mm: memblock: fix wrong memmove size in memblock_merge_regions()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
blobbc6cc0e913bd7d18214218b5fe3d7226e42e24d6
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
83 * Array of node states.
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 #ifdef CONFIG_MOVABLE_NODE
94 [N_MEMORY] = { { [0] = 1UL } },
95 #endif
96 [N_CPU] = { { [0] = 1UL } },
97 #endif /* NUMA */
99 EXPORT_SYMBOL(node_states);
101 unsigned long totalram_pages __read_mostly;
102 unsigned long totalreserve_pages __read_mostly;
104 * When calculating the number of globally allowed dirty pages, there
105 * is a certain number of per-zone reserves that should not be
106 * considered dirtyable memory. This is the sum of those reserves
107 * over all existing zones that contribute dirtyable memory.
109 unsigned long dirty_balance_reserve __read_mostly;
111 int percpu_pagelist_fraction;
112 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
114 #ifdef CONFIG_PM_SLEEP
116 * The following functions are used by the suspend/hibernate code to temporarily
117 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
118 * while devices are suspended. To avoid races with the suspend/hibernate code,
119 * they should always be called with pm_mutex held (gfp_allowed_mask also should
120 * only be modified with pm_mutex held, unless the suspend/hibernate code is
121 * guaranteed not to run in parallel with that modification).
124 static gfp_t saved_gfp_mask;
126 void pm_restore_gfp_mask(void)
128 WARN_ON(!mutex_is_locked(&pm_mutex));
129 if (saved_gfp_mask) {
130 gfp_allowed_mask = saved_gfp_mask;
131 saved_gfp_mask = 0;
135 void pm_restrict_gfp_mask(void)
137 WARN_ON(!mutex_is_locked(&pm_mutex));
138 WARN_ON(saved_gfp_mask);
139 saved_gfp_mask = gfp_allowed_mask;
140 gfp_allowed_mask &= ~GFP_IOFS;
143 bool pm_suspended_storage(void)
145 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
146 return false;
147 return true;
149 #endif /* CONFIG_PM_SLEEP */
151 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
152 int pageblock_order __read_mostly;
153 #endif
155 static void __free_pages_ok(struct page *page, unsigned int order);
158 * results with 256, 32 in the lowmem_reserve sysctl:
159 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
160 * 1G machine -> (16M dma, 784M normal, 224M high)
161 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
162 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
163 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
165 * TBD: should special case ZONE_DMA32 machines here - in those we normally
166 * don't need any ZONE_NORMAL reservation
168 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
169 #ifdef CONFIG_ZONE_DMA
170 256,
171 #endif
172 #ifdef CONFIG_ZONE_DMA32
173 256,
174 #endif
175 #ifdef CONFIG_HIGHMEM
177 #endif
181 EXPORT_SYMBOL(totalram_pages);
183 static char * const zone_names[MAX_NR_ZONES] = {
184 #ifdef CONFIG_ZONE_DMA
185 "DMA",
186 #endif
187 #ifdef CONFIG_ZONE_DMA32
188 "DMA32",
189 #endif
190 "Normal",
191 #ifdef CONFIG_HIGHMEM
192 "HighMem",
193 #endif
194 "Movable",
197 int min_free_kbytes = 1024;
199 static unsigned long __meminitdata nr_kernel_pages;
200 static unsigned long __meminitdata nr_all_pages;
201 static unsigned long __meminitdata dma_reserve;
203 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
204 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
205 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
206 static unsigned long __initdata required_kernelcore;
207 static unsigned long __initdata required_movablecore;
208 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
210 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
211 int movable_zone;
212 EXPORT_SYMBOL(movable_zone);
213 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
215 #if MAX_NUMNODES > 1
216 int nr_node_ids __read_mostly = MAX_NUMNODES;
217 int nr_online_nodes __read_mostly = 1;
218 EXPORT_SYMBOL(nr_node_ids);
219 EXPORT_SYMBOL(nr_online_nodes);
220 #endif
222 int page_group_by_mobility_disabled __read_mostly;
224 void set_pageblock_migratetype(struct page *page, int migratetype)
227 if (unlikely(page_group_by_mobility_disabled))
228 migratetype = MIGRATE_UNMOVABLE;
230 set_pageblock_flags_group(page, (unsigned long)migratetype,
231 PB_migrate, PB_migrate_end);
234 bool oom_killer_disabled __read_mostly;
236 #ifdef CONFIG_DEBUG_VM
237 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
239 int ret = 0;
240 unsigned seq;
241 unsigned long pfn = page_to_pfn(page);
243 do {
244 seq = zone_span_seqbegin(zone);
245 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
246 ret = 1;
247 else if (pfn < zone->zone_start_pfn)
248 ret = 1;
249 } while (zone_span_seqretry(zone, seq));
251 return ret;
254 static int page_is_consistent(struct zone *zone, struct page *page)
256 if (!pfn_valid_within(page_to_pfn(page)))
257 return 0;
258 if (zone != page_zone(page))
259 return 0;
261 return 1;
264 * Temporary debugging check for pages not lying within a given zone.
266 static int bad_range(struct zone *zone, struct page *page)
268 if (page_outside_zone_boundaries(zone, page))
269 return 1;
270 if (!page_is_consistent(zone, page))
271 return 1;
273 return 0;
275 #else
276 static inline int bad_range(struct zone *zone, struct page *page)
278 return 0;
280 #endif
282 static void bad_page(struct page *page)
284 static unsigned long resume;
285 static unsigned long nr_shown;
286 static unsigned long nr_unshown;
288 /* Don't complain about poisoned pages */
289 if (PageHWPoison(page)) {
290 reset_page_mapcount(page); /* remove PageBuddy */
291 return;
295 * Allow a burst of 60 reports, then keep quiet for that minute;
296 * or allow a steady drip of one report per second.
298 if (nr_shown == 60) {
299 if (time_before(jiffies, resume)) {
300 nr_unshown++;
301 goto out;
303 if (nr_unshown) {
304 printk(KERN_ALERT
305 "BUG: Bad page state: %lu messages suppressed\n",
306 nr_unshown);
307 nr_unshown = 0;
309 nr_shown = 0;
311 if (nr_shown++ == 0)
312 resume = jiffies + 60 * HZ;
314 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
315 current->comm, page_to_pfn(page));
316 dump_page(page);
318 print_modules();
319 dump_stack();
320 out:
321 /* Leave bad fields for debug, except PageBuddy could make trouble */
322 reset_page_mapcount(page); /* remove PageBuddy */
323 add_taint(TAINT_BAD_PAGE);
327 * Higher-order pages are called "compound pages". They are structured thusly:
329 * The first PAGE_SIZE page is called the "head page".
331 * The remaining PAGE_SIZE pages are called "tail pages".
333 * All pages have PG_compound set. All tail pages have their ->first_page
334 * pointing at the head page.
336 * The first tail page's ->lru.next holds the address of the compound page's
337 * put_page() function. Its ->lru.prev holds the order of allocation.
338 * This usage means that zero-order pages may not be compound.
341 static void free_compound_page(struct page *page)
343 __free_pages_ok(page, compound_order(page));
346 void prep_compound_page(struct page *page, unsigned long order)
348 int i;
349 int nr_pages = 1 << order;
351 set_compound_page_dtor(page, free_compound_page);
352 set_compound_order(page, order);
353 __SetPageHead(page);
354 for (i = 1; i < nr_pages; i++) {
355 struct page *p = page + i;
356 __SetPageTail(p);
357 set_page_count(p, 0);
358 p->first_page = page;
362 /* update __split_huge_page_refcount if you change this function */
363 static int destroy_compound_page(struct page *page, unsigned long order)
365 int i;
366 int nr_pages = 1 << order;
367 int bad = 0;
369 if (unlikely(compound_order(page) != order)) {
370 bad_page(page);
371 bad++;
374 __ClearPageHead(page);
376 for (i = 1; i < nr_pages; i++) {
377 struct page *p = page + i;
379 if (unlikely(!PageTail(p) || (p->first_page != page))) {
380 bad_page(page);
381 bad++;
383 __ClearPageTail(p);
386 return bad;
389 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
391 int i;
394 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
395 * and __GFP_HIGHMEM from hard or soft interrupt context.
397 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
398 for (i = 0; i < (1 << order); i++)
399 clear_highpage(page + i);
402 #ifdef CONFIG_DEBUG_PAGEALLOC
403 unsigned int _debug_guardpage_minorder;
405 static int __init debug_guardpage_minorder_setup(char *buf)
407 unsigned long res;
409 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
410 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
411 return 0;
413 _debug_guardpage_minorder = res;
414 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
415 return 0;
417 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
419 static inline void set_page_guard_flag(struct page *page)
421 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
424 static inline void clear_page_guard_flag(struct page *page)
426 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
428 #else
429 static inline void set_page_guard_flag(struct page *page) { }
430 static inline void clear_page_guard_flag(struct page *page) { }
431 #endif
433 static inline void set_page_order(struct page *page, int order)
435 set_page_private(page, order);
436 __SetPageBuddy(page);
439 static inline void rmv_page_order(struct page *page)
441 __ClearPageBuddy(page);
442 set_page_private(page, 0);
446 * Locate the struct page for both the matching buddy in our
447 * pair (buddy1) and the combined O(n+1) page they form (page).
449 * 1) Any buddy B1 will have an order O twin B2 which satisfies
450 * the following equation:
451 * B2 = B1 ^ (1 << O)
452 * For example, if the starting buddy (buddy2) is #8 its order
453 * 1 buddy is #10:
454 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
456 * 2) Any buddy B will have an order O+1 parent P which
457 * satisfies the following equation:
458 * P = B & ~(1 << O)
460 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
462 static inline unsigned long
463 __find_buddy_index(unsigned long page_idx, unsigned int order)
465 return page_idx ^ (1 << order);
469 * This function checks whether a page is free && is the buddy
470 * we can do coalesce a page and its buddy if
471 * (a) the buddy is not in a hole &&
472 * (b) the buddy is in the buddy system &&
473 * (c) a page and its buddy have the same order &&
474 * (d) a page and its buddy are in the same zone.
476 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
477 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
479 * For recording page's order, we use page_private(page).
481 static inline int page_is_buddy(struct page *page, struct page *buddy,
482 int order)
484 if (!pfn_valid_within(page_to_pfn(buddy)))
485 return 0;
487 if (page_zone_id(page) != page_zone_id(buddy))
488 return 0;
490 if (page_is_guard(buddy) && page_order(buddy) == order) {
491 VM_BUG_ON(page_count(buddy) != 0);
492 return 1;
495 if (PageBuddy(buddy) && page_order(buddy) == order) {
496 VM_BUG_ON(page_count(buddy) != 0);
497 return 1;
499 return 0;
503 * Freeing function for a buddy system allocator.
505 * The concept of a buddy system is to maintain direct-mapped table
506 * (containing bit values) for memory blocks of various "orders".
507 * The bottom level table contains the map for the smallest allocatable
508 * units of memory (here, pages), and each level above it describes
509 * pairs of units from the levels below, hence, "buddies".
510 * At a high level, all that happens here is marking the table entry
511 * at the bottom level available, and propagating the changes upward
512 * as necessary, plus some accounting needed to play nicely with other
513 * parts of the VM system.
514 * At each level, we keep a list of pages, which are heads of continuous
515 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
516 * order is recorded in page_private(page) field.
517 * So when we are allocating or freeing one, we can derive the state of the
518 * other. That is, if we allocate a small block, and both were
519 * free, the remainder of the region must be split into blocks.
520 * If a block is freed, and its buddy is also free, then this
521 * triggers coalescing into a block of larger size.
523 * -- nyc
526 static inline void __free_one_page(struct page *page,
527 struct zone *zone, unsigned int order,
528 int migratetype)
530 unsigned long page_idx;
531 unsigned long combined_idx;
532 unsigned long uninitialized_var(buddy_idx);
533 struct page *buddy;
535 if (unlikely(PageCompound(page)))
536 if (unlikely(destroy_compound_page(page, order)))
537 return;
539 VM_BUG_ON(migratetype == -1);
541 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
543 VM_BUG_ON(page_idx & ((1 << order) - 1));
544 VM_BUG_ON(bad_range(zone, page));
546 while (order < MAX_ORDER-1) {
547 buddy_idx = __find_buddy_index(page_idx, order);
548 buddy = page + (buddy_idx - page_idx);
549 if (!page_is_buddy(page, buddy, order))
550 break;
552 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
553 * merge with it and move up one order.
555 if (page_is_guard(buddy)) {
556 clear_page_guard_flag(buddy);
557 set_page_private(page, 0);
558 __mod_zone_freepage_state(zone, 1 << order,
559 migratetype);
560 } else {
561 list_del(&buddy->lru);
562 zone->free_area[order].nr_free--;
563 rmv_page_order(buddy);
565 combined_idx = buddy_idx & page_idx;
566 page = page + (combined_idx - page_idx);
567 page_idx = combined_idx;
568 order++;
570 set_page_order(page, order);
573 * If this is not the largest possible page, check if the buddy
574 * of the next-highest order is free. If it is, it's possible
575 * that pages are being freed that will coalesce soon. In case,
576 * that is happening, add the free page to the tail of the list
577 * so it's less likely to be used soon and more likely to be merged
578 * as a higher order page
580 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
581 struct page *higher_page, *higher_buddy;
582 combined_idx = buddy_idx & page_idx;
583 higher_page = page + (combined_idx - page_idx);
584 buddy_idx = __find_buddy_index(combined_idx, order + 1);
585 higher_buddy = higher_page + (buddy_idx - combined_idx);
586 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
587 list_add_tail(&page->lru,
588 &zone->free_area[order].free_list[migratetype]);
589 goto out;
593 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
594 out:
595 zone->free_area[order].nr_free++;
598 static inline int free_pages_check(struct page *page)
600 if (unlikely(page_mapcount(page) |
601 (page->mapping != NULL) |
602 (atomic_read(&page->_count) != 0) |
603 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
604 (mem_cgroup_bad_page_check(page)))) {
605 bad_page(page);
606 return 1;
608 reset_page_last_nid(page);
609 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
610 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
611 return 0;
615 * Frees a number of pages from the PCP lists
616 * Assumes all pages on list are in same zone, and of same order.
617 * count is the number of pages to free.
619 * If the zone was previously in an "all pages pinned" state then look to
620 * see if this freeing clears that state.
622 * And clear the zone's pages_scanned counter, to hold off the "all pages are
623 * pinned" detection logic.
625 static void free_pcppages_bulk(struct zone *zone, int count,
626 struct per_cpu_pages *pcp)
628 int migratetype = 0;
629 int batch_free = 0;
630 int to_free = count;
632 spin_lock(&zone->lock);
633 zone->all_unreclaimable = 0;
634 zone->pages_scanned = 0;
636 while (to_free) {
637 struct page *page;
638 struct list_head *list;
641 * Remove pages from lists in a round-robin fashion. A
642 * batch_free count is maintained that is incremented when an
643 * empty list is encountered. This is so more pages are freed
644 * off fuller lists instead of spinning excessively around empty
645 * lists
647 do {
648 batch_free++;
649 if (++migratetype == MIGRATE_PCPTYPES)
650 migratetype = 0;
651 list = &pcp->lists[migratetype];
652 } while (list_empty(list));
654 /* This is the only non-empty list. Free them all. */
655 if (batch_free == MIGRATE_PCPTYPES)
656 batch_free = to_free;
658 do {
659 int mt; /* migratetype of the to-be-freed page */
661 page = list_entry(list->prev, struct page, lru);
662 /* must delete as __free_one_page list manipulates */
663 list_del(&page->lru);
664 mt = get_freepage_migratetype(page);
665 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
666 __free_one_page(page, zone, 0, mt);
667 trace_mm_page_pcpu_drain(page, 0, mt);
668 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
669 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
670 if (is_migrate_cma(mt))
671 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
673 } while (--to_free && --batch_free && !list_empty(list));
675 spin_unlock(&zone->lock);
678 static void free_one_page(struct zone *zone, struct page *page, int order,
679 int migratetype)
681 spin_lock(&zone->lock);
682 zone->all_unreclaimable = 0;
683 zone->pages_scanned = 0;
685 __free_one_page(page, zone, order, migratetype);
686 if (unlikely(migratetype != MIGRATE_ISOLATE))
687 __mod_zone_freepage_state(zone, 1 << order, migratetype);
688 spin_unlock(&zone->lock);
691 static bool free_pages_prepare(struct page *page, unsigned int order)
693 int i;
694 int bad = 0;
696 trace_mm_page_free(page, order);
697 kmemcheck_free_shadow(page, order);
699 if (PageAnon(page))
700 page->mapping = NULL;
701 for (i = 0; i < (1 << order); i++)
702 bad += free_pages_check(page + i);
703 if (bad)
704 return false;
706 if (!PageHighMem(page)) {
707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
708 debug_check_no_obj_freed(page_address(page),
709 PAGE_SIZE << order);
711 arch_free_page(page, order);
712 kernel_map_pages(page, 1 << order, 0);
714 return true;
717 static void __free_pages_ok(struct page *page, unsigned int order)
719 unsigned long flags;
720 int migratetype;
722 if (!free_pages_prepare(page, order))
723 return;
725 local_irq_save(flags);
726 __count_vm_events(PGFREE, 1 << order);
727 migratetype = get_pageblock_migratetype(page);
728 set_freepage_migratetype(page, migratetype);
729 free_one_page(page_zone(page), page, order, migratetype);
730 local_irq_restore(flags);
734 * Read access to zone->managed_pages is safe because it's unsigned long,
735 * but we still need to serialize writers. Currently all callers of
736 * __free_pages_bootmem() except put_page_bootmem() should only be used
737 * at boot time. So for shorter boot time, we shift the burden to
738 * put_page_bootmem() to serialize writers.
740 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
742 unsigned int nr_pages = 1 << order;
743 unsigned int loop;
745 prefetchw(page);
746 for (loop = 0; loop < nr_pages; loop++) {
747 struct page *p = &page[loop];
749 if (loop + 1 < nr_pages)
750 prefetchw(p + 1);
751 __ClearPageReserved(p);
752 set_page_count(p, 0);
755 page_zone(page)->managed_pages += 1 << order;
756 set_page_refcounted(page);
757 __free_pages(page, order);
760 #ifdef CONFIG_CMA
761 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
762 void __init init_cma_reserved_pageblock(struct page *page)
764 unsigned i = pageblock_nr_pages;
765 struct page *p = page;
767 do {
768 __ClearPageReserved(p);
769 set_page_count(p, 0);
770 } while (++p, --i);
772 set_page_refcounted(page);
773 set_pageblock_migratetype(page, MIGRATE_CMA);
774 __free_pages(page, pageblock_order);
775 totalram_pages += pageblock_nr_pages;
777 #endif
780 * The order of subdivision here is critical for the IO subsystem.
781 * Please do not alter this order without good reasons and regression
782 * testing. Specifically, as large blocks of memory are subdivided,
783 * the order in which smaller blocks are delivered depends on the order
784 * they're subdivided in this function. This is the primary factor
785 * influencing the order in which pages are delivered to the IO
786 * subsystem according to empirical testing, and this is also justified
787 * by considering the behavior of a buddy system containing a single
788 * large block of memory acted on by a series of small allocations.
789 * This behavior is a critical factor in sglist merging's success.
791 * -- nyc
793 static inline void expand(struct zone *zone, struct page *page,
794 int low, int high, struct free_area *area,
795 int migratetype)
797 unsigned long size = 1 << high;
799 while (high > low) {
800 area--;
801 high--;
802 size >>= 1;
803 VM_BUG_ON(bad_range(zone, &page[size]));
805 #ifdef CONFIG_DEBUG_PAGEALLOC
806 if (high < debug_guardpage_minorder()) {
808 * Mark as guard pages (or page), that will allow to
809 * merge back to allocator when buddy will be freed.
810 * Corresponding page table entries will not be touched,
811 * pages will stay not present in virtual address space
813 INIT_LIST_HEAD(&page[size].lru);
814 set_page_guard_flag(&page[size]);
815 set_page_private(&page[size], high);
816 /* Guard pages are not available for any usage */
817 __mod_zone_freepage_state(zone, -(1 << high),
818 migratetype);
819 continue;
821 #endif
822 list_add(&page[size].lru, &area->free_list[migratetype]);
823 area->nr_free++;
824 set_page_order(&page[size], high);
829 * This page is about to be returned from the page allocator
831 static inline int check_new_page(struct page *page)
833 if (unlikely(page_mapcount(page) |
834 (page->mapping != NULL) |
835 (atomic_read(&page->_count) != 0) |
836 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
837 (mem_cgroup_bad_page_check(page)))) {
838 bad_page(page);
839 return 1;
841 return 0;
844 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
846 int i;
848 for (i = 0; i < (1 << order); i++) {
849 struct page *p = page + i;
850 if (unlikely(check_new_page(p)))
851 return 1;
854 set_page_private(page, 0);
855 set_page_refcounted(page);
857 arch_alloc_page(page, order);
858 kernel_map_pages(page, 1 << order, 1);
860 if (gfp_flags & __GFP_ZERO)
861 prep_zero_page(page, order, gfp_flags);
863 if (order && (gfp_flags & __GFP_COMP))
864 prep_compound_page(page, order);
866 return 0;
870 * Go through the free lists for the given migratetype and remove
871 * the smallest available page from the freelists
873 static inline
874 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
875 int migratetype)
877 unsigned int current_order;
878 struct free_area * area;
879 struct page *page;
881 /* Find a page of the appropriate size in the preferred list */
882 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
883 area = &(zone->free_area[current_order]);
884 if (list_empty(&area->free_list[migratetype]))
885 continue;
887 page = list_entry(area->free_list[migratetype].next,
888 struct page, lru);
889 list_del(&page->lru);
890 rmv_page_order(page);
891 area->nr_free--;
892 expand(zone, page, order, current_order, area, migratetype);
893 return page;
896 return NULL;
901 * This array describes the order lists are fallen back to when
902 * the free lists for the desirable migrate type are depleted
904 static int fallbacks[MIGRATE_TYPES][4] = {
905 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
906 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
907 #ifdef CONFIG_CMA
908 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
909 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
910 #else
911 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
912 #endif
913 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
914 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
918 * Move the free pages in a range to the free lists of the requested type.
919 * Note that start_page and end_pages are not aligned on a pageblock
920 * boundary. If alignment is required, use move_freepages_block()
922 int move_freepages(struct zone *zone,
923 struct page *start_page, struct page *end_page,
924 int migratetype)
926 struct page *page;
927 unsigned long order;
928 int pages_moved = 0;
930 #ifndef CONFIG_HOLES_IN_ZONE
932 * page_zone is not safe to call in this context when
933 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
934 * anyway as we check zone boundaries in move_freepages_block().
935 * Remove at a later date when no bug reports exist related to
936 * grouping pages by mobility
938 BUG_ON(page_zone(start_page) != page_zone(end_page));
939 #endif
941 for (page = start_page; page <= end_page;) {
942 /* Make sure we are not inadvertently changing nodes */
943 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
945 if (!pfn_valid_within(page_to_pfn(page))) {
946 page++;
947 continue;
950 if (!PageBuddy(page)) {
951 page++;
952 continue;
955 order = page_order(page);
956 list_move(&page->lru,
957 &zone->free_area[order].free_list[migratetype]);
958 set_freepage_migratetype(page, migratetype);
959 page += 1 << order;
960 pages_moved += 1 << order;
963 return pages_moved;
966 int move_freepages_block(struct zone *zone, struct page *page,
967 int migratetype)
969 unsigned long start_pfn, end_pfn;
970 struct page *start_page, *end_page;
972 start_pfn = page_to_pfn(page);
973 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
974 start_page = pfn_to_page(start_pfn);
975 end_page = start_page + pageblock_nr_pages - 1;
976 end_pfn = start_pfn + pageblock_nr_pages - 1;
978 /* Do not cross zone boundaries */
979 if (start_pfn < zone->zone_start_pfn)
980 start_page = page;
981 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
982 return 0;
984 return move_freepages(zone, start_page, end_page, migratetype);
987 static void change_pageblock_range(struct page *pageblock_page,
988 int start_order, int migratetype)
990 int nr_pageblocks = 1 << (start_order - pageblock_order);
992 while (nr_pageblocks--) {
993 set_pageblock_migratetype(pageblock_page, migratetype);
994 pageblock_page += pageblock_nr_pages;
998 /* Remove an element from the buddy allocator from the fallback list */
999 static inline struct page *
1000 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1002 struct free_area * area;
1003 int current_order;
1004 struct page *page;
1005 int migratetype, i;
1007 /* Find the largest possible block of pages in the other list */
1008 for (current_order = MAX_ORDER-1; current_order >= order;
1009 --current_order) {
1010 for (i = 0;; i++) {
1011 migratetype = fallbacks[start_migratetype][i];
1013 /* MIGRATE_RESERVE handled later if necessary */
1014 if (migratetype == MIGRATE_RESERVE)
1015 break;
1017 area = &(zone->free_area[current_order]);
1018 if (list_empty(&area->free_list[migratetype]))
1019 continue;
1021 page = list_entry(area->free_list[migratetype].next,
1022 struct page, lru);
1023 area->nr_free--;
1026 * If breaking a large block of pages, move all free
1027 * pages to the preferred allocation list. If falling
1028 * back for a reclaimable kernel allocation, be more
1029 * aggressive about taking ownership of free pages
1031 * On the other hand, never change migration
1032 * type of MIGRATE_CMA pageblocks nor move CMA
1033 * pages on different free lists. We don't
1034 * want unmovable pages to be allocated from
1035 * MIGRATE_CMA areas.
1037 if (!is_migrate_cma(migratetype) &&
1038 (unlikely(current_order >= pageblock_order / 2) ||
1039 start_migratetype == MIGRATE_RECLAIMABLE ||
1040 page_group_by_mobility_disabled)) {
1041 int pages;
1042 pages = move_freepages_block(zone, page,
1043 start_migratetype);
1045 /* Claim the whole block if over half of it is free */
1046 if (pages >= (1 << (pageblock_order-1)) ||
1047 page_group_by_mobility_disabled)
1048 set_pageblock_migratetype(page,
1049 start_migratetype);
1051 migratetype = start_migratetype;
1054 /* Remove the page from the freelists */
1055 list_del(&page->lru);
1056 rmv_page_order(page);
1058 /* Take ownership for orders >= pageblock_order */
1059 if (current_order >= pageblock_order &&
1060 !is_migrate_cma(migratetype))
1061 change_pageblock_range(page, current_order,
1062 start_migratetype);
1064 expand(zone, page, order, current_order, area,
1065 is_migrate_cma(migratetype)
1066 ? migratetype : start_migratetype);
1068 trace_mm_page_alloc_extfrag(page, order, current_order,
1069 start_migratetype, migratetype);
1071 return page;
1075 return NULL;
1079 * Do the hard work of removing an element from the buddy allocator.
1080 * Call me with the zone->lock already held.
1082 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1083 int migratetype)
1085 struct page *page;
1087 retry_reserve:
1088 page = __rmqueue_smallest(zone, order, migratetype);
1090 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1091 page = __rmqueue_fallback(zone, order, migratetype);
1094 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1095 * is used because __rmqueue_smallest is an inline function
1096 * and we want just one call site
1098 if (!page) {
1099 migratetype = MIGRATE_RESERVE;
1100 goto retry_reserve;
1104 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1105 return page;
1109 * Obtain a specified number of elements from the buddy allocator, all under
1110 * a single hold of the lock, for efficiency. Add them to the supplied list.
1111 * Returns the number of new pages which were placed at *list.
1113 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1114 unsigned long count, struct list_head *list,
1115 int migratetype, int cold)
1117 int mt = migratetype, i;
1119 spin_lock(&zone->lock);
1120 for (i = 0; i < count; ++i) {
1121 struct page *page = __rmqueue(zone, order, migratetype);
1122 if (unlikely(page == NULL))
1123 break;
1126 * Split buddy pages returned by expand() are received here
1127 * in physical page order. The page is added to the callers and
1128 * list and the list head then moves forward. From the callers
1129 * perspective, the linked list is ordered by page number in
1130 * some conditions. This is useful for IO devices that can
1131 * merge IO requests if the physical pages are ordered
1132 * properly.
1134 if (likely(cold == 0))
1135 list_add(&page->lru, list);
1136 else
1137 list_add_tail(&page->lru, list);
1138 if (IS_ENABLED(CONFIG_CMA)) {
1139 mt = get_pageblock_migratetype(page);
1140 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1141 mt = migratetype;
1143 set_freepage_migratetype(page, mt);
1144 list = &page->lru;
1145 if (is_migrate_cma(mt))
1146 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1147 -(1 << order));
1149 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1150 spin_unlock(&zone->lock);
1151 return i;
1154 #ifdef CONFIG_NUMA
1156 * Called from the vmstat counter updater to drain pagesets of this
1157 * currently executing processor on remote nodes after they have
1158 * expired.
1160 * Note that this function must be called with the thread pinned to
1161 * a single processor.
1163 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1165 unsigned long flags;
1166 int to_drain;
1168 local_irq_save(flags);
1169 if (pcp->count >= pcp->batch)
1170 to_drain = pcp->batch;
1171 else
1172 to_drain = pcp->count;
1173 if (to_drain > 0) {
1174 free_pcppages_bulk(zone, to_drain, pcp);
1175 pcp->count -= to_drain;
1177 local_irq_restore(flags);
1179 #endif
1182 * Drain pages of the indicated processor.
1184 * The processor must either be the current processor and the
1185 * thread pinned to the current processor or a processor that
1186 * is not online.
1188 static void drain_pages(unsigned int cpu)
1190 unsigned long flags;
1191 struct zone *zone;
1193 for_each_populated_zone(zone) {
1194 struct per_cpu_pageset *pset;
1195 struct per_cpu_pages *pcp;
1197 local_irq_save(flags);
1198 pset = per_cpu_ptr(zone->pageset, cpu);
1200 pcp = &pset->pcp;
1201 if (pcp->count) {
1202 free_pcppages_bulk(zone, pcp->count, pcp);
1203 pcp->count = 0;
1205 local_irq_restore(flags);
1210 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1212 void drain_local_pages(void *arg)
1214 drain_pages(smp_processor_id());
1218 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1220 * Note that this code is protected against sending an IPI to an offline
1221 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1222 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1223 * nothing keeps CPUs from showing up after we populated the cpumask and
1224 * before the call to on_each_cpu_mask().
1226 void drain_all_pages(void)
1228 int cpu;
1229 struct per_cpu_pageset *pcp;
1230 struct zone *zone;
1233 * Allocate in the BSS so we wont require allocation in
1234 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1236 static cpumask_t cpus_with_pcps;
1239 * We don't care about racing with CPU hotplug event
1240 * as offline notification will cause the notified
1241 * cpu to drain that CPU pcps and on_each_cpu_mask
1242 * disables preemption as part of its processing
1244 for_each_online_cpu(cpu) {
1245 bool has_pcps = false;
1246 for_each_populated_zone(zone) {
1247 pcp = per_cpu_ptr(zone->pageset, cpu);
1248 if (pcp->pcp.count) {
1249 has_pcps = true;
1250 break;
1253 if (has_pcps)
1254 cpumask_set_cpu(cpu, &cpus_with_pcps);
1255 else
1256 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1258 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1261 #ifdef CONFIG_HIBERNATION
1263 void mark_free_pages(struct zone *zone)
1265 unsigned long pfn, max_zone_pfn;
1266 unsigned long flags;
1267 int order, t;
1268 struct list_head *curr;
1270 if (!zone->spanned_pages)
1271 return;
1273 spin_lock_irqsave(&zone->lock, flags);
1275 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1276 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1277 if (pfn_valid(pfn)) {
1278 struct page *page = pfn_to_page(pfn);
1280 if (!swsusp_page_is_forbidden(page))
1281 swsusp_unset_page_free(page);
1284 for_each_migratetype_order(order, t) {
1285 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1286 unsigned long i;
1288 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1289 for (i = 0; i < (1UL << order); i++)
1290 swsusp_set_page_free(pfn_to_page(pfn + i));
1293 spin_unlock_irqrestore(&zone->lock, flags);
1295 #endif /* CONFIG_PM */
1298 * Free a 0-order page
1299 * cold == 1 ? free a cold page : free a hot page
1301 void free_hot_cold_page(struct page *page, int cold)
1303 struct zone *zone = page_zone(page);
1304 struct per_cpu_pages *pcp;
1305 unsigned long flags;
1306 int migratetype;
1308 if (!free_pages_prepare(page, 0))
1309 return;
1311 migratetype = get_pageblock_migratetype(page);
1312 set_freepage_migratetype(page, migratetype);
1313 local_irq_save(flags);
1314 __count_vm_event(PGFREE);
1317 * We only track unmovable, reclaimable and movable on pcp lists.
1318 * Free ISOLATE pages back to the allocator because they are being
1319 * offlined but treat RESERVE as movable pages so we can get those
1320 * areas back if necessary. Otherwise, we may have to free
1321 * excessively into the page allocator
1323 if (migratetype >= MIGRATE_PCPTYPES) {
1324 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1325 free_one_page(zone, page, 0, migratetype);
1326 goto out;
1328 migratetype = MIGRATE_MOVABLE;
1331 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1332 if (cold)
1333 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1334 else
1335 list_add(&page->lru, &pcp->lists[migratetype]);
1336 pcp->count++;
1337 if (pcp->count >= pcp->high) {
1338 free_pcppages_bulk(zone, pcp->batch, pcp);
1339 pcp->count -= pcp->batch;
1342 out:
1343 local_irq_restore(flags);
1347 * Free a list of 0-order pages
1349 void free_hot_cold_page_list(struct list_head *list, int cold)
1351 struct page *page, *next;
1353 list_for_each_entry_safe(page, next, list, lru) {
1354 trace_mm_page_free_batched(page, cold);
1355 free_hot_cold_page(page, cold);
1360 * split_page takes a non-compound higher-order page, and splits it into
1361 * n (1<<order) sub-pages: page[0..n]
1362 * Each sub-page must be freed individually.
1364 * Note: this is probably too low level an operation for use in drivers.
1365 * Please consult with lkml before using this in your driver.
1367 void split_page(struct page *page, unsigned int order)
1369 int i;
1371 VM_BUG_ON(PageCompound(page));
1372 VM_BUG_ON(!page_count(page));
1374 #ifdef CONFIG_KMEMCHECK
1376 * Split shadow pages too, because free(page[0]) would
1377 * otherwise free the whole shadow.
1379 if (kmemcheck_page_is_tracked(page))
1380 split_page(virt_to_page(page[0].shadow), order);
1381 #endif
1383 for (i = 1; i < (1 << order); i++)
1384 set_page_refcounted(page + i);
1388 * Similar to the split_page family of functions except that the page
1389 * required at the given order and being isolated now to prevent races
1390 * with parallel allocators
1392 int capture_free_page(struct page *page, int alloc_order, int migratetype)
1394 unsigned int order;
1395 unsigned long watermark;
1396 struct zone *zone;
1397 int mt;
1399 BUG_ON(!PageBuddy(page));
1401 zone = page_zone(page);
1402 order = page_order(page);
1403 mt = get_pageblock_migratetype(page);
1405 if (mt != MIGRATE_ISOLATE) {
1406 /* Obey watermarks as if the page was being allocated */
1407 watermark = low_wmark_pages(zone) + (1 << order);
1408 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1409 return 0;
1411 __mod_zone_freepage_state(zone, -(1UL << alloc_order), mt);
1414 /* Remove page from free list */
1415 list_del(&page->lru);
1416 zone->free_area[order].nr_free--;
1417 rmv_page_order(page);
1419 if (alloc_order != order)
1420 expand(zone, page, alloc_order, order,
1421 &zone->free_area[order], migratetype);
1423 /* Set the pageblock if the captured page is at least a pageblock */
1424 if (order >= pageblock_order - 1) {
1425 struct page *endpage = page + (1 << order) - 1;
1426 for (; page < endpage; page += pageblock_nr_pages) {
1427 int mt = get_pageblock_migratetype(page);
1428 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1429 set_pageblock_migratetype(page,
1430 MIGRATE_MOVABLE);
1434 return 1UL << alloc_order;
1438 * Similar to split_page except the page is already free. As this is only
1439 * being used for migration, the migratetype of the block also changes.
1440 * As this is called with interrupts disabled, the caller is responsible
1441 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1442 * are enabled.
1444 * Note: this is probably too low level an operation for use in drivers.
1445 * Please consult with lkml before using this in your driver.
1447 int split_free_page(struct page *page)
1449 unsigned int order;
1450 int nr_pages;
1452 BUG_ON(!PageBuddy(page));
1453 order = page_order(page);
1455 nr_pages = capture_free_page(page, order, 0);
1456 if (!nr_pages)
1457 return 0;
1459 /* Split into individual pages */
1460 set_page_refcounted(page);
1461 split_page(page, order);
1462 return nr_pages;
1466 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1467 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1468 * or two.
1470 static inline
1471 struct page *buffered_rmqueue(struct zone *preferred_zone,
1472 struct zone *zone, int order, gfp_t gfp_flags,
1473 int migratetype)
1475 unsigned long flags;
1476 struct page *page;
1477 int cold = !!(gfp_flags & __GFP_COLD);
1479 again:
1480 if (likely(order == 0)) {
1481 struct per_cpu_pages *pcp;
1482 struct list_head *list;
1484 local_irq_save(flags);
1485 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1486 list = &pcp->lists[migratetype];
1487 if (list_empty(list)) {
1488 pcp->count += rmqueue_bulk(zone, 0,
1489 pcp->batch, list,
1490 migratetype, cold);
1491 if (unlikely(list_empty(list)))
1492 goto failed;
1495 if (cold)
1496 page = list_entry(list->prev, struct page, lru);
1497 else
1498 page = list_entry(list->next, struct page, lru);
1500 list_del(&page->lru);
1501 pcp->count--;
1502 } else {
1503 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1505 * __GFP_NOFAIL is not to be used in new code.
1507 * All __GFP_NOFAIL callers should be fixed so that they
1508 * properly detect and handle allocation failures.
1510 * We most definitely don't want callers attempting to
1511 * allocate greater than order-1 page units with
1512 * __GFP_NOFAIL.
1514 WARN_ON_ONCE(order > 1);
1516 spin_lock_irqsave(&zone->lock, flags);
1517 page = __rmqueue(zone, order, migratetype);
1518 spin_unlock(&zone->lock);
1519 if (!page)
1520 goto failed;
1521 __mod_zone_freepage_state(zone, -(1 << order),
1522 get_pageblock_migratetype(page));
1525 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1526 zone_statistics(preferred_zone, zone, gfp_flags);
1527 local_irq_restore(flags);
1529 VM_BUG_ON(bad_range(zone, page));
1530 if (prep_new_page(page, order, gfp_flags))
1531 goto again;
1532 return page;
1534 failed:
1535 local_irq_restore(flags);
1536 return NULL;
1539 #ifdef CONFIG_FAIL_PAGE_ALLOC
1541 static struct {
1542 struct fault_attr attr;
1544 u32 ignore_gfp_highmem;
1545 u32 ignore_gfp_wait;
1546 u32 min_order;
1547 } fail_page_alloc = {
1548 .attr = FAULT_ATTR_INITIALIZER,
1549 .ignore_gfp_wait = 1,
1550 .ignore_gfp_highmem = 1,
1551 .min_order = 1,
1554 static int __init setup_fail_page_alloc(char *str)
1556 return setup_fault_attr(&fail_page_alloc.attr, str);
1558 __setup("fail_page_alloc=", setup_fail_page_alloc);
1560 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1562 if (order < fail_page_alloc.min_order)
1563 return false;
1564 if (gfp_mask & __GFP_NOFAIL)
1565 return false;
1566 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1567 return false;
1568 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1569 return false;
1571 return should_fail(&fail_page_alloc.attr, 1 << order);
1574 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1576 static int __init fail_page_alloc_debugfs(void)
1578 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1579 struct dentry *dir;
1581 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1582 &fail_page_alloc.attr);
1583 if (IS_ERR(dir))
1584 return PTR_ERR(dir);
1586 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1587 &fail_page_alloc.ignore_gfp_wait))
1588 goto fail;
1589 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1590 &fail_page_alloc.ignore_gfp_highmem))
1591 goto fail;
1592 if (!debugfs_create_u32("min-order", mode, dir,
1593 &fail_page_alloc.min_order))
1594 goto fail;
1596 return 0;
1597 fail:
1598 debugfs_remove_recursive(dir);
1600 return -ENOMEM;
1603 late_initcall(fail_page_alloc_debugfs);
1605 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1607 #else /* CONFIG_FAIL_PAGE_ALLOC */
1609 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1611 return false;
1614 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1617 * Return true if free pages are above 'mark'. This takes into account the order
1618 * of the allocation.
1620 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1621 int classzone_idx, int alloc_flags, long free_pages)
1623 /* free_pages my go negative - that's OK */
1624 long min = mark;
1625 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1626 int o;
1628 free_pages -= (1 << order) - 1;
1629 if (alloc_flags & ALLOC_HIGH)
1630 min -= min / 2;
1631 if (alloc_flags & ALLOC_HARDER)
1632 min -= min / 4;
1633 #ifdef CONFIG_CMA
1634 /* If allocation can't use CMA areas don't use free CMA pages */
1635 if (!(alloc_flags & ALLOC_CMA))
1636 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1637 #endif
1638 if (free_pages <= min + lowmem_reserve)
1639 return false;
1640 for (o = 0; o < order; o++) {
1641 /* At the next order, this order's pages become unavailable */
1642 free_pages -= z->free_area[o].nr_free << o;
1644 /* Require fewer higher order pages to be free */
1645 min >>= 1;
1647 if (free_pages <= min)
1648 return false;
1650 return true;
1653 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1654 int classzone_idx, int alloc_flags)
1656 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1657 zone_page_state(z, NR_FREE_PAGES));
1660 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1661 int classzone_idx, int alloc_flags)
1663 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1665 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1666 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1668 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1669 free_pages);
1672 #ifdef CONFIG_NUMA
1674 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1675 * skip over zones that are not allowed by the cpuset, or that have
1676 * been recently (in last second) found to be nearly full. See further
1677 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1678 * that have to skip over a lot of full or unallowed zones.
1680 * If the zonelist cache is present in the passed in zonelist, then
1681 * returns a pointer to the allowed node mask (either the current
1682 * tasks mems_allowed, or node_states[N_MEMORY].)
1684 * If the zonelist cache is not available for this zonelist, does
1685 * nothing and returns NULL.
1687 * If the fullzones BITMAP in the zonelist cache is stale (more than
1688 * a second since last zap'd) then we zap it out (clear its bits.)
1690 * We hold off even calling zlc_setup, until after we've checked the
1691 * first zone in the zonelist, on the theory that most allocations will
1692 * be satisfied from that first zone, so best to examine that zone as
1693 * quickly as we can.
1695 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1697 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1698 nodemask_t *allowednodes; /* zonelist_cache approximation */
1700 zlc = zonelist->zlcache_ptr;
1701 if (!zlc)
1702 return NULL;
1704 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1705 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1706 zlc->last_full_zap = jiffies;
1709 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1710 &cpuset_current_mems_allowed :
1711 &node_states[N_MEMORY];
1712 return allowednodes;
1716 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1717 * if it is worth looking at further for free memory:
1718 * 1) Check that the zone isn't thought to be full (doesn't have its
1719 * bit set in the zonelist_cache fullzones BITMAP).
1720 * 2) Check that the zones node (obtained from the zonelist_cache
1721 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1722 * Return true (non-zero) if zone is worth looking at further, or
1723 * else return false (zero) if it is not.
1725 * This check -ignores- the distinction between various watermarks,
1726 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1727 * found to be full for any variation of these watermarks, it will
1728 * be considered full for up to one second by all requests, unless
1729 * we are so low on memory on all allowed nodes that we are forced
1730 * into the second scan of the zonelist.
1732 * In the second scan we ignore this zonelist cache and exactly
1733 * apply the watermarks to all zones, even it is slower to do so.
1734 * We are low on memory in the second scan, and should leave no stone
1735 * unturned looking for a free page.
1737 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1738 nodemask_t *allowednodes)
1740 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1741 int i; /* index of *z in zonelist zones */
1742 int n; /* node that zone *z is on */
1744 zlc = zonelist->zlcache_ptr;
1745 if (!zlc)
1746 return 1;
1748 i = z - zonelist->_zonerefs;
1749 n = zlc->z_to_n[i];
1751 /* This zone is worth trying if it is allowed but not full */
1752 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1756 * Given 'z' scanning a zonelist, set the corresponding bit in
1757 * zlc->fullzones, so that subsequent attempts to allocate a page
1758 * from that zone don't waste time re-examining it.
1760 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1762 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1763 int i; /* index of *z in zonelist zones */
1765 zlc = zonelist->zlcache_ptr;
1766 if (!zlc)
1767 return;
1769 i = z - zonelist->_zonerefs;
1771 set_bit(i, zlc->fullzones);
1775 * clear all zones full, called after direct reclaim makes progress so that
1776 * a zone that was recently full is not skipped over for up to a second
1778 static void zlc_clear_zones_full(struct zonelist *zonelist)
1780 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1782 zlc = zonelist->zlcache_ptr;
1783 if (!zlc)
1784 return;
1786 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1789 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1791 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1794 static void __paginginit init_zone_allows_reclaim(int nid)
1796 int i;
1798 for_each_online_node(i)
1799 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1800 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1801 else
1802 zone_reclaim_mode = 1;
1805 #else /* CONFIG_NUMA */
1807 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1809 return NULL;
1812 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1813 nodemask_t *allowednodes)
1815 return 1;
1818 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1822 static void zlc_clear_zones_full(struct zonelist *zonelist)
1826 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1828 return true;
1831 static inline void init_zone_allows_reclaim(int nid)
1834 #endif /* CONFIG_NUMA */
1837 * get_page_from_freelist goes through the zonelist trying to allocate
1838 * a page.
1840 static struct page *
1841 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1842 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1843 struct zone *preferred_zone, int migratetype)
1845 struct zoneref *z;
1846 struct page *page = NULL;
1847 int classzone_idx;
1848 struct zone *zone;
1849 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1850 int zlc_active = 0; /* set if using zonelist_cache */
1851 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1853 classzone_idx = zone_idx(preferred_zone);
1854 zonelist_scan:
1856 * Scan zonelist, looking for a zone with enough free.
1857 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1859 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1860 high_zoneidx, nodemask) {
1861 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1862 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1863 continue;
1864 if ((alloc_flags & ALLOC_CPUSET) &&
1865 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1866 continue;
1868 * When allocating a page cache page for writing, we
1869 * want to get it from a zone that is within its dirty
1870 * limit, such that no single zone holds more than its
1871 * proportional share of globally allowed dirty pages.
1872 * The dirty limits take into account the zone's
1873 * lowmem reserves and high watermark so that kswapd
1874 * should be able to balance it without having to
1875 * write pages from its LRU list.
1877 * This may look like it could increase pressure on
1878 * lower zones by failing allocations in higher zones
1879 * before they are full. But the pages that do spill
1880 * over are limited as the lower zones are protected
1881 * by this very same mechanism. It should not become
1882 * a practical burden to them.
1884 * XXX: For now, allow allocations to potentially
1885 * exceed the per-zone dirty limit in the slowpath
1886 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1887 * which is important when on a NUMA setup the allowed
1888 * zones are together not big enough to reach the
1889 * global limit. The proper fix for these situations
1890 * will require awareness of zones in the
1891 * dirty-throttling and the flusher threads.
1893 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1894 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1895 goto this_zone_full;
1897 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1898 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1899 unsigned long mark;
1900 int ret;
1902 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1903 if (zone_watermark_ok(zone, order, mark,
1904 classzone_idx, alloc_flags))
1905 goto try_this_zone;
1907 if (IS_ENABLED(CONFIG_NUMA) &&
1908 !did_zlc_setup && nr_online_nodes > 1) {
1910 * we do zlc_setup if there are multiple nodes
1911 * and before considering the first zone allowed
1912 * by the cpuset.
1914 allowednodes = zlc_setup(zonelist, alloc_flags);
1915 zlc_active = 1;
1916 did_zlc_setup = 1;
1919 if (zone_reclaim_mode == 0 ||
1920 !zone_allows_reclaim(preferred_zone, zone))
1921 goto this_zone_full;
1924 * As we may have just activated ZLC, check if the first
1925 * eligible zone has failed zone_reclaim recently.
1927 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1928 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1929 continue;
1931 ret = zone_reclaim(zone, gfp_mask, order);
1932 switch (ret) {
1933 case ZONE_RECLAIM_NOSCAN:
1934 /* did not scan */
1935 continue;
1936 case ZONE_RECLAIM_FULL:
1937 /* scanned but unreclaimable */
1938 continue;
1939 default:
1940 /* did we reclaim enough */
1941 if (!zone_watermark_ok(zone, order, mark,
1942 classzone_idx, alloc_flags))
1943 goto this_zone_full;
1947 try_this_zone:
1948 page = buffered_rmqueue(preferred_zone, zone, order,
1949 gfp_mask, migratetype);
1950 if (page)
1951 break;
1952 this_zone_full:
1953 if (IS_ENABLED(CONFIG_NUMA))
1954 zlc_mark_zone_full(zonelist, z);
1957 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1958 /* Disable zlc cache for second zonelist scan */
1959 zlc_active = 0;
1960 goto zonelist_scan;
1963 if (page)
1965 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1966 * necessary to allocate the page. The expectation is
1967 * that the caller is taking steps that will free more
1968 * memory. The caller should avoid the page being used
1969 * for !PFMEMALLOC purposes.
1971 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1973 return page;
1977 * Large machines with many possible nodes should not always dump per-node
1978 * meminfo in irq context.
1980 static inline bool should_suppress_show_mem(void)
1982 bool ret = false;
1984 #if NODES_SHIFT > 8
1985 ret = in_interrupt();
1986 #endif
1987 return ret;
1990 static DEFINE_RATELIMIT_STATE(nopage_rs,
1991 DEFAULT_RATELIMIT_INTERVAL,
1992 DEFAULT_RATELIMIT_BURST);
1994 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1996 unsigned int filter = SHOW_MEM_FILTER_NODES;
1998 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1999 debug_guardpage_minorder() > 0)
2000 return;
2003 * This documents exceptions given to allocations in certain
2004 * contexts that are allowed to allocate outside current's set
2005 * of allowed nodes.
2007 if (!(gfp_mask & __GFP_NOMEMALLOC))
2008 if (test_thread_flag(TIF_MEMDIE) ||
2009 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2010 filter &= ~SHOW_MEM_FILTER_NODES;
2011 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2012 filter &= ~SHOW_MEM_FILTER_NODES;
2014 if (fmt) {
2015 struct va_format vaf;
2016 va_list args;
2018 va_start(args, fmt);
2020 vaf.fmt = fmt;
2021 vaf.va = &args;
2023 pr_warn("%pV", &vaf);
2025 va_end(args);
2028 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2029 current->comm, order, gfp_mask);
2031 dump_stack();
2032 if (!should_suppress_show_mem())
2033 show_mem(filter);
2036 static inline int
2037 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2038 unsigned long did_some_progress,
2039 unsigned long pages_reclaimed)
2041 /* Do not loop if specifically requested */
2042 if (gfp_mask & __GFP_NORETRY)
2043 return 0;
2045 /* Always retry if specifically requested */
2046 if (gfp_mask & __GFP_NOFAIL)
2047 return 1;
2050 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2051 * making forward progress without invoking OOM. Suspend also disables
2052 * storage devices so kswapd will not help. Bail if we are suspending.
2054 if (!did_some_progress && pm_suspended_storage())
2055 return 0;
2058 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2059 * means __GFP_NOFAIL, but that may not be true in other
2060 * implementations.
2062 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2063 return 1;
2066 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2067 * specified, then we retry until we no longer reclaim any pages
2068 * (above), or we've reclaimed an order of pages at least as
2069 * large as the allocation's order. In both cases, if the
2070 * allocation still fails, we stop retrying.
2072 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2073 return 1;
2075 return 0;
2078 static inline struct page *
2079 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2080 struct zonelist *zonelist, enum zone_type high_zoneidx,
2081 nodemask_t *nodemask, struct zone *preferred_zone,
2082 int migratetype)
2084 struct page *page;
2086 /* Acquire the OOM killer lock for the zones in zonelist */
2087 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2088 schedule_timeout_uninterruptible(1);
2089 return NULL;
2093 * Go through the zonelist yet one more time, keep very high watermark
2094 * here, this is only to catch a parallel oom killing, we must fail if
2095 * we're still under heavy pressure.
2097 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2098 order, zonelist, high_zoneidx,
2099 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2100 preferred_zone, migratetype);
2101 if (page)
2102 goto out;
2104 if (!(gfp_mask & __GFP_NOFAIL)) {
2105 /* The OOM killer will not help higher order allocs */
2106 if (order > PAGE_ALLOC_COSTLY_ORDER)
2107 goto out;
2108 /* The OOM killer does not needlessly kill tasks for lowmem */
2109 if (high_zoneidx < ZONE_NORMAL)
2110 goto out;
2112 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2113 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2114 * The caller should handle page allocation failure by itself if
2115 * it specifies __GFP_THISNODE.
2116 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2118 if (gfp_mask & __GFP_THISNODE)
2119 goto out;
2121 /* Exhausted what can be done so it's blamo time */
2122 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2124 out:
2125 clear_zonelist_oom(zonelist, gfp_mask);
2126 return page;
2129 #ifdef CONFIG_COMPACTION
2130 /* Try memory compaction for high-order allocations before reclaim */
2131 static struct page *
2132 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2133 struct zonelist *zonelist, enum zone_type high_zoneidx,
2134 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2135 int migratetype, bool sync_migration,
2136 bool *contended_compaction, bool *deferred_compaction,
2137 unsigned long *did_some_progress)
2139 struct page *page = NULL;
2141 if (!order)
2142 return NULL;
2144 if (compaction_deferred(preferred_zone, order)) {
2145 *deferred_compaction = true;
2146 return NULL;
2149 current->flags |= PF_MEMALLOC;
2150 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2151 nodemask, sync_migration,
2152 contended_compaction, &page);
2153 current->flags &= ~PF_MEMALLOC;
2155 /* If compaction captured a page, prep and use it */
2156 if (page) {
2157 prep_new_page(page, order, gfp_mask);
2158 goto got_page;
2161 if (*did_some_progress != COMPACT_SKIPPED) {
2162 /* Page migration frees to the PCP lists but we want merging */
2163 drain_pages(get_cpu());
2164 put_cpu();
2166 page = get_page_from_freelist(gfp_mask, nodemask,
2167 order, zonelist, high_zoneidx,
2168 alloc_flags & ~ALLOC_NO_WATERMARKS,
2169 preferred_zone, migratetype);
2170 if (page) {
2171 got_page:
2172 preferred_zone->compact_blockskip_flush = false;
2173 preferred_zone->compact_considered = 0;
2174 preferred_zone->compact_defer_shift = 0;
2175 if (order >= preferred_zone->compact_order_failed)
2176 preferred_zone->compact_order_failed = order + 1;
2177 count_vm_event(COMPACTSUCCESS);
2178 return page;
2182 * It's bad if compaction run occurs and fails.
2183 * The most likely reason is that pages exist,
2184 * but not enough to satisfy watermarks.
2186 count_vm_event(COMPACTFAIL);
2189 * As async compaction considers a subset of pageblocks, only
2190 * defer if the failure was a sync compaction failure.
2192 if (sync_migration)
2193 defer_compaction(preferred_zone, order);
2195 cond_resched();
2198 return NULL;
2200 #else
2201 static inline struct page *
2202 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2203 struct zonelist *zonelist, enum zone_type high_zoneidx,
2204 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2205 int migratetype, bool sync_migration,
2206 bool *contended_compaction, bool *deferred_compaction,
2207 unsigned long *did_some_progress)
2209 return NULL;
2211 #endif /* CONFIG_COMPACTION */
2213 /* Perform direct synchronous page reclaim */
2214 static int
2215 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2216 nodemask_t *nodemask)
2218 struct reclaim_state reclaim_state;
2219 int progress;
2221 cond_resched();
2223 /* We now go into synchronous reclaim */
2224 cpuset_memory_pressure_bump();
2225 current->flags |= PF_MEMALLOC;
2226 lockdep_set_current_reclaim_state(gfp_mask);
2227 reclaim_state.reclaimed_slab = 0;
2228 current->reclaim_state = &reclaim_state;
2230 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2232 current->reclaim_state = NULL;
2233 lockdep_clear_current_reclaim_state();
2234 current->flags &= ~PF_MEMALLOC;
2236 cond_resched();
2238 return progress;
2241 /* The really slow allocator path where we enter direct reclaim */
2242 static inline struct page *
2243 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2244 struct zonelist *zonelist, enum zone_type high_zoneidx,
2245 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2246 int migratetype, unsigned long *did_some_progress)
2248 struct page *page = NULL;
2249 bool drained = false;
2251 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2252 nodemask);
2253 if (unlikely(!(*did_some_progress)))
2254 return NULL;
2256 /* After successful reclaim, reconsider all zones for allocation */
2257 if (IS_ENABLED(CONFIG_NUMA))
2258 zlc_clear_zones_full(zonelist);
2260 retry:
2261 page = get_page_from_freelist(gfp_mask, nodemask, order,
2262 zonelist, high_zoneidx,
2263 alloc_flags & ~ALLOC_NO_WATERMARKS,
2264 preferred_zone, migratetype);
2267 * If an allocation failed after direct reclaim, it could be because
2268 * pages are pinned on the per-cpu lists. Drain them and try again
2270 if (!page && !drained) {
2271 drain_all_pages();
2272 drained = true;
2273 goto retry;
2276 return page;
2280 * This is called in the allocator slow-path if the allocation request is of
2281 * sufficient urgency to ignore watermarks and take other desperate measures
2283 static inline struct page *
2284 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2285 struct zonelist *zonelist, enum zone_type high_zoneidx,
2286 nodemask_t *nodemask, struct zone *preferred_zone,
2287 int migratetype)
2289 struct page *page;
2291 do {
2292 page = get_page_from_freelist(gfp_mask, nodemask, order,
2293 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2294 preferred_zone, migratetype);
2296 if (!page && gfp_mask & __GFP_NOFAIL)
2297 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2298 } while (!page && (gfp_mask & __GFP_NOFAIL));
2300 return page;
2303 static inline
2304 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2305 enum zone_type high_zoneidx,
2306 enum zone_type classzone_idx)
2308 struct zoneref *z;
2309 struct zone *zone;
2311 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2312 wakeup_kswapd(zone, order, classzone_idx);
2315 static inline int
2316 gfp_to_alloc_flags(gfp_t gfp_mask)
2318 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2319 const gfp_t wait = gfp_mask & __GFP_WAIT;
2321 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2322 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2325 * The caller may dip into page reserves a bit more if the caller
2326 * cannot run direct reclaim, or if the caller has realtime scheduling
2327 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2328 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2330 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2332 if (!wait) {
2334 * Not worth trying to allocate harder for
2335 * __GFP_NOMEMALLOC even if it can't schedule.
2337 if (!(gfp_mask & __GFP_NOMEMALLOC))
2338 alloc_flags |= ALLOC_HARDER;
2340 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2341 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2343 alloc_flags &= ~ALLOC_CPUSET;
2344 } else if (unlikely(rt_task(current)) && !in_interrupt())
2345 alloc_flags |= ALLOC_HARDER;
2347 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2348 if (gfp_mask & __GFP_MEMALLOC)
2349 alloc_flags |= ALLOC_NO_WATERMARKS;
2350 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2351 alloc_flags |= ALLOC_NO_WATERMARKS;
2352 else if (!in_interrupt() &&
2353 ((current->flags & PF_MEMALLOC) ||
2354 unlikely(test_thread_flag(TIF_MEMDIE))))
2355 alloc_flags |= ALLOC_NO_WATERMARKS;
2357 #ifdef CONFIG_CMA
2358 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2359 alloc_flags |= ALLOC_CMA;
2360 #endif
2361 return alloc_flags;
2364 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2366 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2369 static inline struct page *
2370 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2371 struct zonelist *zonelist, enum zone_type high_zoneidx,
2372 nodemask_t *nodemask, struct zone *preferred_zone,
2373 int migratetype)
2375 const gfp_t wait = gfp_mask & __GFP_WAIT;
2376 struct page *page = NULL;
2377 int alloc_flags;
2378 unsigned long pages_reclaimed = 0;
2379 unsigned long did_some_progress;
2380 bool sync_migration = false;
2381 bool deferred_compaction = false;
2382 bool contended_compaction = false;
2385 * In the slowpath, we sanity check order to avoid ever trying to
2386 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2387 * be using allocators in order of preference for an area that is
2388 * too large.
2390 if (order >= MAX_ORDER) {
2391 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2392 return NULL;
2396 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2397 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2398 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2399 * using a larger set of nodes after it has established that the
2400 * allowed per node queues are empty and that nodes are
2401 * over allocated.
2403 if (IS_ENABLED(CONFIG_NUMA) &&
2404 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2405 goto nopage;
2407 restart:
2408 if (!(gfp_mask & __GFP_NO_KSWAPD))
2409 wake_all_kswapd(order, zonelist, high_zoneidx,
2410 zone_idx(preferred_zone));
2413 * OK, we're below the kswapd watermark and have kicked background
2414 * reclaim. Now things get more complex, so set up alloc_flags according
2415 * to how we want to proceed.
2417 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2420 * Find the true preferred zone if the allocation is unconstrained by
2421 * cpusets.
2423 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2424 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2425 &preferred_zone);
2427 rebalance:
2428 /* This is the last chance, in general, before the goto nopage. */
2429 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2430 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2431 preferred_zone, migratetype);
2432 if (page)
2433 goto got_pg;
2435 /* Allocate without watermarks if the context allows */
2436 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2438 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2439 * the allocation is high priority and these type of
2440 * allocations are system rather than user orientated
2442 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2444 page = __alloc_pages_high_priority(gfp_mask, order,
2445 zonelist, high_zoneidx, nodemask,
2446 preferred_zone, migratetype);
2447 if (page) {
2448 goto got_pg;
2452 /* Atomic allocations - we can't balance anything */
2453 if (!wait)
2454 goto nopage;
2456 /* Avoid recursion of direct reclaim */
2457 if (current->flags & PF_MEMALLOC)
2458 goto nopage;
2460 /* Avoid allocations with no watermarks from looping endlessly */
2461 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2462 goto nopage;
2465 * Try direct compaction. The first pass is asynchronous. Subsequent
2466 * attempts after direct reclaim are synchronous
2468 page = __alloc_pages_direct_compact(gfp_mask, order,
2469 zonelist, high_zoneidx,
2470 nodemask,
2471 alloc_flags, preferred_zone,
2472 migratetype, sync_migration,
2473 &contended_compaction,
2474 &deferred_compaction,
2475 &did_some_progress);
2476 if (page)
2477 goto got_pg;
2478 sync_migration = true;
2481 * If compaction is deferred for high-order allocations, it is because
2482 * sync compaction recently failed. In this is the case and the caller
2483 * requested a movable allocation that does not heavily disrupt the
2484 * system then fail the allocation instead of entering direct reclaim.
2486 if ((deferred_compaction || contended_compaction) &&
2487 (gfp_mask & __GFP_NO_KSWAPD))
2488 goto nopage;
2490 /* Try direct reclaim and then allocating */
2491 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2492 zonelist, high_zoneidx,
2493 nodemask,
2494 alloc_flags, preferred_zone,
2495 migratetype, &did_some_progress);
2496 if (page)
2497 goto got_pg;
2500 * If we failed to make any progress reclaiming, then we are
2501 * running out of options and have to consider going OOM
2503 if (!did_some_progress) {
2504 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2505 if (oom_killer_disabled)
2506 goto nopage;
2507 /* Coredumps can quickly deplete all memory reserves */
2508 if ((current->flags & PF_DUMPCORE) &&
2509 !(gfp_mask & __GFP_NOFAIL))
2510 goto nopage;
2511 page = __alloc_pages_may_oom(gfp_mask, order,
2512 zonelist, high_zoneidx,
2513 nodemask, preferred_zone,
2514 migratetype);
2515 if (page)
2516 goto got_pg;
2518 if (!(gfp_mask & __GFP_NOFAIL)) {
2520 * The oom killer is not called for high-order
2521 * allocations that may fail, so if no progress
2522 * is being made, there are no other options and
2523 * retrying is unlikely to help.
2525 if (order > PAGE_ALLOC_COSTLY_ORDER)
2526 goto nopage;
2528 * The oom killer is not called for lowmem
2529 * allocations to prevent needlessly killing
2530 * innocent tasks.
2532 if (high_zoneidx < ZONE_NORMAL)
2533 goto nopage;
2536 goto restart;
2540 /* Check if we should retry the allocation */
2541 pages_reclaimed += did_some_progress;
2542 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2543 pages_reclaimed)) {
2544 /* Wait for some write requests to complete then retry */
2545 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2546 goto rebalance;
2547 } else {
2549 * High-order allocations do not necessarily loop after
2550 * direct reclaim and reclaim/compaction depends on compaction
2551 * being called after reclaim so call directly if necessary
2553 page = __alloc_pages_direct_compact(gfp_mask, order,
2554 zonelist, high_zoneidx,
2555 nodemask,
2556 alloc_flags, preferred_zone,
2557 migratetype, sync_migration,
2558 &contended_compaction,
2559 &deferred_compaction,
2560 &did_some_progress);
2561 if (page)
2562 goto got_pg;
2565 nopage:
2566 warn_alloc_failed(gfp_mask, order, NULL);
2567 return page;
2568 got_pg:
2569 if (kmemcheck_enabled)
2570 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2572 return page;
2576 * This is the 'heart' of the zoned buddy allocator.
2578 struct page *
2579 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2580 struct zonelist *zonelist, nodemask_t *nodemask)
2582 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2583 struct zone *preferred_zone;
2584 struct page *page = NULL;
2585 int migratetype = allocflags_to_migratetype(gfp_mask);
2586 unsigned int cpuset_mems_cookie;
2587 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2588 struct mem_cgroup *memcg = NULL;
2590 gfp_mask &= gfp_allowed_mask;
2592 lockdep_trace_alloc(gfp_mask);
2594 might_sleep_if(gfp_mask & __GFP_WAIT);
2596 if (should_fail_alloc_page(gfp_mask, order))
2597 return NULL;
2600 * Check the zones suitable for the gfp_mask contain at least one
2601 * valid zone. It's possible to have an empty zonelist as a result
2602 * of GFP_THISNODE and a memoryless node
2604 if (unlikely(!zonelist->_zonerefs->zone))
2605 return NULL;
2608 * Will only have any effect when __GFP_KMEMCG is set. This is
2609 * verified in the (always inline) callee
2611 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2612 return NULL;
2614 retry_cpuset:
2615 cpuset_mems_cookie = get_mems_allowed();
2617 /* The preferred zone is used for statistics later */
2618 first_zones_zonelist(zonelist, high_zoneidx,
2619 nodemask ? : &cpuset_current_mems_allowed,
2620 &preferred_zone);
2621 if (!preferred_zone)
2622 goto out;
2624 #ifdef CONFIG_CMA
2625 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2626 alloc_flags |= ALLOC_CMA;
2627 #endif
2628 /* First allocation attempt */
2629 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2630 zonelist, high_zoneidx, alloc_flags,
2631 preferred_zone, migratetype);
2632 if (unlikely(!page))
2633 page = __alloc_pages_slowpath(gfp_mask, order,
2634 zonelist, high_zoneidx, nodemask,
2635 preferred_zone, migratetype);
2637 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2639 out:
2641 * When updating a task's mems_allowed, it is possible to race with
2642 * parallel threads in such a way that an allocation can fail while
2643 * the mask is being updated. If a page allocation is about to fail,
2644 * check if the cpuset changed during allocation and if so, retry.
2646 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2647 goto retry_cpuset;
2649 memcg_kmem_commit_charge(page, memcg, order);
2651 return page;
2653 EXPORT_SYMBOL(__alloc_pages_nodemask);
2656 * Common helper functions.
2658 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2660 struct page *page;
2663 * __get_free_pages() returns a 32-bit address, which cannot represent
2664 * a highmem page
2666 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2668 page = alloc_pages(gfp_mask, order);
2669 if (!page)
2670 return 0;
2671 return (unsigned long) page_address(page);
2673 EXPORT_SYMBOL(__get_free_pages);
2675 unsigned long get_zeroed_page(gfp_t gfp_mask)
2677 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2679 EXPORT_SYMBOL(get_zeroed_page);
2681 void __free_pages(struct page *page, unsigned int order)
2683 if (put_page_testzero(page)) {
2684 if (order == 0)
2685 free_hot_cold_page(page, 0);
2686 else
2687 __free_pages_ok(page, order);
2691 EXPORT_SYMBOL(__free_pages);
2693 void free_pages(unsigned long addr, unsigned int order)
2695 if (addr != 0) {
2696 VM_BUG_ON(!virt_addr_valid((void *)addr));
2697 __free_pages(virt_to_page((void *)addr), order);
2701 EXPORT_SYMBOL(free_pages);
2704 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2705 * pages allocated with __GFP_KMEMCG.
2707 * Those pages are accounted to a particular memcg, embedded in the
2708 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2709 * for that information only to find out that it is NULL for users who have no
2710 * interest in that whatsoever, we provide these functions.
2712 * The caller knows better which flags it relies on.
2714 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2716 memcg_kmem_uncharge_pages(page, order);
2717 __free_pages(page, order);
2720 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2722 if (addr != 0) {
2723 VM_BUG_ON(!virt_addr_valid((void *)addr));
2724 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2728 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2730 if (addr) {
2731 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2732 unsigned long used = addr + PAGE_ALIGN(size);
2734 split_page(virt_to_page((void *)addr), order);
2735 while (used < alloc_end) {
2736 free_page(used);
2737 used += PAGE_SIZE;
2740 return (void *)addr;
2744 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2745 * @size: the number of bytes to allocate
2746 * @gfp_mask: GFP flags for the allocation
2748 * This function is similar to alloc_pages(), except that it allocates the
2749 * minimum number of pages to satisfy the request. alloc_pages() can only
2750 * allocate memory in power-of-two pages.
2752 * This function is also limited by MAX_ORDER.
2754 * Memory allocated by this function must be released by free_pages_exact().
2756 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2758 unsigned int order = get_order(size);
2759 unsigned long addr;
2761 addr = __get_free_pages(gfp_mask, order);
2762 return make_alloc_exact(addr, order, size);
2764 EXPORT_SYMBOL(alloc_pages_exact);
2767 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2768 * pages on a node.
2769 * @nid: the preferred node ID where memory should be allocated
2770 * @size: the number of bytes to allocate
2771 * @gfp_mask: GFP flags for the allocation
2773 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2774 * back.
2775 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2776 * but is not exact.
2778 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2780 unsigned order = get_order(size);
2781 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2782 if (!p)
2783 return NULL;
2784 return make_alloc_exact((unsigned long)page_address(p), order, size);
2786 EXPORT_SYMBOL(alloc_pages_exact_nid);
2789 * free_pages_exact - release memory allocated via alloc_pages_exact()
2790 * @virt: the value returned by alloc_pages_exact.
2791 * @size: size of allocation, same value as passed to alloc_pages_exact().
2793 * Release the memory allocated by a previous call to alloc_pages_exact.
2795 void free_pages_exact(void *virt, size_t size)
2797 unsigned long addr = (unsigned long)virt;
2798 unsigned long end = addr + PAGE_ALIGN(size);
2800 while (addr < end) {
2801 free_page(addr);
2802 addr += PAGE_SIZE;
2805 EXPORT_SYMBOL(free_pages_exact);
2807 static unsigned int nr_free_zone_pages(int offset)
2809 struct zoneref *z;
2810 struct zone *zone;
2812 /* Just pick one node, since fallback list is circular */
2813 unsigned int sum = 0;
2815 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2817 for_each_zone_zonelist(zone, z, zonelist, offset) {
2818 unsigned long size = zone->present_pages;
2819 unsigned long high = high_wmark_pages(zone);
2820 if (size > high)
2821 sum += size - high;
2824 return sum;
2828 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2830 unsigned int nr_free_buffer_pages(void)
2832 return nr_free_zone_pages(gfp_zone(GFP_USER));
2834 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2837 * Amount of free RAM allocatable within all zones
2839 unsigned int nr_free_pagecache_pages(void)
2841 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2844 static inline void show_node(struct zone *zone)
2846 if (IS_ENABLED(CONFIG_NUMA))
2847 printk("Node %d ", zone_to_nid(zone));
2850 void si_meminfo(struct sysinfo *val)
2852 val->totalram = totalram_pages;
2853 val->sharedram = 0;
2854 val->freeram = global_page_state(NR_FREE_PAGES);
2855 val->bufferram = nr_blockdev_pages();
2856 val->totalhigh = totalhigh_pages;
2857 val->freehigh = nr_free_highpages();
2858 val->mem_unit = PAGE_SIZE;
2861 EXPORT_SYMBOL(si_meminfo);
2863 #ifdef CONFIG_NUMA
2864 void si_meminfo_node(struct sysinfo *val, int nid)
2866 pg_data_t *pgdat = NODE_DATA(nid);
2868 val->totalram = pgdat->node_present_pages;
2869 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2870 #ifdef CONFIG_HIGHMEM
2871 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2872 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2873 NR_FREE_PAGES);
2874 #else
2875 val->totalhigh = 0;
2876 val->freehigh = 0;
2877 #endif
2878 val->mem_unit = PAGE_SIZE;
2880 #endif
2883 * Determine whether the node should be displayed or not, depending on whether
2884 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2886 bool skip_free_areas_node(unsigned int flags, int nid)
2888 bool ret = false;
2889 unsigned int cpuset_mems_cookie;
2891 if (!(flags & SHOW_MEM_FILTER_NODES))
2892 goto out;
2894 do {
2895 cpuset_mems_cookie = get_mems_allowed();
2896 ret = !node_isset(nid, cpuset_current_mems_allowed);
2897 } while (!put_mems_allowed(cpuset_mems_cookie));
2898 out:
2899 return ret;
2902 #define K(x) ((x) << (PAGE_SHIFT-10))
2904 static void show_migration_types(unsigned char type)
2906 static const char types[MIGRATE_TYPES] = {
2907 [MIGRATE_UNMOVABLE] = 'U',
2908 [MIGRATE_RECLAIMABLE] = 'E',
2909 [MIGRATE_MOVABLE] = 'M',
2910 [MIGRATE_RESERVE] = 'R',
2911 #ifdef CONFIG_CMA
2912 [MIGRATE_CMA] = 'C',
2913 #endif
2914 [MIGRATE_ISOLATE] = 'I',
2916 char tmp[MIGRATE_TYPES + 1];
2917 char *p = tmp;
2918 int i;
2920 for (i = 0; i < MIGRATE_TYPES; i++) {
2921 if (type & (1 << i))
2922 *p++ = types[i];
2925 *p = '\0';
2926 printk("(%s) ", tmp);
2930 * Show free area list (used inside shift_scroll-lock stuff)
2931 * We also calculate the percentage fragmentation. We do this by counting the
2932 * memory on each free list with the exception of the first item on the list.
2933 * Suppresses nodes that are not allowed by current's cpuset if
2934 * SHOW_MEM_FILTER_NODES is passed.
2936 void show_free_areas(unsigned int filter)
2938 int cpu;
2939 struct zone *zone;
2941 for_each_populated_zone(zone) {
2942 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2943 continue;
2944 show_node(zone);
2945 printk("%s per-cpu:\n", zone->name);
2947 for_each_online_cpu(cpu) {
2948 struct per_cpu_pageset *pageset;
2950 pageset = per_cpu_ptr(zone->pageset, cpu);
2952 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2953 cpu, pageset->pcp.high,
2954 pageset->pcp.batch, pageset->pcp.count);
2958 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2959 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2960 " unevictable:%lu"
2961 " dirty:%lu writeback:%lu unstable:%lu\n"
2962 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2963 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2964 " free_cma:%lu\n",
2965 global_page_state(NR_ACTIVE_ANON),
2966 global_page_state(NR_INACTIVE_ANON),
2967 global_page_state(NR_ISOLATED_ANON),
2968 global_page_state(NR_ACTIVE_FILE),
2969 global_page_state(NR_INACTIVE_FILE),
2970 global_page_state(NR_ISOLATED_FILE),
2971 global_page_state(NR_UNEVICTABLE),
2972 global_page_state(NR_FILE_DIRTY),
2973 global_page_state(NR_WRITEBACK),
2974 global_page_state(NR_UNSTABLE_NFS),
2975 global_page_state(NR_FREE_PAGES),
2976 global_page_state(NR_SLAB_RECLAIMABLE),
2977 global_page_state(NR_SLAB_UNRECLAIMABLE),
2978 global_page_state(NR_FILE_MAPPED),
2979 global_page_state(NR_SHMEM),
2980 global_page_state(NR_PAGETABLE),
2981 global_page_state(NR_BOUNCE),
2982 global_page_state(NR_FREE_CMA_PAGES));
2984 for_each_populated_zone(zone) {
2985 int i;
2987 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2988 continue;
2989 show_node(zone);
2990 printk("%s"
2991 " free:%lukB"
2992 " min:%lukB"
2993 " low:%lukB"
2994 " high:%lukB"
2995 " active_anon:%lukB"
2996 " inactive_anon:%lukB"
2997 " active_file:%lukB"
2998 " inactive_file:%lukB"
2999 " unevictable:%lukB"
3000 " isolated(anon):%lukB"
3001 " isolated(file):%lukB"
3002 " present:%lukB"
3003 " managed:%lukB"
3004 " mlocked:%lukB"
3005 " dirty:%lukB"
3006 " writeback:%lukB"
3007 " mapped:%lukB"
3008 " shmem:%lukB"
3009 " slab_reclaimable:%lukB"
3010 " slab_unreclaimable:%lukB"
3011 " kernel_stack:%lukB"
3012 " pagetables:%lukB"
3013 " unstable:%lukB"
3014 " bounce:%lukB"
3015 " free_cma:%lukB"
3016 " writeback_tmp:%lukB"
3017 " pages_scanned:%lu"
3018 " all_unreclaimable? %s"
3019 "\n",
3020 zone->name,
3021 K(zone_page_state(zone, NR_FREE_PAGES)),
3022 K(min_wmark_pages(zone)),
3023 K(low_wmark_pages(zone)),
3024 K(high_wmark_pages(zone)),
3025 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3026 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3027 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3028 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3029 K(zone_page_state(zone, NR_UNEVICTABLE)),
3030 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3031 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3032 K(zone->present_pages),
3033 K(zone->managed_pages),
3034 K(zone_page_state(zone, NR_MLOCK)),
3035 K(zone_page_state(zone, NR_FILE_DIRTY)),
3036 K(zone_page_state(zone, NR_WRITEBACK)),
3037 K(zone_page_state(zone, NR_FILE_MAPPED)),
3038 K(zone_page_state(zone, NR_SHMEM)),
3039 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3040 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3041 zone_page_state(zone, NR_KERNEL_STACK) *
3042 THREAD_SIZE / 1024,
3043 K(zone_page_state(zone, NR_PAGETABLE)),
3044 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3045 K(zone_page_state(zone, NR_BOUNCE)),
3046 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3047 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3048 zone->pages_scanned,
3049 (zone->all_unreclaimable ? "yes" : "no")
3051 printk("lowmem_reserve[]:");
3052 for (i = 0; i < MAX_NR_ZONES; i++)
3053 printk(" %lu", zone->lowmem_reserve[i]);
3054 printk("\n");
3057 for_each_populated_zone(zone) {
3058 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3059 unsigned char types[MAX_ORDER];
3061 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3062 continue;
3063 show_node(zone);
3064 printk("%s: ", zone->name);
3066 spin_lock_irqsave(&zone->lock, flags);
3067 for (order = 0; order < MAX_ORDER; order++) {
3068 struct free_area *area = &zone->free_area[order];
3069 int type;
3071 nr[order] = area->nr_free;
3072 total += nr[order] << order;
3074 types[order] = 0;
3075 for (type = 0; type < MIGRATE_TYPES; type++) {
3076 if (!list_empty(&area->free_list[type]))
3077 types[order] |= 1 << type;
3080 spin_unlock_irqrestore(&zone->lock, flags);
3081 for (order = 0; order < MAX_ORDER; order++) {
3082 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3083 if (nr[order])
3084 show_migration_types(types[order]);
3086 printk("= %lukB\n", K(total));
3089 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3091 show_swap_cache_info();
3094 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3096 zoneref->zone = zone;
3097 zoneref->zone_idx = zone_idx(zone);
3101 * Builds allocation fallback zone lists.
3103 * Add all populated zones of a node to the zonelist.
3105 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3106 int nr_zones, enum zone_type zone_type)
3108 struct zone *zone;
3110 BUG_ON(zone_type >= MAX_NR_ZONES);
3111 zone_type++;
3113 do {
3114 zone_type--;
3115 zone = pgdat->node_zones + zone_type;
3116 if (populated_zone(zone)) {
3117 zoneref_set_zone(zone,
3118 &zonelist->_zonerefs[nr_zones++]);
3119 check_highest_zone(zone_type);
3122 } while (zone_type);
3123 return nr_zones;
3128 * zonelist_order:
3129 * 0 = automatic detection of better ordering.
3130 * 1 = order by ([node] distance, -zonetype)
3131 * 2 = order by (-zonetype, [node] distance)
3133 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3134 * the same zonelist. So only NUMA can configure this param.
3136 #define ZONELIST_ORDER_DEFAULT 0
3137 #define ZONELIST_ORDER_NODE 1
3138 #define ZONELIST_ORDER_ZONE 2
3140 /* zonelist order in the kernel.
3141 * set_zonelist_order() will set this to NODE or ZONE.
3143 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3144 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3147 #ifdef CONFIG_NUMA
3148 /* The value user specified ....changed by config */
3149 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3150 /* string for sysctl */
3151 #define NUMA_ZONELIST_ORDER_LEN 16
3152 char numa_zonelist_order[16] = "default";
3155 * interface for configure zonelist ordering.
3156 * command line option "numa_zonelist_order"
3157 * = "[dD]efault - default, automatic configuration.
3158 * = "[nN]ode - order by node locality, then by zone within node
3159 * = "[zZ]one - order by zone, then by locality within zone
3162 static int __parse_numa_zonelist_order(char *s)
3164 if (*s == 'd' || *s == 'D') {
3165 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3166 } else if (*s == 'n' || *s == 'N') {
3167 user_zonelist_order = ZONELIST_ORDER_NODE;
3168 } else if (*s == 'z' || *s == 'Z') {
3169 user_zonelist_order = ZONELIST_ORDER_ZONE;
3170 } else {
3171 printk(KERN_WARNING
3172 "Ignoring invalid numa_zonelist_order value: "
3173 "%s\n", s);
3174 return -EINVAL;
3176 return 0;
3179 static __init int setup_numa_zonelist_order(char *s)
3181 int ret;
3183 if (!s)
3184 return 0;
3186 ret = __parse_numa_zonelist_order(s);
3187 if (ret == 0)
3188 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3190 return ret;
3192 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3195 * sysctl handler for numa_zonelist_order
3197 int numa_zonelist_order_handler(ctl_table *table, int write,
3198 void __user *buffer, size_t *length,
3199 loff_t *ppos)
3201 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3202 int ret;
3203 static DEFINE_MUTEX(zl_order_mutex);
3205 mutex_lock(&zl_order_mutex);
3206 if (write)
3207 strcpy(saved_string, (char*)table->data);
3208 ret = proc_dostring(table, write, buffer, length, ppos);
3209 if (ret)
3210 goto out;
3211 if (write) {
3212 int oldval = user_zonelist_order;
3213 if (__parse_numa_zonelist_order((char*)table->data)) {
3215 * bogus value. restore saved string
3217 strncpy((char*)table->data, saved_string,
3218 NUMA_ZONELIST_ORDER_LEN);
3219 user_zonelist_order = oldval;
3220 } else if (oldval != user_zonelist_order) {
3221 mutex_lock(&zonelists_mutex);
3222 build_all_zonelists(NULL, NULL);
3223 mutex_unlock(&zonelists_mutex);
3226 out:
3227 mutex_unlock(&zl_order_mutex);
3228 return ret;
3232 #define MAX_NODE_LOAD (nr_online_nodes)
3233 static int node_load[MAX_NUMNODES];
3236 * find_next_best_node - find the next node that should appear in a given node's fallback list
3237 * @node: node whose fallback list we're appending
3238 * @used_node_mask: nodemask_t of already used nodes
3240 * We use a number of factors to determine which is the next node that should
3241 * appear on a given node's fallback list. The node should not have appeared
3242 * already in @node's fallback list, and it should be the next closest node
3243 * according to the distance array (which contains arbitrary distance values
3244 * from each node to each node in the system), and should also prefer nodes
3245 * with no CPUs, since presumably they'll have very little allocation pressure
3246 * on them otherwise.
3247 * It returns -1 if no node is found.
3249 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3251 int n, val;
3252 int min_val = INT_MAX;
3253 int best_node = -1;
3254 const struct cpumask *tmp = cpumask_of_node(0);
3256 /* Use the local node if we haven't already */
3257 if (!node_isset(node, *used_node_mask)) {
3258 node_set(node, *used_node_mask);
3259 return node;
3262 for_each_node_state(n, N_MEMORY) {
3264 /* Don't want a node to appear more than once */
3265 if (node_isset(n, *used_node_mask))
3266 continue;
3268 /* Use the distance array to find the distance */
3269 val = node_distance(node, n);
3271 /* Penalize nodes under us ("prefer the next node") */
3272 val += (n < node);
3274 /* Give preference to headless and unused nodes */
3275 tmp = cpumask_of_node(n);
3276 if (!cpumask_empty(tmp))
3277 val += PENALTY_FOR_NODE_WITH_CPUS;
3279 /* Slight preference for less loaded node */
3280 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3281 val += node_load[n];
3283 if (val < min_val) {
3284 min_val = val;
3285 best_node = n;
3289 if (best_node >= 0)
3290 node_set(best_node, *used_node_mask);
3292 return best_node;
3297 * Build zonelists ordered by node and zones within node.
3298 * This results in maximum locality--normal zone overflows into local
3299 * DMA zone, if any--but risks exhausting DMA zone.
3301 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3303 int j;
3304 struct zonelist *zonelist;
3306 zonelist = &pgdat->node_zonelists[0];
3307 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3309 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3310 MAX_NR_ZONES - 1);
3311 zonelist->_zonerefs[j].zone = NULL;
3312 zonelist->_zonerefs[j].zone_idx = 0;
3316 * Build gfp_thisnode zonelists
3318 static void build_thisnode_zonelists(pg_data_t *pgdat)
3320 int j;
3321 struct zonelist *zonelist;
3323 zonelist = &pgdat->node_zonelists[1];
3324 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3325 zonelist->_zonerefs[j].zone = NULL;
3326 zonelist->_zonerefs[j].zone_idx = 0;
3330 * Build zonelists ordered by zone and nodes within zones.
3331 * This results in conserving DMA zone[s] until all Normal memory is
3332 * exhausted, but results in overflowing to remote node while memory
3333 * may still exist in local DMA zone.
3335 static int node_order[MAX_NUMNODES];
3337 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3339 int pos, j, node;
3340 int zone_type; /* needs to be signed */
3341 struct zone *z;
3342 struct zonelist *zonelist;
3344 zonelist = &pgdat->node_zonelists[0];
3345 pos = 0;
3346 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3347 for (j = 0; j < nr_nodes; j++) {
3348 node = node_order[j];
3349 z = &NODE_DATA(node)->node_zones[zone_type];
3350 if (populated_zone(z)) {
3351 zoneref_set_zone(z,
3352 &zonelist->_zonerefs[pos++]);
3353 check_highest_zone(zone_type);
3357 zonelist->_zonerefs[pos].zone = NULL;
3358 zonelist->_zonerefs[pos].zone_idx = 0;
3361 static int default_zonelist_order(void)
3363 int nid, zone_type;
3364 unsigned long low_kmem_size,total_size;
3365 struct zone *z;
3366 int average_size;
3368 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3369 * If they are really small and used heavily, the system can fall
3370 * into OOM very easily.
3371 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3373 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3374 low_kmem_size = 0;
3375 total_size = 0;
3376 for_each_online_node(nid) {
3377 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3378 z = &NODE_DATA(nid)->node_zones[zone_type];
3379 if (populated_zone(z)) {
3380 if (zone_type < ZONE_NORMAL)
3381 low_kmem_size += z->present_pages;
3382 total_size += z->present_pages;
3383 } else if (zone_type == ZONE_NORMAL) {
3385 * If any node has only lowmem, then node order
3386 * is preferred to allow kernel allocations
3387 * locally; otherwise, they can easily infringe
3388 * on other nodes when there is an abundance of
3389 * lowmem available to allocate from.
3391 return ZONELIST_ORDER_NODE;
3395 if (!low_kmem_size || /* there are no DMA area. */
3396 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3397 return ZONELIST_ORDER_NODE;
3399 * look into each node's config.
3400 * If there is a node whose DMA/DMA32 memory is very big area on
3401 * local memory, NODE_ORDER may be suitable.
3403 average_size = total_size /
3404 (nodes_weight(node_states[N_MEMORY]) + 1);
3405 for_each_online_node(nid) {
3406 low_kmem_size = 0;
3407 total_size = 0;
3408 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3409 z = &NODE_DATA(nid)->node_zones[zone_type];
3410 if (populated_zone(z)) {
3411 if (zone_type < ZONE_NORMAL)
3412 low_kmem_size += z->present_pages;
3413 total_size += z->present_pages;
3416 if (low_kmem_size &&
3417 total_size > average_size && /* ignore small node */
3418 low_kmem_size > total_size * 70/100)
3419 return ZONELIST_ORDER_NODE;
3421 return ZONELIST_ORDER_ZONE;
3424 static void set_zonelist_order(void)
3426 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3427 current_zonelist_order = default_zonelist_order();
3428 else
3429 current_zonelist_order = user_zonelist_order;
3432 static void build_zonelists(pg_data_t *pgdat)
3434 int j, node, load;
3435 enum zone_type i;
3436 nodemask_t used_mask;
3437 int local_node, prev_node;
3438 struct zonelist *zonelist;
3439 int order = current_zonelist_order;
3441 /* initialize zonelists */
3442 for (i = 0; i < MAX_ZONELISTS; i++) {
3443 zonelist = pgdat->node_zonelists + i;
3444 zonelist->_zonerefs[0].zone = NULL;
3445 zonelist->_zonerefs[0].zone_idx = 0;
3448 /* NUMA-aware ordering of nodes */
3449 local_node = pgdat->node_id;
3450 load = nr_online_nodes;
3451 prev_node = local_node;
3452 nodes_clear(used_mask);
3454 memset(node_order, 0, sizeof(node_order));
3455 j = 0;
3457 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3459 * We don't want to pressure a particular node.
3460 * So adding penalty to the first node in same
3461 * distance group to make it round-robin.
3463 if (node_distance(local_node, node) !=
3464 node_distance(local_node, prev_node))
3465 node_load[node] = load;
3467 prev_node = node;
3468 load--;
3469 if (order == ZONELIST_ORDER_NODE)
3470 build_zonelists_in_node_order(pgdat, node);
3471 else
3472 node_order[j++] = node; /* remember order */
3475 if (order == ZONELIST_ORDER_ZONE) {
3476 /* calculate node order -- i.e., DMA last! */
3477 build_zonelists_in_zone_order(pgdat, j);
3480 build_thisnode_zonelists(pgdat);
3483 /* Construct the zonelist performance cache - see further mmzone.h */
3484 static void build_zonelist_cache(pg_data_t *pgdat)
3486 struct zonelist *zonelist;
3487 struct zonelist_cache *zlc;
3488 struct zoneref *z;
3490 zonelist = &pgdat->node_zonelists[0];
3491 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3492 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3493 for (z = zonelist->_zonerefs; z->zone; z++)
3494 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3497 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3499 * Return node id of node used for "local" allocations.
3500 * I.e., first node id of first zone in arg node's generic zonelist.
3501 * Used for initializing percpu 'numa_mem', which is used primarily
3502 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3504 int local_memory_node(int node)
3506 struct zone *zone;
3508 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3509 gfp_zone(GFP_KERNEL),
3510 NULL,
3511 &zone);
3512 return zone->node;
3514 #endif
3516 #else /* CONFIG_NUMA */
3518 static void set_zonelist_order(void)
3520 current_zonelist_order = ZONELIST_ORDER_ZONE;
3523 static void build_zonelists(pg_data_t *pgdat)
3525 int node, local_node;
3526 enum zone_type j;
3527 struct zonelist *zonelist;
3529 local_node = pgdat->node_id;
3531 zonelist = &pgdat->node_zonelists[0];
3532 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3535 * Now we build the zonelist so that it contains the zones
3536 * of all the other nodes.
3537 * We don't want to pressure a particular node, so when
3538 * building the zones for node N, we make sure that the
3539 * zones coming right after the local ones are those from
3540 * node N+1 (modulo N)
3542 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3543 if (!node_online(node))
3544 continue;
3545 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3546 MAX_NR_ZONES - 1);
3548 for (node = 0; node < local_node; node++) {
3549 if (!node_online(node))
3550 continue;
3551 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3552 MAX_NR_ZONES - 1);
3555 zonelist->_zonerefs[j].zone = NULL;
3556 zonelist->_zonerefs[j].zone_idx = 0;
3559 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3560 static void build_zonelist_cache(pg_data_t *pgdat)
3562 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3565 #endif /* CONFIG_NUMA */
3568 * Boot pageset table. One per cpu which is going to be used for all
3569 * zones and all nodes. The parameters will be set in such a way
3570 * that an item put on a list will immediately be handed over to
3571 * the buddy list. This is safe since pageset manipulation is done
3572 * with interrupts disabled.
3574 * The boot_pagesets must be kept even after bootup is complete for
3575 * unused processors and/or zones. They do play a role for bootstrapping
3576 * hotplugged processors.
3578 * zoneinfo_show() and maybe other functions do
3579 * not check if the processor is online before following the pageset pointer.
3580 * Other parts of the kernel may not check if the zone is available.
3582 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3583 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3584 static void setup_zone_pageset(struct zone *zone);
3587 * Global mutex to protect against size modification of zonelists
3588 * as well as to serialize pageset setup for the new populated zone.
3590 DEFINE_MUTEX(zonelists_mutex);
3592 /* return values int ....just for stop_machine() */
3593 static int __build_all_zonelists(void *data)
3595 int nid;
3596 int cpu;
3597 pg_data_t *self = data;
3599 #ifdef CONFIG_NUMA
3600 memset(node_load, 0, sizeof(node_load));
3601 #endif
3603 if (self && !node_online(self->node_id)) {
3604 build_zonelists(self);
3605 build_zonelist_cache(self);
3608 for_each_online_node(nid) {
3609 pg_data_t *pgdat = NODE_DATA(nid);
3611 build_zonelists(pgdat);
3612 build_zonelist_cache(pgdat);
3616 * Initialize the boot_pagesets that are going to be used
3617 * for bootstrapping processors. The real pagesets for
3618 * each zone will be allocated later when the per cpu
3619 * allocator is available.
3621 * boot_pagesets are used also for bootstrapping offline
3622 * cpus if the system is already booted because the pagesets
3623 * are needed to initialize allocators on a specific cpu too.
3624 * F.e. the percpu allocator needs the page allocator which
3625 * needs the percpu allocator in order to allocate its pagesets
3626 * (a chicken-egg dilemma).
3628 for_each_possible_cpu(cpu) {
3629 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3631 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3633 * We now know the "local memory node" for each node--
3634 * i.e., the node of the first zone in the generic zonelist.
3635 * Set up numa_mem percpu variable for on-line cpus. During
3636 * boot, only the boot cpu should be on-line; we'll init the
3637 * secondary cpus' numa_mem as they come on-line. During
3638 * node/memory hotplug, we'll fixup all on-line cpus.
3640 if (cpu_online(cpu))
3641 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3642 #endif
3645 return 0;
3649 * Called with zonelists_mutex held always
3650 * unless system_state == SYSTEM_BOOTING.
3652 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3654 set_zonelist_order();
3656 if (system_state == SYSTEM_BOOTING) {
3657 __build_all_zonelists(NULL);
3658 mminit_verify_zonelist();
3659 cpuset_init_current_mems_allowed();
3660 } else {
3661 /* we have to stop all cpus to guarantee there is no user
3662 of zonelist */
3663 #ifdef CONFIG_MEMORY_HOTPLUG
3664 if (zone)
3665 setup_zone_pageset(zone);
3666 #endif
3667 stop_machine(__build_all_zonelists, pgdat, NULL);
3668 /* cpuset refresh routine should be here */
3670 vm_total_pages = nr_free_pagecache_pages();
3672 * Disable grouping by mobility if the number of pages in the
3673 * system is too low to allow the mechanism to work. It would be
3674 * more accurate, but expensive to check per-zone. This check is
3675 * made on memory-hotadd so a system can start with mobility
3676 * disabled and enable it later
3678 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3679 page_group_by_mobility_disabled = 1;
3680 else
3681 page_group_by_mobility_disabled = 0;
3683 printk("Built %i zonelists in %s order, mobility grouping %s. "
3684 "Total pages: %ld\n",
3685 nr_online_nodes,
3686 zonelist_order_name[current_zonelist_order],
3687 page_group_by_mobility_disabled ? "off" : "on",
3688 vm_total_pages);
3689 #ifdef CONFIG_NUMA
3690 printk("Policy zone: %s\n", zone_names[policy_zone]);
3691 #endif
3695 * Helper functions to size the waitqueue hash table.
3696 * Essentially these want to choose hash table sizes sufficiently
3697 * large so that collisions trying to wait on pages are rare.
3698 * But in fact, the number of active page waitqueues on typical
3699 * systems is ridiculously low, less than 200. So this is even
3700 * conservative, even though it seems large.
3702 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3703 * waitqueues, i.e. the size of the waitq table given the number of pages.
3705 #define PAGES_PER_WAITQUEUE 256
3707 #ifndef CONFIG_MEMORY_HOTPLUG
3708 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3710 unsigned long size = 1;
3712 pages /= PAGES_PER_WAITQUEUE;
3714 while (size < pages)
3715 size <<= 1;
3718 * Once we have dozens or even hundreds of threads sleeping
3719 * on IO we've got bigger problems than wait queue collision.
3720 * Limit the size of the wait table to a reasonable size.
3722 size = min(size, 4096UL);
3724 return max(size, 4UL);
3726 #else
3728 * A zone's size might be changed by hot-add, so it is not possible to determine
3729 * a suitable size for its wait_table. So we use the maximum size now.
3731 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3733 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3734 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3735 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3737 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3738 * or more by the traditional way. (See above). It equals:
3740 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3741 * ia64(16K page size) : = ( 8G + 4M)byte.
3742 * powerpc (64K page size) : = (32G +16M)byte.
3744 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3746 return 4096UL;
3748 #endif
3751 * This is an integer logarithm so that shifts can be used later
3752 * to extract the more random high bits from the multiplicative
3753 * hash function before the remainder is taken.
3755 static inline unsigned long wait_table_bits(unsigned long size)
3757 return ffz(~size);
3760 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3763 * Check if a pageblock contains reserved pages
3765 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3767 unsigned long pfn;
3769 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3770 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3771 return 1;
3773 return 0;
3777 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3778 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3779 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3780 * higher will lead to a bigger reserve which will get freed as contiguous
3781 * blocks as reclaim kicks in
3783 static void setup_zone_migrate_reserve(struct zone *zone)
3785 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3786 struct page *page;
3787 unsigned long block_migratetype;
3788 int reserve;
3791 * Get the start pfn, end pfn and the number of blocks to reserve
3792 * We have to be careful to be aligned to pageblock_nr_pages to
3793 * make sure that we always check pfn_valid for the first page in
3794 * the block.
3796 start_pfn = zone->zone_start_pfn;
3797 end_pfn = start_pfn + zone->spanned_pages;
3798 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3799 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3800 pageblock_order;
3803 * Reserve blocks are generally in place to help high-order atomic
3804 * allocations that are short-lived. A min_free_kbytes value that
3805 * would result in more than 2 reserve blocks for atomic allocations
3806 * is assumed to be in place to help anti-fragmentation for the
3807 * future allocation of hugepages at runtime.
3809 reserve = min(2, reserve);
3811 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3812 if (!pfn_valid(pfn))
3813 continue;
3814 page = pfn_to_page(pfn);
3816 /* Watch out for overlapping nodes */
3817 if (page_to_nid(page) != zone_to_nid(zone))
3818 continue;
3820 block_migratetype = get_pageblock_migratetype(page);
3822 /* Only test what is necessary when the reserves are not met */
3823 if (reserve > 0) {
3825 * Blocks with reserved pages will never free, skip
3826 * them.
3828 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3829 if (pageblock_is_reserved(pfn, block_end_pfn))
3830 continue;
3832 /* If this block is reserved, account for it */
3833 if (block_migratetype == MIGRATE_RESERVE) {
3834 reserve--;
3835 continue;
3838 /* Suitable for reserving if this block is movable */
3839 if (block_migratetype == MIGRATE_MOVABLE) {
3840 set_pageblock_migratetype(page,
3841 MIGRATE_RESERVE);
3842 move_freepages_block(zone, page,
3843 MIGRATE_RESERVE);
3844 reserve--;
3845 continue;
3850 * If the reserve is met and this is a previous reserved block,
3851 * take it back
3853 if (block_migratetype == MIGRATE_RESERVE) {
3854 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3855 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3861 * Initially all pages are reserved - free ones are freed
3862 * up by free_all_bootmem() once the early boot process is
3863 * done. Non-atomic initialization, single-pass.
3865 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3866 unsigned long start_pfn, enum memmap_context context)
3868 struct page *page;
3869 unsigned long end_pfn = start_pfn + size;
3870 unsigned long pfn;
3871 struct zone *z;
3873 if (highest_memmap_pfn < end_pfn - 1)
3874 highest_memmap_pfn = end_pfn - 1;
3876 z = &NODE_DATA(nid)->node_zones[zone];
3877 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3879 * There can be holes in boot-time mem_map[]s
3880 * handed to this function. They do not
3881 * exist on hotplugged memory.
3883 if (context == MEMMAP_EARLY) {
3884 if (!early_pfn_valid(pfn))
3885 continue;
3886 if (!early_pfn_in_nid(pfn, nid))
3887 continue;
3889 page = pfn_to_page(pfn);
3890 set_page_links(page, zone, nid, pfn);
3891 mminit_verify_page_links(page, zone, nid, pfn);
3892 init_page_count(page);
3893 reset_page_mapcount(page);
3894 reset_page_last_nid(page);
3895 SetPageReserved(page);
3897 * Mark the block movable so that blocks are reserved for
3898 * movable at startup. This will force kernel allocations
3899 * to reserve their blocks rather than leaking throughout
3900 * the address space during boot when many long-lived
3901 * kernel allocations are made. Later some blocks near
3902 * the start are marked MIGRATE_RESERVE by
3903 * setup_zone_migrate_reserve()
3905 * bitmap is created for zone's valid pfn range. but memmap
3906 * can be created for invalid pages (for alignment)
3907 * check here not to call set_pageblock_migratetype() against
3908 * pfn out of zone.
3910 if ((z->zone_start_pfn <= pfn)
3911 && (pfn < z->zone_start_pfn + z->spanned_pages)
3912 && !(pfn & (pageblock_nr_pages - 1)))
3913 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3915 INIT_LIST_HEAD(&page->lru);
3916 #ifdef WANT_PAGE_VIRTUAL
3917 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3918 if (!is_highmem_idx(zone))
3919 set_page_address(page, __va(pfn << PAGE_SHIFT));
3920 #endif
3924 static void __meminit zone_init_free_lists(struct zone *zone)
3926 int order, t;
3927 for_each_migratetype_order(order, t) {
3928 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3929 zone->free_area[order].nr_free = 0;
3933 #ifndef __HAVE_ARCH_MEMMAP_INIT
3934 #define memmap_init(size, nid, zone, start_pfn) \
3935 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3936 #endif
3938 static int __meminit zone_batchsize(struct zone *zone)
3940 #ifdef CONFIG_MMU
3941 int batch;
3944 * The per-cpu-pages pools are set to around 1000th of the
3945 * size of the zone. But no more than 1/2 of a meg.
3947 * OK, so we don't know how big the cache is. So guess.
3949 batch = zone->present_pages / 1024;
3950 if (batch * PAGE_SIZE > 512 * 1024)
3951 batch = (512 * 1024) / PAGE_SIZE;
3952 batch /= 4; /* We effectively *= 4 below */
3953 if (batch < 1)
3954 batch = 1;
3957 * Clamp the batch to a 2^n - 1 value. Having a power
3958 * of 2 value was found to be more likely to have
3959 * suboptimal cache aliasing properties in some cases.
3961 * For example if 2 tasks are alternately allocating
3962 * batches of pages, one task can end up with a lot
3963 * of pages of one half of the possible page colors
3964 * and the other with pages of the other colors.
3966 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3968 return batch;
3970 #else
3971 /* The deferral and batching of frees should be suppressed under NOMMU
3972 * conditions.
3974 * The problem is that NOMMU needs to be able to allocate large chunks
3975 * of contiguous memory as there's no hardware page translation to
3976 * assemble apparent contiguous memory from discontiguous pages.
3978 * Queueing large contiguous runs of pages for batching, however,
3979 * causes the pages to actually be freed in smaller chunks. As there
3980 * can be a significant delay between the individual batches being
3981 * recycled, this leads to the once large chunks of space being
3982 * fragmented and becoming unavailable for high-order allocations.
3984 return 0;
3985 #endif
3988 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3990 struct per_cpu_pages *pcp;
3991 int migratetype;
3993 memset(p, 0, sizeof(*p));
3995 pcp = &p->pcp;
3996 pcp->count = 0;
3997 pcp->high = 6 * batch;
3998 pcp->batch = max(1UL, 1 * batch);
3999 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4000 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4004 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4005 * to the value high for the pageset p.
4008 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4009 unsigned long high)
4011 struct per_cpu_pages *pcp;
4013 pcp = &p->pcp;
4014 pcp->high = high;
4015 pcp->batch = max(1UL, high/4);
4016 if ((high/4) > (PAGE_SHIFT * 8))
4017 pcp->batch = PAGE_SHIFT * 8;
4020 static void __meminit setup_zone_pageset(struct zone *zone)
4022 int cpu;
4024 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4026 for_each_possible_cpu(cpu) {
4027 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4029 setup_pageset(pcp, zone_batchsize(zone));
4031 if (percpu_pagelist_fraction)
4032 setup_pagelist_highmark(pcp,
4033 (zone->present_pages /
4034 percpu_pagelist_fraction));
4039 * Allocate per cpu pagesets and initialize them.
4040 * Before this call only boot pagesets were available.
4042 void __init setup_per_cpu_pageset(void)
4044 struct zone *zone;
4046 for_each_populated_zone(zone)
4047 setup_zone_pageset(zone);
4050 static noinline __init_refok
4051 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4053 int i;
4054 struct pglist_data *pgdat = zone->zone_pgdat;
4055 size_t alloc_size;
4058 * The per-page waitqueue mechanism uses hashed waitqueues
4059 * per zone.
4061 zone->wait_table_hash_nr_entries =
4062 wait_table_hash_nr_entries(zone_size_pages);
4063 zone->wait_table_bits =
4064 wait_table_bits(zone->wait_table_hash_nr_entries);
4065 alloc_size = zone->wait_table_hash_nr_entries
4066 * sizeof(wait_queue_head_t);
4068 if (!slab_is_available()) {
4069 zone->wait_table = (wait_queue_head_t *)
4070 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4071 } else {
4073 * This case means that a zone whose size was 0 gets new memory
4074 * via memory hot-add.
4075 * But it may be the case that a new node was hot-added. In
4076 * this case vmalloc() will not be able to use this new node's
4077 * memory - this wait_table must be initialized to use this new
4078 * node itself as well.
4079 * To use this new node's memory, further consideration will be
4080 * necessary.
4082 zone->wait_table = vmalloc(alloc_size);
4084 if (!zone->wait_table)
4085 return -ENOMEM;
4087 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4088 init_waitqueue_head(zone->wait_table + i);
4090 return 0;
4093 static __meminit void zone_pcp_init(struct zone *zone)
4096 * per cpu subsystem is not up at this point. The following code
4097 * relies on the ability of the linker to provide the
4098 * offset of a (static) per cpu variable into the per cpu area.
4100 zone->pageset = &boot_pageset;
4102 if (zone->present_pages)
4103 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4104 zone->name, zone->present_pages,
4105 zone_batchsize(zone));
4108 int __meminit init_currently_empty_zone(struct zone *zone,
4109 unsigned long zone_start_pfn,
4110 unsigned long size,
4111 enum memmap_context context)
4113 struct pglist_data *pgdat = zone->zone_pgdat;
4114 int ret;
4115 ret = zone_wait_table_init(zone, size);
4116 if (ret)
4117 return ret;
4118 pgdat->nr_zones = zone_idx(zone) + 1;
4120 zone->zone_start_pfn = zone_start_pfn;
4122 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4123 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4124 pgdat->node_id,
4125 (unsigned long)zone_idx(zone),
4126 zone_start_pfn, (zone_start_pfn + size));
4128 zone_init_free_lists(zone);
4130 return 0;
4133 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4134 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4136 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4137 * Architectures may implement their own version but if add_active_range()
4138 * was used and there are no special requirements, this is a convenient
4139 * alternative
4141 int __meminit __early_pfn_to_nid(unsigned long pfn)
4143 unsigned long start_pfn, end_pfn;
4144 int i, nid;
4146 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4147 if (start_pfn <= pfn && pfn < end_pfn)
4148 return nid;
4149 /* This is a memory hole */
4150 return -1;
4152 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4154 int __meminit early_pfn_to_nid(unsigned long pfn)
4156 int nid;
4158 nid = __early_pfn_to_nid(pfn);
4159 if (nid >= 0)
4160 return nid;
4161 /* just returns 0 */
4162 return 0;
4165 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4166 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4168 int nid;
4170 nid = __early_pfn_to_nid(pfn);
4171 if (nid >= 0 && nid != node)
4172 return false;
4173 return true;
4175 #endif
4178 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4179 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4180 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4182 * If an architecture guarantees that all ranges registered with
4183 * add_active_ranges() contain no holes and may be freed, this
4184 * this function may be used instead of calling free_bootmem() manually.
4186 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4188 unsigned long start_pfn, end_pfn;
4189 int i, this_nid;
4191 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4192 start_pfn = min(start_pfn, max_low_pfn);
4193 end_pfn = min(end_pfn, max_low_pfn);
4195 if (start_pfn < end_pfn)
4196 free_bootmem_node(NODE_DATA(this_nid),
4197 PFN_PHYS(start_pfn),
4198 (end_pfn - start_pfn) << PAGE_SHIFT);
4203 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4204 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4206 * If an architecture guarantees that all ranges registered with
4207 * add_active_ranges() contain no holes and may be freed, this
4208 * function may be used instead of calling memory_present() manually.
4210 void __init sparse_memory_present_with_active_regions(int nid)
4212 unsigned long start_pfn, end_pfn;
4213 int i, this_nid;
4215 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4216 memory_present(this_nid, start_pfn, end_pfn);
4220 * get_pfn_range_for_nid - Return the start and end page frames for a node
4221 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4222 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4223 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4225 * It returns the start and end page frame of a node based on information
4226 * provided by an arch calling add_active_range(). If called for a node
4227 * with no available memory, a warning is printed and the start and end
4228 * PFNs will be 0.
4230 void __meminit get_pfn_range_for_nid(unsigned int nid,
4231 unsigned long *start_pfn, unsigned long *end_pfn)
4233 unsigned long this_start_pfn, this_end_pfn;
4234 int i;
4236 *start_pfn = -1UL;
4237 *end_pfn = 0;
4239 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4240 *start_pfn = min(*start_pfn, this_start_pfn);
4241 *end_pfn = max(*end_pfn, this_end_pfn);
4244 if (*start_pfn == -1UL)
4245 *start_pfn = 0;
4249 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4250 * assumption is made that zones within a node are ordered in monotonic
4251 * increasing memory addresses so that the "highest" populated zone is used
4253 static void __init find_usable_zone_for_movable(void)
4255 int zone_index;
4256 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4257 if (zone_index == ZONE_MOVABLE)
4258 continue;
4260 if (arch_zone_highest_possible_pfn[zone_index] >
4261 arch_zone_lowest_possible_pfn[zone_index])
4262 break;
4265 VM_BUG_ON(zone_index == -1);
4266 movable_zone = zone_index;
4270 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4271 * because it is sized independent of architecture. Unlike the other zones,
4272 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4273 * in each node depending on the size of each node and how evenly kernelcore
4274 * is distributed. This helper function adjusts the zone ranges
4275 * provided by the architecture for a given node by using the end of the
4276 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4277 * zones within a node are in order of monotonic increases memory addresses
4279 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4280 unsigned long zone_type,
4281 unsigned long node_start_pfn,
4282 unsigned long node_end_pfn,
4283 unsigned long *zone_start_pfn,
4284 unsigned long *zone_end_pfn)
4286 /* Only adjust if ZONE_MOVABLE is on this node */
4287 if (zone_movable_pfn[nid]) {
4288 /* Size ZONE_MOVABLE */
4289 if (zone_type == ZONE_MOVABLE) {
4290 *zone_start_pfn = zone_movable_pfn[nid];
4291 *zone_end_pfn = min(node_end_pfn,
4292 arch_zone_highest_possible_pfn[movable_zone]);
4294 /* Adjust for ZONE_MOVABLE starting within this range */
4295 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4296 *zone_end_pfn > zone_movable_pfn[nid]) {
4297 *zone_end_pfn = zone_movable_pfn[nid];
4299 /* Check if this whole range is within ZONE_MOVABLE */
4300 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4301 *zone_start_pfn = *zone_end_pfn;
4306 * Return the number of pages a zone spans in a node, including holes
4307 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4309 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4310 unsigned long zone_type,
4311 unsigned long *ignored)
4313 unsigned long node_start_pfn, node_end_pfn;
4314 unsigned long zone_start_pfn, zone_end_pfn;
4316 /* Get the start and end of the node and zone */
4317 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4318 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4319 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4320 adjust_zone_range_for_zone_movable(nid, zone_type,
4321 node_start_pfn, node_end_pfn,
4322 &zone_start_pfn, &zone_end_pfn);
4324 /* Check that this node has pages within the zone's required range */
4325 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4326 return 0;
4328 /* Move the zone boundaries inside the node if necessary */
4329 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4330 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4332 /* Return the spanned pages */
4333 return zone_end_pfn - zone_start_pfn;
4337 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4338 * then all holes in the requested range will be accounted for.
4340 unsigned long __meminit __absent_pages_in_range(int nid,
4341 unsigned long range_start_pfn,
4342 unsigned long range_end_pfn)
4344 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4345 unsigned long start_pfn, end_pfn;
4346 int i;
4348 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4349 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4350 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4351 nr_absent -= end_pfn - start_pfn;
4353 return nr_absent;
4357 * absent_pages_in_range - Return number of page frames in holes within a range
4358 * @start_pfn: The start PFN to start searching for holes
4359 * @end_pfn: The end PFN to stop searching for holes
4361 * It returns the number of pages frames in memory holes within a range.
4363 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4364 unsigned long end_pfn)
4366 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4369 /* Return the number of page frames in holes in a zone on a node */
4370 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4371 unsigned long zone_type,
4372 unsigned long *ignored)
4374 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4375 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4376 unsigned long node_start_pfn, node_end_pfn;
4377 unsigned long zone_start_pfn, zone_end_pfn;
4379 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4380 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4381 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4383 adjust_zone_range_for_zone_movable(nid, zone_type,
4384 node_start_pfn, node_end_pfn,
4385 &zone_start_pfn, &zone_end_pfn);
4386 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4389 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4390 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4391 unsigned long zone_type,
4392 unsigned long *zones_size)
4394 return zones_size[zone_type];
4397 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4398 unsigned long zone_type,
4399 unsigned long *zholes_size)
4401 if (!zholes_size)
4402 return 0;
4404 return zholes_size[zone_type];
4407 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4409 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4410 unsigned long *zones_size, unsigned long *zholes_size)
4412 unsigned long realtotalpages, totalpages = 0;
4413 enum zone_type i;
4415 for (i = 0; i < MAX_NR_ZONES; i++)
4416 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4417 zones_size);
4418 pgdat->node_spanned_pages = totalpages;
4420 realtotalpages = totalpages;
4421 for (i = 0; i < MAX_NR_ZONES; i++)
4422 realtotalpages -=
4423 zone_absent_pages_in_node(pgdat->node_id, i,
4424 zholes_size);
4425 pgdat->node_present_pages = realtotalpages;
4426 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4427 realtotalpages);
4430 #ifndef CONFIG_SPARSEMEM
4432 * Calculate the size of the zone->blockflags rounded to an unsigned long
4433 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4434 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4435 * round what is now in bits to nearest long in bits, then return it in
4436 * bytes.
4438 static unsigned long __init usemap_size(unsigned long zonesize)
4440 unsigned long usemapsize;
4442 usemapsize = roundup(zonesize, pageblock_nr_pages);
4443 usemapsize = usemapsize >> pageblock_order;
4444 usemapsize *= NR_PAGEBLOCK_BITS;
4445 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4447 return usemapsize / 8;
4450 static void __init setup_usemap(struct pglist_data *pgdat,
4451 struct zone *zone, unsigned long zonesize)
4453 unsigned long usemapsize = usemap_size(zonesize);
4454 zone->pageblock_flags = NULL;
4455 if (usemapsize)
4456 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4457 usemapsize);
4459 #else
4460 static inline void setup_usemap(struct pglist_data *pgdat,
4461 struct zone *zone, unsigned long zonesize) {}
4462 #endif /* CONFIG_SPARSEMEM */
4464 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4466 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4467 void __init set_pageblock_order(void)
4469 unsigned int order;
4471 /* Check that pageblock_nr_pages has not already been setup */
4472 if (pageblock_order)
4473 return;
4475 if (HPAGE_SHIFT > PAGE_SHIFT)
4476 order = HUGETLB_PAGE_ORDER;
4477 else
4478 order = MAX_ORDER - 1;
4481 * Assume the largest contiguous order of interest is a huge page.
4482 * This value may be variable depending on boot parameters on IA64 and
4483 * powerpc.
4485 pageblock_order = order;
4487 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4490 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4491 * is unused as pageblock_order is set at compile-time. See
4492 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4493 * the kernel config
4495 void __init set_pageblock_order(void)
4499 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4501 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4502 unsigned long present_pages)
4504 unsigned long pages = spanned_pages;
4507 * Provide a more accurate estimation if there are holes within
4508 * the zone and SPARSEMEM is in use. If there are holes within the
4509 * zone, each populated memory region may cost us one or two extra
4510 * memmap pages due to alignment because memmap pages for each
4511 * populated regions may not naturally algined on page boundary.
4512 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4514 if (spanned_pages > present_pages + (present_pages >> 4) &&
4515 IS_ENABLED(CONFIG_SPARSEMEM))
4516 pages = present_pages;
4518 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4522 * Set up the zone data structures:
4523 * - mark all pages reserved
4524 * - mark all memory queues empty
4525 * - clear the memory bitmaps
4527 * NOTE: pgdat should get zeroed by caller.
4529 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4530 unsigned long *zones_size, unsigned long *zholes_size)
4532 enum zone_type j;
4533 int nid = pgdat->node_id;
4534 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4535 int ret;
4537 pgdat_resize_init(pgdat);
4538 #ifdef CONFIG_NUMA_BALANCING
4539 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4540 pgdat->numabalancing_migrate_nr_pages = 0;
4541 pgdat->numabalancing_migrate_next_window = jiffies;
4542 #endif
4543 init_waitqueue_head(&pgdat->kswapd_wait);
4544 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4545 pgdat_page_cgroup_init(pgdat);
4547 for (j = 0; j < MAX_NR_ZONES; j++) {
4548 struct zone *zone = pgdat->node_zones + j;
4549 unsigned long size, realsize, freesize, memmap_pages;
4551 size = zone_spanned_pages_in_node(nid, j, zones_size);
4552 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4553 zholes_size);
4556 * Adjust freesize so that it accounts for how much memory
4557 * is used by this zone for memmap. This affects the watermark
4558 * and per-cpu initialisations
4560 memmap_pages = calc_memmap_size(size, realsize);
4561 if (freesize >= memmap_pages) {
4562 freesize -= memmap_pages;
4563 if (memmap_pages)
4564 printk(KERN_DEBUG
4565 " %s zone: %lu pages used for memmap\n",
4566 zone_names[j], memmap_pages);
4567 } else
4568 printk(KERN_WARNING
4569 " %s zone: %lu pages exceeds freesize %lu\n",
4570 zone_names[j], memmap_pages, freesize);
4572 /* Account for reserved pages */
4573 if (j == 0 && freesize > dma_reserve) {
4574 freesize -= dma_reserve;
4575 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4576 zone_names[0], dma_reserve);
4579 if (!is_highmem_idx(j))
4580 nr_kernel_pages += freesize;
4581 /* Charge for highmem memmap if there are enough kernel pages */
4582 else if (nr_kernel_pages > memmap_pages * 2)
4583 nr_kernel_pages -= memmap_pages;
4584 nr_all_pages += freesize;
4586 zone->spanned_pages = size;
4587 zone->present_pages = freesize;
4589 * Set an approximate value for lowmem here, it will be adjusted
4590 * when the bootmem allocator frees pages into the buddy system.
4591 * And all highmem pages will be managed by the buddy system.
4593 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4594 #ifdef CONFIG_NUMA
4595 zone->node = nid;
4596 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4597 / 100;
4598 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4599 #endif
4600 zone->name = zone_names[j];
4601 spin_lock_init(&zone->lock);
4602 spin_lock_init(&zone->lru_lock);
4603 zone_seqlock_init(zone);
4604 zone->zone_pgdat = pgdat;
4606 zone_pcp_init(zone);
4607 lruvec_init(&zone->lruvec);
4608 if (!size)
4609 continue;
4611 set_pageblock_order();
4612 setup_usemap(pgdat, zone, size);
4613 ret = init_currently_empty_zone(zone, zone_start_pfn,
4614 size, MEMMAP_EARLY);
4615 BUG_ON(ret);
4616 memmap_init(size, nid, j, zone_start_pfn);
4617 zone_start_pfn += size;
4621 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4623 /* Skip empty nodes */
4624 if (!pgdat->node_spanned_pages)
4625 return;
4627 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4628 /* ia64 gets its own node_mem_map, before this, without bootmem */
4629 if (!pgdat->node_mem_map) {
4630 unsigned long size, start, end;
4631 struct page *map;
4634 * The zone's endpoints aren't required to be MAX_ORDER
4635 * aligned but the node_mem_map endpoints must be in order
4636 * for the buddy allocator to function correctly.
4638 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4639 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4640 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4641 size = (end - start) * sizeof(struct page);
4642 map = alloc_remap(pgdat->node_id, size);
4643 if (!map)
4644 map = alloc_bootmem_node_nopanic(pgdat, size);
4645 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4647 #ifndef CONFIG_NEED_MULTIPLE_NODES
4649 * With no DISCONTIG, the global mem_map is just set as node 0's
4651 if (pgdat == NODE_DATA(0)) {
4652 mem_map = NODE_DATA(0)->node_mem_map;
4653 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4654 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4655 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4656 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4658 #endif
4659 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4662 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4663 unsigned long node_start_pfn, unsigned long *zholes_size)
4665 pg_data_t *pgdat = NODE_DATA(nid);
4667 /* pg_data_t should be reset to zero when it's allocated */
4668 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4670 pgdat->node_id = nid;
4671 pgdat->node_start_pfn = node_start_pfn;
4672 init_zone_allows_reclaim(nid);
4673 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4675 alloc_node_mem_map(pgdat);
4676 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4677 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4678 nid, (unsigned long)pgdat,
4679 (unsigned long)pgdat->node_mem_map);
4680 #endif
4682 free_area_init_core(pgdat, zones_size, zholes_size);
4685 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4687 #if MAX_NUMNODES > 1
4689 * Figure out the number of possible node ids.
4691 static void __init setup_nr_node_ids(void)
4693 unsigned int node;
4694 unsigned int highest = 0;
4696 for_each_node_mask(node, node_possible_map)
4697 highest = node;
4698 nr_node_ids = highest + 1;
4700 #else
4701 static inline void setup_nr_node_ids(void)
4704 #endif
4707 * node_map_pfn_alignment - determine the maximum internode alignment
4709 * This function should be called after node map is populated and sorted.
4710 * It calculates the maximum power of two alignment which can distinguish
4711 * all the nodes.
4713 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4714 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4715 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4716 * shifted, 1GiB is enough and this function will indicate so.
4718 * This is used to test whether pfn -> nid mapping of the chosen memory
4719 * model has fine enough granularity to avoid incorrect mapping for the
4720 * populated node map.
4722 * Returns the determined alignment in pfn's. 0 if there is no alignment
4723 * requirement (single node).
4725 unsigned long __init node_map_pfn_alignment(void)
4727 unsigned long accl_mask = 0, last_end = 0;
4728 unsigned long start, end, mask;
4729 int last_nid = -1;
4730 int i, nid;
4732 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4733 if (!start || last_nid < 0 || last_nid == nid) {
4734 last_nid = nid;
4735 last_end = end;
4736 continue;
4740 * Start with a mask granular enough to pin-point to the
4741 * start pfn and tick off bits one-by-one until it becomes
4742 * too coarse to separate the current node from the last.
4744 mask = ~((1 << __ffs(start)) - 1);
4745 while (mask && last_end <= (start & (mask << 1)))
4746 mask <<= 1;
4748 /* accumulate all internode masks */
4749 accl_mask |= mask;
4752 /* convert mask to number of pages */
4753 return ~accl_mask + 1;
4756 /* Find the lowest pfn for a node */
4757 static unsigned long __init find_min_pfn_for_node(int nid)
4759 unsigned long min_pfn = ULONG_MAX;
4760 unsigned long start_pfn;
4761 int i;
4763 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4764 min_pfn = min(min_pfn, start_pfn);
4766 if (min_pfn == ULONG_MAX) {
4767 printk(KERN_WARNING
4768 "Could not find start_pfn for node %d\n", nid);
4769 return 0;
4772 return min_pfn;
4776 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4778 * It returns the minimum PFN based on information provided via
4779 * add_active_range().
4781 unsigned long __init find_min_pfn_with_active_regions(void)
4783 return find_min_pfn_for_node(MAX_NUMNODES);
4787 * early_calculate_totalpages()
4788 * Sum pages in active regions for movable zone.
4789 * Populate N_MEMORY for calculating usable_nodes.
4791 static unsigned long __init early_calculate_totalpages(void)
4793 unsigned long totalpages = 0;
4794 unsigned long start_pfn, end_pfn;
4795 int i, nid;
4797 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4798 unsigned long pages = end_pfn - start_pfn;
4800 totalpages += pages;
4801 if (pages)
4802 node_set_state(nid, N_MEMORY);
4804 return totalpages;
4808 * Find the PFN the Movable zone begins in each node. Kernel memory
4809 * is spread evenly between nodes as long as the nodes have enough
4810 * memory. When they don't, some nodes will have more kernelcore than
4811 * others
4813 static void __init find_zone_movable_pfns_for_nodes(void)
4815 int i, nid;
4816 unsigned long usable_startpfn;
4817 unsigned long kernelcore_node, kernelcore_remaining;
4818 /* save the state before borrow the nodemask */
4819 nodemask_t saved_node_state = node_states[N_MEMORY];
4820 unsigned long totalpages = early_calculate_totalpages();
4821 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4824 * If movablecore was specified, calculate what size of
4825 * kernelcore that corresponds so that memory usable for
4826 * any allocation type is evenly spread. If both kernelcore
4827 * and movablecore are specified, then the value of kernelcore
4828 * will be used for required_kernelcore if it's greater than
4829 * what movablecore would have allowed.
4831 if (required_movablecore) {
4832 unsigned long corepages;
4835 * Round-up so that ZONE_MOVABLE is at least as large as what
4836 * was requested by the user
4838 required_movablecore =
4839 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4840 corepages = totalpages - required_movablecore;
4842 required_kernelcore = max(required_kernelcore, corepages);
4845 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4846 if (!required_kernelcore)
4847 goto out;
4849 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4850 find_usable_zone_for_movable();
4851 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4853 restart:
4854 /* Spread kernelcore memory as evenly as possible throughout nodes */
4855 kernelcore_node = required_kernelcore / usable_nodes;
4856 for_each_node_state(nid, N_MEMORY) {
4857 unsigned long start_pfn, end_pfn;
4860 * Recalculate kernelcore_node if the division per node
4861 * now exceeds what is necessary to satisfy the requested
4862 * amount of memory for the kernel
4864 if (required_kernelcore < kernelcore_node)
4865 kernelcore_node = required_kernelcore / usable_nodes;
4868 * As the map is walked, we track how much memory is usable
4869 * by the kernel using kernelcore_remaining. When it is
4870 * 0, the rest of the node is usable by ZONE_MOVABLE
4872 kernelcore_remaining = kernelcore_node;
4874 /* Go through each range of PFNs within this node */
4875 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4876 unsigned long size_pages;
4878 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4879 if (start_pfn >= end_pfn)
4880 continue;
4882 /* Account for what is only usable for kernelcore */
4883 if (start_pfn < usable_startpfn) {
4884 unsigned long kernel_pages;
4885 kernel_pages = min(end_pfn, usable_startpfn)
4886 - start_pfn;
4888 kernelcore_remaining -= min(kernel_pages,
4889 kernelcore_remaining);
4890 required_kernelcore -= min(kernel_pages,
4891 required_kernelcore);
4893 /* Continue if range is now fully accounted */
4894 if (end_pfn <= usable_startpfn) {
4897 * Push zone_movable_pfn to the end so
4898 * that if we have to rebalance
4899 * kernelcore across nodes, we will
4900 * not double account here
4902 zone_movable_pfn[nid] = end_pfn;
4903 continue;
4905 start_pfn = usable_startpfn;
4909 * The usable PFN range for ZONE_MOVABLE is from
4910 * start_pfn->end_pfn. Calculate size_pages as the
4911 * number of pages used as kernelcore
4913 size_pages = end_pfn - start_pfn;
4914 if (size_pages > kernelcore_remaining)
4915 size_pages = kernelcore_remaining;
4916 zone_movable_pfn[nid] = start_pfn + size_pages;
4919 * Some kernelcore has been met, update counts and
4920 * break if the kernelcore for this node has been
4921 * satisified
4923 required_kernelcore -= min(required_kernelcore,
4924 size_pages);
4925 kernelcore_remaining -= size_pages;
4926 if (!kernelcore_remaining)
4927 break;
4932 * If there is still required_kernelcore, we do another pass with one
4933 * less node in the count. This will push zone_movable_pfn[nid] further
4934 * along on the nodes that still have memory until kernelcore is
4935 * satisified
4937 usable_nodes--;
4938 if (usable_nodes && required_kernelcore > usable_nodes)
4939 goto restart;
4941 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4942 for (nid = 0; nid < MAX_NUMNODES; nid++)
4943 zone_movable_pfn[nid] =
4944 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4946 out:
4947 /* restore the node_state */
4948 node_states[N_MEMORY] = saved_node_state;
4951 /* Any regular or high memory on that node ? */
4952 static void check_for_memory(pg_data_t *pgdat, int nid)
4954 enum zone_type zone_type;
4956 if (N_MEMORY == N_NORMAL_MEMORY)
4957 return;
4959 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
4960 struct zone *zone = &pgdat->node_zones[zone_type];
4961 if (zone->present_pages) {
4962 node_set_state(nid, N_HIGH_MEMORY);
4963 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4964 zone_type <= ZONE_NORMAL)
4965 node_set_state(nid, N_NORMAL_MEMORY);
4966 break;
4972 * free_area_init_nodes - Initialise all pg_data_t and zone data
4973 * @max_zone_pfn: an array of max PFNs for each zone
4975 * This will call free_area_init_node() for each active node in the system.
4976 * Using the page ranges provided by add_active_range(), the size of each
4977 * zone in each node and their holes is calculated. If the maximum PFN
4978 * between two adjacent zones match, it is assumed that the zone is empty.
4979 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4980 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4981 * starts where the previous one ended. For example, ZONE_DMA32 starts
4982 * at arch_max_dma_pfn.
4984 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4986 unsigned long start_pfn, end_pfn;
4987 int i, nid;
4989 /* Record where the zone boundaries are */
4990 memset(arch_zone_lowest_possible_pfn, 0,
4991 sizeof(arch_zone_lowest_possible_pfn));
4992 memset(arch_zone_highest_possible_pfn, 0,
4993 sizeof(arch_zone_highest_possible_pfn));
4994 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4995 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4996 for (i = 1; i < MAX_NR_ZONES; i++) {
4997 if (i == ZONE_MOVABLE)
4998 continue;
4999 arch_zone_lowest_possible_pfn[i] =
5000 arch_zone_highest_possible_pfn[i-1];
5001 arch_zone_highest_possible_pfn[i] =
5002 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5004 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5005 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5007 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5008 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5009 find_zone_movable_pfns_for_nodes();
5011 /* Print out the zone ranges */
5012 printk("Zone ranges:\n");
5013 for (i = 0; i < MAX_NR_ZONES; i++) {
5014 if (i == ZONE_MOVABLE)
5015 continue;
5016 printk(KERN_CONT " %-8s ", zone_names[i]);
5017 if (arch_zone_lowest_possible_pfn[i] ==
5018 arch_zone_highest_possible_pfn[i])
5019 printk(KERN_CONT "empty\n");
5020 else
5021 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5022 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5023 (arch_zone_highest_possible_pfn[i]
5024 << PAGE_SHIFT) - 1);
5027 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5028 printk("Movable zone start for each node\n");
5029 for (i = 0; i < MAX_NUMNODES; i++) {
5030 if (zone_movable_pfn[i])
5031 printk(" Node %d: %#010lx\n", i,
5032 zone_movable_pfn[i] << PAGE_SHIFT);
5035 /* Print out the early node map */
5036 printk("Early memory node ranges\n");
5037 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5038 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5039 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5041 /* Initialise every node */
5042 mminit_verify_pageflags_layout();
5043 setup_nr_node_ids();
5044 for_each_online_node(nid) {
5045 pg_data_t *pgdat = NODE_DATA(nid);
5046 free_area_init_node(nid, NULL,
5047 find_min_pfn_for_node(nid), NULL);
5049 /* Any memory on that node */
5050 if (pgdat->node_present_pages)
5051 node_set_state(nid, N_MEMORY);
5052 check_for_memory(pgdat, nid);
5056 static int __init cmdline_parse_core(char *p, unsigned long *core)
5058 unsigned long long coremem;
5059 if (!p)
5060 return -EINVAL;
5062 coremem = memparse(p, &p);
5063 *core = coremem >> PAGE_SHIFT;
5065 /* Paranoid check that UL is enough for the coremem value */
5066 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5068 return 0;
5072 * kernelcore=size sets the amount of memory for use for allocations that
5073 * cannot be reclaimed or migrated.
5075 static int __init cmdline_parse_kernelcore(char *p)
5077 return cmdline_parse_core(p, &required_kernelcore);
5081 * movablecore=size sets the amount of memory for use for allocations that
5082 * can be reclaimed or migrated.
5084 static int __init cmdline_parse_movablecore(char *p)
5086 return cmdline_parse_core(p, &required_movablecore);
5089 early_param("kernelcore", cmdline_parse_kernelcore);
5090 early_param("movablecore", cmdline_parse_movablecore);
5092 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5095 * set_dma_reserve - set the specified number of pages reserved in the first zone
5096 * @new_dma_reserve: The number of pages to mark reserved
5098 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5099 * In the DMA zone, a significant percentage may be consumed by kernel image
5100 * and other unfreeable allocations which can skew the watermarks badly. This
5101 * function may optionally be used to account for unfreeable pages in the
5102 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5103 * smaller per-cpu batchsize.
5105 void __init set_dma_reserve(unsigned long new_dma_reserve)
5107 dma_reserve = new_dma_reserve;
5110 void __init free_area_init(unsigned long *zones_size)
5112 free_area_init_node(0, zones_size,
5113 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5116 static int page_alloc_cpu_notify(struct notifier_block *self,
5117 unsigned long action, void *hcpu)
5119 int cpu = (unsigned long)hcpu;
5121 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5122 lru_add_drain_cpu(cpu);
5123 drain_pages(cpu);
5126 * Spill the event counters of the dead processor
5127 * into the current processors event counters.
5128 * This artificially elevates the count of the current
5129 * processor.
5131 vm_events_fold_cpu(cpu);
5134 * Zero the differential counters of the dead processor
5135 * so that the vm statistics are consistent.
5137 * This is only okay since the processor is dead and cannot
5138 * race with what we are doing.
5140 refresh_cpu_vm_stats(cpu);
5142 return NOTIFY_OK;
5145 void __init page_alloc_init(void)
5147 hotcpu_notifier(page_alloc_cpu_notify, 0);
5151 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5152 * or min_free_kbytes changes.
5154 static void calculate_totalreserve_pages(void)
5156 struct pglist_data *pgdat;
5157 unsigned long reserve_pages = 0;
5158 enum zone_type i, j;
5160 for_each_online_pgdat(pgdat) {
5161 for (i = 0; i < MAX_NR_ZONES; i++) {
5162 struct zone *zone = pgdat->node_zones + i;
5163 unsigned long max = 0;
5165 /* Find valid and maximum lowmem_reserve in the zone */
5166 for (j = i; j < MAX_NR_ZONES; j++) {
5167 if (zone->lowmem_reserve[j] > max)
5168 max = zone->lowmem_reserve[j];
5171 /* we treat the high watermark as reserved pages. */
5172 max += high_wmark_pages(zone);
5174 if (max > zone->present_pages)
5175 max = zone->present_pages;
5176 reserve_pages += max;
5178 * Lowmem reserves are not available to
5179 * GFP_HIGHUSER page cache allocations and
5180 * kswapd tries to balance zones to their high
5181 * watermark. As a result, neither should be
5182 * regarded as dirtyable memory, to prevent a
5183 * situation where reclaim has to clean pages
5184 * in order to balance the zones.
5186 zone->dirty_balance_reserve = max;
5189 dirty_balance_reserve = reserve_pages;
5190 totalreserve_pages = reserve_pages;
5194 * setup_per_zone_lowmem_reserve - called whenever
5195 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5196 * has a correct pages reserved value, so an adequate number of
5197 * pages are left in the zone after a successful __alloc_pages().
5199 static void setup_per_zone_lowmem_reserve(void)
5201 struct pglist_data *pgdat;
5202 enum zone_type j, idx;
5204 for_each_online_pgdat(pgdat) {
5205 for (j = 0; j < MAX_NR_ZONES; j++) {
5206 struct zone *zone = pgdat->node_zones + j;
5207 unsigned long present_pages = zone->present_pages;
5209 zone->lowmem_reserve[j] = 0;
5211 idx = j;
5212 while (idx) {
5213 struct zone *lower_zone;
5215 idx--;
5217 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5218 sysctl_lowmem_reserve_ratio[idx] = 1;
5220 lower_zone = pgdat->node_zones + idx;
5221 lower_zone->lowmem_reserve[j] = present_pages /
5222 sysctl_lowmem_reserve_ratio[idx];
5223 present_pages += lower_zone->present_pages;
5228 /* update totalreserve_pages */
5229 calculate_totalreserve_pages();
5232 static void __setup_per_zone_wmarks(void)
5234 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5235 unsigned long lowmem_pages = 0;
5236 struct zone *zone;
5237 unsigned long flags;
5239 /* Calculate total number of !ZONE_HIGHMEM pages */
5240 for_each_zone(zone) {
5241 if (!is_highmem(zone))
5242 lowmem_pages += zone->present_pages;
5245 for_each_zone(zone) {
5246 u64 tmp;
5248 spin_lock_irqsave(&zone->lock, flags);
5249 tmp = (u64)pages_min * zone->present_pages;
5250 do_div(tmp, lowmem_pages);
5251 if (is_highmem(zone)) {
5253 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5254 * need highmem pages, so cap pages_min to a small
5255 * value here.
5257 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5258 * deltas controls asynch page reclaim, and so should
5259 * not be capped for highmem.
5261 int min_pages;
5263 min_pages = zone->present_pages / 1024;
5264 if (min_pages < SWAP_CLUSTER_MAX)
5265 min_pages = SWAP_CLUSTER_MAX;
5266 if (min_pages > 128)
5267 min_pages = 128;
5268 zone->watermark[WMARK_MIN] = min_pages;
5269 } else {
5271 * If it's a lowmem zone, reserve a number of pages
5272 * proportionate to the zone's size.
5274 zone->watermark[WMARK_MIN] = tmp;
5277 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5278 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5280 setup_zone_migrate_reserve(zone);
5281 spin_unlock_irqrestore(&zone->lock, flags);
5284 /* update totalreserve_pages */
5285 calculate_totalreserve_pages();
5289 * setup_per_zone_wmarks - called when min_free_kbytes changes
5290 * or when memory is hot-{added|removed}
5292 * Ensures that the watermark[min,low,high] values for each zone are set
5293 * correctly with respect to min_free_kbytes.
5295 void setup_per_zone_wmarks(void)
5297 mutex_lock(&zonelists_mutex);
5298 __setup_per_zone_wmarks();
5299 mutex_unlock(&zonelists_mutex);
5303 * The inactive anon list should be small enough that the VM never has to
5304 * do too much work, but large enough that each inactive page has a chance
5305 * to be referenced again before it is swapped out.
5307 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5308 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5309 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5310 * the anonymous pages are kept on the inactive list.
5312 * total target max
5313 * memory ratio inactive anon
5314 * -------------------------------------
5315 * 10MB 1 5MB
5316 * 100MB 1 50MB
5317 * 1GB 3 250MB
5318 * 10GB 10 0.9GB
5319 * 100GB 31 3GB
5320 * 1TB 101 10GB
5321 * 10TB 320 32GB
5323 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5325 unsigned int gb, ratio;
5327 /* Zone size in gigabytes */
5328 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5329 if (gb)
5330 ratio = int_sqrt(10 * gb);
5331 else
5332 ratio = 1;
5334 zone->inactive_ratio = ratio;
5337 static void __meminit setup_per_zone_inactive_ratio(void)
5339 struct zone *zone;
5341 for_each_zone(zone)
5342 calculate_zone_inactive_ratio(zone);
5346 * Initialise min_free_kbytes.
5348 * For small machines we want it small (128k min). For large machines
5349 * we want it large (64MB max). But it is not linear, because network
5350 * bandwidth does not increase linearly with machine size. We use
5352 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5353 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5355 * which yields
5357 * 16MB: 512k
5358 * 32MB: 724k
5359 * 64MB: 1024k
5360 * 128MB: 1448k
5361 * 256MB: 2048k
5362 * 512MB: 2896k
5363 * 1024MB: 4096k
5364 * 2048MB: 5792k
5365 * 4096MB: 8192k
5366 * 8192MB: 11584k
5367 * 16384MB: 16384k
5369 int __meminit init_per_zone_wmark_min(void)
5371 unsigned long lowmem_kbytes;
5373 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5375 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5376 if (min_free_kbytes < 128)
5377 min_free_kbytes = 128;
5378 if (min_free_kbytes > 65536)
5379 min_free_kbytes = 65536;
5380 setup_per_zone_wmarks();
5381 refresh_zone_stat_thresholds();
5382 setup_per_zone_lowmem_reserve();
5383 setup_per_zone_inactive_ratio();
5384 return 0;
5386 module_init(init_per_zone_wmark_min)
5389 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5390 * that we can call two helper functions whenever min_free_kbytes
5391 * changes.
5393 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5394 void __user *buffer, size_t *length, loff_t *ppos)
5396 proc_dointvec(table, write, buffer, length, ppos);
5397 if (write)
5398 setup_per_zone_wmarks();
5399 return 0;
5402 #ifdef CONFIG_NUMA
5403 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5404 void __user *buffer, size_t *length, loff_t *ppos)
5406 struct zone *zone;
5407 int rc;
5409 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5410 if (rc)
5411 return rc;
5413 for_each_zone(zone)
5414 zone->min_unmapped_pages = (zone->present_pages *
5415 sysctl_min_unmapped_ratio) / 100;
5416 return 0;
5419 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5420 void __user *buffer, size_t *length, loff_t *ppos)
5422 struct zone *zone;
5423 int rc;
5425 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5426 if (rc)
5427 return rc;
5429 for_each_zone(zone)
5430 zone->min_slab_pages = (zone->present_pages *
5431 sysctl_min_slab_ratio) / 100;
5432 return 0;
5434 #endif
5437 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5438 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5439 * whenever sysctl_lowmem_reserve_ratio changes.
5441 * The reserve ratio obviously has absolutely no relation with the
5442 * minimum watermarks. The lowmem reserve ratio can only make sense
5443 * if in function of the boot time zone sizes.
5445 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5446 void __user *buffer, size_t *length, loff_t *ppos)
5448 proc_dointvec_minmax(table, write, buffer, length, ppos);
5449 setup_per_zone_lowmem_reserve();
5450 return 0;
5454 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5455 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5456 * can have before it gets flushed back to buddy allocator.
5459 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5460 void __user *buffer, size_t *length, loff_t *ppos)
5462 struct zone *zone;
5463 unsigned int cpu;
5464 int ret;
5466 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5467 if (!write || (ret < 0))
5468 return ret;
5469 for_each_populated_zone(zone) {
5470 for_each_possible_cpu(cpu) {
5471 unsigned long high;
5472 high = zone->present_pages / percpu_pagelist_fraction;
5473 setup_pagelist_highmark(
5474 per_cpu_ptr(zone->pageset, cpu), high);
5477 return 0;
5480 int hashdist = HASHDIST_DEFAULT;
5482 #ifdef CONFIG_NUMA
5483 static int __init set_hashdist(char *str)
5485 if (!str)
5486 return 0;
5487 hashdist = simple_strtoul(str, &str, 0);
5488 return 1;
5490 __setup("hashdist=", set_hashdist);
5491 #endif
5494 * allocate a large system hash table from bootmem
5495 * - it is assumed that the hash table must contain an exact power-of-2
5496 * quantity of entries
5497 * - limit is the number of hash buckets, not the total allocation size
5499 void *__init alloc_large_system_hash(const char *tablename,
5500 unsigned long bucketsize,
5501 unsigned long numentries,
5502 int scale,
5503 int flags,
5504 unsigned int *_hash_shift,
5505 unsigned int *_hash_mask,
5506 unsigned long low_limit,
5507 unsigned long high_limit)
5509 unsigned long long max = high_limit;
5510 unsigned long log2qty, size;
5511 void *table = NULL;
5513 /* allow the kernel cmdline to have a say */
5514 if (!numentries) {
5515 /* round applicable memory size up to nearest megabyte */
5516 numentries = nr_kernel_pages;
5517 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5518 numentries >>= 20 - PAGE_SHIFT;
5519 numentries <<= 20 - PAGE_SHIFT;
5521 /* limit to 1 bucket per 2^scale bytes of low memory */
5522 if (scale > PAGE_SHIFT)
5523 numentries >>= (scale - PAGE_SHIFT);
5524 else
5525 numentries <<= (PAGE_SHIFT - scale);
5527 /* Make sure we've got at least a 0-order allocation.. */
5528 if (unlikely(flags & HASH_SMALL)) {
5529 /* Makes no sense without HASH_EARLY */
5530 WARN_ON(!(flags & HASH_EARLY));
5531 if (!(numentries >> *_hash_shift)) {
5532 numentries = 1UL << *_hash_shift;
5533 BUG_ON(!numentries);
5535 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5536 numentries = PAGE_SIZE / bucketsize;
5538 numentries = roundup_pow_of_two(numentries);
5540 /* limit allocation size to 1/16 total memory by default */
5541 if (max == 0) {
5542 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5543 do_div(max, bucketsize);
5545 max = min(max, 0x80000000ULL);
5547 if (numentries < low_limit)
5548 numentries = low_limit;
5549 if (numentries > max)
5550 numentries = max;
5552 log2qty = ilog2(numentries);
5554 do {
5555 size = bucketsize << log2qty;
5556 if (flags & HASH_EARLY)
5557 table = alloc_bootmem_nopanic(size);
5558 else if (hashdist)
5559 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5560 else {
5562 * If bucketsize is not a power-of-two, we may free
5563 * some pages at the end of hash table which
5564 * alloc_pages_exact() automatically does
5566 if (get_order(size) < MAX_ORDER) {
5567 table = alloc_pages_exact(size, GFP_ATOMIC);
5568 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5571 } while (!table && size > PAGE_SIZE && --log2qty);
5573 if (!table)
5574 panic("Failed to allocate %s hash table\n", tablename);
5576 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5577 tablename,
5578 (1UL << log2qty),
5579 ilog2(size) - PAGE_SHIFT,
5580 size);
5582 if (_hash_shift)
5583 *_hash_shift = log2qty;
5584 if (_hash_mask)
5585 *_hash_mask = (1 << log2qty) - 1;
5587 return table;
5590 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5591 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5592 unsigned long pfn)
5594 #ifdef CONFIG_SPARSEMEM
5595 return __pfn_to_section(pfn)->pageblock_flags;
5596 #else
5597 return zone->pageblock_flags;
5598 #endif /* CONFIG_SPARSEMEM */
5601 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5603 #ifdef CONFIG_SPARSEMEM
5604 pfn &= (PAGES_PER_SECTION-1);
5605 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5606 #else
5607 pfn = pfn - zone->zone_start_pfn;
5608 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5609 #endif /* CONFIG_SPARSEMEM */
5613 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5614 * @page: The page within the block of interest
5615 * @start_bitidx: The first bit of interest to retrieve
5616 * @end_bitidx: The last bit of interest
5617 * returns pageblock_bits flags
5619 unsigned long get_pageblock_flags_group(struct page *page,
5620 int start_bitidx, int end_bitidx)
5622 struct zone *zone;
5623 unsigned long *bitmap;
5624 unsigned long pfn, bitidx;
5625 unsigned long flags = 0;
5626 unsigned long value = 1;
5628 zone = page_zone(page);
5629 pfn = page_to_pfn(page);
5630 bitmap = get_pageblock_bitmap(zone, pfn);
5631 bitidx = pfn_to_bitidx(zone, pfn);
5633 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5634 if (test_bit(bitidx + start_bitidx, bitmap))
5635 flags |= value;
5637 return flags;
5641 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5642 * @page: The page within the block of interest
5643 * @start_bitidx: The first bit of interest
5644 * @end_bitidx: The last bit of interest
5645 * @flags: The flags to set
5647 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5648 int start_bitidx, int end_bitidx)
5650 struct zone *zone;
5651 unsigned long *bitmap;
5652 unsigned long pfn, bitidx;
5653 unsigned long value = 1;
5655 zone = page_zone(page);
5656 pfn = page_to_pfn(page);
5657 bitmap = get_pageblock_bitmap(zone, pfn);
5658 bitidx = pfn_to_bitidx(zone, pfn);
5659 VM_BUG_ON(pfn < zone->zone_start_pfn);
5660 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5662 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5663 if (flags & value)
5664 __set_bit(bitidx + start_bitidx, bitmap);
5665 else
5666 __clear_bit(bitidx + start_bitidx, bitmap);
5670 * This function checks whether pageblock includes unmovable pages or not.
5671 * If @count is not zero, it is okay to include less @count unmovable pages
5673 * PageLRU check wihtout isolation or lru_lock could race so that
5674 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5675 * expect this function should be exact.
5677 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5678 bool skip_hwpoisoned_pages)
5680 unsigned long pfn, iter, found;
5681 int mt;
5684 * For avoiding noise data, lru_add_drain_all() should be called
5685 * If ZONE_MOVABLE, the zone never contains unmovable pages
5687 if (zone_idx(zone) == ZONE_MOVABLE)
5688 return false;
5689 mt = get_pageblock_migratetype(page);
5690 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5691 return false;
5693 pfn = page_to_pfn(page);
5694 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5695 unsigned long check = pfn + iter;
5697 if (!pfn_valid_within(check))
5698 continue;
5700 page = pfn_to_page(check);
5702 * We can't use page_count without pin a page
5703 * because another CPU can free compound page.
5704 * This check already skips compound tails of THP
5705 * because their page->_count is zero at all time.
5707 if (!atomic_read(&page->_count)) {
5708 if (PageBuddy(page))
5709 iter += (1 << page_order(page)) - 1;
5710 continue;
5714 * The HWPoisoned page may be not in buddy system, and
5715 * page_count() is not 0.
5717 if (skip_hwpoisoned_pages && PageHWPoison(page))
5718 continue;
5720 if (!PageLRU(page))
5721 found++;
5723 * If there are RECLAIMABLE pages, we need to check it.
5724 * But now, memory offline itself doesn't call shrink_slab()
5725 * and it still to be fixed.
5728 * If the page is not RAM, page_count()should be 0.
5729 * we don't need more check. This is an _used_ not-movable page.
5731 * The problematic thing here is PG_reserved pages. PG_reserved
5732 * is set to both of a memory hole page and a _used_ kernel
5733 * page at boot.
5735 if (found > count)
5736 return true;
5738 return false;
5741 bool is_pageblock_removable_nolock(struct page *page)
5743 struct zone *zone;
5744 unsigned long pfn;
5747 * We have to be careful here because we are iterating over memory
5748 * sections which are not zone aware so we might end up outside of
5749 * the zone but still within the section.
5750 * We have to take care about the node as well. If the node is offline
5751 * its NODE_DATA will be NULL - see page_zone.
5753 if (!node_online(page_to_nid(page)))
5754 return false;
5756 zone = page_zone(page);
5757 pfn = page_to_pfn(page);
5758 if (zone->zone_start_pfn > pfn ||
5759 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5760 return false;
5762 return !has_unmovable_pages(zone, page, 0, true);
5765 #ifdef CONFIG_CMA
5767 static unsigned long pfn_max_align_down(unsigned long pfn)
5769 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5770 pageblock_nr_pages) - 1);
5773 static unsigned long pfn_max_align_up(unsigned long pfn)
5775 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5776 pageblock_nr_pages));
5779 /* [start, end) must belong to a single zone. */
5780 static int __alloc_contig_migrate_range(struct compact_control *cc,
5781 unsigned long start, unsigned long end)
5783 /* This function is based on compact_zone() from compaction.c. */
5784 unsigned long nr_reclaimed;
5785 unsigned long pfn = start;
5786 unsigned int tries = 0;
5787 int ret = 0;
5789 migrate_prep();
5791 while (pfn < end || !list_empty(&cc->migratepages)) {
5792 if (fatal_signal_pending(current)) {
5793 ret = -EINTR;
5794 break;
5797 if (list_empty(&cc->migratepages)) {
5798 cc->nr_migratepages = 0;
5799 pfn = isolate_migratepages_range(cc->zone, cc,
5800 pfn, end, true);
5801 if (!pfn) {
5802 ret = -EINTR;
5803 break;
5805 tries = 0;
5806 } else if (++tries == 5) {
5807 ret = ret < 0 ? ret : -EBUSY;
5808 break;
5811 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5812 &cc->migratepages);
5813 cc->nr_migratepages -= nr_reclaimed;
5815 ret = migrate_pages(&cc->migratepages,
5816 alloc_migrate_target,
5817 0, false, MIGRATE_SYNC,
5818 MR_CMA);
5821 putback_movable_pages(&cc->migratepages);
5822 return ret > 0 ? 0 : ret;
5826 * alloc_contig_range() -- tries to allocate given range of pages
5827 * @start: start PFN to allocate
5828 * @end: one-past-the-last PFN to allocate
5829 * @migratetype: migratetype of the underlaying pageblocks (either
5830 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5831 * in range must have the same migratetype and it must
5832 * be either of the two.
5834 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5835 * aligned, however it's the caller's responsibility to guarantee that
5836 * we are the only thread that changes migrate type of pageblocks the
5837 * pages fall in.
5839 * The PFN range must belong to a single zone.
5841 * Returns zero on success or negative error code. On success all
5842 * pages which PFN is in [start, end) are allocated for the caller and
5843 * need to be freed with free_contig_range().
5845 int alloc_contig_range(unsigned long start, unsigned long end,
5846 unsigned migratetype)
5848 unsigned long outer_start, outer_end;
5849 int ret = 0, order;
5851 struct compact_control cc = {
5852 .nr_migratepages = 0,
5853 .order = -1,
5854 .zone = page_zone(pfn_to_page(start)),
5855 .sync = true,
5856 .ignore_skip_hint = true,
5858 INIT_LIST_HEAD(&cc.migratepages);
5861 * What we do here is we mark all pageblocks in range as
5862 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5863 * have different sizes, and due to the way page allocator
5864 * work, we align the range to biggest of the two pages so
5865 * that page allocator won't try to merge buddies from
5866 * different pageblocks and change MIGRATE_ISOLATE to some
5867 * other migration type.
5869 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5870 * migrate the pages from an unaligned range (ie. pages that
5871 * we are interested in). This will put all the pages in
5872 * range back to page allocator as MIGRATE_ISOLATE.
5874 * When this is done, we take the pages in range from page
5875 * allocator removing them from the buddy system. This way
5876 * page allocator will never consider using them.
5878 * This lets us mark the pageblocks back as
5879 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5880 * aligned range but not in the unaligned, original range are
5881 * put back to page allocator so that buddy can use them.
5884 ret = start_isolate_page_range(pfn_max_align_down(start),
5885 pfn_max_align_up(end), migratetype,
5886 false);
5887 if (ret)
5888 return ret;
5890 ret = __alloc_contig_migrate_range(&cc, start, end);
5891 if (ret)
5892 goto done;
5895 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5896 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5897 * more, all pages in [start, end) are free in page allocator.
5898 * What we are going to do is to allocate all pages from
5899 * [start, end) (that is remove them from page allocator).
5901 * The only problem is that pages at the beginning and at the
5902 * end of interesting range may be not aligned with pages that
5903 * page allocator holds, ie. they can be part of higher order
5904 * pages. Because of this, we reserve the bigger range and
5905 * once this is done free the pages we are not interested in.
5907 * We don't have to hold zone->lock here because the pages are
5908 * isolated thus they won't get removed from buddy.
5911 lru_add_drain_all();
5912 drain_all_pages();
5914 order = 0;
5915 outer_start = start;
5916 while (!PageBuddy(pfn_to_page(outer_start))) {
5917 if (++order >= MAX_ORDER) {
5918 ret = -EBUSY;
5919 goto done;
5921 outer_start &= ~0UL << order;
5924 /* Make sure the range is really isolated. */
5925 if (test_pages_isolated(outer_start, end, false)) {
5926 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5927 outer_start, end);
5928 ret = -EBUSY;
5929 goto done;
5933 /* Grab isolated pages from freelists. */
5934 outer_end = isolate_freepages_range(&cc, outer_start, end);
5935 if (!outer_end) {
5936 ret = -EBUSY;
5937 goto done;
5940 /* Free head and tail (if any) */
5941 if (start != outer_start)
5942 free_contig_range(outer_start, start - outer_start);
5943 if (end != outer_end)
5944 free_contig_range(end, outer_end - end);
5946 done:
5947 undo_isolate_page_range(pfn_max_align_down(start),
5948 pfn_max_align_up(end), migratetype);
5949 return ret;
5952 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5954 unsigned int count = 0;
5956 for (; nr_pages--; pfn++) {
5957 struct page *page = pfn_to_page(pfn);
5959 count += page_count(page) != 1;
5960 __free_page(page);
5962 WARN(count != 0, "%d pages are still in use!\n", count);
5964 #endif
5966 #ifdef CONFIG_MEMORY_HOTPLUG
5967 static int __meminit __zone_pcp_update(void *data)
5969 struct zone *zone = data;
5970 int cpu;
5971 unsigned long batch = zone_batchsize(zone), flags;
5973 for_each_possible_cpu(cpu) {
5974 struct per_cpu_pageset *pset;
5975 struct per_cpu_pages *pcp;
5977 pset = per_cpu_ptr(zone->pageset, cpu);
5978 pcp = &pset->pcp;
5980 local_irq_save(flags);
5981 if (pcp->count > 0)
5982 free_pcppages_bulk(zone, pcp->count, pcp);
5983 drain_zonestat(zone, pset);
5984 setup_pageset(pset, batch);
5985 local_irq_restore(flags);
5987 return 0;
5990 void __meminit zone_pcp_update(struct zone *zone)
5992 stop_machine(__zone_pcp_update, zone, NULL);
5994 #endif
5996 void zone_pcp_reset(struct zone *zone)
5998 unsigned long flags;
5999 int cpu;
6000 struct per_cpu_pageset *pset;
6002 /* avoid races with drain_pages() */
6003 local_irq_save(flags);
6004 if (zone->pageset != &boot_pageset) {
6005 for_each_online_cpu(cpu) {
6006 pset = per_cpu_ptr(zone->pageset, cpu);
6007 drain_zonestat(zone, pset);
6009 free_percpu(zone->pageset);
6010 zone->pageset = &boot_pageset;
6012 local_irq_restore(flags);
6015 #ifdef CONFIG_MEMORY_HOTREMOVE
6017 * All pages in the range must be isolated before calling this.
6019 void
6020 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6022 struct page *page;
6023 struct zone *zone;
6024 int order, i;
6025 unsigned long pfn;
6026 unsigned long flags;
6027 /* find the first valid pfn */
6028 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6029 if (pfn_valid(pfn))
6030 break;
6031 if (pfn == end_pfn)
6032 return;
6033 zone = page_zone(pfn_to_page(pfn));
6034 spin_lock_irqsave(&zone->lock, flags);
6035 pfn = start_pfn;
6036 while (pfn < end_pfn) {
6037 if (!pfn_valid(pfn)) {
6038 pfn++;
6039 continue;
6041 page = pfn_to_page(pfn);
6043 * The HWPoisoned page may be not in buddy system, and
6044 * page_count() is not 0.
6046 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6047 pfn++;
6048 SetPageReserved(page);
6049 continue;
6052 BUG_ON(page_count(page));
6053 BUG_ON(!PageBuddy(page));
6054 order = page_order(page);
6055 #ifdef CONFIG_DEBUG_VM
6056 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6057 pfn, 1 << order, end_pfn);
6058 #endif
6059 list_del(&page->lru);
6060 rmv_page_order(page);
6061 zone->free_area[order].nr_free--;
6062 for (i = 0; i < (1 << order); i++)
6063 SetPageReserved((page+i));
6064 pfn += (1 << order);
6066 spin_unlock_irqrestore(&zone->lock, flags);
6068 #endif
6070 #ifdef CONFIG_MEMORY_FAILURE
6071 bool is_free_buddy_page(struct page *page)
6073 struct zone *zone = page_zone(page);
6074 unsigned long pfn = page_to_pfn(page);
6075 unsigned long flags;
6076 int order;
6078 spin_lock_irqsave(&zone->lock, flags);
6079 for (order = 0; order < MAX_ORDER; order++) {
6080 struct page *page_head = page - (pfn & ((1 << order) - 1));
6082 if (PageBuddy(page_head) && page_order(page_head) >= order)
6083 break;
6085 spin_unlock_irqrestore(&zone->lock, flags);
6087 return order < MAX_ORDER;
6089 #endif
6091 static const struct trace_print_flags pageflag_names[] = {
6092 {1UL << PG_locked, "locked" },
6093 {1UL << PG_error, "error" },
6094 {1UL << PG_referenced, "referenced" },
6095 {1UL << PG_uptodate, "uptodate" },
6096 {1UL << PG_dirty, "dirty" },
6097 {1UL << PG_lru, "lru" },
6098 {1UL << PG_active, "active" },
6099 {1UL << PG_slab, "slab" },
6100 {1UL << PG_owner_priv_1, "owner_priv_1" },
6101 {1UL << PG_arch_1, "arch_1" },
6102 {1UL << PG_reserved, "reserved" },
6103 {1UL << PG_private, "private" },
6104 {1UL << PG_private_2, "private_2" },
6105 {1UL << PG_writeback, "writeback" },
6106 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6107 {1UL << PG_head, "head" },
6108 {1UL << PG_tail, "tail" },
6109 #else
6110 {1UL << PG_compound, "compound" },
6111 #endif
6112 {1UL << PG_swapcache, "swapcache" },
6113 {1UL << PG_mappedtodisk, "mappedtodisk" },
6114 {1UL << PG_reclaim, "reclaim" },
6115 {1UL << PG_swapbacked, "swapbacked" },
6116 {1UL << PG_unevictable, "unevictable" },
6117 #ifdef CONFIG_MMU
6118 {1UL << PG_mlocked, "mlocked" },
6119 #endif
6120 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6121 {1UL << PG_uncached, "uncached" },
6122 #endif
6123 #ifdef CONFIG_MEMORY_FAILURE
6124 {1UL << PG_hwpoison, "hwpoison" },
6125 #endif
6126 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6127 {1UL << PG_compound_lock, "compound_lock" },
6128 #endif
6131 static void dump_page_flags(unsigned long flags)
6133 const char *delim = "";
6134 unsigned long mask;
6135 int i;
6137 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6139 printk(KERN_ALERT "page flags: %#lx(", flags);
6141 /* remove zone id */
6142 flags &= (1UL << NR_PAGEFLAGS) - 1;
6144 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6146 mask = pageflag_names[i].mask;
6147 if ((flags & mask) != mask)
6148 continue;
6150 flags &= ~mask;
6151 printk("%s%s", delim, pageflag_names[i].name);
6152 delim = "|";
6155 /* check for left over flags */
6156 if (flags)
6157 printk("%s%#lx", delim, flags);
6159 printk(")\n");
6162 void dump_page(struct page *page)
6164 printk(KERN_ALERT
6165 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6166 page, atomic_read(&page->_count), page_mapcount(page),
6167 page->mapping, page->index);
6168 dump_page_flags(page->flags);
6169 mem_cgroup_print_bad_page(page);