[PATCH] KVM: MMU: Implement simple reverse mapping
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / kvm / kvm_main.c
blobf2a6b6f0e929994f3b246e475c57033dbaa75507
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "kvm.h"
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <asm/processor.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <asm/msr.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <asm/uaccess.h>
31 #include <linux/reboot.h>
32 #include <asm/io.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
36 #include <asm/desc.h>
38 #include "x86_emulate.h"
39 #include "segment_descriptor.h"
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
44 struct kvm_arch_ops *kvm_arch_ops;
45 struct kvm_stat kvm_stat;
46 EXPORT_SYMBOL_GPL(kvm_stat);
48 static struct kvm_stats_debugfs_item {
49 const char *name;
50 u32 *data;
51 struct dentry *dentry;
52 } debugfs_entries[] = {
53 { "pf_fixed", &kvm_stat.pf_fixed },
54 { "pf_guest", &kvm_stat.pf_guest },
55 { "tlb_flush", &kvm_stat.tlb_flush },
56 { "invlpg", &kvm_stat.invlpg },
57 { "exits", &kvm_stat.exits },
58 { "io_exits", &kvm_stat.io_exits },
59 { "mmio_exits", &kvm_stat.mmio_exits },
60 { "signal_exits", &kvm_stat.signal_exits },
61 { "irq_window", &kvm_stat.irq_window_exits },
62 { "halt_exits", &kvm_stat.halt_exits },
63 { "request_irq", &kvm_stat.request_irq_exits },
64 { "irq_exits", &kvm_stat.irq_exits },
65 { 0, 0 }
68 static struct dentry *debugfs_dir;
70 #define MAX_IO_MSRS 256
72 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
73 #define LMSW_GUEST_MASK 0x0eULL
74 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
75 #define CR8_RESEVED_BITS (~0x0fULL)
76 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
78 #ifdef CONFIG_X86_64
79 // LDT or TSS descriptor in the GDT. 16 bytes.
80 struct segment_descriptor_64 {
81 struct segment_descriptor s;
82 u32 base_higher;
83 u32 pad_zero;
86 #endif
88 unsigned long segment_base(u16 selector)
90 struct descriptor_table gdt;
91 struct segment_descriptor *d;
92 unsigned long table_base;
93 typedef unsigned long ul;
94 unsigned long v;
96 if (selector == 0)
97 return 0;
99 asm ("sgdt %0" : "=m"(gdt));
100 table_base = gdt.base;
102 if (selector & 4) { /* from ldt */
103 u16 ldt_selector;
105 asm ("sldt %0" : "=g"(ldt_selector));
106 table_base = segment_base(ldt_selector);
108 d = (struct segment_descriptor *)(table_base + (selector & ~7));
109 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
110 #ifdef CONFIG_X86_64
111 if (d->system == 0
112 && (d->type == 2 || d->type == 9 || d->type == 11))
113 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
114 #endif
115 return v;
117 EXPORT_SYMBOL_GPL(segment_base);
119 static inline int valid_vcpu(int n)
121 return likely(n >= 0 && n < KVM_MAX_VCPUS);
124 int kvm_read_guest(struct kvm_vcpu *vcpu,
125 gva_t addr,
126 unsigned long size,
127 void *dest)
129 unsigned char *host_buf = dest;
130 unsigned long req_size = size;
132 while (size) {
133 hpa_t paddr;
134 unsigned now;
135 unsigned offset;
136 hva_t guest_buf;
138 paddr = gva_to_hpa(vcpu, addr);
140 if (is_error_hpa(paddr))
141 break;
143 guest_buf = (hva_t)kmap_atomic(
144 pfn_to_page(paddr >> PAGE_SHIFT),
145 KM_USER0);
146 offset = addr & ~PAGE_MASK;
147 guest_buf |= offset;
148 now = min(size, PAGE_SIZE - offset);
149 memcpy(host_buf, (void*)guest_buf, now);
150 host_buf += now;
151 addr += now;
152 size -= now;
153 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
155 return req_size - size;
157 EXPORT_SYMBOL_GPL(kvm_read_guest);
159 int kvm_write_guest(struct kvm_vcpu *vcpu,
160 gva_t addr,
161 unsigned long size,
162 void *data)
164 unsigned char *host_buf = data;
165 unsigned long req_size = size;
167 while (size) {
168 hpa_t paddr;
169 unsigned now;
170 unsigned offset;
171 hva_t guest_buf;
173 paddr = gva_to_hpa(vcpu, addr);
175 if (is_error_hpa(paddr))
176 break;
178 guest_buf = (hva_t)kmap_atomic(
179 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
180 offset = addr & ~PAGE_MASK;
181 guest_buf |= offset;
182 now = min(size, PAGE_SIZE - offset);
183 memcpy((void*)guest_buf, host_buf, now);
184 host_buf += now;
185 addr += now;
186 size -= now;
187 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
189 return req_size - size;
191 EXPORT_SYMBOL_GPL(kvm_write_guest);
193 static int vcpu_slot(struct kvm_vcpu *vcpu)
195 return vcpu - vcpu->kvm->vcpus;
199 * Switches to specified vcpu, until a matching vcpu_put()
201 static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
203 struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
205 mutex_lock(&vcpu->mutex);
206 if (unlikely(!vcpu->vmcs)) {
207 mutex_unlock(&vcpu->mutex);
208 return 0;
210 return kvm_arch_ops->vcpu_load(vcpu);
213 static void vcpu_put(struct kvm_vcpu *vcpu)
215 kvm_arch_ops->vcpu_put(vcpu);
216 mutex_unlock(&vcpu->mutex);
219 static int kvm_dev_open(struct inode *inode, struct file *filp)
221 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
222 int i;
224 if (!kvm)
225 return -ENOMEM;
227 spin_lock_init(&kvm->lock);
228 INIT_LIST_HEAD(&kvm->active_mmu_pages);
229 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
230 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
232 mutex_init(&vcpu->mutex);
233 vcpu->mmu.root_hpa = INVALID_PAGE;
234 INIT_LIST_HEAD(&vcpu->free_pages);
236 filp->private_data = kvm;
237 return 0;
241 * Free any memory in @free but not in @dont.
243 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
244 struct kvm_memory_slot *dont)
246 int i;
248 if (!dont || free->phys_mem != dont->phys_mem)
249 if (free->phys_mem) {
250 for (i = 0; i < free->npages; ++i)
251 if (free->phys_mem[i])
252 __free_page(free->phys_mem[i]);
253 vfree(free->phys_mem);
256 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
257 vfree(free->dirty_bitmap);
259 free->phys_mem = 0;
260 free->npages = 0;
261 free->dirty_bitmap = 0;
264 static void kvm_free_physmem(struct kvm *kvm)
266 int i;
268 for (i = 0; i < kvm->nmemslots; ++i)
269 kvm_free_physmem_slot(&kvm->memslots[i], 0);
272 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
274 kvm_arch_ops->vcpu_free(vcpu);
275 kvm_mmu_destroy(vcpu);
278 static void kvm_free_vcpus(struct kvm *kvm)
280 unsigned int i;
282 for (i = 0; i < KVM_MAX_VCPUS; ++i)
283 kvm_free_vcpu(&kvm->vcpus[i]);
286 static int kvm_dev_release(struct inode *inode, struct file *filp)
288 struct kvm *kvm = filp->private_data;
290 kvm_free_vcpus(kvm);
291 kvm_free_physmem(kvm);
292 kfree(kvm);
293 return 0;
296 static void inject_gp(struct kvm_vcpu *vcpu)
298 kvm_arch_ops->inject_gp(vcpu, 0);
301 static int pdptrs_have_reserved_bits_set(struct kvm_vcpu *vcpu,
302 unsigned long cr3)
304 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
305 unsigned offset = (cr3 & (PAGE_SIZE-1)) >> 5;
306 int i;
307 u64 pdpte;
308 u64 *pdpt;
309 struct kvm_memory_slot *memslot;
311 spin_lock(&vcpu->kvm->lock);
312 memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
313 /* FIXME: !memslot - emulate? 0xff? */
314 pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
316 for (i = 0; i < 4; ++i) {
317 pdpte = pdpt[offset + i];
318 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull))
319 break;
322 kunmap_atomic(pdpt, KM_USER0);
323 spin_unlock(&vcpu->kvm->lock);
325 return i != 4;
328 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
330 if (cr0 & CR0_RESEVED_BITS) {
331 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
332 cr0, vcpu->cr0);
333 inject_gp(vcpu);
334 return;
337 if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
338 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
339 inject_gp(vcpu);
340 return;
343 if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
344 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
345 "and a clear PE flag\n");
346 inject_gp(vcpu);
347 return;
350 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
351 #ifdef CONFIG_X86_64
352 if ((vcpu->shadow_efer & EFER_LME)) {
353 int cs_db, cs_l;
355 if (!is_pae(vcpu)) {
356 printk(KERN_DEBUG "set_cr0: #GP, start paging "
357 "in long mode while PAE is disabled\n");
358 inject_gp(vcpu);
359 return;
361 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
362 if (cs_l) {
363 printk(KERN_DEBUG "set_cr0: #GP, start paging "
364 "in long mode while CS.L == 1\n");
365 inject_gp(vcpu);
366 return;
369 } else
370 #endif
371 if (is_pae(vcpu) &&
372 pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
373 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
374 "reserved bits\n");
375 inject_gp(vcpu);
376 return;
381 kvm_arch_ops->set_cr0(vcpu, cr0);
382 vcpu->cr0 = cr0;
384 spin_lock(&vcpu->kvm->lock);
385 kvm_mmu_reset_context(vcpu);
386 spin_unlock(&vcpu->kvm->lock);
387 return;
389 EXPORT_SYMBOL_GPL(set_cr0);
391 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
393 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
394 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
396 EXPORT_SYMBOL_GPL(lmsw);
398 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
400 if (cr4 & CR4_RESEVED_BITS) {
401 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
402 inject_gp(vcpu);
403 return;
406 if (is_long_mode(vcpu)) {
407 if (!(cr4 & CR4_PAE_MASK)) {
408 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
409 "in long mode\n");
410 inject_gp(vcpu);
411 return;
413 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
414 && pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
415 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
416 inject_gp(vcpu);
419 if (cr4 & CR4_VMXE_MASK) {
420 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
421 inject_gp(vcpu);
422 return;
424 kvm_arch_ops->set_cr4(vcpu, cr4);
425 spin_lock(&vcpu->kvm->lock);
426 kvm_mmu_reset_context(vcpu);
427 spin_unlock(&vcpu->kvm->lock);
429 EXPORT_SYMBOL_GPL(set_cr4);
431 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
433 if (is_long_mode(vcpu)) {
434 if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
435 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
436 inject_gp(vcpu);
437 return;
439 } else {
440 if (cr3 & CR3_RESEVED_BITS) {
441 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
442 inject_gp(vcpu);
443 return;
445 if (is_paging(vcpu) && is_pae(vcpu) &&
446 pdptrs_have_reserved_bits_set(vcpu, cr3)) {
447 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
448 "reserved bits\n");
449 inject_gp(vcpu);
450 return;
454 vcpu->cr3 = cr3;
455 spin_lock(&vcpu->kvm->lock);
456 vcpu->mmu.new_cr3(vcpu);
457 spin_unlock(&vcpu->kvm->lock);
459 EXPORT_SYMBOL_GPL(set_cr3);
461 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
463 if ( cr8 & CR8_RESEVED_BITS) {
464 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
465 inject_gp(vcpu);
466 return;
468 vcpu->cr8 = cr8;
470 EXPORT_SYMBOL_GPL(set_cr8);
472 void fx_init(struct kvm_vcpu *vcpu)
474 struct __attribute__ ((__packed__)) fx_image_s {
475 u16 control; //fcw
476 u16 status; //fsw
477 u16 tag; // ftw
478 u16 opcode; //fop
479 u64 ip; // fpu ip
480 u64 operand;// fpu dp
481 u32 mxcsr;
482 u32 mxcsr_mask;
484 } *fx_image;
486 fx_save(vcpu->host_fx_image);
487 fpu_init();
488 fx_save(vcpu->guest_fx_image);
489 fx_restore(vcpu->host_fx_image);
491 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
492 fx_image->mxcsr = 0x1f80;
493 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
494 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
496 EXPORT_SYMBOL_GPL(fx_init);
499 * Creates some virtual cpus. Good luck creating more than one.
501 static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
503 int r;
504 struct kvm_vcpu *vcpu;
506 r = -EINVAL;
507 if (!valid_vcpu(n))
508 goto out;
510 vcpu = &kvm->vcpus[n];
512 mutex_lock(&vcpu->mutex);
514 if (vcpu->vmcs) {
515 mutex_unlock(&vcpu->mutex);
516 return -EEXIST;
519 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
520 FX_IMAGE_ALIGN);
521 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
523 vcpu->cpu = -1; /* First load will set up TR */
524 vcpu->kvm = kvm;
525 r = kvm_arch_ops->vcpu_create(vcpu);
526 if (r < 0)
527 goto out_free_vcpus;
529 r = kvm_mmu_create(vcpu);
530 if (r < 0)
531 goto out_free_vcpus;
533 kvm_arch_ops->vcpu_load(vcpu);
534 r = kvm_mmu_setup(vcpu);
535 if (r >= 0)
536 r = kvm_arch_ops->vcpu_setup(vcpu);
537 vcpu_put(vcpu);
539 if (r < 0)
540 goto out_free_vcpus;
542 return 0;
544 out_free_vcpus:
545 kvm_free_vcpu(vcpu);
546 mutex_unlock(&vcpu->mutex);
547 out:
548 return r;
552 * Allocate some memory and give it an address in the guest physical address
553 * space.
555 * Discontiguous memory is allowed, mostly for framebuffers.
557 static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
558 struct kvm_memory_region *mem)
560 int r;
561 gfn_t base_gfn;
562 unsigned long npages;
563 unsigned long i;
564 struct kvm_memory_slot *memslot;
565 struct kvm_memory_slot old, new;
566 int memory_config_version;
568 r = -EINVAL;
569 /* General sanity checks */
570 if (mem->memory_size & (PAGE_SIZE - 1))
571 goto out;
572 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
573 goto out;
574 if (mem->slot >= KVM_MEMORY_SLOTS)
575 goto out;
576 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
577 goto out;
579 memslot = &kvm->memslots[mem->slot];
580 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
581 npages = mem->memory_size >> PAGE_SHIFT;
583 if (!npages)
584 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
586 raced:
587 spin_lock(&kvm->lock);
589 memory_config_version = kvm->memory_config_version;
590 new = old = *memslot;
592 new.base_gfn = base_gfn;
593 new.npages = npages;
594 new.flags = mem->flags;
596 /* Disallow changing a memory slot's size. */
597 r = -EINVAL;
598 if (npages && old.npages && npages != old.npages)
599 goto out_unlock;
601 /* Check for overlaps */
602 r = -EEXIST;
603 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
604 struct kvm_memory_slot *s = &kvm->memslots[i];
606 if (s == memslot)
607 continue;
608 if (!((base_gfn + npages <= s->base_gfn) ||
609 (base_gfn >= s->base_gfn + s->npages)))
610 goto out_unlock;
613 * Do memory allocations outside lock. memory_config_version will
614 * detect any races.
616 spin_unlock(&kvm->lock);
618 /* Deallocate if slot is being removed */
619 if (!npages)
620 new.phys_mem = 0;
622 /* Free page dirty bitmap if unneeded */
623 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
624 new.dirty_bitmap = 0;
626 r = -ENOMEM;
628 /* Allocate if a slot is being created */
629 if (npages && !new.phys_mem) {
630 new.phys_mem = vmalloc(npages * sizeof(struct page *));
632 if (!new.phys_mem)
633 goto out_free;
635 memset(new.phys_mem, 0, npages * sizeof(struct page *));
636 for (i = 0; i < npages; ++i) {
637 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
638 | __GFP_ZERO);
639 if (!new.phys_mem[i])
640 goto out_free;
641 new.phys_mem[i]->private = 0;
645 /* Allocate page dirty bitmap if needed */
646 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
647 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
649 new.dirty_bitmap = vmalloc(dirty_bytes);
650 if (!new.dirty_bitmap)
651 goto out_free;
652 memset(new.dirty_bitmap, 0, dirty_bytes);
655 spin_lock(&kvm->lock);
657 if (memory_config_version != kvm->memory_config_version) {
658 spin_unlock(&kvm->lock);
659 kvm_free_physmem_slot(&new, &old);
660 goto raced;
663 r = -EAGAIN;
664 if (kvm->busy)
665 goto out_unlock;
667 if (mem->slot >= kvm->nmemslots)
668 kvm->nmemslots = mem->slot + 1;
670 *memslot = new;
671 ++kvm->memory_config_version;
673 spin_unlock(&kvm->lock);
675 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
676 struct kvm_vcpu *vcpu;
678 vcpu = vcpu_load(kvm, i);
679 if (!vcpu)
680 continue;
681 kvm_mmu_reset_context(vcpu);
682 vcpu_put(vcpu);
685 kvm_free_physmem_slot(&old, &new);
686 return 0;
688 out_unlock:
689 spin_unlock(&kvm->lock);
690 out_free:
691 kvm_free_physmem_slot(&new, &old);
692 out:
693 return r;
697 * Get (and clear) the dirty memory log for a memory slot.
699 static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
700 struct kvm_dirty_log *log)
702 struct kvm_memory_slot *memslot;
703 int r, i;
704 int n;
705 unsigned long any = 0;
707 spin_lock(&kvm->lock);
710 * Prevent changes to guest memory configuration even while the lock
711 * is not taken.
713 ++kvm->busy;
714 spin_unlock(&kvm->lock);
715 r = -EINVAL;
716 if (log->slot >= KVM_MEMORY_SLOTS)
717 goto out;
719 memslot = &kvm->memslots[log->slot];
720 r = -ENOENT;
721 if (!memslot->dirty_bitmap)
722 goto out;
724 n = ALIGN(memslot->npages, 8) / 8;
726 for (i = 0; !any && i < n; ++i)
727 any = memslot->dirty_bitmap[i];
729 r = -EFAULT;
730 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
731 goto out;
734 if (any) {
735 spin_lock(&kvm->lock);
736 kvm_mmu_slot_remove_write_access(kvm, log->slot);
737 spin_unlock(&kvm->lock);
738 memset(memslot->dirty_bitmap, 0, n);
739 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
740 struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
742 if (!vcpu)
743 continue;
744 kvm_arch_ops->tlb_flush(vcpu);
745 vcpu_put(vcpu);
749 r = 0;
751 out:
752 spin_lock(&kvm->lock);
753 --kvm->busy;
754 spin_unlock(&kvm->lock);
755 return r;
758 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
760 int i;
762 for (i = 0; i < kvm->nmemslots; ++i) {
763 struct kvm_memory_slot *memslot = &kvm->memslots[i];
765 if (gfn >= memslot->base_gfn
766 && gfn < memslot->base_gfn + memslot->npages)
767 return memslot;
769 return 0;
771 EXPORT_SYMBOL_GPL(gfn_to_memslot);
773 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
775 int i;
776 struct kvm_memory_slot *memslot = 0;
777 unsigned long rel_gfn;
779 for (i = 0; i < kvm->nmemslots; ++i) {
780 memslot = &kvm->memslots[i];
782 if (gfn >= memslot->base_gfn
783 && gfn < memslot->base_gfn + memslot->npages) {
785 if (!memslot || !memslot->dirty_bitmap)
786 return;
788 rel_gfn = gfn - memslot->base_gfn;
790 /* avoid RMW */
791 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
792 set_bit(rel_gfn, memslot->dirty_bitmap);
793 return;
798 static int emulator_read_std(unsigned long addr,
799 unsigned long *val,
800 unsigned int bytes,
801 struct x86_emulate_ctxt *ctxt)
803 struct kvm_vcpu *vcpu = ctxt->vcpu;
804 void *data = val;
806 while (bytes) {
807 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
808 unsigned offset = addr & (PAGE_SIZE-1);
809 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
810 unsigned long pfn;
811 struct kvm_memory_slot *memslot;
812 void *page;
814 if (gpa == UNMAPPED_GVA)
815 return X86EMUL_PROPAGATE_FAULT;
816 pfn = gpa >> PAGE_SHIFT;
817 memslot = gfn_to_memslot(vcpu->kvm, pfn);
818 if (!memslot)
819 return X86EMUL_UNHANDLEABLE;
820 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
822 memcpy(data, page + offset, tocopy);
824 kunmap_atomic(page, KM_USER0);
826 bytes -= tocopy;
827 data += tocopy;
828 addr += tocopy;
831 return X86EMUL_CONTINUE;
834 static int emulator_write_std(unsigned long addr,
835 unsigned long val,
836 unsigned int bytes,
837 struct x86_emulate_ctxt *ctxt)
839 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
840 addr, bytes);
841 return X86EMUL_UNHANDLEABLE;
844 static int emulator_read_emulated(unsigned long addr,
845 unsigned long *val,
846 unsigned int bytes,
847 struct x86_emulate_ctxt *ctxt)
849 struct kvm_vcpu *vcpu = ctxt->vcpu;
851 if (vcpu->mmio_read_completed) {
852 memcpy(val, vcpu->mmio_data, bytes);
853 vcpu->mmio_read_completed = 0;
854 return X86EMUL_CONTINUE;
855 } else if (emulator_read_std(addr, val, bytes, ctxt)
856 == X86EMUL_CONTINUE)
857 return X86EMUL_CONTINUE;
858 else {
859 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
860 if (gpa == UNMAPPED_GVA)
861 return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
862 vcpu->mmio_needed = 1;
863 vcpu->mmio_phys_addr = gpa;
864 vcpu->mmio_size = bytes;
865 vcpu->mmio_is_write = 0;
867 return X86EMUL_UNHANDLEABLE;
871 static int emulator_write_emulated(unsigned long addr,
872 unsigned long val,
873 unsigned int bytes,
874 struct x86_emulate_ctxt *ctxt)
876 struct kvm_vcpu *vcpu = ctxt->vcpu;
877 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
879 if (gpa == UNMAPPED_GVA)
880 return X86EMUL_PROPAGATE_FAULT;
882 vcpu->mmio_needed = 1;
883 vcpu->mmio_phys_addr = gpa;
884 vcpu->mmio_size = bytes;
885 vcpu->mmio_is_write = 1;
886 memcpy(vcpu->mmio_data, &val, bytes);
888 return X86EMUL_CONTINUE;
891 static int emulator_cmpxchg_emulated(unsigned long addr,
892 unsigned long old,
893 unsigned long new,
894 unsigned int bytes,
895 struct x86_emulate_ctxt *ctxt)
897 static int reported;
899 if (!reported) {
900 reported = 1;
901 printk(KERN_WARNING "kvm: emulating exchange as write\n");
903 return emulator_write_emulated(addr, new, bytes, ctxt);
906 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
908 return kvm_arch_ops->get_segment_base(vcpu, seg);
911 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
913 spin_lock(&vcpu->kvm->lock);
914 vcpu->mmu.inval_page(vcpu, address);
915 spin_unlock(&vcpu->kvm->lock);
916 kvm_arch_ops->invlpg(vcpu, address);
917 return X86EMUL_CONTINUE;
920 int emulate_clts(struct kvm_vcpu *vcpu)
922 unsigned long cr0;
924 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
925 cr0 = vcpu->cr0 & ~CR0_TS_MASK;
926 kvm_arch_ops->set_cr0(vcpu, cr0);
927 return X86EMUL_CONTINUE;
930 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
932 struct kvm_vcpu *vcpu = ctxt->vcpu;
934 switch (dr) {
935 case 0 ... 3:
936 *dest = kvm_arch_ops->get_dr(vcpu, dr);
937 return X86EMUL_CONTINUE;
938 default:
939 printk(KERN_DEBUG "%s: unexpected dr %u\n",
940 __FUNCTION__, dr);
941 return X86EMUL_UNHANDLEABLE;
945 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
947 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
948 int exception;
950 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
951 if (exception) {
952 /* FIXME: better handling */
953 return X86EMUL_UNHANDLEABLE;
955 return X86EMUL_CONTINUE;
958 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
960 static int reported;
961 u8 opcodes[4];
962 unsigned long rip = ctxt->vcpu->rip;
963 unsigned long rip_linear;
965 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
967 if (reported)
968 return;
970 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
972 printk(KERN_ERR "emulation failed but !mmio_needed?"
973 " rip %lx %02x %02x %02x %02x\n",
974 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
975 reported = 1;
978 struct x86_emulate_ops emulate_ops = {
979 .read_std = emulator_read_std,
980 .write_std = emulator_write_std,
981 .read_emulated = emulator_read_emulated,
982 .write_emulated = emulator_write_emulated,
983 .cmpxchg_emulated = emulator_cmpxchg_emulated,
986 int emulate_instruction(struct kvm_vcpu *vcpu,
987 struct kvm_run *run,
988 unsigned long cr2,
989 u16 error_code)
991 struct x86_emulate_ctxt emulate_ctxt;
992 int r;
993 int cs_db, cs_l;
995 kvm_arch_ops->cache_regs(vcpu);
997 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
999 emulate_ctxt.vcpu = vcpu;
1000 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1001 emulate_ctxt.cr2 = cr2;
1002 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1003 ? X86EMUL_MODE_REAL : cs_l
1004 ? X86EMUL_MODE_PROT64 : cs_db
1005 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1007 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1008 emulate_ctxt.cs_base = 0;
1009 emulate_ctxt.ds_base = 0;
1010 emulate_ctxt.es_base = 0;
1011 emulate_ctxt.ss_base = 0;
1012 } else {
1013 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1014 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1015 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1016 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1019 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1020 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1022 vcpu->mmio_is_write = 0;
1023 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1025 if ((r || vcpu->mmio_is_write) && run) {
1026 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1027 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1028 run->mmio.len = vcpu->mmio_size;
1029 run->mmio.is_write = vcpu->mmio_is_write;
1032 if (r) {
1033 if (!vcpu->mmio_needed) {
1034 report_emulation_failure(&emulate_ctxt);
1035 return EMULATE_FAIL;
1037 return EMULATE_DO_MMIO;
1040 kvm_arch_ops->decache_regs(vcpu);
1041 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1043 if (vcpu->mmio_is_write)
1044 return EMULATE_DO_MMIO;
1046 return EMULATE_DONE;
1048 EXPORT_SYMBOL_GPL(emulate_instruction);
1050 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1052 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1055 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1057 struct descriptor_table dt = { limit, base };
1059 kvm_arch_ops->set_gdt(vcpu, &dt);
1062 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1064 struct descriptor_table dt = { limit, base };
1066 kvm_arch_ops->set_idt(vcpu, &dt);
1069 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1070 unsigned long *rflags)
1072 lmsw(vcpu, msw);
1073 *rflags = kvm_arch_ops->get_rflags(vcpu);
1076 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1078 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1079 switch (cr) {
1080 case 0:
1081 return vcpu->cr0;
1082 case 2:
1083 return vcpu->cr2;
1084 case 3:
1085 return vcpu->cr3;
1086 case 4:
1087 return vcpu->cr4;
1088 default:
1089 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1090 return 0;
1094 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1095 unsigned long *rflags)
1097 switch (cr) {
1098 case 0:
1099 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1100 *rflags = kvm_arch_ops->get_rflags(vcpu);
1101 break;
1102 case 2:
1103 vcpu->cr2 = val;
1104 break;
1105 case 3:
1106 set_cr3(vcpu, val);
1107 break;
1108 case 4:
1109 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1110 break;
1111 default:
1112 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1116 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1118 u64 data;
1120 switch (msr) {
1121 case 0xc0010010: /* SYSCFG */
1122 case 0xc0010015: /* HWCR */
1123 case MSR_IA32_PLATFORM_ID:
1124 case MSR_IA32_P5_MC_ADDR:
1125 case MSR_IA32_P5_MC_TYPE:
1126 case MSR_IA32_MC0_CTL:
1127 case MSR_IA32_MCG_STATUS:
1128 case MSR_IA32_MCG_CAP:
1129 case MSR_IA32_MC0_MISC:
1130 case MSR_IA32_MC0_MISC+4:
1131 case MSR_IA32_MC0_MISC+8:
1132 case MSR_IA32_MC0_MISC+12:
1133 case MSR_IA32_MC0_MISC+16:
1134 case MSR_IA32_UCODE_REV:
1135 case MSR_IA32_PERF_STATUS:
1136 /* MTRR registers */
1137 case 0xfe:
1138 case 0x200 ... 0x2ff:
1139 data = 0;
1140 break;
1141 case 0xcd: /* fsb frequency */
1142 data = 3;
1143 break;
1144 case MSR_IA32_APICBASE:
1145 data = vcpu->apic_base;
1146 break;
1147 #ifdef CONFIG_X86_64
1148 case MSR_EFER:
1149 data = vcpu->shadow_efer;
1150 break;
1151 #endif
1152 default:
1153 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1154 return 1;
1156 *pdata = data;
1157 return 0;
1159 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1162 * Reads an msr value (of 'msr_index') into 'pdata'.
1163 * Returns 0 on success, non-0 otherwise.
1164 * Assumes vcpu_load() was already called.
1166 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1168 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1171 #ifdef CONFIG_X86_64
1173 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1175 if (efer & EFER_RESERVED_BITS) {
1176 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1177 efer);
1178 inject_gp(vcpu);
1179 return;
1182 if (is_paging(vcpu)
1183 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1184 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1185 inject_gp(vcpu);
1186 return;
1189 kvm_arch_ops->set_efer(vcpu, efer);
1191 efer &= ~EFER_LMA;
1192 efer |= vcpu->shadow_efer & EFER_LMA;
1194 vcpu->shadow_efer = efer;
1197 #endif
1199 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1201 switch (msr) {
1202 #ifdef CONFIG_X86_64
1203 case MSR_EFER:
1204 set_efer(vcpu, data);
1205 break;
1206 #endif
1207 case MSR_IA32_MC0_STATUS:
1208 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1209 __FUNCTION__, data);
1210 break;
1211 case MSR_IA32_UCODE_REV:
1212 case MSR_IA32_UCODE_WRITE:
1213 case 0x200 ... 0x2ff: /* MTRRs */
1214 break;
1215 case MSR_IA32_APICBASE:
1216 vcpu->apic_base = data;
1217 break;
1218 default:
1219 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1220 return 1;
1222 return 0;
1224 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1227 * Writes msr value into into the appropriate "register".
1228 * Returns 0 on success, non-0 otherwise.
1229 * Assumes vcpu_load() was already called.
1231 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1233 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1236 void kvm_resched(struct kvm_vcpu *vcpu)
1238 vcpu_put(vcpu);
1239 cond_resched();
1240 /* Cannot fail - no vcpu unplug yet. */
1241 vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
1243 EXPORT_SYMBOL_GPL(kvm_resched);
1245 void load_msrs(struct vmx_msr_entry *e, int n)
1247 int i;
1249 for (i = 0; i < n; ++i)
1250 wrmsrl(e[i].index, e[i].data);
1252 EXPORT_SYMBOL_GPL(load_msrs);
1254 void save_msrs(struct vmx_msr_entry *e, int n)
1256 int i;
1258 for (i = 0; i < n; ++i)
1259 rdmsrl(e[i].index, e[i].data);
1261 EXPORT_SYMBOL_GPL(save_msrs);
1263 static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
1265 struct kvm_vcpu *vcpu;
1266 int r;
1268 if (!valid_vcpu(kvm_run->vcpu))
1269 return -EINVAL;
1271 vcpu = vcpu_load(kvm, kvm_run->vcpu);
1272 if (!vcpu)
1273 return -ENOENT;
1275 if (kvm_run->emulated) {
1276 kvm_arch_ops->skip_emulated_instruction(vcpu);
1277 kvm_run->emulated = 0;
1280 if (kvm_run->mmio_completed) {
1281 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1282 vcpu->mmio_read_completed = 1;
1285 vcpu->mmio_needed = 0;
1287 r = kvm_arch_ops->run(vcpu, kvm_run);
1289 vcpu_put(vcpu);
1290 return r;
1293 static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
1295 struct kvm_vcpu *vcpu;
1297 if (!valid_vcpu(regs->vcpu))
1298 return -EINVAL;
1300 vcpu = vcpu_load(kvm, regs->vcpu);
1301 if (!vcpu)
1302 return -ENOENT;
1304 kvm_arch_ops->cache_regs(vcpu);
1306 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1307 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1308 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1309 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1310 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1311 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1312 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1313 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1314 #ifdef CONFIG_X86_64
1315 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1316 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1317 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1318 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1319 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1320 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1321 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1322 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1323 #endif
1325 regs->rip = vcpu->rip;
1326 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1329 * Don't leak debug flags in case they were set for guest debugging
1331 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1332 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1334 vcpu_put(vcpu);
1336 return 0;
1339 static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
1341 struct kvm_vcpu *vcpu;
1343 if (!valid_vcpu(regs->vcpu))
1344 return -EINVAL;
1346 vcpu = vcpu_load(kvm, regs->vcpu);
1347 if (!vcpu)
1348 return -ENOENT;
1350 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1351 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1352 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1353 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1354 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1355 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1356 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1357 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1358 #ifdef CONFIG_X86_64
1359 vcpu->regs[VCPU_REGS_R8] = regs->r8;
1360 vcpu->regs[VCPU_REGS_R9] = regs->r9;
1361 vcpu->regs[VCPU_REGS_R10] = regs->r10;
1362 vcpu->regs[VCPU_REGS_R11] = regs->r11;
1363 vcpu->regs[VCPU_REGS_R12] = regs->r12;
1364 vcpu->regs[VCPU_REGS_R13] = regs->r13;
1365 vcpu->regs[VCPU_REGS_R14] = regs->r14;
1366 vcpu->regs[VCPU_REGS_R15] = regs->r15;
1367 #endif
1369 vcpu->rip = regs->rip;
1370 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1372 kvm_arch_ops->decache_regs(vcpu);
1374 vcpu_put(vcpu);
1376 return 0;
1379 static void get_segment(struct kvm_vcpu *vcpu,
1380 struct kvm_segment *var, int seg)
1382 return kvm_arch_ops->get_segment(vcpu, var, seg);
1385 static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1387 struct kvm_vcpu *vcpu;
1388 struct descriptor_table dt;
1390 if (!valid_vcpu(sregs->vcpu))
1391 return -EINVAL;
1392 vcpu = vcpu_load(kvm, sregs->vcpu);
1393 if (!vcpu)
1394 return -ENOENT;
1396 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1397 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1398 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1399 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1400 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1401 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1403 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1404 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1406 kvm_arch_ops->get_idt(vcpu, &dt);
1407 sregs->idt.limit = dt.limit;
1408 sregs->idt.base = dt.base;
1409 kvm_arch_ops->get_gdt(vcpu, &dt);
1410 sregs->gdt.limit = dt.limit;
1411 sregs->gdt.base = dt.base;
1413 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1414 sregs->cr0 = vcpu->cr0;
1415 sregs->cr2 = vcpu->cr2;
1416 sregs->cr3 = vcpu->cr3;
1417 sregs->cr4 = vcpu->cr4;
1418 sregs->cr8 = vcpu->cr8;
1419 sregs->efer = vcpu->shadow_efer;
1420 sregs->apic_base = vcpu->apic_base;
1422 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1423 sizeof sregs->interrupt_bitmap);
1425 vcpu_put(vcpu);
1427 return 0;
1430 static void set_segment(struct kvm_vcpu *vcpu,
1431 struct kvm_segment *var, int seg)
1433 return kvm_arch_ops->set_segment(vcpu, var, seg);
1436 static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1438 struct kvm_vcpu *vcpu;
1439 int mmu_reset_needed = 0;
1440 int i;
1441 struct descriptor_table dt;
1443 if (!valid_vcpu(sregs->vcpu))
1444 return -EINVAL;
1445 vcpu = vcpu_load(kvm, sregs->vcpu);
1446 if (!vcpu)
1447 return -ENOENT;
1449 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1450 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1451 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1452 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1453 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1454 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1456 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1457 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1459 dt.limit = sregs->idt.limit;
1460 dt.base = sregs->idt.base;
1461 kvm_arch_ops->set_idt(vcpu, &dt);
1462 dt.limit = sregs->gdt.limit;
1463 dt.base = sregs->gdt.base;
1464 kvm_arch_ops->set_gdt(vcpu, &dt);
1466 vcpu->cr2 = sregs->cr2;
1467 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1468 vcpu->cr3 = sregs->cr3;
1470 vcpu->cr8 = sregs->cr8;
1472 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1473 #ifdef CONFIG_X86_64
1474 kvm_arch_ops->set_efer(vcpu, sregs->efer);
1475 #endif
1476 vcpu->apic_base = sregs->apic_base;
1478 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1480 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1481 kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1483 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1484 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1486 if (mmu_reset_needed)
1487 kvm_mmu_reset_context(vcpu);
1489 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1490 sizeof vcpu->irq_pending);
1491 vcpu->irq_summary = 0;
1492 for (i = 0; i < NR_IRQ_WORDS; ++i)
1493 if (vcpu->irq_pending[i])
1494 __set_bit(i, &vcpu->irq_summary);
1496 vcpu_put(vcpu);
1498 return 0;
1502 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1503 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1505 * This list is modified at module load time to reflect the
1506 * capabilities of the host cpu.
1508 static u32 msrs_to_save[] = {
1509 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1510 MSR_K6_STAR,
1511 #ifdef CONFIG_X86_64
1512 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1513 #endif
1514 MSR_IA32_TIME_STAMP_COUNTER,
1517 static unsigned num_msrs_to_save;
1519 static __init void kvm_init_msr_list(void)
1521 u32 dummy[2];
1522 unsigned i, j;
1524 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1525 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1526 continue;
1527 if (j < i)
1528 msrs_to_save[j] = msrs_to_save[i];
1529 j++;
1531 num_msrs_to_save = j;
1535 * Adapt set_msr() to msr_io()'s calling convention
1537 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1539 return set_msr(vcpu, index, *data);
1543 * Read or write a bunch of msrs. All parameters are kernel addresses.
1545 * @return number of msrs set successfully.
1547 static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
1548 struct kvm_msr_entry *entries,
1549 int (*do_msr)(struct kvm_vcpu *vcpu,
1550 unsigned index, u64 *data))
1552 struct kvm_vcpu *vcpu;
1553 int i;
1555 if (!valid_vcpu(msrs->vcpu))
1556 return -EINVAL;
1558 vcpu = vcpu_load(kvm, msrs->vcpu);
1559 if (!vcpu)
1560 return -ENOENT;
1562 for (i = 0; i < msrs->nmsrs; ++i)
1563 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1564 break;
1566 vcpu_put(vcpu);
1568 return i;
1572 * Read or write a bunch of msrs. Parameters are user addresses.
1574 * @return number of msrs set successfully.
1576 static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
1577 int (*do_msr)(struct kvm_vcpu *vcpu,
1578 unsigned index, u64 *data),
1579 int writeback)
1581 struct kvm_msrs msrs;
1582 struct kvm_msr_entry *entries;
1583 int r, n;
1584 unsigned size;
1586 r = -EFAULT;
1587 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1588 goto out;
1590 r = -E2BIG;
1591 if (msrs.nmsrs >= MAX_IO_MSRS)
1592 goto out;
1594 r = -ENOMEM;
1595 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1596 entries = vmalloc(size);
1597 if (!entries)
1598 goto out;
1600 r = -EFAULT;
1601 if (copy_from_user(entries, user_msrs->entries, size))
1602 goto out_free;
1604 r = n = __msr_io(kvm, &msrs, entries, do_msr);
1605 if (r < 0)
1606 goto out_free;
1608 r = -EFAULT;
1609 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1610 goto out_free;
1612 r = n;
1614 out_free:
1615 vfree(entries);
1616 out:
1617 return r;
1621 * Translate a guest virtual address to a guest physical address.
1623 static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
1625 unsigned long vaddr = tr->linear_address;
1626 struct kvm_vcpu *vcpu;
1627 gpa_t gpa;
1629 vcpu = vcpu_load(kvm, tr->vcpu);
1630 if (!vcpu)
1631 return -ENOENT;
1632 spin_lock(&kvm->lock);
1633 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1634 tr->physical_address = gpa;
1635 tr->valid = gpa != UNMAPPED_GVA;
1636 tr->writeable = 1;
1637 tr->usermode = 0;
1638 spin_unlock(&kvm->lock);
1639 vcpu_put(vcpu);
1641 return 0;
1644 static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
1646 struct kvm_vcpu *vcpu;
1648 if (!valid_vcpu(irq->vcpu))
1649 return -EINVAL;
1650 if (irq->irq < 0 || irq->irq >= 256)
1651 return -EINVAL;
1652 vcpu = vcpu_load(kvm, irq->vcpu);
1653 if (!vcpu)
1654 return -ENOENT;
1656 set_bit(irq->irq, vcpu->irq_pending);
1657 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1659 vcpu_put(vcpu);
1661 return 0;
1664 static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
1665 struct kvm_debug_guest *dbg)
1667 struct kvm_vcpu *vcpu;
1668 int r;
1670 if (!valid_vcpu(dbg->vcpu))
1671 return -EINVAL;
1672 vcpu = vcpu_load(kvm, dbg->vcpu);
1673 if (!vcpu)
1674 return -ENOENT;
1676 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1678 vcpu_put(vcpu);
1680 return r;
1683 static long kvm_dev_ioctl(struct file *filp,
1684 unsigned int ioctl, unsigned long arg)
1686 struct kvm *kvm = filp->private_data;
1687 int r = -EINVAL;
1689 switch (ioctl) {
1690 case KVM_GET_API_VERSION:
1691 r = KVM_API_VERSION;
1692 break;
1693 case KVM_CREATE_VCPU: {
1694 r = kvm_dev_ioctl_create_vcpu(kvm, arg);
1695 if (r)
1696 goto out;
1697 break;
1699 case KVM_RUN: {
1700 struct kvm_run kvm_run;
1702 r = -EFAULT;
1703 if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
1704 goto out;
1705 r = kvm_dev_ioctl_run(kvm, &kvm_run);
1706 if (r < 0 && r != -EINTR)
1707 goto out;
1708 if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run)) {
1709 r = -EFAULT;
1710 goto out;
1712 break;
1714 case KVM_GET_REGS: {
1715 struct kvm_regs kvm_regs;
1717 r = -EFAULT;
1718 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1719 goto out;
1720 r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
1721 if (r)
1722 goto out;
1723 r = -EFAULT;
1724 if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
1725 goto out;
1726 r = 0;
1727 break;
1729 case KVM_SET_REGS: {
1730 struct kvm_regs kvm_regs;
1732 r = -EFAULT;
1733 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1734 goto out;
1735 r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
1736 if (r)
1737 goto out;
1738 r = 0;
1739 break;
1741 case KVM_GET_SREGS: {
1742 struct kvm_sregs kvm_sregs;
1744 r = -EFAULT;
1745 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1746 goto out;
1747 r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
1748 if (r)
1749 goto out;
1750 r = -EFAULT;
1751 if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
1752 goto out;
1753 r = 0;
1754 break;
1756 case KVM_SET_SREGS: {
1757 struct kvm_sregs kvm_sregs;
1759 r = -EFAULT;
1760 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1761 goto out;
1762 r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
1763 if (r)
1764 goto out;
1765 r = 0;
1766 break;
1768 case KVM_TRANSLATE: {
1769 struct kvm_translation tr;
1771 r = -EFAULT;
1772 if (copy_from_user(&tr, (void *)arg, sizeof tr))
1773 goto out;
1774 r = kvm_dev_ioctl_translate(kvm, &tr);
1775 if (r)
1776 goto out;
1777 r = -EFAULT;
1778 if (copy_to_user((void *)arg, &tr, sizeof tr))
1779 goto out;
1780 r = 0;
1781 break;
1783 case KVM_INTERRUPT: {
1784 struct kvm_interrupt irq;
1786 r = -EFAULT;
1787 if (copy_from_user(&irq, (void *)arg, sizeof irq))
1788 goto out;
1789 r = kvm_dev_ioctl_interrupt(kvm, &irq);
1790 if (r)
1791 goto out;
1792 r = 0;
1793 break;
1795 case KVM_DEBUG_GUEST: {
1796 struct kvm_debug_guest dbg;
1798 r = -EFAULT;
1799 if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
1800 goto out;
1801 r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
1802 if (r)
1803 goto out;
1804 r = 0;
1805 break;
1807 case KVM_SET_MEMORY_REGION: {
1808 struct kvm_memory_region kvm_mem;
1810 r = -EFAULT;
1811 if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
1812 goto out;
1813 r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
1814 if (r)
1815 goto out;
1816 break;
1818 case KVM_GET_DIRTY_LOG: {
1819 struct kvm_dirty_log log;
1821 r = -EFAULT;
1822 if (copy_from_user(&log, (void *)arg, sizeof log))
1823 goto out;
1824 r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
1825 if (r)
1826 goto out;
1827 break;
1829 case KVM_GET_MSRS:
1830 r = msr_io(kvm, (void __user *)arg, get_msr, 1);
1831 break;
1832 case KVM_SET_MSRS:
1833 r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
1834 break;
1835 case KVM_GET_MSR_INDEX_LIST: {
1836 struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
1837 struct kvm_msr_list msr_list;
1838 unsigned n;
1840 r = -EFAULT;
1841 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1842 goto out;
1843 n = msr_list.nmsrs;
1844 msr_list.nmsrs = num_msrs_to_save;
1845 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1846 goto out;
1847 r = -E2BIG;
1848 if (n < num_msrs_to_save)
1849 goto out;
1850 r = -EFAULT;
1851 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1852 num_msrs_to_save * sizeof(u32)))
1853 goto out;
1854 r = 0;
1856 default:
1859 out:
1860 return r;
1863 static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
1864 unsigned long address,
1865 int *type)
1867 struct kvm *kvm = vma->vm_file->private_data;
1868 unsigned long pgoff;
1869 struct kvm_memory_slot *slot;
1870 struct page *page;
1872 *type = VM_FAULT_MINOR;
1873 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1874 slot = gfn_to_memslot(kvm, pgoff);
1875 if (!slot)
1876 return NOPAGE_SIGBUS;
1877 page = gfn_to_page(slot, pgoff);
1878 if (!page)
1879 return NOPAGE_SIGBUS;
1880 get_page(page);
1881 return page;
1884 static struct vm_operations_struct kvm_dev_vm_ops = {
1885 .nopage = kvm_dev_nopage,
1888 static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
1890 vma->vm_ops = &kvm_dev_vm_ops;
1891 return 0;
1894 static struct file_operations kvm_chardev_ops = {
1895 .open = kvm_dev_open,
1896 .release = kvm_dev_release,
1897 .unlocked_ioctl = kvm_dev_ioctl,
1898 .compat_ioctl = kvm_dev_ioctl,
1899 .mmap = kvm_dev_mmap,
1902 static struct miscdevice kvm_dev = {
1903 MISC_DYNAMIC_MINOR,
1904 "kvm",
1905 &kvm_chardev_ops,
1908 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1909 void *v)
1911 if (val == SYS_RESTART) {
1913 * Some (well, at least mine) BIOSes hang on reboot if
1914 * in vmx root mode.
1916 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1917 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1919 return NOTIFY_OK;
1922 static struct notifier_block kvm_reboot_notifier = {
1923 .notifier_call = kvm_reboot,
1924 .priority = 0,
1927 static __init void kvm_init_debug(void)
1929 struct kvm_stats_debugfs_item *p;
1931 debugfs_dir = debugfs_create_dir("kvm", 0);
1932 for (p = debugfs_entries; p->name; ++p)
1933 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
1934 p->data);
1937 static void kvm_exit_debug(void)
1939 struct kvm_stats_debugfs_item *p;
1941 for (p = debugfs_entries; p->name; ++p)
1942 debugfs_remove(p->dentry);
1943 debugfs_remove(debugfs_dir);
1946 hpa_t bad_page_address;
1948 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
1950 int r;
1952 if (kvm_arch_ops) {
1953 printk(KERN_ERR "kvm: already loaded the other module\n");
1954 return -EEXIST;
1957 if (!ops->cpu_has_kvm_support()) {
1958 printk(KERN_ERR "kvm: no hardware support\n");
1959 return -EOPNOTSUPP;
1961 if (ops->disabled_by_bios()) {
1962 printk(KERN_ERR "kvm: disabled by bios\n");
1963 return -EOPNOTSUPP;
1966 kvm_arch_ops = ops;
1968 r = kvm_arch_ops->hardware_setup();
1969 if (r < 0)
1970 return r;
1972 on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
1973 register_reboot_notifier(&kvm_reboot_notifier);
1975 kvm_chardev_ops.owner = module;
1977 r = misc_register(&kvm_dev);
1978 if (r) {
1979 printk (KERN_ERR "kvm: misc device register failed\n");
1980 goto out_free;
1983 return r;
1985 out_free:
1986 unregister_reboot_notifier(&kvm_reboot_notifier);
1987 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1988 kvm_arch_ops->hardware_unsetup();
1989 return r;
1992 void kvm_exit_arch(void)
1994 misc_deregister(&kvm_dev);
1996 unregister_reboot_notifier(&kvm_reboot_notifier);
1997 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1998 kvm_arch_ops->hardware_unsetup();
1999 kvm_arch_ops = NULL;
2002 static __init int kvm_init(void)
2004 static struct page *bad_page;
2005 int r = 0;
2007 kvm_init_debug();
2009 kvm_init_msr_list();
2011 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2012 r = -ENOMEM;
2013 goto out;
2016 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2017 memset(__va(bad_page_address), 0, PAGE_SIZE);
2019 return r;
2021 out:
2022 kvm_exit_debug();
2023 return r;
2026 static __exit void kvm_exit(void)
2028 kvm_exit_debug();
2029 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2032 module_init(kvm_init)
2033 module_exit(kvm_exit)
2035 EXPORT_SYMBOL_GPL(kvm_init_arch);
2036 EXPORT_SYMBOL_GPL(kvm_exit_arch);