tuntap: switch to use rtnl_dereference()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / block / pktcdvd.c
blob2e7de7a59bfca01c4a35edaa1824a7a38f90e52f
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
12 * Theory of operation:
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
45 *************************************************************************/
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/compat.h>
52 #include <linux/kthread.h>
53 #include <linux/errno.h>
54 #include <linux/spinlock.h>
55 #include <linux/file.h>
56 #include <linux/proc_fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/miscdevice.h>
59 #include <linux/freezer.h>
60 #include <linux/mutex.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_ioctl.h>
64 #include <scsi/scsi.h>
65 #include <linux/debugfs.h>
66 #include <linux/device.h>
68 #include <asm/uaccess.h>
70 #define DRIVER_NAME "pktcdvd"
72 #if PACKET_DEBUG
73 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74 #else
75 #define DPRINTK(fmt, args...)
76 #endif
78 #if PACKET_DEBUG > 1
79 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
80 #else
81 #define VPRINTK(fmt, args...)
82 #endif
84 #define MAX_SPEED 0xffff
86 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
88 static DEFINE_MUTEX(pktcdvd_mutex);
89 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
90 static struct proc_dir_entry *pkt_proc;
91 static int pktdev_major;
92 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
93 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
94 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
95 static mempool_t *psd_pool;
97 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
98 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
100 /* forward declaration */
101 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
102 static int pkt_remove_dev(dev_t pkt_dev);
103 static int pkt_seq_show(struct seq_file *m, void *p);
108 * create and register a pktcdvd kernel object.
110 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
111 const char* name,
112 struct kobject* parent,
113 struct kobj_type* ktype)
115 struct pktcdvd_kobj *p;
116 int error;
118 p = kzalloc(sizeof(*p), GFP_KERNEL);
119 if (!p)
120 return NULL;
121 p->pd = pd;
122 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
123 if (error) {
124 kobject_put(&p->kobj);
125 return NULL;
127 kobject_uevent(&p->kobj, KOBJ_ADD);
128 return p;
131 * remove a pktcdvd kernel object.
133 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
135 if (p)
136 kobject_put(&p->kobj);
139 * default release function for pktcdvd kernel objects.
141 static void pkt_kobj_release(struct kobject *kobj)
143 kfree(to_pktcdvdkobj(kobj));
147 /**********************************************************
149 * sysfs interface for pktcdvd
150 * by (C) 2006 Thomas Maier <balagi@justmail.de>
152 **********************************************************/
154 #define DEF_ATTR(_obj,_name,_mode) \
155 static struct attribute _obj = { .name = _name, .mode = _mode }
157 /**********************************************************
158 /sys/class/pktcdvd/pktcdvd[0-7]/
159 stat/reset
160 stat/packets_started
161 stat/packets_finished
162 stat/kb_written
163 stat/kb_read
164 stat/kb_read_gather
165 write_queue/size
166 write_queue/congestion_off
167 write_queue/congestion_on
168 **********************************************************/
170 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
171 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
172 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
173 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
174 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
175 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
177 static struct attribute *kobj_pkt_attrs_stat[] = {
178 &kobj_pkt_attr_st1,
179 &kobj_pkt_attr_st2,
180 &kobj_pkt_attr_st3,
181 &kobj_pkt_attr_st4,
182 &kobj_pkt_attr_st5,
183 &kobj_pkt_attr_st6,
184 NULL
187 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
188 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
189 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
191 static struct attribute *kobj_pkt_attrs_wqueue[] = {
192 &kobj_pkt_attr_wq1,
193 &kobj_pkt_attr_wq2,
194 &kobj_pkt_attr_wq3,
195 NULL
198 static ssize_t kobj_pkt_show(struct kobject *kobj,
199 struct attribute *attr, char *data)
201 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
202 int n = 0;
203 int v;
204 if (strcmp(attr->name, "packets_started") == 0) {
205 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
207 } else if (strcmp(attr->name, "packets_finished") == 0) {
208 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
210 } else if (strcmp(attr->name, "kb_written") == 0) {
211 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
213 } else if (strcmp(attr->name, "kb_read") == 0) {
214 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
216 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
217 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
219 } else if (strcmp(attr->name, "size") == 0) {
220 spin_lock(&pd->lock);
221 v = pd->bio_queue_size;
222 spin_unlock(&pd->lock);
223 n = sprintf(data, "%d\n", v);
225 } else if (strcmp(attr->name, "congestion_off") == 0) {
226 spin_lock(&pd->lock);
227 v = pd->write_congestion_off;
228 spin_unlock(&pd->lock);
229 n = sprintf(data, "%d\n", v);
231 } else if (strcmp(attr->name, "congestion_on") == 0) {
232 spin_lock(&pd->lock);
233 v = pd->write_congestion_on;
234 spin_unlock(&pd->lock);
235 n = sprintf(data, "%d\n", v);
237 return n;
240 static void init_write_congestion_marks(int* lo, int* hi)
242 if (*hi > 0) {
243 *hi = max(*hi, 500);
244 *hi = min(*hi, 1000000);
245 if (*lo <= 0)
246 *lo = *hi - 100;
247 else {
248 *lo = min(*lo, *hi - 100);
249 *lo = max(*lo, 100);
251 } else {
252 *hi = -1;
253 *lo = -1;
257 static ssize_t kobj_pkt_store(struct kobject *kobj,
258 struct attribute *attr,
259 const char *data, size_t len)
261 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
262 int val;
264 if (strcmp(attr->name, "reset") == 0 && len > 0) {
265 pd->stats.pkt_started = 0;
266 pd->stats.pkt_ended = 0;
267 pd->stats.secs_w = 0;
268 pd->stats.secs_rg = 0;
269 pd->stats.secs_r = 0;
271 } else if (strcmp(attr->name, "congestion_off") == 0
272 && sscanf(data, "%d", &val) == 1) {
273 spin_lock(&pd->lock);
274 pd->write_congestion_off = val;
275 init_write_congestion_marks(&pd->write_congestion_off,
276 &pd->write_congestion_on);
277 spin_unlock(&pd->lock);
279 } else if (strcmp(attr->name, "congestion_on") == 0
280 && sscanf(data, "%d", &val) == 1) {
281 spin_lock(&pd->lock);
282 pd->write_congestion_on = val;
283 init_write_congestion_marks(&pd->write_congestion_off,
284 &pd->write_congestion_on);
285 spin_unlock(&pd->lock);
287 return len;
290 static const struct sysfs_ops kobj_pkt_ops = {
291 .show = kobj_pkt_show,
292 .store = kobj_pkt_store
294 static struct kobj_type kobj_pkt_type_stat = {
295 .release = pkt_kobj_release,
296 .sysfs_ops = &kobj_pkt_ops,
297 .default_attrs = kobj_pkt_attrs_stat
299 static struct kobj_type kobj_pkt_type_wqueue = {
300 .release = pkt_kobj_release,
301 .sysfs_ops = &kobj_pkt_ops,
302 .default_attrs = kobj_pkt_attrs_wqueue
305 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
307 if (class_pktcdvd) {
308 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
309 "%s", pd->name);
310 if (IS_ERR(pd->dev))
311 pd->dev = NULL;
313 if (pd->dev) {
314 pd->kobj_stat = pkt_kobj_create(pd, "stat",
315 &pd->dev->kobj,
316 &kobj_pkt_type_stat);
317 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
318 &pd->dev->kobj,
319 &kobj_pkt_type_wqueue);
323 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
325 pkt_kobj_remove(pd->kobj_stat);
326 pkt_kobj_remove(pd->kobj_wqueue);
327 if (class_pktcdvd)
328 device_unregister(pd->dev);
332 /********************************************************************
333 /sys/class/pktcdvd/
334 add map block device
335 remove unmap packet dev
336 device_map show mappings
337 *******************************************************************/
339 static void class_pktcdvd_release(struct class *cls)
341 kfree(cls);
343 static ssize_t class_pktcdvd_show_map(struct class *c,
344 struct class_attribute *attr,
345 char *data)
347 int n = 0;
348 int idx;
349 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
350 for (idx = 0; idx < MAX_WRITERS; idx++) {
351 struct pktcdvd_device *pd = pkt_devs[idx];
352 if (!pd)
353 continue;
354 n += sprintf(data+n, "%s %u:%u %u:%u\n",
355 pd->name,
356 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
357 MAJOR(pd->bdev->bd_dev),
358 MINOR(pd->bdev->bd_dev));
360 mutex_unlock(&ctl_mutex);
361 return n;
364 static ssize_t class_pktcdvd_store_add(struct class *c,
365 struct class_attribute *attr,
366 const char *buf,
367 size_t count)
369 unsigned int major, minor;
371 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
372 /* pkt_setup_dev() expects caller to hold reference to self */
373 if (!try_module_get(THIS_MODULE))
374 return -ENODEV;
376 pkt_setup_dev(MKDEV(major, minor), NULL);
378 module_put(THIS_MODULE);
380 return count;
383 return -EINVAL;
386 static ssize_t class_pktcdvd_store_remove(struct class *c,
387 struct class_attribute *attr,
388 const char *buf,
389 size_t count)
391 unsigned int major, minor;
392 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
393 pkt_remove_dev(MKDEV(major, minor));
394 return count;
396 return -EINVAL;
399 static struct class_attribute class_pktcdvd_attrs[] = {
400 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
401 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
402 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
403 __ATTR_NULL
407 static int pkt_sysfs_init(void)
409 int ret = 0;
412 * create control files in sysfs
413 * /sys/class/pktcdvd/...
415 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
416 if (!class_pktcdvd)
417 return -ENOMEM;
418 class_pktcdvd->name = DRIVER_NAME;
419 class_pktcdvd->owner = THIS_MODULE;
420 class_pktcdvd->class_release = class_pktcdvd_release;
421 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
422 ret = class_register(class_pktcdvd);
423 if (ret) {
424 kfree(class_pktcdvd);
425 class_pktcdvd = NULL;
426 printk(DRIVER_NAME": failed to create class pktcdvd\n");
427 return ret;
429 return 0;
432 static void pkt_sysfs_cleanup(void)
434 if (class_pktcdvd)
435 class_destroy(class_pktcdvd);
436 class_pktcdvd = NULL;
439 /********************************************************************
440 entries in debugfs
442 /sys/kernel/debug/pktcdvd[0-7]/
443 info
445 *******************************************************************/
447 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
449 return pkt_seq_show(m, p);
452 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
454 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
457 static const struct file_operations debug_fops = {
458 .open = pkt_debugfs_fops_open,
459 .read = seq_read,
460 .llseek = seq_lseek,
461 .release = single_release,
462 .owner = THIS_MODULE,
465 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
467 if (!pkt_debugfs_root)
468 return;
469 pd->dfs_f_info = NULL;
470 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
471 if (IS_ERR(pd->dfs_d_root)) {
472 pd->dfs_d_root = NULL;
473 return;
475 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
476 pd->dfs_d_root, pd, &debug_fops);
477 if (IS_ERR(pd->dfs_f_info)) {
478 pd->dfs_f_info = NULL;
479 return;
483 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
485 if (!pkt_debugfs_root)
486 return;
487 if (pd->dfs_f_info)
488 debugfs_remove(pd->dfs_f_info);
489 pd->dfs_f_info = NULL;
490 if (pd->dfs_d_root)
491 debugfs_remove(pd->dfs_d_root);
492 pd->dfs_d_root = NULL;
495 static void pkt_debugfs_init(void)
497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498 if (IS_ERR(pkt_debugfs_root)) {
499 pkt_debugfs_root = NULL;
500 return;
504 static void pkt_debugfs_cleanup(void)
506 if (!pkt_debugfs_root)
507 return;
508 debugfs_remove(pkt_debugfs_root);
509 pkt_debugfs_root = NULL;
512 /* ----------------------------------------------------------*/
515 static void pkt_bio_finished(struct pktcdvd_device *pd)
517 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
518 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
519 VPRINTK(DRIVER_NAME": queue empty\n");
520 atomic_set(&pd->iosched.attention, 1);
521 wake_up(&pd->wqueue);
526 * Allocate a packet_data struct
528 static struct packet_data *pkt_alloc_packet_data(int frames)
530 int i;
531 struct packet_data *pkt;
533 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
534 if (!pkt)
535 goto no_pkt;
537 pkt->frames = frames;
538 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
539 if (!pkt->w_bio)
540 goto no_bio;
542 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
543 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
544 if (!pkt->pages[i])
545 goto no_page;
548 spin_lock_init(&pkt->lock);
549 bio_list_init(&pkt->orig_bios);
551 for (i = 0; i < frames; i++) {
552 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
553 if (!bio)
554 goto no_rd_bio;
556 pkt->r_bios[i] = bio;
559 return pkt;
561 no_rd_bio:
562 for (i = 0; i < frames; i++) {
563 struct bio *bio = pkt->r_bios[i];
564 if (bio)
565 bio_put(bio);
568 no_page:
569 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
570 if (pkt->pages[i])
571 __free_page(pkt->pages[i]);
572 bio_put(pkt->w_bio);
573 no_bio:
574 kfree(pkt);
575 no_pkt:
576 return NULL;
580 * Free a packet_data struct
582 static void pkt_free_packet_data(struct packet_data *pkt)
584 int i;
586 for (i = 0; i < pkt->frames; i++) {
587 struct bio *bio = pkt->r_bios[i];
588 if (bio)
589 bio_put(bio);
591 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
592 __free_page(pkt->pages[i]);
593 bio_put(pkt->w_bio);
594 kfree(pkt);
597 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
599 struct packet_data *pkt, *next;
601 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
603 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
604 pkt_free_packet_data(pkt);
606 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
609 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
611 struct packet_data *pkt;
613 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
615 while (nr_packets > 0) {
616 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
617 if (!pkt) {
618 pkt_shrink_pktlist(pd);
619 return 0;
621 pkt->id = nr_packets;
622 pkt->pd = pd;
623 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
624 nr_packets--;
626 return 1;
629 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
631 struct rb_node *n = rb_next(&node->rb_node);
632 if (!n)
633 return NULL;
634 return rb_entry(n, struct pkt_rb_node, rb_node);
637 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
639 rb_erase(&node->rb_node, &pd->bio_queue);
640 mempool_free(node, pd->rb_pool);
641 pd->bio_queue_size--;
642 BUG_ON(pd->bio_queue_size < 0);
646 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
648 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
650 struct rb_node *n = pd->bio_queue.rb_node;
651 struct rb_node *next;
652 struct pkt_rb_node *tmp;
654 if (!n) {
655 BUG_ON(pd->bio_queue_size > 0);
656 return NULL;
659 for (;;) {
660 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
661 if (s <= tmp->bio->bi_sector)
662 next = n->rb_left;
663 else
664 next = n->rb_right;
665 if (!next)
666 break;
667 n = next;
670 if (s > tmp->bio->bi_sector) {
671 tmp = pkt_rbtree_next(tmp);
672 if (!tmp)
673 return NULL;
675 BUG_ON(s > tmp->bio->bi_sector);
676 return tmp;
680 * Insert a node into the pd->bio_queue rb tree.
682 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
684 struct rb_node **p = &pd->bio_queue.rb_node;
685 struct rb_node *parent = NULL;
686 sector_t s = node->bio->bi_sector;
687 struct pkt_rb_node *tmp;
689 while (*p) {
690 parent = *p;
691 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
692 if (s < tmp->bio->bi_sector)
693 p = &(*p)->rb_left;
694 else
695 p = &(*p)->rb_right;
697 rb_link_node(&node->rb_node, parent, p);
698 rb_insert_color(&node->rb_node, &pd->bio_queue);
699 pd->bio_queue_size++;
703 * Send a packet_command to the underlying block device and
704 * wait for completion.
706 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
708 struct request_queue *q = bdev_get_queue(pd->bdev);
709 struct request *rq;
710 int ret = 0;
712 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
713 WRITE : READ, __GFP_WAIT);
715 if (cgc->buflen) {
716 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
717 goto out;
720 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
721 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
723 rq->timeout = 60*HZ;
724 rq->cmd_type = REQ_TYPE_BLOCK_PC;
725 if (cgc->quiet)
726 rq->cmd_flags |= REQ_QUIET;
728 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
729 if (rq->errors)
730 ret = -EIO;
731 out:
732 blk_put_request(rq);
733 return ret;
737 * A generic sense dump / resolve mechanism should be implemented across
738 * all ATAPI + SCSI devices.
740 static void pkt_dump_sense(struct packet_command *cgc)
742 static char *info[9] = { "No sense", "Recovered error", "Not ready",
743 "Medium error", "Hardware error", "Illegal request",
744 "Unit attention", "Data protect", "Blank check" };
745 int i;
746 struct request_sense *sense = cgc->sense;
748 printk(DRIVER_NAME":");
749 for (i = 0; i < CDROM_PACKET_SIZE; i++)
750 printk(" %02x", cgc->cmd[i]);
751 printk(" - ");
753 if (sense == NULL) {
754 printk("no sense\n");
755 return;
758 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
760 if (sense->sense_key > 8) {
761 printk(" (INVALID)\n");
762 return;
765 printk(" (%s)\n", info[sense->sense_key]);
769 * flush the drive cache to media
771 static int pkt_flush_cache(struct pktcdvd_device *pd)
773 struct packet_command cgc;
775 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
776 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
777 cgc.quiet = 1;
780 * the IMMED bit -- we default to not setting it, although that
781 * would allow a much faster close, this is safer
783 #if 0
784 cgc.cmd[1] = 1 << 1;
785 #endif
786 return pkt_generic_packet(pd, &cgc);
790 * speed is given as the normal factor, e.g. 4 for 4x
792 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
793 unsigned write_speed, unsigned read_speed)
795 struct packet_command cgc;
796 struct request_sense sense;
797 int ret;
799 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
800 cgc.sense = &sense;
801 cgc.cmd[0] = GPCMD_SET_SPEED;
802 cgc.cmd[2] = (read_speed >> 8) & 0xff;
803 cgc.cmd[3] = read_speed & 0xff;
804 cgc.cmd[4] = (write_speed >> 8) & 0xff;
805 cgc.cmd[5] = write_speed & 0xff;
807 if ((ret = pkt_generic_packet(pd, &cgc)))
808 pkt_dump_sense(&cgc);
810 return ret;
814 * Queue a bio for processing by the low-level CD device. Must be called
815 * from process context.
817 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
819 spin_lock(&pd->iosched.lock);
820 if (bio_data_dir(bio) == READ)
821 bio_list_add(&pd->iosched.read_queue, bio);
822 else
823 bio_list_add(&pd->iosched.write_queue, bio);
824 spin_unlock(&pd->iosched.lock);
826 atomic_set(&pd->iosched.attention, 1);
827 wake_up(&pd->wqueue);
831 * Process the queued read/write requests. This function handles special
832 * requirements for CDRW drives:
833 * - A cache flush command must be inserted before a read request if the
834 * previous request was a write.
835 * - Switching between reading and writing is slow, so don't do it more often
836 * than necessary.
837 * - Optimize for throughput at the expense of latency. This means that streaming
838 * writes will never be interrupted by a read, but if the drive has to seek
839 * before the next write, switch to reading instead if there are any pending
840 * read requests.
841 * - Set the read speed according to current usage pattern. When only reading
842 * from the device, it's best to use the highest possible read speed, but
843 * when switching often between reading and writing, it's better to have the
844 * same read and write speeds.
846 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
849 if (atomic_read(&pd->iosched.attention) == 0)
850 return;
851 atomic_set(&pd->iosched.attention, 0);
853 for (;;) {
854 struct bio *bio;
855 int reads_queued, writes_queued;
857 spin_lock(&pd->iosched.lock);
858 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
859 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
860 spin_unlock(&pd->iosched.lock);
862 if (!reads_queued && !writes_queued)
863 break;
865 if (pd->iosched.writing) {
866 int need_write_seek = 1;
867 spin_lock(&pd->iosched.lock);
868 bio = bio_list_peek(&pd->iosched.write_queue);
869 spin_unlock(&pd->iosched.lock);
870 if (bio && (bio->bi_sector == pd->iosched.last_write))
871 need_write_seek = 0;
872 if (need_write_seek && reads_queued) {
873 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
874 VPRINTK(DRIVER_NAME": write, waiting\n");
875 break;
877 pkt_flush_cache(pd);
878 pd->iosched.writing = 0;
880 } else {
881 if (!reads_queued && writes_queued) {
882 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
883 VPRINTK(DRIVER_NAME": read, waiting\n");
884 break;
886 pd->iosched.writing = 1;
890 spin_lock(&pd->iosched.lock);
891 if (pd->iosched.writing)
892 bio = bio_list_pop(&pd->iosched.write_queue);
893 else
894 bio = bio_list_pop(&pd->iosched.read_queue);
895 spin_unlock(&pd->iosched.lock);
897 if (!bio)
898 continue;
900 if (bio_data_dir(bio) == READ)
901 pd->iosched.successive_reads += bio->bi_size >> 10;
902 else {
903 pd->iosched.successive_reads = 0;
904 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
906 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
907 if (pd->read_speed == pd->write_speed) {
908 pd->read_speed = MAX_SPEED;
909 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
911 } else {
912 if (pd->read_speed != pd->write_speed) {
913 pd->read_speed = pd->write_speed;
914 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
918 atomic_inc(&pd->cdrw.pending_bios);
919 generic_make_request(bio);
924 * Special care is needed if the underlying block device has a small
925 * max_phys_segments value.
927 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
929 if ((pd->settings.size << 9) / CD_FRAMESIZE
930 <= queue_max_segments(q)) {
932 * The cdrom device can handle one segment/frame
934 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
935 return 0;
936 } else if ((pd->settings.size << 9) / PAGE_SIZE
937 <= queue_max_segments(q)) {
939 * We can handle this case at the expense of some extra memory
940 * copies during write operations
942 set_bit(PACKET_MERGE_SEGS, &pd->flags);
943 return 0;
944 } else {
945 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
946 return -EIO;
951 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
953 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
955 unsigned int copy_size = CD_FRAMESIZE;
957 while (copy_size > 0) {
958 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
959 void *vfrom = kmap_atomic(src_bvl->bv_page) +
960 src_bvl->bv_offset + offs;
961 void *vto = page_address(dst_page) + dst_offs;
962 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
964 BUG_ON(len < 0);
965 memcpy(vto, vfrom, len);
966 kunmap_atomic(vfrom);
968 seg++;
969 offs = 0;
970 dst_offs += len;
971 copy_size -= len;
976 * Copy all data for this packet to pkt->pages[], so that
977 * a) The number of required segments for the write bio is minimized, which
978 * is necessary for some scsi controllers.
979 * b) The data can be used as cache to avoid read requests if we receive a
980 * new write request for the same zone.
982 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
984 int f, p, offs;
986 /* Copy all data to pkt->pages[] */
987 p = 0;
988 offs = 0;
989 for (f = 0; f < pkt->frames; f++) {
990 if (bvec[f].bv_page != pkt->pages[p]) {
991 void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset;
992 void *vto = page_address(pkt->pages[p]) + offs;
993 memcpy(vto, vfrom, CD_FRAMESIZE);
994 kunmap_atomic(vfrom);
995 bvec[f].bv_page = pkt->pages[p];
996 bvec[f].bv_offset = offs;
997 } else {
998 BUG_ON(bvec[f].bv_offset != offs);
1000 offs += CD_FRAMESIZE;
1001 if (offs >= PAGE_SIZE) {
1002 offs = 0;
1003 p++;
1008 static void pkt_end_io_read(struct bio *bio, int err)
1010 struct packet_data *pkt = bio->bi_private;
1011 struct pktcdvd_device *pd = pkt->pd;
1012 BUG_ON(!pd);
1014 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1015 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1017 if (err)
1018 atomic_inc(&pkt->io_errors);
1019 if (atomic_dec_and_test(&pkt->io_wait)) {
1020 atomic_inc(&pkt->run_sm);
1021 wake_up(&pd->wqueue);
1023 pkt_bio_finished(pd);
1026 static void pkt_end_io_packet_write(struct bio *bio, int err)
1028 struct packet_data *pkt = bio->bi_private;
1029 struct pktcdvd_device *pd = pkt->pd;
1030 BUG_ON(!pd);
1032 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1034 pd->stats.pkt_ended++;
1036 pkt_bio_finished(pd);
1037 atomic_dec(&pkt->io_wait);
1038 atomic_inc(&pkt->run_sm);
1039 wake_up(&pd->wqueue);
1043 * Schedule reads for the holes in a packet
1045 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1047 int frames_read = 0;
1048 struct bio *bio;
1049 int f;
1050 char written[PACKET_MAX_SIZE];
1052 BUG_ON(bio_list_empty(&pkt->orig_bios));
1054 atomic_set(&pkt->io_wait, 0);
1055 atomic_set(&pkt->io_errors, 0);
1058 * Figure out which frames we need to read before we can write.
1060 memset(written, 0, sizeof(written));
1061 spin_lock(&pkt->lock);
1062 bio_list_for_each(bio, &pkt->orig_bios) {
1063 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1064 int num_frames = bio->bi_size / CD_FRAMESIZE;
1065 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1066 BUG_ON(first_frame < 0);
1067 BUG_ON(first_frame + num_frames > pkt->frames);
1068 for (f = first_frame; f < first_frame + num_frames; f++)
1069 written[f] = 1;
1071 spin_unlock(&pkt->lock);
1073 if (pkt->cache_valid) {
1074 VPRINTK("pkt_gather_data: zone %llx cached\n",
1075 (unsigned long long)pkt->sector);
1076 goto out_account;
1080 * Schedule reads for missing parts of the packet.
1082 for (f = 0; f < pkt->frames; f++) {
1083 int p, offset;
1085 if (written[f])
1086 continue;
1088 bio = pkt->r_bios[f];
1089 bio_reset(bio);
1090 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1091 bio->bi_bdev = pd->bdev;
1092 bio->bi_end_io = pkt_end_io_read;
1093 bio->bi_private = pkt;
1095 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1096 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1097 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1098 f, pkt->pages[p], offset);
1099 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1100 BUG();
1102 atomic_inc(&pkt->io_wait);
1103 bio->bi_rw = READ;
1104 pkt_queue_bio(pd, bio);
1105 frames_read++;
1108 out_account:
1109 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1110 frames_read, (unsigned long long)pkt->sector);
1111 pd->stats.pkt_started++;
1112 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1116 * Find a packet matching zone, or the least recently used packet if
1117 * there is no match.
1119 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1121 struct packet_data *pkt;
1123 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1124 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1125 list_del_init(&pkt->list);
1126 if (pkt->sector != zone)
1127 pkt->cache_valid = 0;
1128 return pkt;
1131 BUG();
1132 return NULL;
1135 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1137 if (pkt->cache_valid) {
1138 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1139 } else {
1140 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1145 * recover a failed write, query for relocation if possible
1147 * returns 1 if recovery is possible, or 0 if not
1150 static int pkt_start_recovery(struct packet_data *pkt)
1153 * FIXME. We need help from the file system to implement
1154 * recovery handling.
1156 return 0;
1157 #if 0
1158 struct request *rq = pkt->rq;
1159 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1160 struct block_device *pkt_bdev;
1161 struct super_block *sb = NULL;
1162 unsigned long old_block, new_block;
1163 sector_t new_sector;
1165 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1166 if (pkt_bdev) {
1167 sb = get_super(pkt_bdev);
1168 bdput(pkt_bdev);
1171 if (!sb)
1172 return 0;
1174 if (!sb->s_op->relocate_blocks)
1175 goto out;
1177 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1178 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1179 goto out;
1181 new_sector = new_block * (CD_FRAMESIZE >> 9);
1182 pkt->sector = new_sector;
1184 pkt->bio->bi_sector = new_sector;
1185 pkt->bio->bi_next = NULL;
1186 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1187 pkt->bio->bi_idx = 0;
1189 BUG_ON(pkt->bio->bi_rw != REQ_WRITE);
1190 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1191 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1192 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1193 BUG_ON(pkt->bio->bi_private != pkt);
1195 drop_super(sb);
1196 return 1;
1198 out:
1199 drop_super(sb);
1200 return 0;
1201 #endif
1204 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1206 #if PACKET_DEBUG > 1
1207 static const char *state_name[] = {
1208 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1210 enum packet_data_state old_state = pkt->state;
1211 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1212 state_name[old_state], state_name[state]);
1213 #endif
1214 pkt->state = state;
1218 * Scan the work queue to see if we can start a new packet.
1219 * returns non-zero if any work was done.
1221 static int pkt_handle_queue(struct pktcdvd_device *pd)
1223 struct packet_data *pkt, *p;
1224 struct bio *bio = NULL;
1225 sector_t zone = 0; /* Suppress gcc warning */
1226 struct pkt_rb_node *node, *first_node;
1227 struct rb_node *n;
1228 int wakeup;
1230 VPRINTK("handle_queue\n");
1232 atomic_set(&pd->scan_queue, 0);
1234 if (list_empty(&pd->cdrw.pkt_free_list)) {
1235 VPRINTK("handle_queue: no pkt\n");
1236 return 0;
1240 * Try to find a zone we are not already working on.
1242 spin_lock(&pd->lock);
1243 first_node = pkt_rbtree_find(pd, pd->current_sector);
1244 if (!first_node) {
1245 n = rb_first(&pd->bio_queue);
1246 if (n)
1247 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1249 node = first_node;
1250 while (node) {
1251 bio = node->bio;
1252 zone = ZONE(bio->bi_sector, pd);
1253 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1254 if (p->sector == zone) {
1255 bio = NULL;
1256 goto try_next_bio;
1259 break;
1260 try_next_bio:
1261 node = pkt_rbtree_next(node);
1262 if (!node) {
1263 n = rb_first(&pd->bio_queue);
1264 if (n)
1265 node = rb_entry(n, struct pkt_rb_node, rb_node);
1267 if (node == first_node)
1268 node = NULL;
1270 spin_unlock(&pd->lock);
1271 if (!bio) {
1272 VPRINTK("handle_queue: no bio\n");
1273 return 0;
1276 pkt = pkt_get_packet_data(pd, zone);
1278 pd->current_sector = zone + pd->settings.size;
1279 pkt->sector = zone;
1280 BUG_ON(pkt->frames != pd->settings.size >> 2);
1281 pkt->write_size = 0;
1284 * Scan work queue for bios in the same zone and link them
1285 * to this packet.
1287 spin_lock(&pd->lock);
1288 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1289 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1290 bio = node->bio;
1291 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1292 (unsigned long long)ZONE(bio->bi_sector, pd));
1293 if (ZONE(bio->bi_sector, pd) != zone)
1294 break;
1295 pkt_rbtree_erase(pd, node);
1296 spin_lock(&pkt->lock);
1297 bio_list_add(&pkt->orig_bios, bio);
1298 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1299 spin_unlock(&pkt->lock);
1301 /* check write congestion marks, and if bio_queue_size is
1302 below, wake up any waiters */
1303 wakeup = (pd->write_congestion_on > 0
1304 && pd->bio_queue_size <= pd->write_congestion_off);
1305 spin_unlock(&pd->lock);
1306 if (wakeup) {
1307 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1308 BLK_RW_ASYNC);
1311 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1312 pkt_set_state(pkt, PACKET_WAITING_STATE);
1313 atomic_set(&pkt->run_sm, 1);
1315 spin_lock(&pd->cdrw.active_list_lock);
1316 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1317 spin_unlock(&pd->cdrw.active_list_lock);
1319 return 1;
1323 * Assemble a bio to write one packet and queue the bio for processing
1324 * by the underlying block device.
1326 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1328 struct bio *bio;
1329 int f;
1330 int frames_write;
1331 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1333 for (f = 0; f < pkt->frames; f++) {
1334 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1335 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1339 * Fill-in bvec with data from orig_bios.
1341 frames_write = 0;
1342 spin_lock(&pkt->lock);
1343 bio_list_for_each(bio, &pkt->orig_bios) {
1344 int segment = bio->bi_idx;
1345 int src_offs = 0;
1346 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1347 int num_frames = bio->bi_size / CD_FRAMESIZE;
1348 BUG_ON(first_frame < 0);
1349 BUG_ON(first_frame + num_frames > pkt->frames);
1350 for (f = first_frame; f < first_frame + num_frames; f++) {
1351 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1353 while (src_offs >= src_bvl->bv_len) {
1354 src_offs -= src_bvl->bv_len;
1355 segment++;
1356 BUG_ON(segment >= bio->bi_vcnt);
1357 src_bvl = bio_iovec_idx(bio, segment);
1360 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1361 bvec[f].bv_page = src_bvl->bv_page;
1362 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1363 } else {
1364 pkt_copy_bio_data(bio, segment, src_offs,
1365 bvec[f].bv_page, bvec[f].bv_offset);
1367 src_offs += CD_FRAMESIZE;
1368 frames_write++;
1371 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1372 spin_unlock(&pkt->lock);
1374 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1375 frames_write, (unsigned long long)pkt->sector);
1376 BUG_ON(frames_write != pkt->write_size);
1378 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1379 pkt_make_local_copy(pkt, bvec);
1380 pkt->cache_valid = 1;
1381 } else {
1382 pkt->cache_valid = 0;
1385 /* Start the write request */
1386 bio_reset(pkt->w_bio);
1387 pkt->w_bio->bi_sector = pkt->sector;
1388 pkt->w_bio->bi_bdev = pd->bdev;
1389 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1390 pkt->w_bio->bi_private = pkt;
1391 for (f = 0; f < pkt->frames; f++)
1392 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1393 BUG();
1394 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1396 atomic_set(&pkt->io_wait, 1);
1397 pkt->w_bio->bi_rw = WRITE;
1398 pkt_queue_bio(pd, pkt->w_bio);
1401 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1403 struct bio *bio;
1405 if (!uptodate)
1406 pkt->cache_valid = 0;
1408 /* Finish all bios corresponding to this packet */
1409 while ((bio = bio_list_pop(&pkt->orig_bios)))
1410 bio_endio(bio, uptodate ? 0 : -EIO);
1413 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1415 int uptodate;
1417 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1419 for (;;) {
1420 switch (pkt->state) {
1421 case PACKET_WAITING_STATE:
1422 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1423 return;
1425 pkt->sleep_time = 0;
1426 pkt_gather_data(pd, pkt);
1427 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1428 break;
1430 case PACKET_READ_WAIT_STATE:
1431 if (atomic_read(&pkt->io_wait) > 0)
1432 return;
1434 if (atomic_read(&pkt->io_errors) > 0) {
1435 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1436 } else {
1437 pkt_start_write(pd, pkt);
1439 break;
1441 case PACKET_WRITE_WAIT_STATE:
1442 if (atomic_read(&pkt->io_wait) > 0)
1443 return;
1445 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1446 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1447 } else {
1448 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1450 break;
1452 case PACKET_RECOVERY_STATE:
1453 if (pkt_start_recovery(pkt)) {
1454 pkt_start_write(pd, pkt);
1455 } else {
1456 VPRINTK("No recovery possible\n");
1457 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1459 break;
1461 case PACKET_FINISHED_STATE:
1462 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1463 pkt_finish_packet(pkt, uptodate);
1464 return;
1466 default:
1467 BUG();
1468 break;
1473 static void pkt_handle_packets(struct pktcdvd_device *pd)
1475 struct packet_data *pkt, *next;
1477 VPRINTK("pkt_handle_packets\n");
1480 * Run state machine for active packets
1482 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1483 if (atomic_read(&pkt->run_sm) > 0) {
1484 atomic_set(&pkt->run_sm, 0);
1485 pkt_run_state_machine(pd, pkt);
1490 * Move no longer active packets to the free list
1492 spin_lock(&pd->cdrw.active_list_lock);
1493 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1494 if (pkt->state == PACKET_FINISHED_STATE) {
1495 list_del(&pkt->list);
1496 pkt_put_packet_data(pd, pkt);
1497 pkt_set_state(pkt, PACKET_IDLE_STATE);
1498 atomic_set(&pd->scan_queue, 1);
1501 spin_unlock(&pd->cdrw.active_list_lock);
1504 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1506 struct packet_data *pkt;
1507 int i;
1509 for (i = 0; i < PACKET_NUM_STATES; i++)
1510 states[i] = 0;
1512 spin_lock(&pd->cdrw.active_list_lock);
1513 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1514 states[pkt->state]++;
1516 spin_unlock(&pd->cdrw.active_list_lock);
1520 * kcdrwd is woken up when writes have been queued for one of our
1521 * registered devices
1523 static int kcdrwd(void *foobar)
1525 struct pktcdvd_device *pd = foobar;
1526 struct packet_data *pkt;
1527 long min_sleep_time, residue;
1529 set_user_nice(current, -20);
1530 set_freezable();
1532 for (;;) {
1533 DECLARE_WAITQUEUE(wait, current);
1536 * Wait until there is something to do
1538 add_wait_queue(&pd->wqueue, &wait);
1539 for (;;) {
1540 set_current_state(TASK_INTERRUPTIBLE);
1542 /* Check if we need to run pkt_handle_queue */
1543 if (atomic_read(&pd->scan_queue) > 0)
1544 goto work_to_do;
1546 /* Check if we need to run the state machine for some packet */
1547 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1548 if (atomic_read(&pkt->run_sm) > 0)
1549 goto work_to_do;
1552 /* Check if we need to process the iosched queues */
1553 if (atomic_read(&pd->iosched.attention) != 0)
1554 goto work_to_do;
1556 /* Otherwise, go to sleep */
1557 if (PACKET_DEBUG > 1) {
1558 int states[PACKET_NUM_STATES];
1559 pkt_count_states(pd, states);
1560 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1561 states[0], states[1], states[2], states[3],
1562 states[4], states[5]);
1565 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1566 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1567 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1568 min_sleep_time = pkt->sleep_time;
1571 VPRINTK("kcdrwd: sleeping\n");
1572 residue = schedule_timeout(min_sleep_time);
1573 VPRINTK("kcdrwd: wake up\n");
1575 /* make swsusp happy with our thread */
1576 try_to_freeze();
1578 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1579 if (!pkt->sleep_time)
1580 continue;
1581 pkt->sleep_time -= min_sleep_time - residue;
1582 if (pkt->sleep_time <= 0) {
1583 pkt->sleep_time = 0;
1584 atomic_inc(&pkt->run_sm);
1588 if (kthread_should_stop())
1589 break;
1591 work_to_do:
1592 set_current_state(TASK_RUNNING);
1593 remove_wait_queue(&pd->wqueue, &wait);
1595 if (kthread_should_stop())
1596 break;
1599 * if pkt_handle_queue returns true, we can queue
1600 * another request.
1602 while (pkt_handle_queue(pd))
1606 * Handle packet state machine
1608 pkt_handle_packets(pd);
1611 * Handle iosched queues
1613 pkt_iosched_process_queue(pd);
1616 return 0;
1619 static void pkt_print_settings(struct pktcdvd_device *pd)
1621 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1622 printk("%u blocks, ", pd->settings.size >> 2);
1623 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1626 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1628 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1630 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1631 cgc->cmd[2] = page_code | (page_control << 6);
1632 cgc->cmd[7] = cgc->buflen >> 8;
1633 cgc->cmd[8] = cgc->buflen & 0xff;
1634 cgc->data_direction = CGC_DATA_READ;
1635 return pkt_generic_packet(pd, cgc);
1638 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1640 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1641 memset(cgc->buffer, 0, 2);
1642 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1643 cgc->cmd[1] = 0x10; /* PF */
1644 cgc->cmd[7] = cgc->buflen >> 8;
1645 cgc->cmd[8] = cgc->buflen & 0xff;
1646 cgc->data_direction = CGC_DATA_WRITE;
1647 return pkt_generic_packet(pd, cgc);
1650 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1652 struct packet_command cgc;
1653 int ret;
1655 /* set up command and get the disc info */
1656 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1657 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1658 cgc.cmd[8] = cgc.buflen = 2;
1659 cgc.quiet = 1;
1661 if ((ret = pkt_generic_packet(pd, &cgc)))
1662 return ret;
1664 /* not all drives have the same disc_info length, so requeue
1665 * packet with the length the drive tells us it can supply
1667 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1668 sizeof(di->disc_information_length);
1670 if (cgc.buflen > sizeof(disc_information))
1671 cgc.buflen = sizeof(disc_information);
1673 cgc.cmd[8] = cgc.buflen;
1674 return pkt_generic_packet(pd, &cgc);
1677 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1679 struct packet_command cgc;
1680 int ret;
1682 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1683 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1684 cgc.cmd[1] = type & 3;
1685 cgc.cmd[4] = (track & 0xff00) >> 8;
1686 cgc.cmd[5] = track & 0xff;
1687 cgc.cmd[8] = 8;
1688 cgc.quiet = 1;
1690 if ((ret = pkt_generic_packet(pd, &cgc)))
1691 return ret;
1693 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1694 sizeof(ti->track_information_length);
1696 if (cgc.buflen > sizeof(track_information))
1697 cgc.buflen = sizeof(track_information);
1699 cgc.cmd[8] = cgc.buflen;
1700 return pkt_generic_packet(pd, &cgc);
1703 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1704 long *last_written)
1706 disc_information di;
1707 track_information ti;
1708 __u32 last_track;
1709 int ret = -1;
1711 if ((ret = pkt_get_disc_info(pd, &di)))
1712 return ret;
1714 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1715 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1716 return ret;
1718 /* if this track is blank, try the previous. */
1719 if (ti.blank) {
1720 last_track--;
1721 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1722 return ret;
1725 /* if last recorded field is valid, return it. */
1726 if (ti.lra_v) {
1727 *last_written = be32_to_cpu(ti.last_rec_address);
1728 } else {
1729 /* make it up instead */
1730 *last_written = be32_to_cpu(ti.track_start) +
1731 be32_to_cpu(ti.track_size);
1732 if (ti.free_blocks)
1733 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1735 return 0;
1739 * write mode select package based on pd->settings
1741 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1743 struct packet_command cgc;
1744 struct request_sense sense;
1745 write_param_page *wp;
1746 char buffer[128];
1747 int ret, size;
1749 /* doesn't apply to DVD+RW or DVD-RAM */
1750 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1751 return 0;
1753 memset(buffer, 0, sizeof(buffer));
1754 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1755 cgc.sense = &sense;
1756 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1757 pkt_dump_sense(&cgc);
1758 return ret;
1761 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1762 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1763 if (size > sizeof(buffer))
1764 size = sizeof(buffer);
1767 * now get it all
1769 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1770 cgc.sense = &sense;
1771 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1772 pkt_dump_sense(&cgc);
1773 return ret;
1777 * write page is offset header + block descriptor length
1779 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1781 wp->fp = pd->settings.fp;
1782 wp->track_mode = pd->settings.track_mode;
1783 wp->write_type = pd->settings.write_type;
1784 wp->data_block_type = pd->settings.block_mode;
1786 wp->multi_session = 0;
1788 #ifdef PACKET_USE_LS
1789 wp->link_size = 7;
1790 wp->ls_v = 1;
1791 #endif
1793 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1794 wp->session_format = 0;
1795 wp->subhdr2 = 0x20;
1796 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1797 wp->session_format = 0x20;
1798 wp->subhdr2 = 8;
1799 #if 0
1800 wp->mcn[0] = 0x80;
1801 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1802 #endif
1803 } else {
1805 * paranoia
1807 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1808 return 1;
1810 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1812 cgc.buflen = cgc.cmd[8] = size;
1813 if ((ret = pkt_mode_select(pd, &cgc))) {
1814 pkt_dump_sense(&cgc);
1815 return ret;
1818 pkt_print_settings(pd);
1819 return 0;
1823 * 1 -- we can write to this track, 0 -- we can't
1825 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1827 switch (pd->mmc3_profile) {
1828 case 0x1a: /* DVD+RW */
1829 case 0x12: /* DVD-RAM */
1830 /* The track is always writable on DVD+RW/DVD-RAM */
1831 return 1;
1832 default:
1833 break;
1836 if (!ti->packet || !ti->fp)
1837 return 0;
1840 * "good" settings as per Mt Fuji.
1842 if (ti->rt == 0 && ti->blank == 0)
1843 return 1;
1845 if (ti->rt == 0 && ti->blank == 1)
1846 return 1;
1848 if (ti->rt == 1 && ti->blank == 0)
1849 return 1;
1851 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1852 return 0;
1856 * 1 -- we can write to this disc, 0 -- we can't
1858 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1860 switch (pd->mmc3_profile) {
1861 case 0x0a: /* CD-RW */
1862 case 0xffff: /* MMC3 not supported */
1863 break;
1864 case 0x1a: /* DVD+RW */
1865 case 0x13: /* DVD-RW */
1866 case 0x12: /* DVD-RAM */
1867 return 1;
1868 default:
1869 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1870 return 0;
1874 * for disc type 0xff we should probably reserve a new track.
1875 * but i'm not sure, should we leave this to user apps? probably.
1877 if (di->disc_type == 0xff) {
1878 printk(DRIVER_NAME": Unknown disc. No track?\n");
1879 return 0;
1882 if (di->disc_type != 0x20 && di->disc_type != 0) {
1883 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1884 return 0;
1887 if (di->erasable == 0) {
1888 printk(DRIVER_NAME": Disc not erasable\n");
1889 return 0;
1892 if (di->border_status == PACKET_SESSION_RESERVED) {
1893 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1894 return 0;
1897 return 1;
1900 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1902 struct packet_command cgc;
1903 unsigned char buf[12];
1904 disc_information di;
1905 track_information ti;
1906 int ret, track;
1908 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1909 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1910 cgc.cmd[8] = 8;
1911 ret = pkt_generic_packet(pd, &cgc);
1912 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1914 memset(&di, 0, sizeof(disc_information));
1915 memset(&ti, 0, sizeof(track_information));
1917 if ((ret = pkt_get_disc_info(pd, &di))) {
1918 printk("failed get_disc\n");
1919 return ret;
1922 if (!pkt_writable_disc(pd, &di))
1923 return -EROFS;
1925 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1927 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1928 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1929 printk(DRIVER_NAME": failed get_track\n");
1930 return ret;
1933 if (!pkt_writable_track(pd, &ti)) {
1934 printk(DRIVER_NAME": can't write to this track\n");
1935 return -EROFS;
1939 * we keep packet size in 512 byte units, makes it easier to
1940 * deal with request calculations.
1942 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1943 if (pd->settings.size == 0) {
1944 printk(DRIVER_NAME": detected zero packet size!\n");
1945 return -ENXIO;
1947 if (pd->settings.size > PACKET_MAX_SECTORS) {
1948 printk(DRIVER_NAME": packet size is too big\n");
1949 return -EROFS;
1951 pd->settings.fp = ti.fp;
1952 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1954 if (ti.nwa_v) {
1955 pd->nwa = be32_to_cpu(ti.next_writable);
1956 set_bit(PACKET_NWA_VALID, &pd->flags);
1960 * in theory we could use lra on -RW media as well and just zero
1961 * blocks that haven't been written yet, but in practice that
1962 * is just a no-go. we'll use that for -R, naturally.
1964 if (ti.lra_v) {
1965 pd->lra = be32_to_cpu(ti.last_rec_address);
1966 set_bit(PACKET_LRA_VALID, &pd->flags);
1967 } else {
1968 pd->lra = 0xffffffff;
1969 set_bit(PACKET_LRA_VALID, &pd->flags);
1973 * fine for now
1975 pd->settings.link_loss = 7;
1976 pd->settings.write_type = 0; /* packet */
1977 pd->settings.track_mode = ti.track_mode;
1980 * mode1 or mode2 disc
1982 switch (ti.data_mode) {
1983 case PACKET_MODE1:
1984 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1985 break;
1986 case PACKET_MODE2:
1987 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1988 break;
1989 default:
1990 printk(DRIVER_NAME": unknown data mode\n");
1991 return -EROFS;
1993 return 0;
1997 * enable/disable write caching on drive
1999 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2000 int set)
2002 struct packet_command cgc;
2003 struct request_sense sense;
2004 unsigned char buf[64];
2005 int ret;
2007 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2008 cgc.sense = &sense;
2009 cgc.buflen = pd->mode_offset + 12;
2012 * caching mode page might not be there, so quiet this command
2014 cgc.quiet = 1;
2016 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2017 return ret;
2019 buf[pd->mode_offset + 10] |= (!!set << 2);
2021 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2022 ret = pkt_mode_select(pd, &cgc);
2023 if (ret) {
2024 printk(DRIVER_NAME": write caching control failed\n");
2025 pkt_dump_sense(&cgc);
2026 } else if (!ret && set)
2027 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2028 return ret;
2031 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2033 struct packet_command cgc;
2035 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2036 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2037 cgc.cmd[4] = lockflag ? 1 : 0;
2038 return pkt_generic_packet(pd, &cgc);
2042 * Returns drive maximum write speed
2044 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2045 unsigned *write_speed)
2047 struct packet_command cgc;
2048 struct request_sense sense;
2049 unsigned char buf[256+18];
2050 unsigned char *cap_buf;
2051 int ret, offset;
2053 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2054 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2055 cgc.sense = &sense;
2057 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2058 if (ret) {
2059 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2060 sizeof(struct mode_page_header);
2061 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2062 if (ret) {
2063 pkt_dump_sense(&cgc);
2064 return ret;
2068 offset = 20; /* Obsoleted field, used by older drives */
2069 if (cap_buf[1] >= 28)
2070 offset = 28; /* Current write speed selected */
2071 if (cap_buf[1] >= 30) {
2072 /* If the drive reports at least one "Logical Unit Write
2073 * Speed Performance Descriptor Block", use the information
2074 * in the first block. (contains the highest speed)
2076 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2077 if (num_spdb > 0)
2078 offset = 34;
2081 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2082 return 0;
2085 /* These tables from cdrecord - I don't have orange book */
2086 /* standard speed CD-RW (1-4x) */
2087 static char clv_to_speed[16] = {
2088 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2089 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2091 /* high speed CD-RW (-10x) */
2092 static char hs_clv_to_speed[16] = {
2093 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2094 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2096 /* ultra high speed CD-RW */
2097 static char us_clv_to_speed[16] = {
2098 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2099 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2103 * reads the maximum media speed from ATIP
2105 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2106 unsigned *speed)
2108 struct packet_command cgc;
2109 struct request_sense sense;
2110 unsigned char buf[64];
2111 unsigned int size, st, sp;
2112 int ret;
2114 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2115 cgc.sense = &sense;
2116 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2117 cgc.cmd[1] = 2;
2118 cgc.cmd[2] = 4; /* READ ATIP */
2119 cgc.cmd[8] = 2;
2120 ret = pkt_generic_packet(pd, &cgc);
2121 if (ret) {
2122 pkt_dump_sense(&cgc);
2123 return ret;
2125 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2126 if (size > sizeof(buf))
2127 size = sizeof(buf);
2129 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2130 cgc.sense = &sense;
2131 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2132 cgc.cmd[1] = 2;
2133 cgc.cmd[2] = 4;
2134 cgc.cmd[8] = size;
2135 ret = pkt_generic_packet(pd, &cgc);
2136 if (ret) {
2137 pkt_dump_sense(&cgc);
2138 return ret;
2141 if (!(buf[6] & 0x40)) {
2142 printk(DRIVER_NAME": Disc type is not CD-RW\n");
2143 return 1;
2145 if (!(buf[6] & 0x4)) {
2146 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2147 return 1;
2150 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2152 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2154 /* Info from cdrecord */
2155 switch (st) {
2156 case 0: /* standard speed */
2157 *speed = clv_to_speed[sp];
2158 break;
2159 case 1: /* high speed */
2160 *speed = hs_clv_to_speed[sp];
2161 break;
2162 case 2: /* ultra high speed */
2163 *speed = us_clv_to_speed[sp];
2164 break;
2165 default:
2166 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2167 return 1;
2169 if (*speed) {
2170 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2171 return 0;
2172 } else {
2173 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2174 return 1;
2178 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2180 struct packet_command cgc;
2181 struct request_sense sense;
2182 int ret;
2184 VPRINTK(DRIVER_NAME": Performing OPC\n");
2186 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2187 cgc.sense = &sense;
2188 cgc.timeout = 60*HZ;
2189 cgc.cmd[0] = GPCMD_SEND_OPC;
2190 cgc.cmd[1] = 1;
2191 if ((ret = pkt_generic_packet(pd, &cgc)))
2192 pkt_dump_sense(&cgc);
2193 return ret;
2196 static int pkt_open_write(struct pktcdvd_device *pd)
2198 int ret;
2199 unsigned int write_speed, media_write_speed, read_speed;
2201 if ((ret = pkt_probe_settings(pd))) {
2202 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2203 return ret;
2206 if ((ret = pkt_set_write_settings(pd))) {
2207 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2208 return -EIO;
2211 pkt_write_caching(pd, USE_WCACHING);
2213 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2214 write_speed = 16 * 177;
2215 switch (pd->mmc3_profile) {
2216 case 0x13: /* DVD-RW */
2217 case 0x1a: /* DVD+RW */
2218 case 0x12: /* DVD-RAM */
2219 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2220 break;
2221 default:
2222 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2223 media_write_speed = 16;
2224 write_speed = min(write_speed, media_write_speed * 177);
2225 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2226 break;
2228 read_speed = write_speed;
2230 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2231 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2232 return -EIO;
2234 pd->write_speed = write_speed;
2235 pd->read_speed = read_speed;
2237 if ((ret = pkt_perform_opc(pd))) {
2238 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2241 return 0;
2245 * called at open time.
2247 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2249 int ret;
2250 long lba;
2251 struct request_queue *q;
2254 * We need to re-open the cdrom device without O_NONBLOCK to be able
2255 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2256 * so bdget() can't fail.
2258 bdget(pd->bdev->bd_dev);
2259 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2260 goto out;
2262 if ((ret = pkt_get_last_written(pd, &lba))) {
2263 printk(DRIVER_NAME": pkt_get_last_written failed\n");
2264 goto out_putdev;
2267 set_capacity(pd->disk, lba << 2);
2268 set_capacity(pd->bdev->bd_disk, lba << 2);
2269 bd_set_size(pd->bdev, (loff_t)lba << 11);
2271 q = bdev_get_queue(pd->bdev);
2272 if (write) {
2273 if ((ret = pkt_open_write(pd)))
2274 goto out_putdev;
2276 * Some CDRW drives can not handle writes larger than one packet,
2277 * even if the size is a multiple of the packet size.
2279 spin_lock_irq(q->queue_lock);
2280 blk_queue_max_hw_sectors(q, pd->settings.size);
2281 spin_unlock_irq(q->queue_lock);
2282 set_bit(PACKET_WRITABLE, &pd->flags);
2283 } else {
2284 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2285 clear_bit(PACKET_WRITABLE, &pd->flags);
2288 if ((ret = pkt_set_segment_merging(pd, q)))
2289 goto out_putdev;
2291 if (write) {
2292 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2293 printk(DRIVER_NAME": not enough memory for buffers\n");
2294 ret = -ENOMEM;
2295 goto out_putdev;
2297 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2300 return 0;
2302 out_putdev:
2303 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2304 out:
2305 return ret;
2309 * called when the device is closed. makes sure that the device flushes
2310 * the internal cache before we close.
2312 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2314 if (flush && pkt_flush_cache(pd))
2315 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2317 pkt_lock_door(pd, 0);
2319 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2320 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2322 pkt_shrink_pktlist(pd);
2325 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2327 if (dev_minor >= MAX_WRITERS)
2328 return NULL;
2329 return pkt_devs[dev_minor];
2332 static int pkt_open(struct block_device *bdev, fmode_t mode)
2334 struct pktcdvd_device *pd = NULL;
2335 int ret;
2337 VPRINTK(DRIVER_NAME": entering open\n");
2339 mutex_lock(&pktcdvd_mutex);
2340 mutex_lock(&ctl_mutex);
2341 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2342 if (!pd) {
2343 ret = -ENODEV;
2344 goto out;
2346 BUG_ON(pd->refcnt < 0);
2348 pd->refcnt++;
2349 if (pd->refcnt > 1) {
2350 if ((mode & FMODE_WRITE) &&
2351 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2352 ret = -EBUSY;
2353 goto out_dec;
2355 } else {
2356 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2357 if (ret)
2358 goto out_dec;
2360 * needed here as well, since ext2 (among others) may change
2361 * the blocksize at mount time
2363 set_blocksize(bdev, CD_FRAMESIZE);
2366 mutex_unlock(&ctl_mutex);
2367 mutex_unlock(&pktcdvd_mutex);
2368 return 0;
2370 out_dec:
2371 pd->refcnt--;
2372 out:
2373 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2374 mutex_unlock(&ctl_mutex);
2375 mutex_unlock(&pktcdvd_mutex);
2376 return ret;
2379 static int pkt_close(struct gendisk *disk, fmode_t mode)
2381 struct pktcdvd_device *pd = disk->private_data;
2382 int ret = 0;
2384 mutex_lock(&pktcdvd_mutex);
2385 mutex_lock(&ctl_mutex);
2386 pd->refcnt--;
2387 BUG_ON(pd->refcnt < 0);
2388 if (pd->refcnt == 0) {
2389 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2390 pkt_release_dev(pd, flush);
2392 mutex_unlock(&ctl_mutex);
2393 mutex_unlock(&pktcdvd_mutex);
2394 return ret;
2398 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2400 struct packet_stacked_data *psd = bio->bi_private;
2401 struct pktcdvd_device *pd = psd->pd;
2403 bio_put(bio);
2404 bio_endio(psd->bio, err);
2405 mempool_free(psd, psd_pool);
2406 pkt_bio_finished(pd);
2409 static void pkt_make_request(struct request_queue *q, struct bio *bio)
2411 struct pktcdvd_device *pd;
2412 char b[BDEVNAME_SIZE];
2413 sector_t zone;
2414 struct packet_data *pkt;
2415 int was_empty, blocked_bio;
2416 struct pkt_rb_node *node;
2418 pd = q->queuedata;
2419 if (!pd) {
2420 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2421 goto end_io;
2425 * Clone READ bios so we can have our own bi_end_io callback.
2427 if (bio_data_dir(bio) == READ) {
2428 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2429 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2431 psd->pd = pd;
2432 psd->bio = bio;
2433 cloned_bio->bi_bdev = pd->bdev;
2434 cloned_bio->bi_private = psd;
2435 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2436 pd->stats.secs_r += bio->bi_size >> 9;
2437 pkt_queue_bio(pd, cloned_bio);
2438 return;
2441 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2442 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2443 pd->name, (unsigned long long)bio->bi_sector);
2444 goto end_io;
2447 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2448 printk(DRIVER_NAME": wrong bio size\n");
2449 goto end_io;
2452 blk_queue_bounce(q, &bio);
2454 zone = ZONE(bio->bi_sector, pd);
2455 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2456 (unsigned long long)bio->bi_sector,
2457 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2459 /* Check if we have to split the bio */
2461 struct bio_pair *bp;
2462 sector_t last_zone;
2463 int first_sectors;
2465 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2466 if (last_zone != zone) {
2467 BUG_ON(last_zone != zone + pd->settings.size);
2468 first_sectors = last_zone - bio->bi_sector;
2469 bp = bio_split(bio, first_sectors);
2470 BUG_ON(!bp);
2471 pkt_make_request(q, &bp->bio1);
2472 pkt_make_request(q, &bp->bio2);
2473 bio_pair_release(bp);
2474 return;
2479 * If we find a matching packet in state WAITING or READ_WAIT, we can
2480 * just append this bio to that packet.
2482 spin_lock(&pd->cdrw.active_list_lock);
2483 blocked_bio = 0;
2484 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2485 if (pkt->sector == zone) {
2486 spin_lock(&pkt->lock);
2487 if ((pkt->state == PACKET_WAITING_STATE) ||
2488 (pkt->state == PACKET_READ_WAIT_STATE)) {
2489 bio_list_add(&pkt->orig_bios, bio);
2490 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2491 if ((pkt->write_size >= pkt->frames) &&
2492 (pkt->state == PACKET_WAITING_STATE)) {
2493 atomic_inc(&pkt->run_sm);
2494 wake_up(&pd->wqueue);
2496 spin_unlock(&pkt->lock);
2497 spin_unlock(&pd->cdrw.active_list_lock);
2498 return;
2499 } else {
2500 blocked_bio = 1;
2502 spin_unlock(&pkt->lock);
2505 spin_unlock(&pd->cdrw.active_list_lock);
2508 * Test if there is enough room left in the bio work queue
2509 * (queue size >= congestion on mark).
2510 * If not, wait till the work queue size is below the congestion off mark.
2512 spin_lock(&pd->lock);
2513 if (pd->write_congestion_on > 0
2514 && pd->bio_queue_size >= pd->write_congestion_on) {
2515 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2516 do {
2517 spin_unlock(&pd->lock);
2518 congestion_wait(BLK_RW_ASYNC, HZ);
2519 spin_lock(&pd->lock);
2520 } while(pd->bio_queue_size > pd->write_congestion_off);
2522 spin_unlock(&pd->lock);
2525 * No matching packet found. Store the bio in the work queue.
2527 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2528 node->bio = bio;
2529 spin_lock(&pd->lock);
2530 BUG_ON(pd->bio_queue_size < 0);
2531 was_empty = (pd->bio_queue_size == 0);
2532 pkt_rbtree_insert(pd, node);
2533 spin_unlock(&pd->lock);
2536 * Wake up the worker thread.
2538 atomic_set(&pd->scan_queue, 1);
2539 if (was_empty) {
2540 /* This wake_up is required for correct operation */
2541 wake_up(&pd->wqueue);
2542 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2544 * This wake up is not required for correct operation,
2545 * but improves performance in some cases.
2547 wake_up(&pd->wqueue);
2549 return;
2550 end_io:
2551 bio_io_error(bio);
2556 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2557 struct bio_vec *bvec)
2559 struct pktcdvd_device *pd = q->queuedata;
2560 sector_t zone = ZONE(bmd->bi_sector, pd);
2561 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2562 int remaining = (pd->settings.size << 9) - used;
2563 int remaining2;
2566 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2567 * boundary, pkt_make_request() will split the bio.
2569 remaining2 = PAGE_SIZE - bmd->bi_size;
2570 remaining = max(remaining, remaining2);
2572 BUG_ON(remaining < 0);
2573 return remaining;
2576 static void pkt_init_queue(struct pktcdvd_device *pd)
2578 struct request_queue *q = pd->disk->queue;
2580 blk_queue_make_request(q, pkt_make_request);
2581 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2582 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2583 blk_queue_merge_bvec(q, pkt_merge_bvec);
2584 q->queuedata = pd;
2587 static int pkt_seq_show(struct seq_file *m, void *p)
2589 struct pktcdvd_device *pd = m->private;
2590 char *msg;
2591 char bdev_buf[BDEVNAME_SIZE];
2592 int states[PACKET_NUM_STATES];
2594 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2595 bdevname(pd->bdev, bdev_buf));
2597 seq_printf(m, "\nSettings:\n");
2598 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2600 if (pd->settings.write_type == 0)
2601 msg = "Packet";
2602 else
2603 msg = "Unknown";
2604 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2606 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2607 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2609 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2611 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2612 msg = "Mode 1";
2613 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2614 msg = "Mode 2";
2615 else
2616 msg = "Unknown";
2617 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2619 seq_printf(m, "\nStatistics:\n");
2620 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2621 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2622 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2623 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2624 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2626 seq_printf(m, "\nMisc:\n");
2627 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2628 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2629 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2630 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2631 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2632 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2634 seq_printf(m, "\nQueue state:\n");
2635 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2636 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2637 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2639 pkt_count_states(pd, states);
2640 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2641 states[0], states[1], states[2], states[3], states[4], states[5]);
2643 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2644 pd->write_congestion_off,
2645 pd->write_congestion_on);
2646 return 0;
2649 static int pkt_seq_open(struct inode *inode, struct file *file)
2651 return single_open(file, pkt_seq_show, PDE(inode)->data);
2654 static const struct file_operations pkt_proc_fops = {
2655 .open = pkt_seq_open,
2656 .read = seq_read,
2657 .llseek = seq_lseek,
2658 .release = single_release
2661 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2663 int i;
2664 int ret = 0;
2665 char b[BDEVNAME_SIZE];
2666 struct block_device *bdev;
2668 if (pd->pkt_dev == dev) {
2669 printk(DRIVER_NAME": Recursive setup not allowed\n");
2670 return -EBUSY;
2672 for (i = 0; i < MAX_WRITERS; i++) {
2673 struct pktcdvd_device *pd2 = pkt_devs[i];
2674 if (!pd2)
2675 continue;
2676 if (pd2->bdev->bd_dev == dev) {
2677 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2678 return -EBUSY;
2680 if (pd2->pkt_dev == dev) {
2681 printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2682 return -EBUSY;
2686 bdev = bdget(dev);
2687 if (!bdev)
2688 return -ENOMEM;
2689 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2690 if (ret)
2691 return ret;
2693 /* This is safe, since we have a reference from open(). */
2694 __module_get(THIS_MODULE);
2696 pd->bdev = bdev;
2697 set_blocksize(bdev, CD_FRAMESIZE);
2699 pkt_init_queue(pd);
2701 atomic_set(&pd->cdrw.pending_bios, 0);
2702 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2703 if (IS_ERR(pd->cdrw.thread)) {
2704 printk(DRIVER_NAME": can't start kernel thread\n");
2705 ret = -ENOMEM;
2706 goto out_mem;
2709 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2710 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2711 return 0;
2713 out_mem:
2714 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2715 /* This is safe: open() is still holding a reference. */
2716 module_put(THIS_MODULE);
2717 return ret;
2720 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2722 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2723 int ret;
2725 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2726 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2728 mutex_lock(&pktcdvd_mutex);
2729 switch (cmd) {
2730 case CDROMEJECT:
2732 * The door gets locked when the device is opened, so we
2733 * have to unlock it or else the eject command fails.
2735 if (pd->refcnt == 1)
2736 pkt_lock_door(pd, 0);
2737 /* fallthru */
2739 * forward selected CDROM ioctls to CD-ROM, for UDF
2741 case CDROMMULTISESSION:
2742 case CDROMREADTOCENTRY:
2743 case CDROM_LAST_WRITTEN:
2744 case CDROM_SEND_PACKET:
2745 case SCSI_IOCTL_SEND_COMMAND:
2746 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2747 break;
2749 default:
2750 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2751 ret = -ENOTTY;
2753 mutex_unlock(&pktcdvd_mutex);
2755 return ret;
2758 static unsigned int pkt_check_events(struct gendisk *disk,
2759 unsigned int clearing)
2761 struct pktcdvd_device *pd = disk->private_data;
2762 struct gendisk *attached_disk;
2764 if (!pd)
2765 return 0;
2766 if (!pd->bdev)
2767 return 0;
2768 attached_disk = pd->bdev->bd_disk;
2769 if (!attached_disk || !attached_disk->fops->check_events)
2770 return 0;
2771 return attached_disk->fops->check_events(attached_disk, clearing);
2774 static const struct block_device_operations pktcdvd_ops = {
2775 .owner = THIS_MODULE,
2776 .open = pkt_open,
2777 .release = pkt_close,
2778 .ioctl = pkt_ioctl,
2779 .check_events = pkt_check_events,
2782 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2784 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2788 * Set up mapping from pktcdvd device to CD-ROM device.
2790 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2792 int idx;
2793 int ret = -ENOMEM;
2794 struct pktcdvd_device *pd;
2795 struct gendisk *disk;
2797 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2799 for (idx = 0; idx < MAX_WRITERS; idx++)
2800 if (!pkt_devs[idx])
2801 break;
2802 if (idx == MAX_WRITERS) {
2803 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2804 ret = -EBUSY;
2805 goto out_mutex;
2808 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2809 if (!pd)
2810 goto out_mutex;
2812 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2813 sizeof(struct pkt_rb_node));
2814 if (!pd->rb_pool)
2815 goto out_mem;
2817 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2818 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2819 spin_lock_init(&pd->cdrw.active_list_lock);
2821 spin_lock_init(&pd->lock);
2822 spin_lock_init(&pd->iosched.lock);
2823 bio_list_init(&pd->iosched.read_queue);
2824 bio_list_init(&pd->iosched.write_queue);
2825 sprintf(pd->name, DRIVER_NAME"%d", idx);
2826 init_waitqueue_head(&pd->wqueue);
2827 pd->bio_queue = RB_ROOT;
2829 pd->write_congestion_on = write_congestion_on;
2830 pd->write_congestion_off = write_congestion_off;
2832 disk = alloc_disk(1);
2833 if (!disk)
2834 goto out_mem;
2835 pd->disk = disk;
2836 disk->major = pktdev_major;
2837 disk->first_minor = idx;
2838 disk->fops = &pktcdvd_ops;
2839 disk->flags = GENHD_FL_REMOVABLE;
2840 strcpy(disk->disk_name, pd->name);
2841 disk->devnode = pktcdvd_devnode;
2842 disk->private_data = pd;
2843 disk->queue = blk_alloc_queue(GFP_KERNEL);
2844 if (!disk->queue)
2845 goto out_mem2;
2847 pd->pkt_dev = MKDEV(pktdev_major, idx);
2848 ret = pkt_new_dev(pd, dev);
2849 if (ret)
2850 goto out_new_dev;
2852 /* inherit events of the host device */
2853 disk->events = pd->bdev->bd_disk->events;
2854 disk->async_events = pd->bdev->bd_disk->async_events;
2856 add_disk(disk);
2858 pkt_sysfs_dev_new(pd);
2859 pkt_debugfs_dev_new(pd);
2861 pkt_devs[idx] = pd;
2862 if (pkt_dev)
2863 *pkt_dev = pd->pkt_dev;
2865 mutex_unlock(&ctl_mutex);
2866 return 0;
2868 out_new_dev:
2869 blk_cleanup_queue(disk->queue);
2870 out_mem2:
2871 put_disk(disk);
2872 out_mem:
2873 if (pd->rb_pool)
2874 mempool_destroy(pd->rb_pool);
2875 kfree(pd);
2876 out_mutex:
2877 mutex_unlock(&ctl_mutex);
2878 printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2879 return ret;
2883 * Tear down mapping from pktcdvd device to CD-ROM device.
2885 static int pkt_remove_dev(dev_t pkt_dev)
2887 struct pktcdvd_device *pd;
2888 int idx;
2889 int ret = 0;
2891 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2893 for (idx = 0; idx < MAX_WRITERS; idx++) {
2894 pd = pkt_devs[idx];
2895 if (pd && (pd->pkt_dev == pkt_dev))
2896 break;
2898 if (idx == MAX_WRITERS) {
2899 DPRINTK(DRIVER_NAME": dev not setup\n");
2900 ret = -ENXIO;
2901 goto out;
2904 if (pd->refcnt > 0) {
2905 ret = -EBUSY;
2906 goto out;
2908 if (!IS_ERR(pd->cdrw.thread))
2909 kthread_stop(pd->cdrw.thread);
2911 pkt_devs[idx] = NULL;
2913 pkt_debugfs_dev_remove(pd);
2914 pkt_sysfs_dev_remove(pd);
2916 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2918 remove_proc_entry(pd->name, pkt_proc);
2919 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2921 del_gendisk(pd->disk);
2922 blk_cleanup_queue(pd->disk->queue);
2923 put_disk(pd->disk);
2925 mempool_destroy(pd->rb_pool);
2926 kfree(pd);
2928 /* This is safe: open() is still holding a reference. */
2929 module_put(THIS_MODULE);
2931 out:
2932 mutex_unlock(&ctl_mutex);
2933 return ret;
2936 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2938 struct pktcdvd_device *pd;
2940 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2942 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2943 if (pd) {
2944 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2945 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2946 } else {
2947 ctrl_cmd->dev = 0;
2948 ctrl_cmd->pkt_dev = 0;
2950 ctrl_cmd->num_devices = MAX_WRITERS;
2952 mutex_unlock(&ctl_mutex);
2955 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2957 void __user *argp = (void __user *)arg;
2958 struct pkt_ctrl_command ctrl_cmd;
2959 int ret = 0;
2960 dev_t pkt_dev = 0;
2962 if (cmd != PACKET_CTRL_CMD)
2963 return -ENOTTY;
2965 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2966 return -EFAULT;
2968 switch (ctrl_cmd.command) {
2969 case PKT_CTRL_CMD_SETUP:
2970 if (!capable(CAP_SYS_ADMIN))
2971 return -EPERM;
2972 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2973 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2974 break;
2975 case PKT_CTRL_CMD_TEARDOWN:
2976 if (!capable(CAP_SYS_ADMIN))
2977 return -EPERM;
2978 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2979 break;
2980 case PKT_CTRL_CMD_STATUS:
2981 pkt_get_status(&ctrl_cmd);
2982 break;
2983 default:
2984 return -ENOTTY;
2987 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2988 return -EFAULT;
2989 return ret;
2992 #ifdef CONFIG_COMPAT
2993 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2995 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2997 #endif
2999 static const struct file_operations pkt_ctl_fops = {
3000 .open = nonseekable_open,
3001 .unlocked_ioctl = pkt_ctl_ioctl,
3002 #ifdef CONFIG_COMPAT
3003 .compat_ioctl = pkt_ctl_compat_ioctl,
3004 #endif
3005 .owner = THIS_MODULE,
3006 .llseek = no_llseek,
3009 static struct miscdevice pkt_misc = {
3010 .minor = MISC_DYNAMIC_MINOR,
3011 .name = DRIVER_NAME,
3012 .nodename = "pktcdvd/control",
3013 .fops = &pkt_ctl_fops
3016 static int __init pkt_init(void)
3018 int ret;
3020 mutex_init(&ctl_mutex);
3022 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3023 sizeof(struct packet_stacked_data));
3024 if (!psd_pool)
3025 return -ENOMEM;
3027 ret = register_blkdev(pktdev_major, DRIVER_NAME);
3028 if (ret < 0) {
3029 printk(DRIVER_NAME": Unable to register block device\n");
3030 goto out2;
3032 if (!pktdev_major)
3033 pktdev_major = ret;
3035 ret = pkt_sysfs_init();
3036 if (ret)
3037 goto out;
3039 pkt_debugfs_init();
3041 ret = misc_register(&pkt_misc);
3042 if (ret) {
3043 printk(DRIVER_NAME": Unable to register misc device\n");
3044 goto out_misc;
3047 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3049 return 0;
3051 out_misc:
3052 pkt_debugfs_cleanup();
3053 pkt_sysfs_cleanup();
3054 out:
3055 unregister_blkdev(pktdev_major, DRIVER_NAME);
3056 out2:
3057 mempool_destroy(psd_pool);
3058 return ret;
3061 static void __exit pkt_exit(void)
3063 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3064 misc_deregister(&pkt_misc);
3066 pkt_debugfs_cleanup();
3067 pkt_sysfs_cleanup();
3069 unregister_blkdev(pktdev_major, DRIVER_NAME);
3070 mempool_destroy(psd_pool);
3073 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3074 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3075 MODULE_LICENSE("GPL");
3077 module_init(pkt_init);
3078 module_exit(pkt_exit);