth_rx_desc *p_rx_desc;
2979 unsigned int command_status;
2980 unsigned long flags;
2982 /* Do not process Rx ring in case of Rx ring resource error */
2983 if (mp->rx_resource_err)
2984 return ETH_QUEUE_FULL;
2986 spin_lock_irqsave(&mp->lock, flags);
2988 /* Get the Rx Desc ring 'curr and 'used' indexes */
2989 rx_curr_desc = mp->rx_curr_desc_q;
2990 rx_used_desc = mp->rx_used_desc_q;
2992 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2994 /* The following parameters are used to save readings from memory */
2995 command_status = p_rx_desc->cmd_sts;
2996 rmb();
2998 /* Nothing to receive... */
2999 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
3000 spin_unlock_irqrestore(&mp->lock, flags);
3001 return ETH_END_OF_JOB;
3004 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
3005 p_pkt_info->cmd_sts = command_status;
3006 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
3007 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
3008 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
3011 * Clean the return info field to indicate that the
3012 * packet has been moved to the upper layers
3014 mp->rx_skb[rx_curr_desc] = NULL;
3016 /* Update current index in data structure */
3017 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
3018 mp->rx_curr_desc_q = rx_next_curr_desc;
3020 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
3021 if (rx_next_curr_desc == rx_used_desc)
3022 mp->rx_resource_err = 1;
3024 spin_unlock_irqrestore(&mp->lock, flags);
3026 return ETH_OK;
3030 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
3032 * DESCRIPTION:
3033 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
3034 * next 'used' descriptor and attached the returned buffer to it.
3035 * In case the Rx ring was in "resource error" condition, where there are
3036 * no available Rx resources, the function resets the resource error flag.
3038 * INPUT:
3039 * struct mv643xx_private *mp Ethernet Port Control srtuct.
3040 * struct pkt_info *p_pkt_info Information on returned buffer.
3042 * OUTPUT:
3043 * New available Rx resource in Rx descriptor ring.
3045 * RETURN:
3046 * ETH_ERROR in case the routine can not access Rx desc ring.
3047 * ETH_OK otherwise.
3049 static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
3050 struct pkt_info *p_pkt_info)
3052 int used_rx_desc; /* Where to return Rx resource */
3053 volatile struct eth_rx_desc *p_used_rx_desc;
3054 unsigned long flags;
3056 spin_lock_irqsave(&mp->lock, flags);
3058 /* Get 'used' Rx descriptor */
3059 used_rx_desc = mp->rx_used_desc_q;
3060 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
3062 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
3063 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
3064 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
3066 /* Flush the write pipe */
3068 /* Return the descriptor to DMA ownership */
3069 wmb();
3070 p_used_rx_desc->cmd_sts =
3071 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
3072 wmb();
3074 /* Move the used descriptor pointer to the next descriptor */
3075 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
3077 /* Any Rx return cancels the Rx resource error status */
3078 mp->rx_resource_err = 0;
3080 spin_unlock_irqrestore(&mp->lock, flags);
3082 return ETH_OK;
3085 /************* Begin ethtool support *************************/
3087 struct mv643xx_stats {
3088 char stat_string[ETH_GSTRING_LEN];
3089 int sizeof_stat;
3090 int stat_offset;
3093 #define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
3094 offsetof(struct mv643xx_private, m)
3096 static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
3097 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
3098 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
3099 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
3100 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
3101 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
3102 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
3103 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
3104 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
3105 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
3106 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
3107 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
3108 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
3109 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
3110 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
3111 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
3112 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
3113 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
3114 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
3115 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
3116 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
3117 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
3118 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
3119 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
3120 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
3121 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
3122 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
3123 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
3124 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
3125 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
3126 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
3127 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
3128 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
3129 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
3130 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
3131 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
3132 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
3133 { "collision", MV643XX_STAT(mib_counters.collision) },
3134 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
3137 #define MV643XX_STATS_LEN \
3138 sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
3140 static void mv643xx_get_drvinfo(struct net_device *netdev,
3141 struct ethtool_drvinfo *drvinfo)
3143 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
3144 strncpy(drvinfo->version, mv643xx_driver_version, 32);
3145 strncpy(drvinfo->fw_version, "N/A", 32);
3146 strncpy(drvinfo->bus_info, "mv643xx", 32);
3147 drvinfo->n_stats = MV643XX_STATS_LEN;
3150 static int mv643xx_get_stats_count(struct net_device *netdev)
3152 return MV643XX_STATS_LEN;
3155 static void mv643xx_get_ethtool_stats(struct net_device *netdev,
3156 struct ethtool_stats *stats, uint64_t *data)
3158 struct mv643xx_private *mp = netdev->priv;
3159 int i;
3161 eth_update_mib_counters(mp);
3163 for (i = 0; i < MV643XX_STATS_LEN; i++) {
3164 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
3165 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
3166 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
3170 static void mv643xx_get_strings(struct net_device *netdev, uint32_t stringset,
3171 uint8_t *data)
3173 int i;
3175 switch(stringset) {
3176 case ETH_SS_STATS:
3177 for (i=0; i < MV643XX_STATS_LEN; i++) {
3178 memcpy(data + i * ETH_GSTRING_LEN,
3179 mv643xx_gstrings_stats[i].stat_string,
3180 ETH_GSTRING_LEN);
3182 break;
3186 static u32 mv643xx_eth_get_link(struct net_device *dev)
3188 struct mv643xx_private *mp = netdev_priv(dev);
3190 return mii_link_ok(&mp->mii);
3193 static int mv643xx_eth_nway_restart(struct net_device *dev)
3195 struct mv643xx_private *mp = netdev_priv(dev);
3197 return mii_nway_restart(&mp->mii);
3200 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3202 struct mv643xx_private *mp = netdev_priv(dev);
3204 return generic_mii_ioctl(&mp->mii, if_mii(ifr), cmd, NULL);
3207 static struct ethtool_ops mv643xx_ethtool_ops = {
3208 .get_settings = mv643xx_get_settings,
3209 .set_settings = mv643xx_set_settings,
3210 .get_drvinfo = mv643xx_get_drvinfo,
3211 .get_link = mv643xx_eth_get_link,
3212 .get_sg = ethtool_op_get_sg,
3213 .set_sg = ethtool_op_set_sg,
3214 .get_strings = mv643xx_get_strings,
3215 .get_stats_count = mv643xx_get_stats_count,
3216 .get_ethtool_stats = mv643xx_get_ethtool_stats,
3217 .get_strings = mv643xx_get_strings,
3218 .get_stats_count = mv643xx_get_stats_count,
3219 .get_ethtool_stats = mv643xx_get_ethtool_stats,
3220 .nway_reset = mv643xx_eth_nway_restart,
3223 /************* End ethtool support *************************/