netfilter: Fix ip_route_me_harder triggering ip_rt_bug
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / wireless / reg.c
blobab801a1097b2aa924c935805ce8e8a1656e39254
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...) \
53 do { \
54 printk(KERN_DEBUG pr_fmt(format), ##args); \
55 } while (0)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
60 /* Receipt of information from last regulatory request */
61 static struct regulatory_request *last_request;
63 /* To trigger userspace events */
64 static struct platform_device *reg_pdev;
66 static struct device_type reg_device_type = {
67 .uevent = reg_device_uevent,
71 * Central wireless core regulatory domains, we only need two,
72 * the current one and a world regulatory domain in case we have no
73 * information to give us an alpha2
75 const struct ieee80211_regdomain *cfg80211_regdomain;
78 * Protects static reg.c components:
79 * - cfg80211_world_regdom
80 * - cfg80211_regdom
81 * - last_request
83 static DEFINE_MUTEX(reg_mutex);
85 static inline void assert_reg_lock(void)
87 lockdep_assert_held(&reg_mutex);
90 /* Used to queue up regulatory hints */
91 static LIST_HEAD(reg_requests_list);
92 static spinlock_t reg_requests_lock;
94 /* Used to queue up beacon hints for review */
95 static LIST_HEAD(reg_pending_beacons);
96 static spinlock_t reg_pending_beacons_lock;
98 /* Used to keep track of processed beacon hints */
99 static LIST_HEAD(reg_beacon_list);
101 struct reg_beacon {
102 struct list_head list;
103 struct ieee80211_channel chan;
106 static void reg_todo(struct work_struct *work);
107 static DECLARE_WORK(reg_work, reg_todo);
109 /* We keep a static world regulatory domain in case of the absence of CRDA */
110 static const struct ieee80211_regdomain world_regdom = {
111 .n_reg_rules = 5,
112 .alpha2 = "00",
113 .reg_rules = {
114 /* IEEE 802.11b/g, channels 1..11 */
115 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
116 /* IEEE 802.11b/g, channels 12..13. No HT40
117 * channel fits here. */
118 REG_RULE(2467-10, 2472+10, 20, 6, 20,
119 NL80211_RRF_PASSIVE_SCAN |
120 NL80211_RRF_NO_IBSS),
121 /* IEEE 802.11 channel 14 - Only JP enables
122 * this and for 802.11b only */
123 REG_RULE(2484-10, 2484+10, 20, 6, 20,
124 NL80211_RRF_PASSIVE_SCAN |
125 NL80211_RRF_NO_IBSS |
126 NL80211_RRF_NO_OFDM),
127 /* IEEE 802.11a, channel 36..48 */
128 REG_RULE(5180-10, 5240+10, 40, 6, 20,
129 NL80211_RRF_PASSIVE_SCAN |
130 NL80211_RRF_NO_IBSS),
132 /* NB: 5260 MHz - 5700 MHz requies DFS */
134 /* IEEE 802.11a, channel 149..165 */
135 REG_RULE(5745-10, 5825+10, 40, 6, 20,
136 NL80211_RRF_PASSIVE_SCAN |
137 NL80211_RRF_NO_IBSS),
141 static const struct ieee80211_regdomain *cfg80211_world_regdom =
142 &world_regdom;
144 static char *ieee80211_regdom = "00";
145 static char user_alpha2[2];
147 module_param(ieee80211_regdom, charp, 0444);
148 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
150 static void reset_regdomains(void)
152 /* avoid freeing static information or freeing something twice */
153 if (cfg80211_regdomain == cfg80211_world_regdom)
154 cfg80211_regdomain = NULL;
155 if (cfg80211_world_regdom == &world_regdom)
156 cfg80211_world_regdom = NULL;
157 if (cfg80211_regdomain == &world_regdom)
158 cfg80211_regdomain = NULL;
160 kfree(cfg80211_regdomain);
161 kfree(cfg80211_world_regdom);
163 cfg80211_world_regdom = &world_regdom;
164 cfg80211_regdomain = NULL;
168 * Dynamic world regulatory domain requested by the wireless
169 * core upon initialization
171 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
173 BUG_ON(!last_request);
175 reset_regdomains();
177 cfg80211_world_regdom = rd;
178 cfg80211_regdomain = rd;
181 bool is_world_regdom(const char *alpha2)
183 if (!alpha2)
184 return false;
185 if (alpha2[0] == '0' && alpha2[1] == '0')
186 return true;
187 return false;
190 static bool is_alpha2_set(const char *alpha2)
192 if (!alpha2)
193 return false;
194 if (alpha2[0] != 0 && alpha2[1] != 0)
195 return true;
196 return false;
199 static bool is_unknown_alpha2(const char *alpha2)
201 if (!alpha2)
202 return false;
204 * Special case where regulatory domain was built by driver
205 * but a specific alpha2 cannot be determined
207 if (alpha2[0] == '9' && alpha2[1] == '9')
208 return true;
209 return false;
212 static bool is_intersected_alpha2(const char *alpha2)
214 if (!alpha2)
215 return false;
217 * Special case where regulatory domain is the
218 * result of an intersection between two regulatory domain
219 * structures
221 if (alpha2[0] == '9' && alpha2[1] == '8')
222 return true;
223 return false;
226 static bool is_an_alpha2(const char *alpha2)
228 if (!alpha2)
229 return false;
230 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
231 return true;
232 return false;
235 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
237 if (!alpha2_x || !alpha2_y)
238 return false;
239 if (alpha2_x[0] == alpha2_y[0] &&
240 alpha2_x[1] == alpha2_y[1])
241 return true;
242 return false;
245 static bool regdom_changes(const char *alpha2)
247 assert_cfg80211_lock();
249 if (!cfg80211_regdomain)
250 return true;
251 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
252 return false;
253 return true;
257 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
258 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
259 * has ever been issued.
261 static bool is_user_regdom_saved(void)
263 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
264 return false;
266 /* This would indicate a mistake on the design */
267 if (WARN((!is_world_regdom(user_alpha2) &&
268 !is_an_alpha2(user_alpha2)),
269 "Unexpected user alpha2: %c%c\n",
270 user_alpha2[0],
271 user_alpha2[1]))
272 return false;
274 return true;
277 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
278 const struct ieee80211_regdomain *src_regd)
280 struct ieee80211_regdomain *regd;
281 int size_of_regd = 0;
282 unsigned int i;
284 size_of_regd = sizeof(struct ieee80211_regdomain) +
285 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
287 regd = kzalloc(size_of_regd, GFP_KERNEL);
288 if (!regd)
289 return -ENOMEM;
291 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
293 for (i = 0; i < src_regd->n_reg_rules; i++)
294 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
295 sizeof(struct ieee80211_reg_rule));
297 *dst_regd = regd;
298 return 0;
301 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
302 struct reg_regdb_search_request {
303 char alpha2[2];
304 struct list_head list;
307 static LIST_HEAD(reg_regdb_search_list);
308 static DEFINE_MUTEX(reg_regdb_search_mutex);
310 static void reg_regdb_search(struct work_struct *work)
312 struct reg_regdb_search_request *request;
313 const struct ieee80211_regdomain *curdom, *regdom;
314 int i, r;
316 mutex_lock(&reg_regdb_search_mutex);
317 while (!list_empty(&reg_regdb_search_list)) {
318 request = list_first_entry(&reg_regdb_search_list,
319 struct reg_regdb_search_request,
320 list);
321 list_del(&request->list);
323 for (i=0; i<reg_regdb_size; i++) {
324 curdom = reg_regdb[i];
326 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
327 r = reg_copy_regd(&regdom, curdom);
328 if (r)
329 break;
330 mutex_lock(&cfg80211_mutex);
331 set_regdom(regdom);
332 mutex_unlock(&cfg80211_mutex);
333 break;
337 kfree(request);
339 mutex_unlock(&reg_regdb_search_mutex);
342 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
344 static void reg_regdb_query(const char *alpha2)
346 struct reg_regdb_search_request *request;
348 if (!alpha2)
349 return;
351 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
352 if (!request)
353 return;
355 memcpy(request->alpha2, alpha2, 2);
357 mutex_lock(&reg_regdb_search_mutex);
358 list_add_tail(&request->list, &reg_regdb_search_list);
359 mutex_unlock(&reg_regdb_search_mutex);
361 schedule_work(&reg_regdb_work);
363 #else
364 static inline void reg_regdb_query(const char *alpha2) {}
365 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
368 * This lets us keep regulatory code which is updated on a regulatory
369 * basis in userspace. Country information is filled in by
370 * reg_device_uevent
372 static int call_crda(const char *alpha2)
374 if (!is_world_regdom((char *) alpha2))
375 pr_info("Calling CRDA for country: %c%c\n",
376 alpha2[0], alpha2[1]);
377 else
378 pr_info("Calling CRDA to update world regulatory domain\n");
380 /* query internal regulatory database (if it exists) */
381 reg_regdb_query(alpha2);
383 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
386 /* Used by nl80211 before kmalloc'ing our regulatory domain */
387 bool reg_is_valid_request(const char *alpha2)
389 assert_cfg80211_lock();
391 if (!last_request)
392 return false;
394 return alpha2_equal(last_request->alpha2, alpha2);
397 /* Sanity check on a regulatory rule */
398 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
400 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
401 u32 freq_diff;
403 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
404 return false;
406 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
407 return false;
409 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
411 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
412 freq_range->max_bandwidth_khz > freq_diff)
413 return false;
415 return true;
418 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
420 const struct ieee80211_reg_rule *reg_rule = NULL;
421 unsigned int i;
423 if (!rd->n_reg_rules)
424 return false;
426 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
427 return false;
429 for (i = 0; i < rd->n_reg_rules; i++) {
430 reg_rule = &rd->reg_rules[i];
431 if (!is_valid_reg_rule(reg_rule))
432 return false;
435 return true;
438 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
439 u32 center_freq_khz,
440 u32 bw_khz)
442 u32 start_freq_khz, end_freq_khz;
444 start_freq_khz = center_freq_khz - (bw_khz/2);
445 end_freq_khz = center_freq_khz + (bw_khz/2);
447 if (start_freq_khz >= freq_range->start_freq_khz &&
448 end_freq_khz <= freq_range->end_freq_khz)
449 return true;
451 return false;
455 * freq_in_rule_band - tells us if a frequency is in a frequency band
456 * @freq_range: frequency rule we want to query
457 * @freq_khz: frequency we are inquiring about
459 * This lets us know if a specific frequency rule is or is not relevant to
460 * a specific frequency's band. Bands are device specific and artificial
461 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
462 * safe for now to assume that a frequency rule should not be part of a
463 * frequency's band if the start freq or end freq are off by more than 2 GHz.
464 * This resolution can be lowered and should be considered as we add
465 * regulatory rule support for other "bands".
467 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
468 u32 freq_khz)
470 #define ONE_GHZ_IN_KHZ 1000000
471 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
472 return true;
473 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
474 return true;
475 return false;
476 #undef ONE_GHZ_IN_KHZ
480 * Helper for regdom_intersect(), this does the real
481 * mathematical intersection fun
483 static int reg_rules_intersect(
484 const struct ieee80211_reg_rule *rule1,
485 const struct ieee80211_reg_rule *rule2,
486 struct ieee80211_reg_rule *intersected_rule)
488 const struct ieee80211_freq_range *freq_range1, *freq_range2;
489 struct ieee80211_freq_range *freq_range;
490 const struct ieee80211_power_rule *power_rule1, *power_rule2;
491 struct ieee80211_power_rule *power_rule;
492 u32 freq_diff;
494 freq_range1 = &rule1->freq_range;
495 freq_range2 = &rule2->freq_range;
496 freq_range = &intersected_rule->freq_range;
498 power_rule1 = &rule1->power_rule;
499 power_rule2 = &rule2->power_rule;
500 power_rule = &intersected_rule->power_rule;
502 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
503 freq_range2->start_freq_khz);
504 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
505 freq_range2->end_freq_khz);
506 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
507 freq_range2->max_bandwidth_khz);
509 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
510 if (freq_range->max_bandwidth_khz > freq_diff)
511 freq_range->max_bandwidth_khz = freq_diff;
513 power_rule->max_eirp = min(power_rule1->max_eirp,
514 power_rule2->max_eirp);
515 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
516 power_rule2->max_antenna_gain);
518 intersected_rule->flags = (rule1->flags | rule2->flags);
520 if (!is_valid_reg_rule(intersected_rule))
521 return -EINVAL;
523 return 0;
527 * regdom_intersect - do the intersection between two regulatory domains
528 * @rd1: first regulatory domain
529 * @rd2: second regulatory domain
531 * Use this function to get the intersection between two regulatory domains.
532 * Once completed we will mark the alpha2 for the rd as intersected, "98",
533 * as no one single alpha2 can represent this regulatory domain.
535 * Returns a pointer to the regulatory domain structure which will hold the
536 * resulting intersection of rules between rd1 and rd2. We will
537 * kzalloc() this structure for you.
539 static struct ieee80211_regdomain *regdom_intersect(
540 const struct ieee80211_regdomain *rd1,
541 const struct ieee80211_regdomain *rd2)
543 int r, size_of_regd;
544 unsigned int x, y;
545 unsigned int num_rules = 0, rule_idx = 0;
546 const struct ieee80211_reg_rule *rule1, *rule2;
547 struct ieee80211_reg_rule *intersected_rule;
548 struct ieee80211_regdomain *rd;
549 /* This is just a dummy holder to help us count */
550 struct ieee80211_reg_rule irule;
552 /* Uses the stack temporarily for counter arithmetic */
553 intersected_rule = &irule;
555 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
557 if (!rd1 || !rd2)
558 return NULL;
561 * First we get a count of the rules we'll need, then we actually
562 * build them. This is to so we can malloc() and free() a
563 * regdomain once. The reason we use reg_rules_intersect() here
564 * is it will return -EINVAL if the rule computed makes no sense.
565 * All rules that do check out OK are valid.
568 for (x = 0; x < rd1->n_reg_rules; x++) {
569 rule1 = &rd1->reg_rules[x];
570 for (y = 0; y < rd2->n_reg_rules; y++) {
571 rule2 = &rd2->reg_rules[y];
572 if (!reg_rules_intersect(rule1, rule2,
573 intersected_rule))
574 num_rules++;
575 memset(intersected_rule, 0,
576 sizeof(struct ieee80211_reg_rule));
580 if (!num_rules)
581 return NULL;
583 size_of_regd = sizeof(struct ieee80211_regdomain) +
584 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
586 rd = kzalloc(size_of_regd, GFP_KERNEL);
587 if (!rd)
588 return NULL;
590 for (x = 0; x < rd1->n_reg_rules; x++) {
591 rule1 = &rd1->reg_rules[x];
592 for (y = 0; y < rd2->n_reg_rules; y++) {
593 rule2 = &rd2->reg_rules[y];
595 * This time around instead of using the stack lets
596 * write to the target rule directly saving ourselves
597 * a memcpy()
599 intersected_rule = &rd->reg_rules[rule_idx];
600 r = reg_rules_intersect(rule1, rule2,
601 intersected_rule);
603 * No need to memset here the intersected rule here as
604 * we're not using the stack anymore
606 if (r)
607 continue;
608 rule_idx++;
612 if (rule_idx != num_rules) {
613 kfree(rd);
614 return NULL;
617 rd->n_reg_rules = num_rules;
618 rd->alpha2[0] = '9';
619 rd->alpha2[1] = '8';
621 return rd;
625 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
626 * want to just have the channel structure use these
628 static u32 map_regdom_flags(u32 rd_flags)
630 u32 channel_flags = 0;
631 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
632 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
633 if (rd_flags & NL80211_RRF_NO_IBSS)
634 channel_flags |= IEEE80211_CHAN_NO_IBSS;
635 if (rd_flags & NL80211_RRF_DFS)
636 channel_flags |= IEEE80211_CHAN_RADAR;
637 return channel_flags;
640 static int freq_reg_info_regd(struct wiphy *wiphy,
641 u32 center_freq,
642 u32 desired_bw_khz,
643 const struct ieee80211_reg_rule **reg_rule,
644 const struct ieee80211_regdomain *custom_regd)
646 int i;
647 bool band_rule_found = false;
648 const struct ieee80211_regdomain *regd;
649 bool bw_fits = false;
651 if (!desired_bw_khz)
652 desired_bw_khz = MHZ_TO_KHZ(20);
654 regd = custom_regd ? custom_regd : cfg80211_regdomain;
657 * Follow the driver's regulatory domain, if present, unless a country
658 * IE has been processed or a user wants to help complaince further
660 if (!custom_regd &&
661 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
662 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
663 wiphy->regd)
664 regd = wiphy->regd;
666 if (!regd)
667 return -EINVAL;
669 for (i = 0; i < regd->n_reg_rules; i++) {
670 const struct ieee80211_reg_rule *rr;
671 const struct ieee80211_freq_range *fr = NULL;
672 const struct ieee80211_power_rule *pr = NULL;
674 rr = &regd->reg_rules[i];
675 fr = &rr->freq_range;
676 pr = &rr->power_rule;
679 * We only need to know if one frequency rule was
680 * was in center_freq's band, that's enough, so lets
681 * not overwrite it once found
683 if (!band_rule_found)
684 band_rule_found = freq_in_rule_band(fr, center_freq);
686 bw_fits = reg_does_bw_fit(fr,
687 center_freq,
688 desired_bw_khz);
690 if (band_rule_found && bw_fits) {
691 *reg_rule = rr;
692 return 0;
696 if (!band_rule_found)
697 return -ERANGE;
699 return -EINVAL;
702 int freq_reg_info(struct wiphy *wiphy,
703 u32 center_freq,
704 u32 desired_bw_khz,
705 const struct ieee80211_reg_rule **reg_rule)
707 assert_cfg80211_lock();
708 return freq_reg_info_regd(wiphy,
709 center_freq,
710 desired_bw_khz,
711 reg_rule,
712 NULL);
714 EXPORT_SYMBOL(freq_reg_info);
716 #ifdef CONFIG_CFG80211_REG_DEBUG
717 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
719 switch (initiator) {
720 case NL80211_REGDOM_SET_BY_CORE:
721 return "Set by core";
722 case NL80211_REGDOM_SET_BY_USER:
723 return "Set by user";
724 case NL80211_REGDOM_SET_BY_DRIVER:
725 return "Set by driver";
726 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
727 return "Set by country IE";
728 default:
729 WARN_ON(1);
730 return "Set by bug";
734 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
735 u32 desired_bw_khz,
736 const struct ieee80211_reg_rule *reg_rule)
738 const struct ieee80211_power_rule *power_rule;
739 const struct ieee80211_freq_range *freq_range;
740 char max_antenna_gain[32];
742 power_rule = &reg_rule->power_rule;
743 freq_range = &reg_rule->freq_range;
745 if (!power_rule->max_antenna_gain)
746 snprintf(max_antenna_gain, 32, "N/A");
747 else
748 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
750 REG_DBG_PRINT("Updating information on frequency %d MHz "
751 "for a %d MHz width channel with regulatory rule:\n",
752 chan->center_freq,
753 KHZ_TO_MHZ(desired_bw_khz));
755 REG_DBG_PRINT("%d KHz - %d KHz @ KHz), (%s mBi, %d mBm)\n",
756 freq_range->start_freq_khz,
757 freq_range->end_freq_khz,
758 max_antenna_gain,
759 power_rule->max_eirp);
761 #else
762 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
763 u32 desired_bw_khz,
764 const struct ieee80211_reg_rule *reg_rule)
766 return;
768 #endif
771 * Note that right now we assume the desired channel bandwidth
772 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
773 * per channel, the primary and the extension channel). To support
774 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
775 * new ieee80211_channel.target_bw and re run the regulatory check
776 * on the wiphy with the target_bw specified. Then we can simply use
777 * that below for the desired_bw_khz below.
779 static void handle_channel(struct wiphy *wiphy,
780 enum nl80211_reg_initiator initiator,
781 enum ieee80211_band band,
782 unsigned int chan_idx)
784 int r;
785 u32 flags, bw_flags = 0;
786 u32 desired_bw_khz = MHZ_TO_KHZ(20);
787 const struct ieee80211_reg_rule *reg_rule = NULL;
788 const struct ieee80211_power_rule *power_rule = NULL;
789 const struct ieee80211_freq_range *freq_range = NULL;
790 struct ieee80211_supported_band *sband;
791 struct ieee80211_channel *chan;
792 struct wiphy *request_wiphy = NULL;
794 assert_cfg80211_lock();
796 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
798 sband = wiphy->bands[band];
799 BUG_ON(chan_idx >= sband->n_channels);
800 chan = &sband->channels[chan_idx];
802 flags = chan->orig_flags;
804 r = freq_reg_info(wiphy,
805 MHZ_TO_KHZ(chan->center_freq),
806 desired_bw_khz,
807 &reg_rule);
809 if (r) {
811 * We will disable all channels that do not match our
812 * received regulatory rule unless the hint is coming
813 * from a Country IE and the Country IE had no information
814 * about a band. The IEEE 802.11 spec allows for an AP
815 * to send only a subset of the regulatory rules allowed,
816 * so an AP in the US that only supports 2.4 GHz may only send
817 * a country IE with information for the 2.4 GHz band
818 * while 5 GHz is still supported.
820 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
821 r == -ERANGE)
822 return;
824 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
825 chan->flags = IEEE80211_CHAN_DISABLED;
826 return;
829 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
831 power_rule = &reg_rule->power_rule;
832 freq_range = &reg_rule->freq_range;
834 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
835 bw_flags = IEEE80211_CHAN_NO_HT40;
837 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
838 request_wiphy && request_wiphy == wiphy &&
839 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
841 * This guarantees the driver's requested regulatory domain
842 * will always be used as a base for further regulatory
843 * settings
845 chan->flags = chan->orig_flags =
846 map_regdom_flags(reg_rule->flags) | bw_flags;
847 chan->max_antenna_gain = chan->orig_mag =
848 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
849 chan->max_power = chan->orig_mpwr =
850 (int) MBM_TO_DBM(power_rule->max_eirp);
851 return;
854 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
855 chan->max_antenna_gain = min(chan->orig_mag,
856 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
857 if (chan->orig_mpwr)
858 chan->max_power = min(chan->orig_mpwr,
859 (int) MBM_TO_DBM(power_rule->max_eirp));
860 else
861 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
864 static void handle_band(struct wiphy *wiphy,
865 enum ieee80211_band band,
866 enum nl80211_reg_initiator initiator)
868 unsigned int i;
869 struct ieee80211_supported_band *sband;
871 BUG_ON(!wiphy->bands[band]);
872 sband = wiphy->bands[band];
874 for (i = 0; i < sband->n_channels; i++)
875 handle_channel(wiphy, initiator, band, i);
878 static bool ignore_reg_update(struct wiphy *wiphy,
879 enum nl80211_reg_initiator initiator)
881 if (!last_request) {
882 REG_DBG_PRINT("Ignoring regulatory request %s since "
883 "last_request is not set\n",
884 reg_initiator_name(initiator));
885 return true;
888 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
889 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
890 REG_DBG_PRINT("Ignoring regulatory request %s "
891 "since the driver uses its own custom "
892 "regulatory domain ",
893 reg_initiator_name(initiator));
894 return true;
898 * wiphy->regd will be set once the device has its own
899 * desired regulatory domain set
901 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
902 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
903 !is_world_regdom(last_request->alpha2)) {
904 REG_DBG_PRINT("Ignoring regulatory request %s "
905 "since the driver requires its own regulaotry "
906 "domain to be set first",
907 reg_initiator_name(initiator));
908 return true;
911 return false;
914 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
916 struct cfg80211_registered_device *rdev;
918 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
919 wiphy_update_regulatory(&rdev->wiphy, initiator);
922 static void handle_reg_beacon(struct wiphy *wiphy,
923 unsigned int chan_idx,
924 struct reg_beacon *reg_beacon)
926 struct ieee80211_supported_band *sband;
927 struct ieee80211_channel *chan;
928 bool channel_changed = false;
929 struct ieee80211_channel chan_before;
931 assert_cfg80211_lock();
933 sband = wiphy->bands[reg_beacon->chan.band];
934 chan = &sband->channels[chan_idx];
936 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
937 return;
939 if (chan->beacon_found)
940 return;
942 chan->beacon_found = true;
944 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
945 return;
947 chan_before.center_freq = chan->center_freq;
948 chan_before.flags = chan->flags;
950 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
951 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
952 channel_changed = true;
955 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
956 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
957 channel_changed = true;
960 if (channel_changed)
961 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
965 * Called when a scan on a wiphy finds a beacon on
966 * new channel
968 static void wiphy_update_new_beacon(struct wiphy *wiphy,
969 struct reg_beacon *reg_beacon)
971 unsigned int i;
972 struct ieee80211_supported_band *sband;
974 assert_cfg80211_lock();
976 if (!wiphy->bands[reg_beacon->chan.band])
977 return;
979 sband = wiphy->bands[reg_beacon->chan.band];
981 for (i = 0; i < sband->n_channels; i++)
982 handle_reg_beacon(wiphy, i, reg_beacon);
986 * Called upon reg changes or a new wiphy is added
988 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
990 unsigned int i;
991 struct ieee80211_supported_band *sband;
992 struct reg_beacon *reg_beacon;
994 assert_cfg80211_lock();
996 if (list_empty(&reg_beacon_list))
997 return;
999 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1000 if (!wiphy->bands[reg_beacon->chan.band])
1001 continue;
1002 sband = wiphy->bands[reg_beacon->chan.band];
1003 for (i = 0; i < sband->n_channels; i++)
1004 handle_reg_beacon(wiphy, i, reg_beacon);
1008 static bool reg_is_world_roaming(struct wiphy *wiphy)
1010 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1011 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1012 return true;
1013 if (last_request &&
1014 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1015 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1016 return true;
1017 return false;
1020 /* Reap the advantages of previously found beacons */
1021 static void reg_process_beacons(struct wiphy *wiphy)
1024 * Means we are just firing up cfg80211, so no beacons would
1025 * have been processed yet.
1027 if (!last_request)
1028 return;
1029 if (!reg_is_world_roaming(wiphy))
1030 return;
1031 wiphy_update_beacon_reg(wiphy);
1034 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1036 if (!chan)
1037 return true;
1038 if (chan->flags & IEEE80211_CHAN_DISABLED)
1039 return true;
1040 /* This would happen when regulatory rules disallow HT40 completely */
1041 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1042 return true;
1043 return false;
1046 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1047 enum ieee80211_band band,
1048 unsigned int chan_idx)
1050 struct ieee80211_supported_band *sband;
1051 struct ieee80211_channel *channel;
1052 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1053 unsigned int i;
1055 assert_cfg80211_lock();
1057 sband = wiphy->bands[band];
1058 BUG_ON(chan_idx >= sband->n_channels);
1059 channel = &sband->channels[chan_idx];
1061 if (is_ht40_not_allowed(channel)) {
1062 channel->flags |= IEEE80211_CHAN_NO_HT40;
1063 return;
1067 * We need to ensure the extension channels exist to
1068 * be able to use HT40- or HT40+, this finds them (or not)
1070 for (i = 0; i < sband->n_channels; i++) {
1071 struct ieee80211_channel *c = &sband->channels[i];
1072 if (c->center_freq == (channel->center_freq - 20))
1073 channel_before = c;
1074 if (c->center_freq == (channel->center_freq + 20))
1075 channel_after = c;
1079 * Please note that this assumes target bandwidth is 20 MHz,
1080 * if that ever changes we also need to change the below logic
1081 * to include that as well.
1083 if (is_ht40_not_allowed(channel_before))
1084 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1085 else
1086 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1088 if (is_ht40_not_allowed(channel_after))
1089 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1090 else
1091 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1094 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1095 enum ieee80211_band band)
1097 unsigned int i;
1098 struct ieee80211_supported_band *sband;
1100 BUG_ON(!wiphy->bands[band]);
1101 sband = wiphy->bands[band];
1103 for (i = 0; i < sband->n_channels; i++)
1104 reg_process_ht_flags_channel(wiphy, band, i);
1107 static void reg_process_ht_flags(struct wiphy *wiphy)
1109 enum ieee80211_band band;
1111 if (!wiphy)
1112 return;
1114 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1115 if (wiphy->bands[band])
1116 reg_process_ht_flags_band(wiphy, band);
1121 void wiphy_update_regulatory(struct wiphy *wiphy,
1122 enum nl80211_reg_initiator initiator)
1124 enum ieee80211_band band;
1126 if (ignore_reg_update(wiphy, initiator))
1127 goto out;
1128 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1129 if (wiphy->bands[band])
1130 handle_band(wiphy, band, initiator);
1132 out:
1133 reg_process_beacons(wiphy);
1134 reg_process_ht_flags(wiphy);
1135 if (wiphy->reg_notifier)
1136 wiphy->reg_notifier(wiphy, last_request);
1139 static void handle_channel_custom(struct wiphy *wiphy,
1140 enum ieee80211_band band,
1141 unsigned int chan_idx,
1142 const struct ieee80211_regdomain *regd)
1144 int r;
1145 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1146 u32 bw_flags = 0;
1147 const struct ieee80211_reg_rule *reg_rule = NULL;
1148 const struct ieee80211_power_rule *power_rule = NULL;
1149 const struct ieee80211_freq_range *freq_range = NULL;
1150 struct ieee80211_supported_band *sband;
1151 struct ieee80211_channel *chan;
1153 assert_reg_lock();
1155 sband = wiphy->bands[band];
1156 BUG_ON(chan_idx >= sband->n_channels);
1157 chan = &sband->channels[chan_idx];
1159 r = freq_reg_info_regd(wiphy,
1160 MHZ_TO_KHZ(chan->center_freq),
1161 desired_bw_khz,
1162 &reg_rule,
1163 regd);
1165 if (r) {
1166 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1167 "regd has no rule that fits a %d MHz "
1168 "wide channel\n",
1169 chan->center_freq,
1170 KHZ_TO_MHZ(desired_bw_khz));
1171 chan->flags = IEEE80211_CHAN_DISABLED;
1172 return;
1175 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1177 power_rule = &reg_rule->power_rule;
1178 freq_range = &reg_rule->freq_range;
1180 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1181 bw_flags = IEEE80211_CHAN_NO_HT40;
1183 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1184 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1185 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1188 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1189 const struct ieee80211_regdomain *regd)
1191 unsigned int i;
1192 struct ieee80211_supported_band *sband;
1194 BUG_ON(!wiphy->bands[band]);
1195 sband = wiphy->bands[band];
1197 for (i = 0; i < sband->n_channels; i++)
1198 handle_channel_custom(wiphy, band, i, regd);
1201 /* Used by drivers prior to wiphy registration */
1202 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1203 const struct ieee80211_regdomain *regd)
1205 enum ieee80211_band band;
1206 unsigned int bands_set = 0;
1208 mutex_lock(&reg_mutex);
1209 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1210 if (!wiphy->bands[band])
1211 continue;
1212 handle_band_custom(wiphy, band, regd);
1213 bands_set++;
1215 mutex_unlock(&reg_mutex);
1218 * no point in calling this if it won't have any effect
1219 * on your device's supportd bands.
1221 WARN_ON(!bands_set);
1223 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1226 * Return value which can be used by ignore_request() to indicate
1227 * it has been determined we should intersect two regulatory domains
1229 #define REG_INTERSECT 1
1231 /* This has the logic which determines when a new request
1232 * should be ignored. */
1233 static int ignore_request(struct wiphy *wiphy,
1234 struct regulatory_request *pending_request)
1236 struct wiphy *last_wiphy = NULL;
1238 assert_cfg80211_lock();
1240 /* All initial requests are respected */
1241 if (!last_request)
1242 return 0;
1244 switch (pending_request->initiator) {
1245 case NL80211_REGDOM_SET_BY_CORE:
1246 return 0;
1247 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1249 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1251 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1252 return -EINVAL;
1253 if (last_request->initiator ==
1254 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1255 if (last_wiphy != wiphy) {
1257 * Two cards with two APs claiming different
1258 * Country IE alpha2s. We could
1259 * intersect them, but that seems unlikely
1260 * to be correct. Reject second one for now.
1262 if (regdom_changes(pending_request->alpha2))
1263 return -EOPNOTSUPP;
1264 return -EALREADY;
1267 * Two consecutive Country IE hints on the same wiphy.
1268 * This should be picked up early by the driver/stack
1270 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1271 return 0;
1272 return -EALREADY;
1274 return 0;
1275 case NL80211_REGDOM_SET_BY_DRIVER:
1276 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1277 if (regdom_changes(pending_request->alpha2))
1278 return 0;
1279 return -EALREADY;
1283 * This would happen if you unplug and plug your card
1284 * back in or if you add a new device for which the previously
1285 * loaded card also agrees on the regulatory domain.
1287 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1288 !regdom_changes(pending_request->alpha2))
1289 return -EALREADY;
1291 return REG_INTERSECT;
1292 case NL80211_REGDOM_SET_BY_USER:
1293 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1294 return REG_INTERSECT;
1296 * If the user knows better the user should set the regdom
1297 * to their country before the IE is picked up
1299 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1300 last_request->intersect)
1301 return -EOPNOTSUPP;
1303 * Process user requests only after previous user/driver/core
1304 * requests have been processed
1306 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1307 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1308 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1309 if (regdom_changes(last_request->alpha2))
1310 return -EAGAIN;
1313 if (!regdom_changes(pending_request->alpha2))
1314 return -EALREADY;
1316 return 0;
1319 return -EINVAL;
1322 static void reg_set_request_processed(void)
1324 bool need_more_processing = false;
1326 last_request->processed = true;
1328 spin_lock(&reg_requests_lock);
1329 if (!list_empty(&reg_requests_list))
1330 need_more_processing = true;
1331 spin_unlock(&reg_requests_lock);
1333 if (need_more_processing)
1334 schedule_work(&reg_work);
1338 * __regulatory_hint - hint to the wireless core a regulatory domain
1339 * @wiphy: if the hint comes from country information from an AP, this
1340 * is required to be set to the wiphy that received the information
1341 * @pending_request: the regulatory request currently being processed
1343 * The Wireless subsystem can use this function to hint to the wireless core
1344 * what it believes should be the current regulatory domain.
1346 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1347 * already been set or other standard error codes.
1349 * Caller must hold &cfg80211_mutex and &reg_mutex
1351 static int __regulatory_hint(struct wiphy *wiphy,
1352 struct regulatory_request *pending_request)
1354 bool intersect = false;
1355 int r = 0;
1357 assert_cfg80211_lock();
1359 r = ignore_request(wiphy, pending_request);
1361 if (r == REG_INTERSECT) {
1362 if (pending_request->initiator ==
1363 NL80211_REGDOM_SET_BY_DRIVER) {
1364 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1365 if (r) {
1366 kfree(pending_request);
1367 return r;
1370 intersect = true;
1371 } else if (r) {
1373 * If the regulatory domain being requested by the
1374 * driver has already been set just copy it to the
1375 * wiphy
1377 if (r == -EALREADY &&
1378 pending_request->initiator ==
1379 NL80211_REGDOM_SET_BY_DRIVER) {
1380 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1381 if (r) {
1382 kfree(pending_request);
1383 return r;
1385 r = -EALREADY;
1386 goto new_request;
1388 kfree(pending_request);
1389 return r;
1392 new_request:
1393 kfree(last_request);
1395 last_request = pending_request;
1396 last_request->intersect = intersect;
1398 pending_request = NULL;
1400 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1401 user_alpha2[0] = last_request->alpha2[0];
1402 user_alpha2[1] = last_request->alpha2[1];
1405 /* When r == REG_INTERSECT we do need to call CRDA */
1406 if (r < 0) {
1408 * Since CRDA will not be called in this case as we already
1409 * have applied the requested regulatory domain before we just
1410 * inform userspace we have processed the request
1412 if (r == -EALREADY) {
1413 nl80211_send_reg_change_event(last_request);
1414 reg_set_request_processed();
1416 return r;
1419 return call_crda(last_request->alpha2);
1422 /* This processes *all* regulatory hints */
1423 static void reg_process_hint(struct regulatory_request *reg_request)
1425 int r = 0;
1426 struct wiphy *wiphy = NULL;
1427 enum nl80211_reg_initiator initiator = reg_request->initiator;
1429 BUG_ON(!reg_request->alpha2);
1431 if (wiphy_idx_valid(reg_request->wiphy_idx))
1432 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1434 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1435 !wiphy) {
1436 kfree(reg_request);
1437 return;
1440 r = __regulatory_hint(wiphy, reg_request);
1441 /* This is required so that the orig_* parameters are saved */
1442 if (r == -EALREADY && wiphy &&
1443 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1444 wiphy_update_regulatory(wiphy, initiator);
1448 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1449 * Regulatory hints come on a first come first serve basis and we
1450 * must process each one atomically.
1452 static void reg_process_pending_hints(void)
1454 struct regulatory_request *reg_request;
1456 mutex_lock(&cfg80211_mutex);
1457 mutex_lock(&reg_mutex);
1459 /* When last_request->processed becomes true this will be rescheduled */
1460 if (last_request && !last_request->processed) {
1461 REG_DBG_PRINT("Pending regulatory request, waiting "
1462 "for it to be processed...");
1463 goto out;
1466 spin_lock(&reg_requests_lock);
1468 if (list_empty(&reg_requests_list)) {
1469 spin_unlock(&reg_requests_lock);
1470 goto out;
1473 reg_request = list_first_entry(&reg_requests_list,
1474 struct regulatory_request,
1475 list);
1476 list_del_init(&reg_request->list);
1478 spin_unlock(&reg_requests_lock);
1480 reg_process_hint(reg_request);
1482 out:
1483 mutex_unlock(&reg_mutex);
1484 mutex_unlock(&cfg80211_mutex);
1487 /* Processes beacon hints -- this has nothing to do with country IEs */
1488 static void reg_process_pending_beacon_hints(void)
1490 struct cfg80211_registered_device *rdev;
1491 struct reg_beacon *pending_beacon, *tmp;
1494 * No need to hold the reg_mutex here as we just touch wiphys
1495 * and do not read or access regulatory variables.
1497 mutex_lock(&cfg80211_mutex);
1499 /* This goes through the _pending_ beacon list */
1500 spin_lock_bh(&reg_pending_beacons_lock);
1502 if (list_empty(&reg_pending_beacons)) {
1503 spin_unlock_bh(&reg_pending_beacons_lock);
1504 goto out;
1507 list_for_each_entry_safe(pending_beacon, tmp,
1508 &reg_pending_beacons, list) {
1510 list_del_init(&pending_beacon->list);
1512 /* Applies the beacon hint to current wiphys */
1513 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1514 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1516 /* Remembers the beacon hint for new wiphys or reg changes */
1517 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1520 spin_unlock_bh(&reg_pending_beacons_lock);
1521 out:
1522 mutex_unlock(&cfg80211_mutex);
1525 static void reg_todo(struct work_struct *work)
1527 reg_process_pending_hints();
1528 reg_process_pending_beacon_hints();
1531 static void queue_regulatory_request(struct regulatory_request *request)
1533 if (isalpha(request->alpha2[0]))
1534 request->alpha2[0] = toupper(request->alpha2[0]);
1535 if (isalpha(request->alpha2[1]))
1536 request->alpha2[1] = toupper(request->alpha2[1]);
1538 spin_lock(&reg_requests_lock);
1539 list_add_tail(&request->list, &reg_requests_list);
1540 spin_unlock(&reg_requests_lock);
1542 schedule_work(&reg_work);
1546 * Core regulatory hint -- happens during cfg80211_init()
1547 * and when we restore regulatory settings.
1549 static int regulatory_hint_core(const char *alpha2)
1551 struct regulatory_request *request;
1553 kfree(last_request);
1554 last_request = NULL;
1556 request = kzalloc(sizeof(struct regulatory_request),
1557 GFP_KERNEL);
1558 if (!request)
1559 return -ENOMEM;
1561 request->alpha2[0] = alpha2[0];
1562 request->alpha2[1] = alpha2[1];
1563 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1565 queue_regulatory_request(request);
1567 return 0;
1570 /* User hints */
1571 int regulatory_hint_user(const char *alpha2)
1573 struct regulatory_request *request;
1575 BUG_ON(!alpha2);
1577 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1578 if (!request)
1579 return -ENOMEM;
1581 request->wiphy_idx = WIPHY_IDX_STALE;
1582 request->alpha2[0] = alpha2[0];
1583 request->alpha2[1] = alpha2[1];
1584 request->initiator = NL80211_REGDOM_SET_BY_USER;
1586 queue_regulatory_request(request);
1588 return 0;
1591 /* Driver hints */
1592 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1594 struct regulatory_request *request;
1596 BUG_ON(!alpha2);
1597 BUG_ON(!wiphy);
1599 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1600 if (!request)
1601 return -ENOMEM;
1603 request->wiphy_idx = get_wiphy_idx(wiphy);
1605 /* Must have registered wiphy first */
1606 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1608 request->alpha2[0] = alpha2[0];
1609 request->alpha2[1] = alpha2[1];
1610 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1612 queue_regulatory_request(request);
1614 return 0;
1616 EXPORT_SYMBOL(regulatory_hint);
1619 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1620 * therefore cannot iterate over the rdev list here.
1622 void regulatory_hint_11d(struct wiphy *wiphy,
1623 enum ieee80211_band band,
1624 u8 *country_ie,
1625 u8 country_ie_len)
1627 char alpha2[2];
1628 enum environment_cap env = ENVIRON_ANY;
1629 struct regulatory_request *request;
1631 mutex_lock(&reg_mutex);
1633 if (unlikely(!last_request))
1634 goto out;
1636 /* IE len must be evenly divisible by 2 */
1637 if (country_ie_len & 0x01)
1638 goto out;
1640 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1641 goto out;
1643 alpha2[0] = country_ie[0];
1644 alpha2[1] = country_ie[1];
1646 if (country_ie[2] == 'I')
1647 env = ENVIRON_INDOOR;
1648 else if (country_ie[2] == 'O')
1649 env = ENVIRON_OUTDOOR;
1652 * We will run this only upon a successful connection on cfg80211.
1653 * We leave conflict resolution to the workqueue, where can hold
1654 * cfg80211_mutex.
1656 if (likely(last_request->initiator ==
1657 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1658 wiphy_idx_valid(last_request->wiphy_idx)))
1659 goto out;
1661 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1662 if (!request)
1663 goto out;
1665 request->wiphy_idx = get_wiphy_idx(wiphy);
1666 request->alpha2[0] = alpha2[0];
1667 request->alpha2[1] = alpha2[1];
1668 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1669 request->country_ie_env = env;
1671 mutex_unlock(&reg_mutex);
1673 queue_regulatory_request(request);
1675 return;
1677 out:
1678 mutex_unlock(&reg_mutex);
1681 static void restore_alpha2(char *alpha2, bool reset_user)
1683 /* indicates there is no alpha2 to consider for restoration */
1684 alpha2[0] = '9';
1685 alpha2[1] = '7';
1687 /* The user setting has precedence over the module parameter */
1688 if (is_user_regdom_saved()) {
1689 /* Unless we're asked to ignore it and reset it */
1690 if (reset_user) {
1691 REG_DBG_PRINT("Restoring regulatory settings "
1692 "including user preference\n");
1693 user_alpha2[0] = '9';
1694 user_alpha2[1] = '7';
1697 * If we're ignoring user settings, we still need to
1698 * check the module parameter to ensure we put things
1699 * back as they were for a full restore.
1701 if (!is_world_regdom(ieee80211_regdom)) {
1702 REG_DBG_PRINT("Keeping preference on "
1703 "module parameter ieee80211_regdom: %c%c\n",
1704 ieee80211_regdom[0],
1705 ieee80211_regdom[1]);
1706 alpha2[0] = ieee80211_regdom[0];
1707 alpha2[1] = ieee80211_regdom[1];
1709 } else {
1710 REG_DBG_PRINT("Restoring regulatory settings "
1711 "while preserving user preference for: %c%c\n",
1712 user_alpha2[0],
1713 user_alpha2[1]);
1714 alpha2[0] = user_alpha2[0];
1715 alpha2[1] = user_alpha2[1];
1717 } else if (!is_world_regdom(ieee80211_regdom)) {
1718 REG_DBG_PRINT("Keeping preference on "
1719 "module parameter ieee80211_regdom: %c%c\n",
1720 ieee80211_regdom[0],
1721 ieee80211_regdom[1]);
1722 alpha2[0] = ieee80211_regdom[0];
1723 alpha2[1] = ieee80211_regdom[1];
1724 } else
1725 REG_DBG_PRINT("Restoring regulatory settings\n");
1729 * Restoring regulatory settings involves ingoring any
1730 * possibly stale country IE information and user regulatory
1731 * settings if so desired, this includes any beacon hints
1732 * learned as we could have traveled outside to another country
1733 * after disconnection. To restore regulatory settings we do
1734 * exactly what we did at bootup:
1736 * - send a core regulatory hint
1737 * - send a user regulatory hint if applicable
1739 * Device drivers that send a regulatory hint for a specific country
1740 * keep their own regulatory domain on wiphy->regd so that does does
1741 * not need to be remembered.
1743 static void restore_regulatory_settings(bool reset_user)
1745 char alpha2[2];
1746 struct reg_beacon *reg_beacon, *btmp;
1748 mutex_lock(&cfg80211_mutex);
1749 mutex_lock(&reg_mutex);
1751 reset_regdomains();
1752 restore_alpha2(alpha2, reset_user);
1754 /* Clear beacon hints */
1755 spin_lock_bh(&reg_pending_beacons_lock);
1756 if (!list_empty(&reg_pending_beacons)) {
1757 list_for_each_entry_safe(reg_beacon, btmp,
1758 &reg_pending_beacons, list) {
1759 list_del(&reg_beacon->list);
1760 kfree(reg_beacon);
1763 spin_unlock_bh(&reg_pending_beacons_lock);
1765 if (!list_empty(&reg_beacon_list)) {
1766 list_for_each_entry_safe(reg_beacon, btmp,
1767 &reg_beacon_list, list) {
1768 list_del(&reg_beacon->list);
1769 kfree(reg_beacon);
1773 /* First restore to the basic regulatory settings */
1774 cfg80211_regdomain = cfg80211_world_regdom;
1776 mutex_unlock(&reg_mutex);
1777 mutex_unlock(&cfg80211_mutex);
1779 regulatory_hint_core(cfg80211_regdomain->alpha2);
1782 * This restores the ieee80211_regdom module parameter
1783 * preference or the last user requested regulatory
1784 * settings, user regulatory settings takes precedence.
1786 if (is_an_alpha2(alpha2))
1787 regulatory_hint_user(user_alpha2);
1791 void regulatory_hint_disconnect(void)
1793 REG_DBG_PRINT("All devices are disconnected, going to "
1794 "restore regulatory settings\n");
1795 restore_regulatory_settings(false);
1798 static bool freq_is_chan_12_13_14(u16 freq)
1800 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1801 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1802 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1803 return true;
1804 return false;
1807 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1808 struct ieee80211_channel *beacon_chan,
1809 gfp_t gfp)
1811 struct reg_beacon *reg_beacon;
1813 if (likely((beacon_chan->beacon_found ||
1814 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1815 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1816 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1817 return 0;
1819 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1820 if (!reg_beacon)
1821 return -ENOMEM;
1823 REG_DBG_PRINT("Found new beacon on "
1824 "frequency: %d MHz (Ch %d) on %s\n",
1825 beacon_chan->center_freq,
1826 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1827 wiphy_name(wiphy));
1829 memcpy(&reg_beacon->chan, beacon_chan,
1830 sizeof(struct ieee80211_channel));
1834 * Since we can be called from BH or and non-BH context
1835 * we must use spin_lock_bh()
1837 spin_lock_bh(&reg_pending_beacons_lock);
1838 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1839 spin_unlock_bh(&reg_pending_beacons_lock);
1841 schedule_work(&reg_work);
1843 return 0;
1846 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1848 unsigned int i;
1849 const struct ieee80211_reg_rule *reg_rule = NULL;
1850 const struct ieee80211_freq_range *freq_range = NULL;
1851 const struct ieee80211_power_rule *power_rule = NULL;
1853 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1855 for (i = 0; i < rd->n_reg_rules; i++) {
1856 reg_rule = &rd->reg_rules[i];
1857 freq_range = &reg_rule->freq_range;
1858 power_rule = &reg_rule->power_rule;
1861 * There may not be documentation for max antenna gain
1862 * in certain regions
1864 if (power_rule->max_antenna_gain)
1865 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1866 freq_range->start_freq_khz,
1867 freq_range->end_freq_khz,
1868 freq_range->max_bandwidth_khz,
1869 power_rule->max_antenna_gain,
1870 power_rule->max_eirp);
1871 else
1872 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1873 freq_range->start_freq_khz,
1874 freq_range->end_freq_khz,
1875 freq_range->max_bandwidth_khz,
1876 power_rule->max_eirp);
1880 static void print_regdomain(const struct ieee80211_regdomain *rd)
1883 if (is_intersected_alpha2(rd->alpha2)) {
1885 if (last_request->initiator ==
1886 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1887 struct cfg80211_registered_device *rdev;
1888 rdev = cfg80211_rdev_by_wiphy_idx(
1889 last_request->wiphy_idx);
1890 if (rdev) {
1891 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1892 rdev->country_ie_alpha2[0],
1893 rdev->country_ie_alpha2[1]);
1894 } else
1895 pr_info("Current regulatory domain intersected:\n");
1896 } else
1897 pr_info("Current regulatory domain intersected:\n");
1898 } else if (is_world_regdom(rd->alpha2))
1899 pr_info("World regulatory domain updated:\n");
1900 else {
1901 if (is_unknown_alpha2(rd->alpha2))
1902 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1903 else
1904 pr_info("Regulatory domain changed to country: %c%c\n",
1905 rd->alpha2[0], rd->alpha2[1]);
1907 print_rd_rules(rd);
1910 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1912 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1913 print_rd_rules(rd);
1916 /* Takes ownership of rd only if it doesn't fail */
1917 static int __set_regdom(const struct ieee80211_regdomain *rd)
1919 const struct ieee80211_regdomain *intersected_rd = NULL;
1920 struct cfg80211_registered_device *rdev = NULL;
1921 struct wiphy *request_wiphy;
1922 /* Some basic sanity checks first */
1924 if (is_world_regdom(rd->alpha2)) {
1925 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1926 return -EINVAL;
1927 update_world_regdomain(rd);
1928 return 0;
1931 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1932 !is_unknown_alpha2(rd->alpha2))
1933 return -EINVAL;
1935 if (!last_request)
1936 return -EINVAL;
1939 * Lets only bother proceeding on the same alpha2 if the current
1940 * rd is non static (it means CRDA was present and was used last)
1941 * and the pending request came in from a country IE
1943 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1945 * If someone else asked us to change the rd lets only bother
1946 * checking if the alpha2 changes if CRDA was already called
1948 if (!regdom_changes(rd->alpha2))
1949 return -EINVAL;
1953 * Now lets set the regulatory domain, update all driver channels
1954 * and finally inform them of what we have done, in case they want
1955 * to review or adjust their own settings based on their own
1956 * internal EEPROM data
1959 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1960 return -EINVAL;
1962 if (!is_valid_rd(rd)) {
1963 pr_err("Invalid regulatory domain detected:\n");
1964 print_regdomain_info(rd);
1965 return -EINVAL;
1968 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1970 if (!last_request->intersect) {
1971 int r;
1973 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1974 reset_regdomains();
1975 cfg80211_regdomain = rd;
1976 return 0;
1980 * For a driver hint, lets copy the regulatory domain the
1981 * driver wanted to the wiphy to deal with conflicts
1985 * Userspace could have sent two replies with only
1986 * one kernel request.
1988 if (request_wiphy->regd)
1989 return -EALREADY;
1991 r = reg_copy_regd(&request_wiphy->regd, rd);
1992 if (r)
1993 return r;
1995 reset_regdomains();
1996 cfg80211_regdomain = rd;
1997 return 0;
2000 /* Intersection requires a bit more work */
2002 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2004 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2005 if (!intersected_rd)
2006 return -EINVAL;
2009 * We can trash what CRDA provided now.
2010 * However if a driver requested this specific regulatory
2011 * domain we keep it for its private use
2013 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2014 request_wiphy->regd = rd;
2015 else
2016 kfree(rd);
2018 rd = NULL;
2020 reset_regdomains();
2021 cfg80211_regdomain = intersected_rd;
2023 return 0;
2026 if (!intersected_rd)
2027 return -EINVAL;
2029 rdev = wiphy_to_dev(request_wiphy);
2031 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2032 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2033 rdev->env = last_request->country_ie_env;
2035 BUG_ON(intersected_rd == rd);
2037 kfree(rd);
2038 rd = NULL;
2040 reset_regdomains();
2041 cfg80211_regdomain = intersected_rd;
2043 return 0;
2048 * Use this call to set the current regulatory domain. Conflicts with
2049 * multiple drivers can be ironed out later. Caller must've already
2050 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2052 int set_regdom(const struct ieee80211_regdomain *rd)
2054 int r;
2056 assert_cfg80211_lock();
2058 mutex_lock(&reg_mutex);
2060 /* Note that this doesn't update the wiphys, this is done below */
2061 r = __set_regdom(rd);
2062 if (r) {
2063 kfree(rd);
2064 mutex_unlock(&reg_mutex);
2065 return r;
2068 /* This would make this whole thing pointless */
2069 if (!last_request->intersect)
2070 BUG_ON(rd != cfg80211_regdomain);
2072 /* update all wiphys now with the new established regulatory domain */
2073 update_all_wiphy_regulatory(last_request->initiator);
2075 print_regdomain(cfg80211_regdomain);
2077 nl80211_send_reg_change_event(last_request);
2079 reg_set_request_processed();
2081 mutex_unlock(&reg_mutex);
2083 return r;
2086 #ifdef CONFIG_HOTPLUG
2087 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2089 if (last_request && !last_request->processed) {
2090 if (add_uevent_var(env, "COUNTRY=%c%c",
2091 last_request->alpha2[0],
2092 last_request->alpha2[1]))
2093 return -ENOMEM;
2096 return 0;
2098 #else
2099 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2101 return -ENODEV;
2103 #endif /* CONFIG_HOTPLUG */
2105 /* Caller must hold cfg80211_mutex */
2106 void reg_device_remove(struct wiphy *wiphy)
2108 struct wiphy *request_wiphy = NULL;
2110 assert_cfg80211_lock();
2112 mutex_lock(&reg_mutex);
2114 kfree(wiphy->regd);
2116 if (last_request)
2117 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2119 if (!request_wiphy || request_wiphy != wiphy)
2120 goto out;
2122 last_request->wiphy_idx = WIPHY_IDX_STALE;
2123 last_request->country_ie_env = ENVIRON_ANY;
2124 out:
2125 mutex_unlock(&reg_mutex);
2128 int __init regulatory_init(void)
2130 int err = 0;
2132 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2133 if (IS_ERR(reg_pdev))
2134 return PTR_ERR(reg_pdev);
2136 reg_pdev->dev.type = &reg_device_type;
2138 spin_lock_init(&reg_requests_lock);
2139 spin_lock_init(&reg_pending_beacons_lock);
2141 cfg80211_regdomain = cfg80211_world_regdom;
2143 user_alpha2[0] = '9';
2144 user_alpha2[1] = '7';
2146 /* We always try to get an update for the static regdomain */
2147 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2148 if (err) {
2149 if (err == -ENOMEM)
2150 return err;
2152 * N.B. kobject_uevent_env() can fail mainly for when we're out
2153 * memory which is handled and propagated appropriately above
2154 * but it can also fail during a netlink_broadcast() or during
2155 * early boot for call_usermodehelper(). For now treat these
2156 * errors as non-fatal.
2158 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2159 #ifdef CONFIG_CFG80211_REG_DEBUG
2160 /* We want to find out exactly why when debugging */
2161 WARN_ON(err);
2162 #endif
2166 * Finally, if the user set the module parameter treat it
2167 * as a user hint.
2169 if (!is_world_regdom(ieee80211_regdom))
2170 regulatory_hint_user(ieee80211_regdom);
2172 return 0;
2175 void /* __init_or_exit */ regulatory_exit(void)
2177 struct regulatory_request *reg_request, *tmp;
2178 struct reg_beacon *reg_beacon, *btmp;
2180 cancel_work_sync(&reg_work);
2182 mutex_lock(&cfg80211_mutex);
2183 mutex_lock(&reg_mutex);
2185 reset_regdomains();
2187 kfree(last_request);
2189 platform_device_unregister(reg_pdev);
2191 spin_lock_bh(&reg_pending_beacons_lock);
2192 if (!list_empty(&reg_pending_beacons)) {
2193 list_for_each_entry_safe(reg_beacon, btmp,
2194 &reg_pending_beacons, list) {
2195 list_del(&reg_beacon->list);
2196 kfree(reg_beacon);
2199 spin_unlock_bh(&reg_pending_beacons_lock);
2201 if (!list_empty(&reg_beacon_list)) {
2202 list_for_each_entry_safe(reg_beacon, btmp,
2203 &reg_beacon_list, list) {
2204 list_del(&reg_beacon->list);
2205 kfree(reg_beacon);
2209 spin_lock(&reg_requests_lock);
2210 if (!list_empty(&reg_requests_list)) {
2211 list_for_each_entry_safe(reg_request, tmp,
2212 &reg_requests_list, list) {
2213 list_del(&reg_request->list);
2214 kfree(reg_request);
2217 spin_unlock(&reg_requests_lock);
2219 mutex_unlock(&reg_mutex);
2220 mutex_unlock(&cfg80211_mutex);