V4L/DVB: af9015: add new USB ID for KWorld PlusTV Dual DVB-T Stick (DVB-T 399U)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / futex.c
blobfdc88aa1c5f19a12658451611f9b1efc24eb74d7
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
63 #include <asm/futex.h>
65 #include "rtmutex_common.h"
67 int __read_mostly futex_cmpxchg_enabled;
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
72 * Priority Inheritance state:
74 struct futex_pi_state {
76 * list of 'owned' pi_state instances - these have to be
77 * cleaned up in do_exit() if the task exits prematurely:
79 struct list_head list;
82 * The PI object:
84 struct rt_mutex pi_mutex;
86 struct task_struct *owner;
87 atomic_t refcount;
89 union futex_key key;
93 * We use this hashed waitqueue instead of a normal wait_queue_t, so
94 * we can wake only the relevant ones (hashed queues may be shared).
96 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
97 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
98 * The order of wakup is always to make the first condition true, then
99 * wake up q->waiter, then make the second condition true.
101 struct futex_q {
102 struct plist_node list;
103 /* Waiter reference */
104 struct task_struct *task;
106 /* Which hash list lock to use: */
107 spinlock_t *lock_ptr;
109 /* Key which the futex is hashed on: */
110 union futex_key key;
112 /* Optional priority inheritance state: */
113 struct futex_pi_state *pi_state;
115 /* rt_waiter storage for requeue_pi: */
116 struct rt_mutex_waiter *rt_waiter;
118 /* The expected requeue pi target futex key: */
119 union futex_key *requeue_pi_key;
121 /* Bitset for the optional bitmasked wakeup */
122 u32 bitset;
126 * Hash buckets are shared by all the futex_keys that hash to the same
127 * location. Each key may have multiple futex_q structures, one for each task
128 * waiting on a futex.
130 struct futex_hash_bucket {
131 spinlock_t lock;
132 struct plist_head chain;
135 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
138 * We hash on the keys returned from get_futex_key (see below).
140 static struct futex_hash_bucket *hash_futex(union futex_key *key)
142 u32 hash = jhash2((u32*)&key->both.word,
143 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
144 key->both.offset);
145 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
149 * Return 1 if two futex_keys are equal, 0 otherwise.
151 static inline int match_futex(union futex_key *key1, union futex_key *key2)
153 return (key1 && key2
154 && key1->both.word == key2->both.word
155 && key1->both.ptr == key2->both.ptr
156 && key1->both.offset == key2->both.offset);
160 * Take a reference to the resource addressed by a key.
161 * Can be called while holding spinlocks.
164 static void get_futex_key_refs(union futex_key *key)
166 if (!key->both.ptr)
167 return;
169 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
170 case FUT_OFF_INODE:
171 atomic_inc(&key->shared.inode->i_count);
172 break;
173 case FUT_OFF_MMSHARED:
174 atomic_inc(&key->private.mm->mm_count);
175 break;
180 * Drop a reference to the resource addressed by a key.
181 * The hash bucket spinlock must not be held.
183 static void drop_futex_key_refs(union futex_key *key)
185 if (!key->both.ptr) {
186 /* If we're here then we tried to put a key we failed to get */
187 WARN_ON_ONCE(1);
188 return;
191 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
192 case FUT_OFF_INODE:
193 iput(key->shared.inode);
194 break;
195 case FUT_OFF_MMSHARED:
196 mmdrop(key->private.mm);
197 break;
202 * get_futex_key - Get parameters which are the keys for a futex.
203 * @uaddr: virtual address of the futex
204 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
205 * @key: address where result is stored.
206 * @rw: mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE)
208 * Returns a negative error code or 0
209 * The key words are stored in *key on success.
211 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
212 * offset_within_page). For private mappings, it's (uaddr, current->mm).
213 * We can usually work out the index without swapping in the page.
215 * lock_page() might sleep, the caller should not hold a spinlock.
217 static int
218 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
220 unsigned long address = (unsigned long)uaddr;
221 struct mm_struct *mm = current->mm;
222 struct page *page;
223 int err;
226 * The futex address must be "naturally" aligned.
228 key->both.offset = address % PAGE_SIZE;
229 if (unlikely((address % sizeof(u32)) != 0))
230 return -EINVAL;
231 address -= key->both.offset;
234 * PROCESS_PRIVATE futexes are fast.
235 * As the mm cannot disappear under us and the 'key' only needs
236 * virtual address, we dont even have to find the underlying vma.
237 * Note : We do have to check 'uaddr' is a valid user address,
238 * but access_ok() should be faster than find_vma()
240 if (!fshared) {
241 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
242 return -EFAULT;
243 key->private.mm = mm;
244 key->private.address = address;
245 get_futex_key_refs(key);
246 return 0;
249 again:
250 err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
251 if (err < 0)
252 return err;
254 page = compound_head(page);
255 lock_page(page);
256 if (!page->mapping) {
257 unlock_page(page);
258 put_page(page);
259 goto again;
263 * Private mappings are handled in a simple way.
265 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
266 * it's a read-only handle, it's expected that futexes attach to
267 * the object not the particular process.
269 if (PageAnon(page)) {
270 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
271 key->private.mm = mm;
272 key->private.address = address;
273 } else {
274 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
275 key->shared.inode = page->mapping->host;
276 key->shared.pgoff = page->index;
279 get_futex_key_refs(key);
281 unlock_page(page);
282 put_page(page);
283 return 0;
286 static inline
287 void put_futex_key(int fshared, union futex_key *key)
289 drop_futex_key_refs(key);
293 * fault_in_user_writeable - fault in user address and verify RW access
294 * @uaddr: pointer to faulting user space address
296 * Slow path to fixup the fault we just took in the atomic write
297 * access to @uaddr.
299 * We have no generic implementation of a non destructive write to the
300 * user address. We know that we faulted in the atomic pagefault
301 * disabled section so we can as well avoid the #PF overhead by
302 * calling get_user_pages() right away.
304 static int fault_in_user_writeable(u32 __user *uaddr)
306 struct mm_struct *mm = current->mm;
307 int ret;
309 down_read(&mm->mmap_sem);
310 ret = get_user_pages(current, mm, (unsigned long)uaddr,
311 1, 1, 0, NULL, NULL);
312 up_read(&mm->mmap_sem);
314 return ret < 0 ? ret : 0;
318 * futex_top_waiter() - Return the highest priority waiter on a futex
319 * @hb: the hash bucket the futex_q's reside in
320 * @key: the futex key (to distinguish it from other futex futex_q's)
322 * Must be called with the hb lock held.
324 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
325 union futex_key *key)
327 struct futex_q *this;
329 plist_for_each_entry(this, &hb->chain, list) {
330 if (match_futex(&this->key, key))
331 return this;
333 return NULL;
336 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
338 u32 curval;
340 pagefault_disable();
341 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
342 pagefault_enable();
344 return curval;
347 static int get_futex_value_locked(u32 *dest, u32 __user *from)
349 int ret;
351 pagefault_disable();
352 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
353 pagefault_enable();
355 return ret ? -EFAULT : 0;
360 * PI code:
362 static int refill_pi_state_cache(void)
364 struct futex_pi_state *pi_state;
366 if (likely(current->pi_state_cache))
367 return 0;
369 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
371 if (!pi_state)
372 return -ENOMEM;
374 INIT_LIST_HEAD(&pi_state->list);
375 /* pi_mutex gets initialized later */
376 pi_state->owner = NULL;
377 atomic_set(&pi_state->refcount, 1);
378 pi_state->key = FUTEX_KEY_INIT;
380 current->pi_state_cache = pi_state;
382 return 0;
385 static struct futex_pi_state * alloc_pi_state(void)
387 struct futex_pi_state *pi_state = current->pi_state_cache;
389 WARN_ON(!pi_state);
390 current->pi_state_cache = NULL;
392 return pi_state;
395 static void free_pi_state(struct futex_pi_state *pi_state)
397 if (!atomic_dec_and_test(&pi_state->refcount))
398 return;
401 * If pi_state->owner is NULL, the owner is most probably dying
402 * and has cleaned up the pi_state already
404 if (pi_state->owner) {
405 spin_lock_irq(&pi_state->owner->pi_lock);
406 list_del_init(&pi_state->list);
407 spin_unlock_irq(&pi_state->owner->pi_lock);
409 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
412 if (current->pi_state_cache)
413 kfree(pi_state);
414 else {
416 * pi_state->list is already empty.
417 * clear pi_state->owner.
418 * refcount is at 0 - put it back to 1.
420 pi_state->owner = NULL;
421 atomic_set(&pi_state->refcount, 1);
422 current->pi_state_cache = pi_state;
427 * Look up the task based on what TID userspace gave us.
428 * We dont trust it.
430 static struct task_struct * futex_find_get_task(pid_t pid)
432 struct task_struct *p;
433 const struct cred *cred = current_cred(), *pcred;
435 rcu_read_lock();
436 p = find_task_by_vpid(pid);
437 if (!p) {
438 p = ERR_PTR(-ESRCH);
439 } else {
440 pcred = __task_cred(p);
441 if (cred->euid != pcred->euid &&
442 cred->euid != pcred->uid)
443 p = ERR_PTR(-ESRCH);
444 else
445 get_task_struct(p);
448 rcu_read_unlock();
450 return p;
454 * This task is holding PI mutexes at exit time => bad.
455 * Kernel cleans up PI-state, but userspace is likely hosed.
456 * (Robust-futex cleanup is separate and might save the day for userspace.)
458 void exit_pi_state_list(struct task_struct *curr)
460 struct list_head *next, *head = &curr->pi_state_list;
461 struct futex_pi_state *pi_state;
462 struct futex_hash_bucket *hb;
463 union futex_key key = FUTEX_KEY_INIT;
465 if (!futex_cmpxchg_enabled)
466 return;
468 * We are a ZOMBIE and nobody can enqueue itself on
469 * pi_state_list anymore, but we have to be careful
470 * versus waiters unqueueing themselves:
472 spin_lock_irq(&curr->pi_lock);
473 while (!list_empty(head)) {
475 next = head->next;
476 pi_state = list_entry(next, struct futex_pi_state, list);
477 key = pi_state->key;
478 hb = hash_futex(&key);
479 spin_unlock_irq(&curr->pi_lock);
481 spin_lock(&hb->lock);
483 spin_lock_irq(&curr->pi_lock);
485 * We dropped the pi-lock, so re-check whether this
486 * task still owns the PI-state:
488 if (head->next != next) {
489 spin_unlock(&hb->lock);
490 continue;
493 WARN_ON(pi_state->owner != curr);
494 WARN_ON(list_empty(&pi_state->list));
495 list_del_init(&pi_state->list);
496 pi_state->owner = NULL;
497 spin_unlock_irq(&curr->pi_lock);
499 rt_mutex_unlock(&pi_state->pi_mutex);
501 spin_unlock(&hb->lock);
503 spin_lock_irq(&curr->pi_lock);
505 spin_unlock_irq(&curr->pi_lock);
508 static int
509 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
510 union futex_key *key, struct futex_pi_state **ps)
512 struct futex_pi_state *pi_state = NULL;
513 struct futex_q *this, *next;
514 struct plist_head *head;
515 struct task_struct *p;
516 pid_t pid = uval & FUTEX_TID_MASK;
518 head = &hb->chain;
520 plist_for_each_entry_safe(this, next, head, list) {
521 if (match_futex(&this->key, key)) {
523 * Another waiter already exists - bump up
524 * the refcount and return its pi_state:
526 pi_state = this->pi_state;
528 * Userspace might have messed up non PI and PI futexes
530 if (unlikely(!pi_state))
531 return -EINVAL;
533 WARN_ON(!atomic_read(&pi_state->refcount));
536 * When pi_state->owner is NULL then the owner died
537 * and another waiter is on the fly. pi_state->owner
538 * is fixed up by the task which acquires
539 * pi_state->rt_mutex.
541 * We do not check for pid == 0 which can happen when
542 * the owner died and robust_list_exit() cleared the
543 * TID.
545 if (pid && pi_state->owner) {
547 * Bail out if user space manipulated the
548 * futex value.
550 if (pid != task_pid_vnr(pi_state->owner))
551 return -EINVAL;
554 atomic_inc(&pi_state->refcount);
555 *ps = pi_state;
557 return 0;
562 * We are the first waiter - try to look up the real owner and attach
563 * the new pi_state to it, but bail out when TID = 0
565 if (!pid)
566 return -ESRCH;
567 p = futex_find_get_task(pid);
568 if (IS_ERR(p))
569 return PTR_ERR(p);
572 * We need to look at the task state flags to figure out,
573 * whether the task is exiting. To protect against the do_exit
574 * change of the task flags, we do this protected by
575 * p->pi_lock:
577 spin_lock_irq(&p->pi_lock);
578 if (unlikely(p->flags & PF_EXITING)) {
580 * The task is on the way out. When PF_EXITPIDONE is
581 * set, we know that the task has finished the
582 * cleanup:
584 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
586 spin_unlock_irq(&p->pi_lock);
587 put_task_struct(p);
588 return ret;
591 pi_state = alloc_pi_state();
594 * Initialize the pi_mutex in locked state and make 'p'
595 * the owner of it:
597 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
599 /* Store the key for possible exit cleanups: */
600 pi_state->key = *key;
602 WARN_ON(!list_empty(&pi_state->list));
603 list_add(&pi_state->list, &p->pi_state_list);
604 pi_state->owner = p;
605 spin_unlock_irq(&p->pi_lock);
607 put_task_struct(p);
609 *ps = pi_state;
611 return 0;
615 * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex
616 * @uaddr: the pi futex user address
617 * @hb: the pi futex hash bucket
618 * @key: the futex key associated with uaddr and hb
619 * @ps: the pi_state pointer where we store the result of the
620 * lookup
621 * @task: the task to perform the atomic lock work for. This will
622 * be "current" except in the case of requeue pi.
623 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
625 * Returns:
626 * 0 - ready to wait
627 * 1 - acquired the lock
628 * <0 - error
630 * The hb->lock and futex_key refs shall be held by the caller.
632 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
633 union futex_key *key,
634 struct futex_pi_state **ps,
635 struct task_struct *task, int set_waiters)
637 int lock_taken, ret, ownerdied = 0;
638 u32 uval, newval, curval;
640 retry:
641 ret = lock_taken = 0;
644 * To avoid races, we attempt to take the lock here again
645 * (by doing a 0 -> TID atomic cmpxchg), while holding all
646 * the locks. It will most likely not succeed.
648 newval = task_pid_vnr(task);
649 if (set_waiters)
650 newval |= FUTEX_WAITERS;
652 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
654 if (unlikely(curval == -EFAULT))
655 return -EFAULT;
658 * Detect deadlocks.
660 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
661 return -EDEADLK;
664 * Surprise - we got the lock. Just return to userspace:
666 if (unlikely(!curval))
667 return 1;
669 uval = curval;
672 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
673 * to wake at the next unlock.
675 newval = curval | FUTEX_WAITERS;
678 * There are two cases, where a futex might have no owner (the
679 * owner TID is 0): OWNER_DIED. We take over the futex in this
680 * case. We also do an unconditional take over, when the owner
681 * of the futex died.
683 * This is safe as we are protected by the hash bucket lock !
685 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
686 /* Keep the OWNER_DIED bit */
687 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
688 ownerdied = 0;
689 lock_taken = 1;
692 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
694 if (unlikely(curval == -EFAULT))
695 return -EFAULT;
696 if (unlikely(curval != uval))
697 goto retry;
700 * We took the lock due to owner died take over.
702 if (unlikely(lock_taken))
703 return 1;
706 * We dont have the lock. Look up the PI state (or create it if
707 * we are the first waiter):
709 ret = lookup_pi_state(uval, hb, key, ps);
711 if (unlikely(ret)) {
712 switch (ret) {
713 case -ESRCH:
715 * No owner found for this futex. Check if the
716 * OWNER_DIED bit is set to figure out whether
717 * this is a robust futex or not.
719 if (get_futex_value_locked(&curval, uaddr))
720 return -EFAULT;
723 * We simply start over in case of a robust
724 * futex. The code above will take the futex
725 * and return happy.
727 if (curval & FUTEX_OWNER_DIED) {
728 ownerdied = 1;
729 goto retry;
731 default:
732 break;
736 return ret;
740 * The hash bucket lock must be held when this is called.
741 * Afterwards, the futex_q must not be accessed.
743 static void wake_futex(struct futex_q *q)
745 struct task_struct *p = q->task;
748 * We set q->lock_ptr = NULL _before_ we wake up the task. If
749 * a non futex wake up happens on another CPU then the task
750 * might exit and p would dereference a non existing task
751 * struct. Prevent this by holding a reference on p across the
752 * wake up.
754 get_task_struct(p);
756 plist_del(&q->list, &q->list.plist);
758 * The waiting task can free the futex_q as soon as
759 * q->lock_ptr = NULL is written, without taking any locks. A
760 * memory barrier is required here to prevent the following
761 * store to lock_ptr from getting ahead of the plist_del.
763 smp_wmb();
764 q->lock_ptr = NULL;
766 wake_up_state(p, TASK_NORMAL);
767 put_task_struct(p);
770 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
772 struct task_struct *new_owner;
773 struct futex_pi_state *pi_state = this->pi_state;
774 u32 curval, newval;
776 if (!pi_state)
777 return -EINVAL;
780 * If current does not own the pi_state then the futex is
781 * inconsistent and user space fiddled with the futex value.
783 if (pi_state->owner != current)
784 return -EINVAL;
786 spin_lock(&pi_state->pi_mutex.wait_lock);
787 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
790 * This happens when we have stolen the lock and the original
791 * pending owner did not enqueue itself back on the rt_mutex.
792 * Thats not a tragedy. We know that way, that a lock waiter
793 * is on the fly. We make the futex_q waiter the pending owner.
795 if (!new_owner)
796 new_owner = this->task;
799 * We pass it to the next owner. (The WAITERS bit is always
800 * kept enabled while there is PI state around. We must also
801 * preserve the owner died bit.)
803 if (!(uval & FUTEX_OWNER_DIED)) {
804 int ret = 0;
806 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
808 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
810 if (curval == -EFAULT)
811 ret = -EFAULT;
812 else if (curval != uval)
813 ret = -EINVAL;
814 if (ret) {
815 spin_unlock(&pi_state->pi_mutex.wait_lock);
816 return ret;
820 spin_lock_irq(&pi_state->owner->pi_lock);
821 WARN_ON(list_empty(&pi_state->list));
822 list_del_init(&pi_state->list);
823 spin_unlock_irq(&pi_state->owner->pi_lock);
825 spin_lock_irq(&new_owner->pi_lock);
826 WARN_ON(!list_empty(&pi_state->list));
827 list_add(&pi_state->list, &new_owner->pi_state_list);
828 pi_state->owner = new_owner;
829 spin_unlock_irq(&new_owner->pi_lock);
831 spin_unlock(&pi_state->pi_mutex.wait_lock);
832 rt_mutex_unlock(&pi_state->pi_mutex);
834 return 0;
837 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
839 u32 oldval;
842 * There is no waiter, so we unlock the futex. The owner died
843 * bit has not to be preserved here. We are the owner:
845 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
847 if (oldval == -EFAULT)
848 return oldval;
849 if (oldval != uval)
850 return -EAGAIN;
852 return 0;
856 * Express the locking dependencies for lockdep:
858 static inline void
859 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
861 if (hb1 <= hb2) {
862 spin_lock(&hb1->lock);
863 if (hb1 < hb2)
864 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
865 } else { /* hb1 > hb2 */
866 spin_lock(&hb2->lock);
867 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
871 static inline void
872 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
874 spin_unlock(&hb1->lock);
875 if (hb1 != hb2)
876 spin_unlock(&hb2->lock);
880 * Wake up waiters matching bitset queued on this futex (uaddr).
882 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
884 struct futex_hash_bucket *hb;
885 struct futex_q *this, *next;
886 struct plist_head *head;
887 union futex_key key = FUTEX_KEY_INIT;
888 int ret;
890 if (!bitset)
891 return -EINVAL;
893 ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
894 if (unlikely(ret != 0))
895 goto out;
897 hb = hash_futex(&key);
898 spin_lock(&hb->lock);
899 head = &hb->chain;
901 plist_for_each_entry_safe(this, next, head, list) {
902 if (match_futex (&this->key, &key)) {
903 if (this->pi_state || this->rt_waiter) {
904 ret = -EINVAL;
905 break;
908 /* Check if one of the bits is set in both bitsets */
909 if (!(this->bitset & bitset))
910 continue;
912 wake_futex(this);
913 if (++ret >= nr_wake)
914 break;
918 spin_unlock(&hb->lock);
919 put_futex_key(fshared, &key);
920 out:
921 return ret;
925 * Wake up all waiters hashed on the physical page that is mapped
926 * to this virtual address:
928 static int
929 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
930 int nr_wake, int nr_wake2, int op)
932 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
933 struct futex_hash_bucket *hb1, *hb2;
934 struct plist_head *head;
935 struct futex_q *this, *next;
936 int ret, op_ret;
938 retry:
939 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
940 if (unlikely(ret != 0))
941 goto out;
942 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
943 if (unlikely(ret != 0))
944 goto out_put_key1;
946 hb1 = hash_futex(&key1);
947 hb2 = hash_futex(&key2);
949 retry_private:
950 double_lock_hb(hb1, hb2);
951 op_ret = futex_atomic_op_inuser(op, uaddr2);
952 if (unlikely(op_ret < 0)) {
954 double_unlock_hb(hb1, hb2);
956 #ifndef CONFIG_MMU
958 * we don't get EFAULT from MMU faults if we don't have an MMU,
959 * but we might get them from range checking
961 ret = op_ret;
962 goto out_put_keys;
963 #endif
965 if (unlikely(op_ret != -EFAULT)) {
966 ret = op_ret;
967 goto out_put_keys;
970 ret = fault_in_user_writeable(uaddr2);
971 if (ret)
972 goto out_put_keys;
974 if (!fshared)
975 goto retry_private;
977 put_futex_key(fshared, &key2);
978 put_futex_key(fshared, &key1);
979 goto retry;
982 head = &hb1->chain;
984 plist_for_each_entry_safe(this, next, head, list) {
985 if (match_futex (&this->key, &key1)) {
986 wake_futex(this);
987 if (++ret >= nr_wake)
988 break;
992 if (op_ret > 0) {
993 head = &hb2->chain;
995 op_ret = 0;
996 plist_for_each_entry_safe(this, next, head, list) {
997 if (match_futex (&this->key, &key2)) {
998 wake_futex(this);
999 if (++op_ret >= nr_wake2)
1000 break;
1003 ret += op_ret;
1006 double_unlock_hb(hb1, hb2);
1007 out_put_keys:
1008 put_futex_key(fshared, &key2);
1009 out_put_key1:
1010 put_futex_key(fshared, &key1);
1011 out:
1012 return ret;
1016 * requeue_futex() - Requeue a futex_q from one hb to another
1017 * @q: the futex_q to requeue
1018 * @hb1: the source hash_bucket
1019 * @hb2: the target hash_bucket
1020 * @key2: the new key for the requeued futex_q
1022 static inline
1023 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1024 struct futex_hash_bucket *hb2, union futex_key *key2)
1028 * If key1 and key2 hash to the same bucket, no need to
1029 * requeue.
1031 if (likely(&hb1->chain != &hb2->chain)) {
1032 plist_del(&q->list, &hb1->chain);
1033 plist_add(&q->list, &hb2->chain);
1034 q->lock_ptr = &hb2->lock;
1035 #ifdef CONFIG_DEBUG_PI_LIST
1036 q->list.plist.lock = &hb2->lock;
1037 #endif
1039 get_futex_key_refs(key2);
1040 q->key = *key2;
1044 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1045 * q: the futex_q
1046 * key: the key of the requeue target futex
1047 * hb: the hash_bucket of the requeue target futex
1049 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1050 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1051 * to the requeue target futex so the waiter can detect the wakeup on the right
1052 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1053 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1054 * to protect access to the pi_state to fixup the owner later. Must be called
1055 * with both q->lock_ptr and hb->lock held.
1057 static inline
1058 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1059 struct futex_hash_bucket *hb)
1061 get_futex_key_refs(key);
1062 q->key = *key;
1064 WARN_ON(plist_node_empty(&q->list));
1065 plist_del(&q->list, &q->list.plist);
1067 WARN_ON(!q->rt_waiter);
1068 q->rt_waiter = NULL;
1070 q->lock_ptr = &hb->lock;
1071 #ifdef CONFIG_DEBUG_PI_LIST
1072 q->list.plist.lock = &hb->lock;
1073 #endif
1075 wake_up_state(q->task, TASK_NORMAL);
1079 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1080 * @pifutex: the user address of the to futex
1081 * @hb1: the from futex hash bucket, must be locked by the caller
1082 * @hb2: the to futex hash bucket, must be locked by the caller
1083 * @key1: the from futex key
1084 * @key2: the to futex key
1085 * @ps: address to store the pi_state pointer
1086 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1088 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1089 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1090 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1091 * hb1 and hb2 must be held by the caller.
1093 * Returns:
1094 * 0 - failed to acquire the lock atomicly
1095 * 1 - acquired the lock
1096 * <0 - error
1098 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1099 struct futex_hash_bucket *hb1,
1100 struct futex_hash_bucket *hb2,
1101 union futex_key *key1, union futex_key *key2,
1102 struct futex_pi_state **ps, int set_waiters)
1104 struct futex_q *top_waiter = NULL;
1105 u32 curval;
1106 int ret;
1108 if (get_futex_value_locked(&curval, pifutex))
1109 return -EFAULT;
1112 * Find the top_waiter and determine if there are additional waiters.
1113 * If the caller intends to requeue more than 1 waiter to pifutex,
1114 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1115 * as we have means to handle the possible fault. If not, don't set
1116 * the bit unecessarily as it will force the subsequent unlock to enter
1117 * the kernel.
1119 top_waiter = futex_top_waiter(hb1, key1);
1121 /* There are no waiters, nothing for us to do. */
1122 if (!top_waiter)
1123 return 0;
1125 /* Ensure we requeue to the expected futex. */
1126 if (!match_futex(top_waiter->requeue_pi_key, key2))
1127 return -EINVAL;
1130 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1131 * the contended case or if set_waiters is 1. The pi_state is returned
1132 * in ps in contended cases.
1134 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1135 set_waiters);
1136 if (ret == 1)
1137 requeue_pi_wake_futex(top_waiter, key2, hb2);
1139 return ret;
1143 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1144 * uaddr1: source futex user address
1145 * uaddr2: target futex user address
1146 * nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1147 * nr_requeue: number of waiters to requeue (0-INT_MAX)
1148 * requeue_pi: if we are attempting to requeue from a non-pi futex to a
1149 * pi futex (pi to pi requeue is not supported)
1151 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1152 * uaddr2 atomically on behalf of the top waiter.
1154 * Returns:
1155 * >=0 - on success, the number of tasks requeued or woken
1156 * <0 - on error
1158 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1159 int nr_wake, int nr_requeue, u32 *cmpval,
1160 int requeue_pi)
1162 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1163 int drop_count = 0, task_count = 0, ret;
1164 struct futex_pi_state *pi_state = NULL;
1165 struct futex_hash_bucket *hb1, *hb2;
1166 struct plist_head *head1;
1167 struct futex_q *this, *next;
1168 u32 curval2;
1170 if (requeue_pi) {
1172 * requeue_pi requires a pi_state, try to allocate it now
1173 * without any locks in case it fails.
1175 if (refill_pi_state_cache())
1176 return -ENOMEM;
1178 * requeue_pi must wake as many tasks as it can, up to nr_wake
1179 * + nr_requeue, since it acquires the rt_mutex prior to
1180 * returning to userspace, so as to not leave the rt_mutex with
1181 * waiters and no owner. However, second and third wake-ups
1182 * cannot be predicted as they involve race conditions with the
1183 * first wake and a fault while looking up the pi_state. Both
1184 * pthread_cond_signal() and pthread_cond_broadcast() should
1185 * use nr_wake=1.
1187 if (nr_wake != 1)
1188 return -EINVAL;
1191 retry:
1192 if (pi_state != NULL) {
1194 * We will have to lookup the pi_state again, so free this one
1195 * to keep the accounting correct.
1197 free_pi_state(pi_state);
1198 pi_state = NULL;
1201 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
1202 if (unlikely(ret != 0))
1203 goto out;
1204 ret = get_futex_key(uaddr2, fshared, &key2,
1205 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1206 if (unlikely(ret != 0))
1207 goto out_put_key1;
1209 hb1 = hash_futex(&key1);
1210 hb2 = hash_futex(&key2);
1212 retry_private:
1213 double_lock_hb(hb1, hb2);
1215 if (likely(cmpval != NULL)) {
1216 u32 curval;
1218 ret = get_futex_value_locked(&curval, uaddr1);
1220 if (unlikely(ret)) {
1221 double_unlock_hb(hb1, hb2);
1223 ret = get_user(curval, uaddr1);
1224 if (ret)
1225 goto out_put_keys;
1227 if (!fshared)
1228 goto retry_private;
1230 put_futex_key(fshared, &key2);
1231 put_futex_key(fshared, &key1);
1232 goto retry;
1234 if (curval != *cmpval) {
1235 ret = -EAGAIN;
1236 goto out_unlock;
1240 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1242 * Attempt to acquire uaddr2 and wake the top waiter. If we
1243 * intend to requeue waiters, force setting the FUTEX_WAITERS
1244 * bit. We force this here where we are able to easily handle
1245 * faults rather in the requeue loop below.
1247 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1248 &key2, &pi_state, nr_requeue);
1251 * At this point the top_waiter has either taken uaddr2 or is
1252 * waiting on it. If the former, then the pi_state will not
1253 * exist yet, look it up one more time to ensure we have a
1254 * reference to it.
1256 if (ret == 1) {
1257 WARN_ON(pi_state);
1258 drop_count++;
1259 task_count++;
1260 ret = get_futex_value_locked(&curval2, uaddr2);
1261 if (!ret)
1262 ret = lookup_pi_state(curval2, hb2, &key2,
1263 &pi_state);
1266 switch (ret) {
1267 case 0:
1268 break;
1269 case -EFAULT:
1270 double_unlock_hb(hb1, hb2);
1271 put_futex_key(fshared, &key2);
1272 put_futex_key(fshared, &key1);
1273 ret = fault_in_user_writeable(uaddr2);
1274 if (!ret)
1275 goto retry;
1276 goto out;
1277 case -EAGAIN:
1278 /* The owner was exiting, try again. */
1279 double_unlock_hb(hb1, hb2);
1280 put_futex_key(fshared, &key2);
1281 put_futex_key(fshared, &key1);
1282 cond_resched();
1283 goto retry;
1284 default:
1285 goto out_unlock;
1289 head1 = &hb1->chain;
1290 plist_for_each_entry_safe(this, next, head1, list) {
1291 if (task_count - nr_wake >= nr_requeue)
1292 break;
1294 if (!match_futex(&this->key, &key1))
1295 continue;
1298 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1299 * be paired with each other and no other futex ops.
1301 if ((requeue_pi && !this->rt_waiter) ||
1302 (!requeue_pi && this->rt_waiter)) {
1303 ret = -EINVAL;
1304 break;
1308 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1309 * lock, we already woke the top_waiter. If not, it will be
1310 * woken by futex_unlock_pi().
1312 if (++task_count <= nr_wake && !requeue_pi) {
1313 wake_futex(this);
1314 continue;
1317 /* Ensure we requeue to the expected futex for requeue_pi. */
1318 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1319 ret = -EINVAL;
1320 break;
1324 * Requeue nr_requeue waiters and possibly one more in the case
1325 * of requeue_pi if we couldn't acquire the lock atomically.
1327 if (requeue_pi) {
1328 /* Prepare the waiter to take the rt_mutex. */
1329 atomic_inc(&pi_state->refcount);
1330 this->pi_state = pi_state;
1331 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1332 this->rt_waiter,
1333 this->task, 1);
1334 if (ret == 1) {
1335 /* We got the lock. */
1336 requeue_pi_wake_futex(this, &key2, hb2);
1337 drop_count++;
1338 continue;
1339 } else if (ret) {
1340 /* -EDEADLK */
1341 this->pi_state = NULL;
1342 free_pi_state(pi_state);
1343 goto out_unlock;
1346 requeue_futex(this, hb1, hb2, &key2);
1347 drop_count++;
1350 out_unlock:
1351 double_unlock_hb(hb1, hb2);
1354 * drop_futex_key_refs() must be called outside the spinlocks. During
1355 * the requeue we moved futex_q's from the hash bucket at key1 to the
1356 * one at key2 and updated their key pointer. We no longer need to
1357 * hold the references to key1.
1359 while (--drop_count >= 0)
1360 drop_futex_key_refs(&key1);
1362 out_put_keys:
1363 put_futex_key(fshared, &key2);
1364 out_put_key1:
1365 put_futex_key(fshared, &key1);
1366 out:
1367 if (pi_state != NULL)
1368 free_pi_state(pi_state);
1369 return ret ? ret : task_count;
1372 /* The key must be already stored in q->key. */
1373 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1375 struct futex_hash_bucket *hb;
1377 get_futex_key_refs(&q->key);
1378 hb = hash_futex(&q->key);
1379 q->lock_ptr = &hb->lock;
1381 spin_lock(&hb->lock);
1382 return hb;
1385 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1387 int prio;
1390 * The priority used to register this element is
1391 * - either the real thread-priority for the real-time threads
1392 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1393 * - or MAX_RT_PRIO for non-RT threads.
1394 * Thus, all RT-threads are woken first in priority order, and
1395 * the others are woken last, in FIFO order.
1397 prio = min(current->normal_prio, MAX_RT_PRIO);
1399 plist_node_init(&q->list, prio);
1400 #ifdef CONFIG_DEBUG_PI_LIST
1401 q->list.plist.lock = &hb->lock;
1402 #endif
1403 plist_add(&q->list, &hb->chain);
1404 q->task = current;
1405 spin_unlock(&hb->lock);
1408 static inline void
1409 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1411 spin_unlock(&hb->lock);
1412 drop_futex_key_refs(&q->key);
1416 * queue_me and unqueue_me must be called as a pair, each
1417 * exactly once. They are called with the hashed spinlock held.
1420 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1421 static int unqueue_me(struct futex_q *q)
1423 spinlock_t *lock_ptr;
1424 int ret = 0;
1426 /* In the common case we don't take the spinlock, which is nice. */
1427 retry:
1428 lock_ptr = q->lock_ptr;
1429 barrier();
1430 if (lock_ptr != NULL) {
1431 spin_lock(lock_ptr);
1433 * q->lock_ptr can change between reading it and
1434 * spin_lock(), causing us to take the wrong lock. This
1435 * corrects the race condition.
1437 * Reasoning goes like this: if we have the wrong lock,
1438 * q->lock_ptr must have changed (maybe several times)
1439 * between reading it and the spin_lock(). It can
1440 * change again after the spin_lock() but only if it was
1441 * already changed before the spin_lock(). It cannot,
1442 * however, change back to the original value. Therefore
1443 * we can detect whether we acquired the correct lock.
1445 if (unlikely(lock_ptr != q->lock_ptr)) {
1446 spin_unlock(lock_ptr);
1447 goto retry;
1449 WARN_ON(plist_node_empty(&q->list));
1450 plist_del(&q->list, &q->list.plist);
1452 BUG_ON(q->pi_state);
1454 spin_unlock(lock_ptr);
1455 ret = 1;
1458 drop_futex_key_refs(&q->key);
1459 return ret;
1463 * PI futexes can not be requeued and must remove themself from the
1464 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1465 * and dropped here.
1467 static void unqueue_me_pi(struct futex_q *q)
1469 WARN_ON(plist_node_empty(&q->list));
1470 plist_del(&q->list, &q->list.plist);
1472 BUG_ON(!q->pi_state);
1473 free_pi_state(q->pi_state);
1474 q->pi_state = NULL;
1476 spin_unlock(q->lock_ptr);
1478 drop_futex_key_refs(&q->key);
1482 * Fixup the pi_state owner with the new owner.
1484 * Must be called with hash bucket lock held and mm->sem held for non
1485 * private futexes.
1487 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1488 struct task_struct *newowner, int fshared)
1490 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1491 struct futex_pi_state *pi_state = q->pi_state;
1492 struct task_struct *oldowner = pi_state->owner;
1493 u32 uval, curval, newval;
1494 int ret;
1496 /* Owner died? */
1497 if (!pi_state->owner)
1498 newtid |= FUTEX_OWNER_DIED;
1501 * We are here either because we stole the rtmutex from the
1502 * pending owner or we are the pending owner which failed to
1503 * get the rtmutex. We have to replace the pending owner TID
1504 * in the user space variable. This must be atomic as we have
1505 * to preserve the owner died bit here.
1507 * Note: We write the user space value _before_ changing the pi_state
1508 * because we can fault here. Imagine swapped out pages or a fork
1509 * that marked all the anonymous memory readonly for cow.
1511 * Modifying pi_state _before_ the user space value would
1512 * leave the pi_state in an inconsistent state when we fault
1513 * here, because we need to drop the hash bucket lock to
1514 * handle the fault. This might be observed in the PID check
1515 * in lookup_pi_state.
1517 retry:
1518 if (get_futex_value_locked(&uval, uaddr))
1519 goto handle_fault;
1521 while (1) {
1522 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1524 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1526 if (curval == -EFAULT)
1527 goto handle_fault;
1528 if (curval == uval)
1529 break;
1530 uval = curval;
1534 * We fixed up user space. Now we need to fix the pi_state
1535 * itself.
1537 if (pi_state->owner != NULL) {
1538 spin_lock_irq(&pi_state->owner->pi_lock);
1539 WARN_ON(list_empty(&pi_state->list));
1540 list_del_init(&pi_state->list);
1541 spin_unlock_irq(&pi_state->owner->pi_lock);
1544 pi_state->owner = newowner;
1546 spin_lock_irq(&newowner->pi_lock);
1547 WARN_ON(!list_empty(&pi_state->list));
1548 list_add(&pi_state->list, &newowner->pi_state_list);
1549 spin_unlock_irq(&newowner->pi_lock);
1550 return 0;
1553 * To handle the page fault we need to drop the hash bucket
1554 * lock here. That gives the other task (either the pending
1555 * owner itself or the task which stole the rtmutex) the
1556 * chance to try the fixup of the pi_state. So once we are
1557 * back from handling the fault we need to check the pi_state
1558 * after reacquiring the hash bucket lock and before trying to
1559 * do another fixup. When the fixup has been done already we
1560 * simply return.
1562 handle_fault:
1563 spin_unlock(q->lock_ptr);
1565 ret = fault_in_user_writeable(uaddr);
1567 spin_lock(q->lock_ptr);
1570 * Check if someone else fixed it for us:
1572 if (pi_state->owner != oldowner)
1573 return 0;
1575 if (ret)
1576 return ret;
1578 goto retry;
1582 * In case we must use restart_block to restart a futex_wait,
1583 * we encode in the 'flags' shared capability
1585 #define FLAGS_SHARED 0x01
1586 #define FLAGS_CLOCKRT 0x02
1587 #define FLAGS_HAS_TIMEOUT 0x04
1589 static long futex_wait_restart(struct restart_block *restart);
1592 * fixup_owner() - Post lock pi_state and corner case management
1593 * @uaddr: user address of the futex
1594 * @fshared: whether the futex is shared (1) or not (0)
1595 * @q: futex_q (contains pi_state and access to the rt_mutex)
1596 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1598 * After attempting to lock an rt_mutex, this function is called to cleanup
1599 * the pi_state owner as well as handle race conditions that may allow us to
1600 * acquire the lock. Must be called with the hb lock held.
1602 * Returns:
1603 * 1 - success, lock taken
1604 * 0 - success, lock not taken
1605 * <0 - on error (-EFAULT)
1607 static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1608 int locked)
1610 struct task_struct *owner;
1611 int ret = 0;
1613 if (locked) {
1615 * Got the lock. We might not be the anticipated owner if we
1616 * did a lock-steal - fix up the PI-state in that case:
1618 if (q->pi_state->owner != current)
1619 ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1620 goto out;
1624 * Catch the rare case, where the lock was released when we were on the
1625 * way back before we locked the hash bucket.
1627 if (q->pi_state->owner == current) {
1629 * Try to get the rt_mutex now. This might fail as some other
1630 * task acquired the rt_mutex after we removed ourself from the
1631 * rt_mutex waiters list.
1633 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1634 locked = 1;
1635 goto out;
1639 * pi_state is incorrect, some other task did a lock steal and
1640 * we returned due to timeout or signal without taking the
1641 * rt_mutex. Too late. We can access the rt_mutex_owner without
1642 * locking, as the other task is now blocked on the hash bucket
1643 * lock. Fix the state up.
1645 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1646 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1647 goto out;
1651 * Paranoia check. If we did not take the lock, then we should not be
1652 * the owner, nor the pending owner, of the rt_mutex.
1654 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1655 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1656 "pi-state %p\n", ret,
1657 q->pi_state->pi_mutex.owner,
1658 q->pi_state->owner);
1660 out:
1661 return ret ? ret : locked;
1665 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1666 * @hb: the futex hash bucket, must be locked by the caller
1667 * @q: the futex_q to queue up on
1668 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1670 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1671 struct hrtimer_sleeper *timeout)
1673 set_current_state(TASK_INTERRUPTIBLE);
1674 queue_me(q, hb);
1676 /* Arm the timer */
1677 if (timeout) {
1678 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1679 if (!hrtimer_active(&timeout->timer))
1680 timeout->task = NULL;
1684 * If we have been removed from the hash list, then another task
1685 * has tried to wake us, and we can skip the call to schedule().
1687 if (likely(!plist_node_empty(&q->list))) {
1689 * If the timer has already expired, current will already be
1690 * flagged for rescheduling. Only call schedule if there
1691 * is no timeout, or if it has yet to expire.
1693 if (!timeout || timeout->task)
1694 schedule();
1696 __set_current_state(TASK_RUNNING);
1700 * futex_wait_setup() - Prepare to wait on a futex
1701 * @uaddr: the futex userspace address
1702 * @val: the expected value
1703 * @fshared: whether the futex is shared (1) or not (0)
1704 * @q: the associated futex_q
1705 * @hb: storage for hash_bucket pointer to be returned to caller
1707 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1708 * compare it with the expected value. Handle atomic faults internally.
1709 * Return with the hb lock held and a q.key reference on success, and unlocked
1710 * with no q.key reference on failure.
1712 * Returns:
1713 * 0 - uaddr contains val and hb has been locked
1714 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1716 static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1717 struct futex_q *q, struct futex_hash_bucket **hb)
1719 u32 uval;
1720 int ret;
1723 * Access the page AFTER the hash-bucket is locked.
1724 * Order is important:
1726 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1727 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1729 * The basic logical guarantee of a futex is that it blocks ONLY
1730 * if cond(var) is known to be true at the time of blocking, for
1731 * any cond. If we queued after testing *uaddr, that would open
1732 * a race condition where we could block indefinitely with
1733 * cond(var) false, which would violate the guarantee.
1735 * A consequence is that futex_wait() can return zero and absorb
1736 * a wakeup when *uaddr != val on entry to the syscall. This is
1737 * rare, but normal.
1739 retry:
1740 q->key = FUTEX_KEY_INIT;
1741 ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
1742 if (unlikely(ret != 0))
1743 return ret;
1745 retry_private:
1746 *hb = queue_lock(q);
1748 ret = get_futex_value_locked(&uval, uaddr);
1750 if (ret) {
1751 queue_unlock(q, *hb);
1753 ret = get_user(uval, uaddr);
1754 if (ret)
1755 goto out;
1757 if (!fshared)
1758 goto retry_private;
1760 put_futex_key(fshared, &q->key);
1761 goto retry;
1764 if (uval != val) {
1765 queue_unlock(q, *hb);
1766 ret = -EWOULDBLOCK;
1769 out:
1770 if (ret)
1771 put_futex_key(fshared, &q->key);
1772 return ret;
1775 static int futex_wait(u32 __user *uaddr, int fshared,
1776 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1778 struct hrtimer_sleeper timeout, *to = NULL;
1779 struct restart_block *restart;
1780 struct futex_hash_bucket *hb;
1781 struct futex_q q;
1782 int ret;
1784 if (!bitset)
1785 return -EINVAL;
1787 q.pi_state = NULL;
1788 q.bitset = bitset;
1789 q.rt_waiter = NULL;
1790 q.requeue_pi_key = NULL;
1792 if (abs_time) {
1793 to = &timeout;
1795 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1796 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1797 hrtimer_init_sleeper(to, current);
1798 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1799 current->timer_slack_ns);
1802 retry:
1803 /* Prepare to wait on uaddr. */
1804 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1805 if (ret)
1806 goto out;
1808 /* queue_me and wait for wakeup, timeout, or a signal. */
1809 futex_wait_queue_me(hb, &q, to);
1811 /* If we were woken (and unqueued), we succeeded, whatever. */
1812 ret = 0;
1813 if (!unqueue_me(&q))
1814 goto out_put_key;
1815 ret = -ETIMEDOUT;
1816 if (to && !to->task)
1817 goto out_put_key;
1820 * We expect signal_pending(current), but we might be the
1821 * victim of a spurious wakeup as well.
1823 if (!signal_pending(current)) {
1824 put_futex_key(fshared, &q.key);
1825 goto retry;
1828 ret = -ERESTARTSYS;
1829 if (!abs_time)
1830 goto out_put_key;
1832 restart = &current_thread_info()->restart_block;
1833 restart->fn = futex_wait_restart;
1834 restart->futex.uaddr = (u32 *)uaddr;
1835 restart->futex.val = val;
1836 restart->futex.time = abs_time->tv64;
1837 restart->futex.bitset = bitset;
1838 restart->futex.flags = FLAGS_HAS_TIMEOUT;
1840 if (fshared)
1841 restart->futex.flags |= FLAGS_SHARED;
1842 if (clockrt)
1843 restart->futex.flags |= FLAGS_CLOCKRT;
1845 ret = -ERESTART_RESTARTBLOCK;
1847 out_put_key:
1848 put_futex_key(fshared, &q.key);
1849 out:
1850 if (to) {
1851 hrtimer_cancel(&to->timer);
1852 destroy_hrtimer_on_stack(&to->timer);
1854 return ret;
1858 static long futex_wait_restart(struct restart_block *restart)
1860 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1861 int fshared = 0;
1862 ktime_t t, *tp = NULL;
1864 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1865 t.tv64 = restart->futex.time;
1866 tp = &t;
1868 restart->fn = do_no_restart_syscall;
1869 if (restart->futex.flags & FLAGS_SHARED)
1870 fshared = 1;
1871 return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1872 restart->futex.bitset,
1873 restart->futex.flags & FLAGS_CLOCKRT);
1878 * Userspace tried a 0 -> TID atomic transition of the futex value
1879 * and failed. The kernel side here does the whole locking operation:
1880 * if there are waiters then it will block, it does PI, etc. (Due to
1881 * races the kernel might see a 0 value of the futex too.)
1883 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1884 int detect, ktime_t *time, int trylock)
1886 struct hrtimer_sleeper timeout, *to = NULL;
1887 struct futex_hash_bucket *hb;
1888 struct futex_q q;
1889 int res, ret;
1891 if (refill_pi_state_cache())
1892 return -ENOMEM;
1894 if (time) {
1895 to = &timeout;
1896 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1897 HRTIMER_MODE_ABS);
1898 hrtimer_init_sleeper(to, current);
1899 hrtimer_set_expires(&to->timer, *time);
1902 q.pi_state = NULL;
1903 q.rt_waiter = NULL;
1904 q.requeue_pi_key = NULL;
1905 retry:
1906 q.key = FUTEX_KEY_INIT;
1907 ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
1908 if (unlikely(ret != 0))
1909 goto out;
1911 retry_private:
1912 hb = queue_lock(&q);
1914 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1915 if (unlikely(ret)) {
1916 switch (ret) {
1917 case 1:
1918 /* We got the lock. */
1919 ret = 0;
1920 goto out_unlock_put_key;
1921 case -EFAULT:
1922 goto uaddr_faulted;
1923 case -EAGAIN:
1925 * Task is exiting and we just wait for the
1926 * exit to complete.
1928 queue_unlock(&q, hb);
1929 put_futex_key(fshared, &q.key);
1930 cond_resched();
1931 goto retry;
1932 default:
1933 goto out_unlock_put_key;
1938 * Only actually queue now that the atomic ops are done:
1940 queue_me(&q, hb);
1942 WARN_ON(!q.pi_state);
1944 * Block on the PI mutex:
1946 if (!trylock)
1947 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1948 else {
1949 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1950 /* Fixup the trylock return value: */
1951 ret = ret ? 0 : -EWOULDBLOCK;
1954 spin_lock(q.lock_ptr);
1956 * Fixup the pi_state owner and possibly acquire the lock if we
1957 * haven't already.
1959 res = fixup_owner(uaddr, fshared, &q, !ret);
1961 * If fixup_owner() returned an error, proprogate that. If it acquired
1962 * the lock, clear our -ETIMEDOUT or -EINTR.
1964 if (res)
1965 ret = (res < 0) ? res : 0;
1968 * If fixup_owner() faulted and was unable to handle the fault, unlock
1969 * it and return the fault to userspace.
1971 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1972 rt_mutex_unlock(&q.pi_state->pi_mutex);
1974 /* Unqueue and drop the lock */
1975 unqueue_me_pi(&q);
1977 goto out_put_key;
1979 out_unlock_put_key:
1980 queue_unlock(&q, hb);
1982 out_put_key:
1983 put_futex_key(fshared, &q.key);
1984 out:
1985 if (to)
1986 destroy_hrtimer_on_stack(&to->timer);
1987 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1989 uaddr_faulted:
1990 queue_unlock(&q, hb);
1992 ret = fault_in_user_writeable(uaddr);
1993 if (ret)
1994 goto out_put_key;
1996 if (!fshared)
1997 goto retry_private;
1999 put_futex_key(fshared, &q.key);
2000 goto retry;
2004 * Userspace attempted a TID -> 0 atomic transition, and failed.
2005 * This is the in-kernel slowpath: we look up the PI state (if any),
2006 * and do the rt-mutex unlock.
2008 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
2010 struct futex_hash_bucket *hb;
2011 struct futex_q *this, *next;
2012 u32 uval;
2013 struct plist_head *head;
2014 union futex_key key = FUTEX_KEY_INIT;
2015 int ret;
2017 retry:
2018 if (get_user(uval, uaddr))
2019 return -EFAULT;
2021 * We release only a lock we actually own:
2023 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2024 return -EPERM;
2026 ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
2027 if (unlikely(ret != 0))
2028 goto out;
2030 hb = hash_futex(&key);
2031 spin_lock(&hb->lock);
2034 * To avoid races, try to do the TID -> 0 atomic transition
2035 * again. If it succeeds then we can return without waking
2036 * anyone else up:
2038 if (!(uval & FUTEX_OWNER_DIED))
2039 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
2042 if (unlikely(uval == -EFAULT))
2043 goto pi_faulted;
2045 * Rare case: we managed to release the lock atomically,
2046 * no need to wake anyone else up:
2048 if (unlikely(uval == task_pid_vnr(current)))
2049 goto out_unlock;
2052 * Ok, other tasks may need to be woken up - check waiters
2053 * and do the wakeup if necessary:
2055 head = &hb->chain;
2057 plist_for_each_entry_safe(this, next, head, list) {
2058 if (!match_futex (&this->key, &key))
2059 continue;
2060 ret = wake_futex_pi(uaddr, uval, this);
2062 * The atomic access to the futex value
2063 * generated a pagefault, so retry the
2064 * user-access and the wakeup:
2066 if (ret == -EFAULT)
2067 goto pi_faulted;
2068 goto out_unlock;
2071 * No waiters - kernel unlocks the futex:
2073 if (!(uval & FUTEX_OWNER_DIED)) {
2074 ret = unlock_futex_pi(uaddr, uval);
2075 if (ret == -EFAULT)
2076 goto pi_faulted;
2079 out_unlock:
2080 spin_unlock(&hb->lock);
2081 put_futex_key(fshared, &key);
2083 out:
2084 return ret;
2086 pi_faulted:
2087 spin_unlock(&hb->lock);
2088 put_futex_key(fshared, &key);
2090 ret = fault_in_user_writeable(uaddr);
2091 if (!ret)
2092 goto retry;
2094 return ret;
2098 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2099 * @hb: the hash_bucket futex_q was original enqueued on
2100 * @q: the futex_q woken while waiting to be requeued
2101 * @key2: the futex_key of the requeue target futex
2102 * @timeout: the timeout associated with the wait (NULL if none)
2104 * Detect if the task was woken on the initial futex as opposed to the requeue
2105 * target futex. If so, determine if it was a timeout or a signal that caused
2106 * the wakeup and return the appropriate error code to the caller. Must be
2107 * called with the hb lock held.
2109 * Returns
2110 * 0 - no early wakeup detected
2111 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2113 static inline
2114 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2115 struct futex_q *q, union futex_key *key2,
2116 struct hrtimer_sleeper *timeout)
2118 int ret = 0;
2121 * With the hb lock held, we avoid races while we process the wakeup.
2122 * We only need to hold hb (and not hb2) to ensure atomicity as the
2123 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2124 * It can't be requeued from uaddr2 to something else since we don't
2125 * support a PI aware source futex for requeue.
2127 if (!match_futex(&q->key, key2)) {
2128 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2130 * We were woken prior to requeue by a timeout or a signal.
2131 * Unqueue the futex_q and determine which it was.
2133 plist_del(&q->list, &q->list.plist);
2135 /* Handle spurious wakeups gracefully */
2136 ret = -EWOULDBLOCK;
2137 if (timeout && !timeout->task)
2138 ret = -ETIMEDOUT;
2139 else if (signal_pending(current))
2140 ret = -ERESTARTNOINTR;
2142 return ret;
2146 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2147 * @uaddr: the futex we initialyl wait on (non-pi)
2148 * @fshared: whether the futexes are shared (1) or not (0). They must be
2149 * the same type, no requeueing from private to shared, etc.
2150 * @val: the expected value of uaddr
2151 * @abs_time: absolute timeout
2152 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all.
2153 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2154 * @uaddr2: the pi futex we will take prior to returning to user-space
2156 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2157 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2158 * complete the acquisition of the rt_mutex prior to returning to userspace.
2159 * This ensures the rt_mutex maintains an owner when it has waiters; without
2160 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2161 * need to.
2163 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2164 * via the following:
2165 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2166 * 2) wakeup on uaddr2 after a requeue and subsequent unlock
2167 * 3) signal (before or after requeue)
2168 * 4) timeout (before or after requeue)
2170 * If 3, we setup a restart_block with futex_wait_requeue_pi() as the function.
2172 * If 2, we may then block on trying to take the rt_mutex and return via:
2173 * 5) successful lock
2174 * 6) signal
2175 * 7) timeout
2176 * 8) other lock acquisition failure
2178 * If 6, we setup a restart_block with futex_lock_pi() as the function.
2180 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2182 * Returns:
2183 * 0 - On success
2184 * <0 - On error
2186 static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2187 u32 val, ktime_t *abs_time, u32 bitset,
2188 int clockrt, u32 __user *uaddr2)
2190 struct hrtimer_sleeper timeout, *to = NULL;
2191 struct rt_mutex_waiter rt_waiter;
2192 struct rt_mutex *pi_mutex = NULL;
2193 struct futex_hash_bucket *hb;
2194 union futex_key key2;
2195 struct futex_q q;
2196 int res, ret;
2198 if (!bitset)
2199 return -EINVAL;
2201 if (abs_time) {
2202 to = &timeout;
2203 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2204 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2205 hrtimer_init_sleeper(to, current);
2206 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2207 current->timer_slack_ns);
2211 * The waiter is allocated on our stack, manipulated by the requeue
2212 * code while we sleep on uaddr.
2214 debug_rt_mutex_init_waiter(&rt_waiter);
2215 rt_waiter.task = NULL;
2217 key2 = FUTEX_KEY_INIT;
2218 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
2219 if (unlikely(ret != 0))
2220 goto out;
2222 q.pi_state = NULL;
2223 q.bitset = bitset;
2224 q.rt_waiter = &rt_waiter;
2225 q.requeue_pi_key = &key2;
2227 /* Prepare to wait on uaddr. */
2228 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2229 if (ret)
2230 goto out_key2;
2232 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2233 futex_wait_queue_me(hb, &q, to);
2235 spin_lock(&hb->lock);
2236 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2237 spin_unlock(&hb->lock);
2238 if (ret)
2239 goto out_put_keys;
2242 * In order for us to be here, we know our q.key == key2, and since
2243 * we took the hb->lock above, we also know that futex_requeue() has
2244 * completed and we no longer have to concern ourselves with a wakeup
2245 * race with the atomic proxy lock acquition by the requeue code.
2248 /* Check if the requeue code acquired the second futex for us. */
2249 if (!q.rt_waiter) {
2251 * Got the lock. We might not be the anticipated owner if we
2252 * did a lock-steal - fix up the PI-state in that case.
2254 if (q.pi_state && (q.pi_state->owner != current)) {
2255 spin_lock(q.lock_ptr);
2256 ret = fixup_pi_state_owner(uaddr2, &q, current,
2257 fshared);
2258 spin_unlock(q.lock_ptr);
2260 } else {
2262 * We have been woken up by futex_unlock_pi(), a timeout, or a
2263 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2264 * the pi_state.
2266 WARN_ON(!&q.pi_state);
2267 pi_mutex = &q.pi_state->pi_mutex;
2268 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2269 debug_rt_mutex_free_waiter(&rt_waiter);
2271 spin_lock(q.lock_ptr);
2273 * Fixup the pi_state owner and possibly acquire the lock if we
2274 * haven't already.
2276 res = fixup_owner(uaddr2, fshared, &q, !ret);
2278 * If fixup_owner() returned an error, proprogate that. If it
2279 * acquired the lock, clear our -ETIMEDOUT or -EINTR.
2281 if (res)
2282 ret = (res < 0) ? res : 0;
2284 /* Unqueue and drop the lock. */
2285 unqueue_me_pi(&q);
2289 * If fixup_pi_state_owner() faulted and was unable to handle the
2290 * fault, unlock the rt_mutex and return the fault to userspace.
2292 if (ret == -EFAULT) {
2293 if (rt_mutex_owner(pi_mutex) == current)
2294 rt_mutex_unlock(pi_mutex);
2295 } else if (ret == -EINTR) {
2297 * We've already been requeued, but we have no way to
2298 * restart by calling futex_lock_pi() directly. We
2299 * could restart the syscall, but that will look at
2300 * the user space value and return right away. So we
2301 * drop back with EWOULDBLOCK to tell user space that
2302 * "val" has been changed. That's the same what the
2303 * restart of the syscall would do in
2304 * futex_wait_setup().
2306 ret = -EWOULDBLOCK;
2309 out_put_keys:
2310 put_futex_key(fshared, &q.key);
2311 out_key2:
2312 put_futex_key(fshared, &key2);
2314 out:
2315 if (to) {
2316 hrtimer_cancel(&to->timer);
2317 destroy_hrtimer_on_stack(&to->timer);
2319 return ret;
2323 * Support for robust futexes: the kernel cleans up held futexes at
2324 * thread exit time.
2326 * Implementation: user-space maintains a per-thread list of locks it
2327 * is holding. Upon do_exit(), the kernel carefully walks this list,
2328 * and marks all locks that are owned by this thread with the
2329 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2330 * always manipulated with the lock held, so the list is private and
2331 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2332 * field, to allow the kernel to clean up if the thread dies after
2333 * acquiring the lock, but just before it could have added itself to
2334 * the list. There can only be one such pending lock.
2338 * sys_set_robust_list - set the robust-futex list head of a task
2339 * @head: pointer to the list-head
2340 * @len: length of the list-head, as userspace expects
2342 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2343 size_t, len)
2345 if (!futex_cmpxchg_enabled)
2346 return -ENOSYS;
2348 * The kernel knows only one size for now:
2350 if (unlikely(len != sizeof(*head)))
2351 return -EINVAL;
2353 current->robust_list = head;
2355 return 0;
2359 * sys_get_robust_list - get the robust-futex list head of a task
2360 * @pid: pid of the process [zero for current task]
2361 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2362 * @len_ptr: pointer to a length field, the kernel fills in the header size
2364 SYSCALL_DEFINE3(get_robust_list, int, pid,
2365 struct robust_list_head __user * __user *, head_ptr,
2366 size_t __user *, len_ptr)
2368 struct robust_list_head __user *head;
2369 unsigned long ret;
2370 const struct cred *cred = current_cred(), *pcred;
2372 if (!futex_cmpxchg_enabled)
2373 return -ENOSYS;
2375 if (!pid)
2376 head = current->robust_list;
2377 else {
2378 struct task_struct *p;
2380 ret = -ESRCH;
2381 rcu_read_lock();
2382 p = find_task_by_vpid(pid);
2383 if (!p)
2384 goto err_unlock;
2385 ret = -EPERM;
2386 pcred = __task_cred(p);
2387 if (cred->euid != pcred->euid &&
2388 cred->euid != pcred->uid &&
2389 !capable(CAP_SYS_PTRACE))
2390 goto err_unlock;
2391 head = p->robust_list;
2392 rcu_read_unlock();
2395 if (put_user(sizeof(*head), len_ptr))
2396 return -EFAULT;
2397 return put_user(head, head_ptr);
2399 err_unlock:
2400 rcu_read_unlock();
2402 return ret;
2406 * Process a futex-list entry, check whether it's owned by the
2407 * dying task, and do notification if so:
2409 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2411 u32 uval, nval, mval;
2413 retry:
2414 if (get_user(uval, uaddr))
2415 return -1;
2417 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2419 * Ok, this dying thread is truly holding a futex
2420 * of interest. Set the OWNER_DIED bit atomically
2421 * via cmpxchg, and if the value had FUTEX_WAITERS
2422 * set, wake up a waiter (if any). (We have to do a
2423 * futex_wake() even if OWNER_DIED is already set -
2424 * to handle the rare but possible case of recursive
2425 * thread-death.) The rest of the cleanup is done in
2426 * userspace.
2428 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2429 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2431 if (nval == -EFAULT)
2432 return -1;
2434 if (nval != uval)
2435 goto retry;
2438 * Wake robust non-PI futexes here. The wakeup of
2439 * PI futexes happens in exit_pi_state():
2441 if (!pi && (uval & FUTEX_WAITERS))
2442 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2444 return 0;
2448 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2450 static inline int fetch_robust_entry(struct robust_list __user **entry,
2451 struct robust_list __user * __user *head,
2452 int *pi)
2454 unsigned long uentry;
2456 if (get_user(uentry, (unsigned long __user *)head))
2457 return -EFAULT;
2459 *entry = (void __user *)(uentry & ~1UL);
2460 *pi = uentry & 1;
2462 return 0;
2466 * Walk curr->robust_list (very carefully, it's a userspace list!)
2467 * and mark any locks found there dead, and notify any waiters.
2469 * We silently return on any sign of list-walking problem.
2471 void exit_robust_list(struct task_struct *curr)
2473 struct robust_list_head __user *head = curr->robust_list;
2474 struct robust_list __user *entry, *next_entry, *pending;
2475 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2476 unsigned long futex_offset;
2477 int rc;
2479 if (!futex_cmpxchg_enabled)
2480 return;
2483 * Fetch the list head (which was registered earlier, via
2484 * sys_set_robust_list()):
2486 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2487 return;
2489 * Fetch the relative futex offset:
2491 if (get_user(futex_offset, &head->futex_offset))
2492 return;
2494 * Fetch any possibly pending lock-add first, and handle it
2495 * if it exists:
2497 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2498 return;
2500 next_entry = NULL; /* avoid warning with gcc */
2501 while (entry != &head->list) {
2503 * Fetch the next entry in the list before calling
2504 * handle_futex_death:
2506 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2508 * A pending lock might already be on the list, so
2509 * don't process it twice:
2511 if (entry != pending)
2512 if (handle_futex_death((void __user *)entry + futex_offset,
2513 curr, pi))
2514 return;
2515 if (rc)
2516 return;
2517 entry = next_entry;
2518 pi = next_pi;
2520 * Avoid excessively long or circular lists:
2522 if (!--limit)
2523 break;
2525 cond_resched();
2528 if (pending)
2529 handle_futex_death((void __user *)pending + futex_offset,
2530 curr, pip);
2533 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2534 u32 __user *uaddr2, u32 val2, u32 val3)
2536 int clockrt, ret = -ENOSYS;
2537 int cmd = op & FUTEX_CMD_MASK;
2538 int fshared = 0;
2540 if (!(op & FUTEX_PRIVATE_FLAG))
2541 fshared = 1;
2543 clockrt = op & FUTEX_CLOCK_REALTIME;
2544 if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2545 return -ENOSYS;
2547 switch (cmd) {
2548 case FUTEX_WAIT:
2549 val3 = FUTEX_BITSET_MATCH_ANY;
2550 case FUTEX_WAIT_BITSET:
2551 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
2552 break;
2553 case FUTEX_WAKE:
2554 val3 = FUTEX_BITSET_MATCH_ANY;
2555 case FUTEX_WAKE_BITSET:
2556 ret = futex_wake(uaddr, fshared, val, val3);
2557 break;
2558 case FUTEX_REQUEUE:
2559 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
2560 break;
2561 case FUTEX_CMP_REQUEUE:
2562 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2564 break;
2565 case FUTEX_WAKE_OP:
2566 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2567 break;
2568 case FUTEX_LOCK_PI:
2569 if (futex_cmpxchg_enabled)
2570 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2571 break;
2572 case FUTEX_UNLOCK_PI:
2573 if (futex_cmpxchg_enabled)
2574 ret = futex_unlock_pi(uaddr, fshared);
2575 break;
2576 case FUTEX_TRYLOCK_PI:
2577 if (futex_cmpxchg_enabled)
2578 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2579 break;
2580 case FUTEX_WAIT_REQUEUE_PI:
2581 val3 = FUTEX_BITSET_MATCH_ANY;
2582 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2583 clockrt, uaddr2);
2584 break;
2585 case FUTEX_CMP_REQUEUE_PI:
2586 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2588 break;
2589 default:
2590 ret = -ENOSYS;
2592 return ret;
2596 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2597 struct timespec __user *, utime, u32 __user *, uaddr2,
2598 u32, val3)
2600 struct timespec ts;
2601 ktime_t t, *tp = NULL;
2602 u32 val2 = 0;
2603 int cmd = op & FUTEX_CMD_MASK;
2605 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2606 cmd == FUTEX_WAIT_BITSET ||
2607 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2608 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2609 return -EFAULT;
2610 if (!timespec_valid(&ts))
2611 return -EINVAL;
2613 t = timespec_to_ktime(ts);
2614 if (cmd == FUTEX_WAIT)
2615 t = ktime_add_safe(ktime_get(), t);
2616 tp = &t;
2619 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2620 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2622 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2623 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2624 val2 = (u32) (unsigned long) utime;
2626 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2629 static int __init futex_init(void)
2631 u32 curval;
2632 int i;
2635 * This will fail and we want it. Some arch implementations do
2636 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2637 * functionality. We want to know that before we call in any
2638 * of the complex code paths. Also we want to prevent
2639 * registration of robust lists in that case. NULL is
2640 * guaranteed to fault and we get -EFAULT on functional
2641 * implementation, the non functional ones will return
2642 * -ENOSYS.
2644 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2645 if (curval == -EFAULT)
2646 futex_cmpxchg_enabled = 1;
2648 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2649 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2650 spin_lock_init(&futex_queues[i].lock);
2653 return 0;
2655 __initcall(futex_init);