[PATCH] KVM: MMU: Implement simple reverse mapping
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / kvm / paging_tmpl.h
blob8c48528a6e890ebcb82973292278d794eb876808
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
21 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22 * so the code in this file is compiled twice, once per pte size.
25 #if PTTYPE == 64
26 #define pt_element_t u64
27 #define guest_walker guest_walker64
28 #define FNAME(name) paging##64_##name
29 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30 #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34 #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK
35 #elif PTTYPE == 32
36 #define pt_element_t u32
37 #define guest_walker guest_walker32
38 #define FNAME(name) paging##32_##name
39 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
40 #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
41 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
42 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
43 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
44 #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK
45 #else
46 #error Invalid PTTYPE value
47 #endif
50 * The guest_walker structure emulates the behavior of the hardware page
51 * table walker.
53 struct guest_walker {
54 int level;
55 pt_element_t *table;
56 pt_element_t inherited_ar;
59 static void FNAME(init_walker)(struct guest_walker *walker,
60 struct kvm_vcpu *vcpu)
62 hpa_t hpa;
63 struct kvm_memory_slot *slot;
65 walker->level = vcpu->mmu.root_level;
66 slot = gfn_to_memslot(vcpu->kvm,
67 (vcpu->cr3 & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
68 hpa = safe_gpa_to_hpa(vcpu, vcpu->cr3 & PT64_BASE_ADDR_MASK);
69 walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
71 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
72 (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0);
74 walker->table = (pt_element_t *)( (unsigned long)walker->table |
75 (unsigned long)(vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) );
76 walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
79 static void FNAME(release_walker)(struct guest_walker *walker)
81 kunmap_atomic(walker->table, KM_USER0);
84 static void FNAME(set_pte)(struct kvm_vcpu *vcpu, u64 guest_pte,
85 u64 *shadow_pte, u64 access_bits)
87 ASSERT(*shadow_pte == 0);
88 access_bits &= guest_pte;
89 *shadow_pte = (guest_pte & PT_PTE_COPY_MASK);
90 set_pte_common(vcpu, shadow_pte, guest_pte & PT_BASE_ADDR_MASK,
91 guest_pte & PT_DIRTY_MASK, access_bits);
94 static void FNAME(set_pde)(struct kvm_vcpu *vcpu, u64 guest_pde,
95 u64 *shadow_pte, u64 access_bits,
96 int index)
98 gpa_t gaddr;
100 ASSERT(*shadow_pte == 0);
101 access_bits &= guest_pde;
102 gaddr = (guest_pde & PT_DIR_BASE_ADDR_MASK) + PAGE_SIZE * index;
103 if (PTTYPE == 32 && is_cpuid_PSE36())
104 gaddr |= (guest_pde & PT32_DIR_PSE36_MASK) <<
105 (32 - PT32_DIR_PSE36_SHIFT);
106 *shadow_pte = guest_pde & PT_PTE_COPY_MASK;
107 set_pte_common(vcpu, shadow_pte, gaddr,
108 guest_pde & PT_DIRTY_MASK, access_bits);
112 * Fetch a guest pte from a specific level in the paging hierarchy.
114 static pt_element_t *FNAME(fetch_guest)(struct kvm_vcpu *vcpu,
115 struct guest_walker *walker,
116 int level,
117 gva_t addr)
120 ASSERT(level > 0 && level <= walker->level);
122 for (;;) {
123 int index = PT_INDEX(addr, walker->level);
124 hpa_t paddr;
126 ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
127 ((unsigned long)&walker->table[index] & PAGE_MASK));
128 if (level == walker->level ||
129 !is_present_pte(walker->table[index]) ||
130 (walker->level == PT_DIRECTORY_LEVEL &&
131 (walker->table[index] & PT_PAGE_SIZE_MASK) &&
132 (PTTYPE == 64 || is_pse(vcpu))))
133 return &walker->table[index];
134 if (walker->level != 3 || is_long_mode(vcpu))
135 walker->inherited_ar &= walker->table[index];
136 paddr = safe_gpa_to_hpa(vcpu, walker->table[index] & PT_BASE_ADDR_MASK);
137 kunmap_atomic(walker->table, KM_USER0);
138 walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
139 KM_USER0);
140 --walker->level;
145 * Fetch a shadow pte for a specific level in the paging hierarchy.
147 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
148 struct guest_walker *walker)
150 hpa_t shadow_addr;
151 int level;
152 u64 *prev_shadow_ent = NULL;
154 shadow_addr = vcpu->mmu.root_hpa;
155 level = vcpu->mmu.shadow_root_level;
157 for (; ; level--) {
158 u32 index = SHADOW_PT_INDEX(addr, level);
159 u64 *shadow_ent = ((u64 *)__va(shadow_addr)) + index;
160 pt_element_t *guest_ent;
161 u64 shadow_pte;
163 if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
164 if (level == PT_PAGE_TABLE_LEVEL)
165 return shadow_ent;
166 shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
167 prev_shadow_ent = shadow_ent;
168 continue;
171 if (PTTYPE == 32 && level > PT32_ROOT_LEVEL) {
172 ASSERT(level == PT32E_ROOT_LEVEL);
173 guest_ent = FNAME(fetch_guest)(vcpu, walker,
174 PT32_ROOT_LEVEL, addr);
175 } else
176 guest_ent = FNAME(fetch_guest)(vcpu, walker,
177 level, addr);
179 if (!is_present_pte(*guest_ent))
180 return NULL;
182 /* Don't set accessed bit on PAE PDPTRs */
183 if (vcpu->mmu.root_level != 3 || walker->level != 3)
184 *guest_ent |= PT_ACCESSED_MASK;
186 if (level == PT_PAGE_TABLE_LEVEL) {
188 if (walker->level == PT_DIRECTORY_LEVEL) {
189 if (prev_shadow_ent)
190 *prev_shadow_ent |= PT_SHADOW_PS_MARK;
191 FNAME(set_pde)(vcpu, *guest_ent, shadow_ent,
192 walker->inherited_ar,
193 PT_INDEX(addr, PT_PAGE_TABLE_LEVEL));
194 } else {
195 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
196 FNAME(set_pte)(vcpu, *guest_ent, shadow_ent, walker->inherited_ar);
198 return shadow_ent;
201 shadow_addr = kvm_mmu_alloc_page(vcpu, shadow_ent);
202 if (!VALID_PAGE(shadow_addr))
203 return ERR_PTR(-ENOMEM);
204 shadow_pte = shadow_addr | PT_PRESENT_MASK;
205 if (vcpu->mmu.root_level > 3 || level != 3)
206 shadow_pte |= PT_ACCESSED_MASK
207 | PT_WRITABLE_MASK | PT_USER_MASK;
208 *shadow_ent = shadow_pte;
209 prev_shadow_ent = shadow_ent;
214 * The guest faulted for write. We need to
216 * - check write permissions
217 * - update the guest pte dirty bit
218 * - update our own dirty page tracking structures
220 static int FNAME(fix_write_pf)(struct kvm_vcpu *vcpu,
221 u64 *shadow_ent,
222 struct guest_walker *walker,
223 gva_t addr,
224 int user)
226 pt_element_t *guest_ent;
227 int writable_shadow;
228 gfn_t gfn;
230 if (is_writeble_pte(*shadow_ent))
231 return 0;
233 writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK;
234 if (user) {
236 * User mode access. Fail if it's a kernel page or a read-only
237 * page.
239 if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow)
240 return 0;
241 ASSERT(*shadow_ent & PT_USER_MASK);
242 } else
244 * Kernel mode access. Fail if it's a read-only page and
245 * supervisor write protection is enabled.
247 if (!writable_shadow) {
248 if (is_write_protection(vcpu))
249 return 0;
250 *shadow_ent &= ~PT_USER_MASK;
253 guest_ent = FNAME(fetch_guest)(vcpu, walker, PT_PAGE_TABLE_LEVEL, addr);
255 if (!is_present_pte(*guest_ent)) {
256 *shadow_ent = 0;
257 return 0;
260 gfn = (*guest_ent & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
261 mark_page_dirty(vcpu->kvm, gfn);
262 *shadow_ent |= PT_WRITABLE_MASK;
263 *guest_ent |= PT_DIRTY_MASK;
264 rmap_add(vcpu->kvm, shadow_ent);
266 return 1;
270 * Page fault handler. There are several causes for a page fault:
271 * - there is no shadow pte for the guest pte
272 * - write access through a shadow pte marked read only so that we can set
273 * the dirty bit
274 * - write access to a shadow pte marked read only so we can update the page
275 * dirty bitmap, when userspace requests it
276 * - mmio access; in this case we will never install a present shadow pte
277 * - normal guest page fault due to the guest pte marked not present, not
278 * writable, or not executable
280 * Returns: 1 if we need to emulate the instruction, 0 otherwise
282 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
283 u32 error_code)
285 int write_fault = error_code & PFERR_WRITE_MASK;
286 int pte_present = error_code & PFERR_PRESENT_MASK;
287 int user_fault = error_code & PFERR_USER_MASK;
288 struct guest_walker walker;
289 u64 *shadow_pte;
290 int fixed;
293 * Look up the shadow pte for the faulting address.
295 for (;;) {
296 FNAME(init_walker)(&walker, vcpu);
297 shadow_pte = FNAME(fetch)(vcpu, addr, &walker);
298 if (IS_ERR(shadow_pte)) { /* must be -ENOMEM */
299 nonpaging_flush(vcpu);
300 FNAME(release_walker)(&walker);
301 continue;
303 break;
307 * The page is not mapped by the guest. Let the guest handle it.
309 if (!shadow_pte) {
310 inject_page_fault(vcpu, addr, error_code);
311 FNAME(release_walker)(&walker);
312 return 0;
316 * Update the shadow pte.
318 if (write_fault)
319 fixed = FNAME(fix_write_pf)(vcpu, shadow_pte, &walker, addr,
320 user_fault);
321 else
322 fixed = fix_read_pf(shadow_pte);
324 FNAME(release_walker)(&walker);
327 * mmio: emulate if accessible, otherwise its a guest fault.
329 if (is_io_pte(*shadow_pte)) {
330 if (may_access(*shadow_pte, write_fault, user_fault))
331 return 1;
332 pgprintk("%s: io work, no access\n", __FUNCTION__);
333 inject_page_fault(vcpu, addr,
334 error_code | PFERR_PRESENT_MASK);
335 return 0;
339 * pte not present, guest page fault.
341 if (pte_present && !fixed) {
342 inject_page_fault(vcpu, addr, error_code);
343 return 0;
346 ++kvm_stat.pf_fixed;
348 return 0;
351 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
353 struct guest_walker walker;
354 pt_element_t guest_pte;
355 gpa_t gpa;
357 FNAME(init_walker)(&walker, vcpu);
358 guest_pte = *FNAME(fetch_guest)(vcpu, &walker, PT_PAGE_TABLE_LEVEL,
359 vaddr);
360 FNAME(release_walker)(&walker);
362 if (!is_present_pte(guest_pte))
363 return UNMAPPED_GVA;
365 if (walker.level == PT_DIRECTORY_LEVEL) {
366 ASSERT((guest_pte & PT_PAGE_SIZE_MASK));
367 ASSERT(PTTYPE == 64 || is_pse(vcpu));
369 gpa = (guest_pte & PT_DIR_BASE_ADDR_MASK) | (vaddr &
370 (PT_LEVEL_MASK(PT_PAGE_TABLE_LEVEL) | ~PAGE_MASK));
372 if (PTTYPE == 32 && is_cpuid_PSE36())
373 gpa |= (guest_pte & PT32_DIR_PSE36_MASK) <<
374 (32 - PT32_DIR_PSE36_SHIFT);
375 } else {
376 gpa = (guest_pte & PT_BASE_ADDR_MASK);
377 gpa |= (vaddr & ~PAGE_MASK);
380 return gpa;
383 #undef pt_element_t
384 #undef guest_walker
385 #undef FNAME
386 #undef PT_BASE_ADDR_MASK
387 #undef PT_INDEX
388 #undef SHADOW_PT_INDEX
389 #undef PT_LEVEL_MASK
390 #undef PT_PTE_COPY_MASK
391 #undef PT_NON_PTE_COPY_MASK
392 #undef PT_DIR_BASE_ADDR_MASK