V4L/DVB: af9015: add new USB ID for KWorld PlusTV Dual DVB-T Stick (DVB-T 399U)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / namei.c
blobb224905ff98eacc797ee0c651c1fcb813b960620
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <asm/uaccess.h>
38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existant name.
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
88 * [10-Sep-98 Alan Modra] Another symlink change.
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
111 static int __link_path_walk(const char *name, struct nameidata *nd);
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
120 static int do_getname(const char __user *filename, char *page)
122 int retval;
123 unsigned long len = PATH_MAX;
125 if (!segment_eq(get_fs(), KERNEL_DS)) {
126 if ((unsigned long) filename >= TASK_SIZE)
127 return -EFAULT;
128 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
129 len = TASK_SIZE - (unsigned long) filename;
132 retval = strncpy_from_user(page, filename, len);
133 if (retval > 0) {
134 if (retval < len)
135 return 0;
136 return -ENAMETOOLONG;
137 } else if (!retval)
138 retval = -ENOENT;
139 return retval;
142 char * getname(const char __user * filename)
144 char *tmp, *result;
146 result = ERR_PTR(-ENOMEM);
147 tmp = __getname();
148 if (tmp) {
149 int retval = do_getname(filename, tmp);
151 result = tmp;
152 if (retval < 0) {
153 __putname(tmp);
154 result = ERR_PTR(retval);
157 audit_getname(result);
158 return result;
161 #ifdef CONFIG_AUDITSYSCALL
162 void putname(const char *name)
164 if (unlikely(!audit_dummy_context()))
165 audit_putname(name);
166 else
167 __putname(name);
169 EXPORT_SYMBOL(putname);
170 #endif
174 * generic_permission - check for access rights on a Posix-like filesystem
175 * @inode: inode to check access rights for
176 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
177 * @check_acl: optional callback to check for Posix ACLs
179 * Used to check for read/write/execute permissions on a file.
180 * We use "fsuid" for this, letting us set arbitrary permissions
181 * for filesystem access without changing the "normal" uids which
182 * are used for other things..
184 int generic_permission(struct inode *inode, int mask,
185 int (*check_acl)(struct inode *inode, int mask))
187 umode_t mode = inode->i_mode;
189 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
191 if (current_fsuid() == inode->i_uid)
192 mode >>= 6;
193 else {
194 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
195 int error = check_acl(inode, mask);
196 if (error == -EACCES)
197 goto check_capabilities;
198 else if (error != -EAGAIN)
199 return error;
202 if (in_group_p(inode->i_gid))
203 mode >>= 3;
207 * If the DACs are ok we don't need any capability check.
209 if ((mask & ~mode) == 0)
210 return 0;
212 check_capabilities:
214 * Read/write DACs are always overridable.
215 * Executable DACs are overridable if at least one exec bit is set.
217 if (!(mask & MAY_EXEC) || execute_ok(inode))
218 if (capable(CAP_DAC_OVERRIDE))
219 return 0;
222 * Searching includes executable on directories, else just read.
224 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
225 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
226 if (capable(CAP_DAC_READ_SEARCH))
227 return 0;
229 return -EACCES;
233 * inode_permission - check for access rights to a given inode
234 * @inode: inode to check permission on
235 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
237 * Used to check for read/write/execute permissions on an inode.
238 * We use "fsuid" for this, letting us set arbitrary permissions
239 * for filesystem access without changing the "normal" uids which
240 * are used for other things.
242 int inode_permission(struct inode *inode, int mask)
244 int retval;
246 if (mask & MAY_WRITE) {
247 umode_t mode = inode->i_mode;
250 * Nobody gets write access to a read-only fs.
252 if (IS_RDONLY(inode) &&
253 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
254 return -EROFS;
257 * Nobody gets write access to an immutable file.
259 if (IS_IMMUTABLE(inode))
260 return -EACCES;
263 if (inode->i_op->permission)
264 retval = inode->i_op->permission(inode, mask);
265 else
266 retval = generic_permission(inode, mask, NULL);
268 if (retval)
269 return retval;
271 retval = devcgroup_inode_permission(inode, mask);
272 if (retval)
273 return retval;
275 return security_inode_permission(inode,
276 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
280 * file_permission - check for additional access rights to a given file
281 * @file: file to check access rights for
282 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
284 * Used to check for read/write/execute permissions on an already opened
285 * file.
287 * Note:
288 * Do not use this function in new code. All access checks should
289 * be done using inode_permission().
291 int file_permission(struct file *file, int mask)
293 return inode_permission(file->f_path.dentry->d_inode, mask);
297 * get_write_access() gets write permission for a file.
298 * put_write_access() releases this write permission.
299 * This is used for regular files.
300 * We cannot support write (and maybe mmap read-write shared) accesses and
301 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
302 * can have the following values:
303 * 0: no writers, no VM_DENYWRITE mappings
304 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
305 * > 0: (i_writecount) users are writing to the file.
307 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
308 * except for the cases where we don't hold i_writecount yet. Then we need to
309 * use {get,deny}_write_access() - these functions check the sign and refuse
310 * to do the change if sign is wrong. Exclusion between them is provided by
311 * the inode->i_lock spinlock.
314 int get_write_access(struct inode * inode)
316 spin_lock(&inode->i_lock);
317 if (atomic_read(&inode->i_writecount) < 0) {
318 spin_unlock(&inode->i_lock);
319 return -ETXTBSY;
321 atomic_inc(&inode->i_writecount);
322 spin_unlock(&inode->i_lock);
324 return 0;
327 int deny_write_access(struct file * file)
329 struct inode *inode = file->f_path.dentry->d_inode;
331 spin_lock(&inode->i_lock);
332 if (atomic_read(&inode->i_writecount) > 0) {
333 spin_unlock(&inode->i_lock);
334 return -ETXTBSY;
336 atomic_dec(&inode->i_writecount);
337 spin_unlock(&inode->i_lock);
339 return 0;
343 * path_get - get a reference to a path
344 * @path: path to get the reference to
346 * Given a path increment the reference count to the dentry and the vfsmount.
348 void path_get(struct path *path)
350 mntget(path->mnt);
351 dget(path->dentry);
353 EXPORT_SYMBOL(path_get);
356 * path_put - put a reference to a path
357 * @path: path to put the reference to
359 * Given a path decrement the reference count to the dentry and the vfsmount.
361 void path_put(struct path *path)
363 dput(path->dentry);
364 mntput(path->mnt);
366 EXPORT_SYMBOL(path_put);
369 * release_open_intent - free up open intent resources
370 * @nd: pointer to nameidata
372 void release_open_intent(struct nameidata *nd)
374 if (nd->intent.open.file->f_path.dentry == NULL)
375 put_filp(nd->intent.open.file);
376 else
377 fput(nd->intent.open.file);
380 static inline struct dentry *
381 do_revalidate(struct dentry *dentry, struct nameidata *nd)
383 int status = dentry->d_op->d_revalidate(dentry, nd);
384 if (unlikely(status <= 0)) {
386 * The dentry failed validation.
387 * If d_revalidate returned 0 attempt to invalidate
388 * the dentry otherwise d_revalidate is asking us
389 * to return a fail status.
391 if (!status) {
392 if (!d_invalidate(dentry)) {
393 dput(dentry);
394 dentry = NULL;
396 } else {
397 dput(dentry);
398 dentry = ERR_PTR(status);
401 return dentry;
405 * Internal lookup() using the new generic dcache.
406 * SMP-safe
408 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
410 struct dentry * dentry = __d_lookup(parent, name);
412 /* lockess __d_lookup may fail due to concurrent d_move()
413 * in some unrelated directory, so try with d_lookup
415 if (!dentry)
416 dentry = d_lookup(parent, name);
418 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
419 dentry = do_revalidate(dentry, nd);
421 return dentry;
425 * Short-cut version of permission(), for calling by
426 * path_walk(), when dcache lock is held. Combines parts
427 * of permission() and generic_permission(), and tests ONLY for
428 * MAY_EXEC permission.
430 * If appropriate, check DAC only. If not appropriate, or
431 * short-cut DAC fails, then call permission() to do more
432 * complete permission check.
434 static int exec_permission_lite(struct inode *inode)
436 umode_t mode = inode->i_mode;
438 if (inode->i_op->permission)
439 return -EAGAIN;
441 if (current_fsuid() == inode->i_uid)
442 mode >>= 6;
443 else if (in_group_p(inode->i_gid))
444 mode >>= 3;
446 if (mode & MAY_EXEC)
447 goto ok;
449 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
450 goto ok;
452 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
453 goto ok;
455 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
456 goto ok;
458 return -EACCES;
460 return security_inode_permission(inode, MAY_EXEC);
464 * This is called when everything else fails, and we actually have
465 * to go to the low-level filesystem to find out what we should do..
467 * We get the directory semaphore, and after getting that we also
468 * make sure that nobody added the entry to the dcache in the meantime..
469 * SMP-safe
471 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
473 struct dentry * result;
474 struct inode *dir = parent->d_inode;
476 mutex_lock(&dir->i_mutex);
478 * First re-do the cached lookup just in case it was created
479 * while we waited for the directory semaphore..
481 * FIXME! This could use version numbering or similar to
482 * avoid unnecessary cache lookups.
484 * The "dcache_lock" is purely to protect the RCU list walker
485 * from concurrent renames at this point (we mustn't get false
486 * negatives from the RCU list walk here, unlike the optimistic
487 * fast walk).
489 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
491 result = d_lookup(parent, name);
492 if (!result) {
493 struct dentry *dentry;
495 /* Don't create child dentry for a dead directory. */
496 result = ERR_PTR(-ENOENT);
497 if (IS_DEADDIR(dir))
498 goto out_unlock;
500 dentry = d_alloc(parent, name);
501 result = ERR_PTR(-ENOMEM);
502 if (dentry) {
503 result = dir->i_op->lookup(dir, dentry, nd);
504 if (result)
505 dput(dentry);
506 else
507 result = dentry;
509 out_unlock:
510 mutex_unlock(&dir->i_mutex);
511 return result;
515 * Uhhuh! Nasty case: the cache was re-populated while
516 * we waited on the semaphore. Need to revalidate.
518 mutex_unlock(&dir->i_mutex);
519 if (result->d_op && result->d_op->d_revalidate) {
520 result = do_revalidate(result, nd);
521 if (!result)
522 result = ERR_PTR(-ENOENT);
524 return result;
528 * Wrapper to retry pathname resolution whenever the underlying
529 * file system returns an ESTALE.
531 * Retry the whole path once, forcing real lookup requests
532 * instead of relying on the dcache.
534 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
536 struct path save = nd->path;
537 int result;
539 /* make sure the stuff we saved doesn't go away */
540 path_get(&save);
542 result = __link_path_walk(name, nd);
543 if (result == -ESTALE) {
544 /* nd->path had been dropped */
545 nd->path = save;
546 path_get(&nd->path);
547 nd->flags |= LOOKUP_REVAL;
548 result = __link_path_walk(name, nd);
551 path_put(&save);
553 return result;
556 static __always_inline void set_root(struct nameidata *nd)
558 if (!nd->root.mnt) {
559 struct fs_struct *fs = current->fs;
560 read_lock(&fs->lock);
561 nd->root = fs->root;
562 path_get(&nd->root);
563 read_unlock(&fs->lock);
567 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
569 int res = 0;
570 char *name;
571 if (IS_ERR(link))
572 goto fail;
574 if (*link == '/') {
575 set_root(nd);
576 path_put(&nd->path);
577 nd->path = nd->root;
578 path_get(&nd->root);
581 res = link_path_walk(link, nd);
582 if (nd->depth || res || nd->last_type!=LAST_NORM)
583 return res;
585 * If it is an iterative symlinks resolution in open_namei() we
586 * have to copy the last component. And all that crap because of
587 * bloody create() on broken symlinks. Furrfu...
589 name = __getname();
590 if (unlikely(!name)) {
591 path_put(&nd->path);
592 return -ENOMEM;
594 strcpy(name, nd->last.name);
595 nd->last.name = name;
596 return 0;
597 fail:
598 path_put(&nd->path);
599 return PTR_ERR(link);
602 static void path_put_conditional(struct path *path, struct nameidata *nd)
604 dput(path->dentry);
605 if (path->mnt != nd->path.mnt)
606 mntput(path->mnt);
609 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
611 dput(nd->path.dentry);
612 if (nd->path.mnt != path->mnt)
613 mntput(nd->path.mnt);
614 nd->path.mnt = path->mnt;
615 nd->path.dentry = path->dentry;
618 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
620 int error;
621 void *cookie;
622 struct dentry *dentry = path->dentry;
624 touch_atime(path->mnt, dentry);
625 nd_set_link(nd, NULL);
627 if (path->mnt != nd->path.mnt) {
628 path_to_nameidata(path, nd);
629 dget(dentry);
631 mntget(path->mnt);
632 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
633 error = PTR_ERR(cookie);
634 if (!IS_ERR(cookie)) {
635 char *s = nd_get_link(nd);
636 error = 0;
637 if (s)
638 error = __vfs_follow_link(nd, s);
639 if (dentry->d_inode->i_op->put_link)
640 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
642 path_put(path);
644 return error;
648 * This limits recursive symlink follows to 8, while
649 * limiting consecutive symlinks to 40.
651 * Without that kind of total limit, nasty chains of consecutive
652 * symlinks can cause almost arbitrarily long lookups.
654 static inline int do_follow_link(struct path *path, struct nameidata *nd)
656 int err = -ELOOP;
657 if (current->link_count >= MAX_NESTED_LINKS)
658 goto loop;
659 if (current->total_link_count >= 40)
660 goto loop;
661 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
662 cond_resched();
663 err = security_inode_follow_link(path->dentry, nd);
664 if (err)
665 goto loop;
666 current->link_count++;
667 current->total_link_count++;
668 nd->depth++;
669 err = __do_follow_link(path, nd);
670 current->link_count--;
671 nd->depth--;
672 return err;
673 loop:
674 path_put_conditional(path, nd);
675 path_put(&nd->path);
676 return err;
679 int follow_up(struct path *path)
681 struct vfsmount *parent;
682 struct dentry *mountpoint;
683 spin_lock(&vfsmount_lock);
684 parent = path->mnt->mnt_parent;
685 if (parent == path->mnt) {
686 spin_unlock(&vfsmount_lock);
687 return 0;
689 mntget(parent);
690 mountpoint = dget(path->mnt->mnt_mountpoint);
691 spin_unlock(&vfsmount_lock);
692 dput(path->dentry);
693 path->dentry = mountpoint;
694 mntput(path->mnt);
695 path->mnt = parent;
696 return 1;
699 /* no need for dcache_lock, as serialization is taken care in
700 * namespace.c
702 static int __follow_mount(struct path *path)
704 int res = 0;
705 while (d_mountpoint(path->dentry)) {
706 struct vfsmount *mounted = lookup_mnt(path);
707 if (!mounted)
708 break;
709 dput(path->dentry);
710 if (res)
711 mntput(path->mnt);
712 path->mnt = mounted;
713 path->dentry = dget(mounted->mnt_root);
714 res = 1;
716 return res;
719 static void follow_mount(struct path *path)
721 while (d_mountpoint(path->dentry)) {
722 struct vfsmount *mounted = lookup_mnt(path);
723 if (!mounted)
724 break;
725 dput(path->dentry);
726 mntput(path->mnt);
727 path->mnt = mounted;
728 path->dentry = dget(mounted->mnt_root);
732 /* no need for dcache_lock, as serialization is taken care in
733 * namespace.c
735 int follow_down(struct path *path)
737 struct vfsmount *mounted;
739 mounted = lookup_mnt(path);
740 if (mounted) {
741 dput(path->dentry);
742 mntput(path->mnt);
743 path->mnt = mounted;
744 path->dentry = dget(mounted->mnt_root);
745 return 1;
747 return 0;
750 static __always_inline void follow_dotdot(struct nameidata *nd)
752 set_root(nd);
754 while(1) {
755 struct vfsmount *parent;
756 struct dentry *old = nd->path.dentry;
758 if (nd->path.dentry == nd->root.dentry &&
759 nd->path.mnt == nd->root.mnt) {
760 break;
762 spin_lock(&dcache_lock);
763 if (nd->path.dentry != nd->path.mnt->mnt_root) {
764 nd->path.dentry = dget(nd->path.dentry->d_parent);
765 spin_unlock(&dcache_lock);
766 dput(old);
767 break;
769 spin_unlock(&dcache_lock);
770 spin_lock(&vfsmount_lock);
771 parent = nd->path.mnt->mnt_parent;
772 if (parent == nd->path.mnt) {
773 spin_unlock(&vfsmount_lock);
774 break;
776 mntget(parent);
777 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
778 spin_unlock(&vfsmount_lock);
779 dput(old);
780 mntput(nd->path.mnt);
781 nd->path.mnt = parent;
783 follow_mount(&nd->path);
787 * It's more convoluted than I'd like it to be, but... it's still fairly
788 * small and for now I'd prefer to have fast path as straight as possible.
789 * It _is_ time-critical.
791 static int do_lookup(struct nameidata *nd, struct qstr *name,
792 struct path *path)
794 struct vfsmount *mnt = nd->path.mnt;
795 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
797 if (!dentry)
798 goto need_lookup;
799 if (dentry->d_op && dentry->d_op->d_revalidate)
800 goto need_revalidate;
801 done:
802 path->mnt = mnt;
803 path->dentry = dentry;
804 __follow_mount(path);
805 return 0;
807 need_lookup:
808 dentry = real_lookup(nd->path.dentry, name, nd);
809 if (IS_ERR(dentry))
810 goto fail;
811 goto done;
813 need_revalidate:
814 dentry = do_revalidate(dentry, nd);
815 if (!dentry)
816 goto need_lookup;
817 if (IS_ERR(dentry))
818 goto fail;
819 goto done;
821 fail:
822 return PTR_ERR(dentry);
826 * Name resolution.
827 * This is the basic name resolution function, turning a pathname into
828 * the final dentry. We expect 'base' to be positive and a directory.
830 * Returns 0 and nd will have valid dentry and mnt on success.
831 * Returns error and drops reference to input namei data on failure.
833 static int __link_path_walk(const char *name, struct nameidata *nd)
835 struct path next;
836 struct inode *inode;
837 int err;
838 unsigned int lookup_flags = nd->flags;
840 while (*name=='/')
841 name++;
842 if (!*name)
843 goto return_reval;
845 inode = nd->path.dentry->d_inode;
846 if (nd->depth)
847 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
849 /* At this point we know we have a real path component. */
850 for(;;) {
851 unsigned long hash;
852 struct qstr this;
853 unsigned int c;
855 nd->flags |= LOOKUP_CONTINUE;
856 err = exec_permission_lite(inode);
857 if (err == -EAGAIN)
858 err = inode_permission(nd->path.dentry->d_inode,
859 MAY_EXEC);
860 if (!err)
861 err = ima_path_check(&nd->path, MAY_EXEC,
862 IMA_COUNT_UPDATE);
863 if (err)
864 break;
866 this.name = name;
867 c = *(const unsigned char *)name;
869 hash = init_name_hash();
870 do {
871 name++;
872 hash = partial_name_hash(c, hash);
873 c = *(const unsigned char *)name;
874 } while (c && (c != '/'));
875 this.len = name - (const char *) this.name;
876 this.hash = end_name_hash(hash);
878 /* remove trailing slashes? */
879 if (!c)
880 goto last_component;
881 while (*++name == '/');
882 if (!*name)
883 goto last_with_slashes;
886 * "." and ".." are special - ".." especially so because it has
887 * to be able to know about the current root directory and
888 * parent relationships.
890 if (this.name[0] == '.') switch (this.len) {
891 default:
892 break;
893 case 2:
894 if (this.name[1] != '.')
895 break;
896 follow_dotdot(nd);
897 inode = nd->path.dentry->d_inode;
898 /* fallthrough */
899 case 1:
900 continue;
903 * See if the low-level filesystem might want
904 * to use its own hash..
906 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
907 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
908 &this);
909 if (err < 0)
910 break;
912 /* This does the actual lookups.. */
913 err = do_lookup(nd, &this, &next);
914 if (err)
915 break;
917 err = -ENOENT;
918 inode = next.dentry->d_inode;
919 if (!inode)
920 goto out_dput;
922 if (inode->i_op->follow_link) {
923 err = do_follow_link(&next, nd);
924 if (err)
925 goto return_err;
926 err = -ENOENT;
927 inode = nd->path.dentry->d_inode;
928 if (!inode)
929 break;
930 } else
931 path_to_nameidata(&next, nd);
932 err = -ENOTDIR;
933 if (!inode->i_op->lookup)
934 break;
935 continue;
936 /* here ends the main loop */
938 last_with_slashes:
939 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
940 last_component:
941 /* Clear LOOKUP_CONTINUE iff it was previously unset */
942 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
943 if (lookup_flags & LOOKUP_PARENT)
944 goto lookup_parent;
945 if (this.name[0] == '.') switch (this.len) {
946 default:
947 break;
948 case 2:
949 if (this.name[1] != '.')
950 break;
951 follow_dotdot(nd);
952 inode = nd->path.dentry->d_inode;
953 /* fallthrough */
954 case 1:
955 goto return_reval;
957 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
958 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
959 &this);
960 if (err < 0)
961 break;
963 err = do_lookup(nd, &this, &next);
964 if (err)
965 break;
966 inode = next.dentry->d_inode;
967 if ((lookup_flags & LOOKUP_FOLLOW)
968 && inode && inode->i_op->follow_link) {
969 err = do_follow_link(&next, nd);
970 if (err)
971 goto return_err;
972 inode = nd->path.dentry->d_inode;
973 } else
974 path_to_nameidata(&next, nd);
975 err = -ENOENT;
976 if (!inode)
977 break;
978 if (lookup_flags & LOOKUP_DIRECTORY) {
979 err = -ENOTDIR;
980 if (!inode->i_op->lookup)
981 break;
983 goto return_base;
984 lookup_parent:
985 nd->last = this;
986 nd->last_type = LAST_NORM;
987 if (this.name[0] != '.')
988 goto return_base;
989 if (this.len == 1)
990 nd->last_type = LAST_DOT;
991 else if (this.len == 2 && this.name[1] == '.')
992 nd->last_type = LAST_DOTDOT;
993 else
994 goto return_base;
995 return_reval:
997 * We bypassed the ordinary revalidation routines.
998 * We may need to check the cached dentry for staleness.
1000 if (nd->path.dentry && nd->path.dentry->d_sb &&
1001 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1002 err = -ESTALE;
1003 /* Note: we do not d_invalidate() */
1004 if (!nd->path.dentry->d_op->d_revalidate(
1005 nd->path.dentry, nd))
1006 break;
1008 return_base:
1009 return 0;
1010 out_dput:
1011 path_put_conditional(&next, nd);
1012 break;
1014 path_put(&nd->path);
1015 return_err:
1016 return err;
1019 static int path_walk(const char *name, struct nameidata *nd)
1021 current->total_link_count = 0;
1022 return link_path_walk(name, nd);
1025 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1027 int retval = 0;
1028 int fput_needed;
1029 struct file *file;
1031 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1032 nd->flags = flags;
1033 nd->depth = 0;
1034 nd->root.mnt = NULL;
1036 if (*name=='/') {
1037 set_root(nd);
1038 nd->path = nd->root;
1039 path_get(&nd->root);
1040 } else if (dfd == AT_FDCWD) {
1041 struct fs_struct *fs = current->fs;
1042 read_lock(&fs->lock);
1043 nd->path = fs->pwd;
1044 path_get(&fs->pwd);
1045 read_unlock(&fs->lock);
1046 } else {
1047 struct dentry *dentry;
1049 file = fget_light(dfd, &fput_needed);
1050 retval = -EBADF;
1051 if (!file)
1052 goto out_fail;
1054 dentry = file->f_path.dentry;
1056 retval = -ENOTDIR;
1057 if (!S_ISDIR(dentry->d_inode->i_mode))
1058 goto fput_fail;
1060 retval = file_permission(file, MAY_EXEC);
1061 if (retval)
1062 goto fput_fail;
1064 nd->path = file->f_path;
1065 path_get(&file->f_path);
1067 fput_light(file, fput_needed);
1069 return 0;
1071 fput_fail:
1072 fput_light(file, fput_needed);
1073 out_fail:
1074 return retval;
1077 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1078 static int do_path_lookup(int dfd, const char *name,
1079 unsigned int flags, struct nameidata *nd)
1081 int retval = path_init(dfd, name, flags, nd);
1082 if (!retval)
1083 retval = path_walk(name, nd);
1084 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1085 nd->path.dentry->d_inode))
1086 audit_inode(name, nd->path.dentry);
1087 if (nd->root.mnt) {
1088 path_put(&nd->root);
1089 nd->root.mnt = NULL;
1091 return retval;
1094 int path_lookup(const char *name, unsigned int flags,
1095 struct nameidata *nd)
1097 return do_path_lookup(AT_FDCWD, name, flags, nd);
1100 int kern_path(const char *name, unsigned int flags, struct path *path)
1102 struct nameidata nd;
1103 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1104 if (!res)
1105 *path = nd.path;
1106 return res;
1110 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1111 * @dentry: pointer to dentry of the base directory
1112 * @mnt: pointer to vfs mount of the base directory
1113 * @name: pointer to file name
1114 * @flags: lookup flags
1115 * @nd: pointer to nameidata
1117 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1118 const char *name, unsigned int flags,
1119 struct nameidata *nd)
1121 int retval;
1123 /* same as do_path_lookup */
1124 nd->last_type = LAST_ROOT;
1125 nd->flags = flags;
1126 nd->depth = 0;
1128 nd->path.dentry = dentry;
1129 nd->path.mnt = mnt;
1130 path_get(&nd->path);
1131 nd->root = nd->path;
1132 path_get(&nd->root);
1134 retval = path_walk(name, nd);
1135 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1136 nd->path.dentry->d_inode))
1137 audit_inode(name, nd->path.dentry);
1139 path_put(&nd->root);
1140 nd->root.mnt = NULL;
1142 return retval;
1146 * path_lookup_open - lookup a file path with open intent
1147 * @dfd: the directory to use as base, or AT_FDCWD
1148 * @name: pointer to file name
1149 * @lookup_flags: lookup intent flags
1150 * @nd: pointer to nameidata
1151 * @open_flags: open intent flags
1153 static int path_lookup_open(int dfd, const char *name,
1154 unsigned int lookup_flags, struct nameidata *nd, int open_flags)
1156 struct file *filp = get_empty_filp();
1157 int err;
1159 if (filp == NULL)
1160 return -ENFILE;
1161 nd->intent.open.file = filp;
1162 nd->intent.open.flags = open_flags;
1163 nd->intent.open.create_mode = 0;
1164 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1165 if (IS_ERR(nd->intent.open.file)) {
1166 if (err == 0) {
1167 err = PTR_ERR(nd->intent.open.file);
1168 path_put(&nd->path);
1170 } else if (err != 0)
1171 release_open_intent(nd);
1172 return err;
1175 static struct dentry *__lookup_hash(struct qstr *name,
1176 struct dentry *base, struct nameidata *nd)
1178 struct dentry *dentry;
1179 struct inode *inode;
1180 int err;
1182 inode = base->d_inode;
1185 * See if the low-level filesystem might want
1186 * to use its own hash..
1188 if (base->d_op && base->d_op->d_hash) {
1189 err = base->d_op->d_hash(base, name);
1190 dentry = ERR_PTR(err);
1191 if (err < 0)
1192 goto out;
1195 dentry = cached_lookup(base, name, nd);
1196 if (!dentry) {
1197 struct dentry *new;
1199 /* Don't create child dentry for a dead directory. */
1200 dentry = ERR_PTR(-ENOENT);
1201 if (IS_DEADDIR(inode))
1202 goto out;
1204 new = d_alloc(base, name);
1205 dentry = ERR_PTR(-ENOMEM);
1206 if (!new)
1207 goto out;
1208 dentry = inode->i_op->lookup(inode, new, nd);
1209 if (!dentry)
1210 dentry = new;
1211 else
1212 dput(new);
1214 out:
1215 return dentry;
1219 * Restricted form of lookup. Doesn't follow links, single-component only,
1220 * needs parent already locked. Doesn't follow mounts.
1221 * SMP-safe.
1223 static struct dentry *lookup_hash(struct nameidata *nd)
1225 int err;
1227 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1228 if (err)
1229 return ERR_PTR(err);
1230 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1233 static int __lookup_one_len(const char *name, struct qstr *this,
1234 struct dentry *base, int len)
1236 unsigned long hash;
1237 unsigned int c;
1239 this->name = name;
1240 this->len = len;
1241 if (!len)
1242 return -EACCES;
1244 hash = init_name_hash();
1245 while (len--) {
1246 c = *(const unsigned char *)name++;
1247 if (c == '/' || c == '\0')
1248 return -EACCES;
1249 hash = partial_name_hash(c, hash);
1251 this->hash = end_name_hash(hash);
1252 return 0;
1256 * lookup_one_len - filesystem helper to lookup single pathname component
1257 * @name: pathname component to lookup
1258 * @base: base directory to lookup from
1259 * @len: maximum length @len should be interpreted to
1261 * Note that this routine is purely a helper for filesystem usage and should
1262 * not be called by generic code. Also note that by using this function the
1263 * nameidata argument is passed to the filesystem methods and a filesystem
1264 * using this helper needs to be prepared for that.
1266 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1268 int err;
1269 struct qstr this;
1271 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1273 err = __lookup_one_len(name, &this, base, len);
1274 if (err)
1275 return ERR_PTR(err);
1277 err = inode_permission(base->d_inode, MAY_EXEC);
1278 if (err)
1279 return ERR_PTR(err);
1280 return __lookup_hash(&this, base, NULL);
1284 * lookup_one_noperm - bad hack for sysfs
1285 * @name: pathname component to lookup
1286 * @base: base directory to lookup from
1288 * This is a variant of lookup_one_len that doesn't perform any permission
1289 * checks. It's a horrible hack to work around the braindead sysfs
1290 * architecture and should not be used anywhere else.
1292 * DON'T USE THIS FUNCTION EVER, thanks.
1294 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1296 int err;
1297 struct qstr this;
1299 err = __lookup_one_len(name, &this, base, strlen(name));
1300 if (err)
1301 return ERR_PTR(err);
1302 return __lookup_hash(&this, base, NULL);
1305 int user_path_at(int dfd, const char __user *name, unsigned flags,
1306 struct path *path)
1308 struct nameidata nd;
1309 char *tmp = getname(name);
1310 int err = PTR_ERR(tmp);
1311 if (!IS_ERR(tmp)) {
1313 BUG_ON(flags & LOOKUP_PARENT);
1315 err = do_path_lookup(dfd, tmp, flags, &nd);
1316 putname(tmp);
1317 if (!err)
1318 *path = nd.path;
1320 return err;
1323 static int user_path_parent(int dfd, const char __user *path,
1324 struct nameidata *nd, char **name)
1326 char *s = getname(path);
1327 int error;
1329 if (IS_ERR(s))
1330 return PTR_ERR(s);
1332 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1333 if (error)
1334 putname(s);
1335 else
1336 *name = s;
1338 return error;
1342 * It's inline, so penalty for filesystems that don't use sticky bit is
1343 * minimal.
1345 static inline int check_sticky(struct inode *dir, struct inode *inode)
1347 uid_t fsuid = current_fsuid();
1349 if (!(dir->i_mode & S_ISVTX))
1350 return 0;
1351 if (inode->i_uid == fsuid)
1352 return 0;
1353 if (dir->i_uid == fsuid)
1354 return 0;
1355 return !capable(CAP_FOWNER);
1359 * Check whether we can remove a link victim from directory dir, check
1360 * whether the type of victim is right.
1361 * 1. We can't do it if dir is read-only (done in permission())
1362 * 2. We should have write and exec permissions on dir
1363 * 3. We can't remove anything from append-only dir
1364 * 4. We can't do anything with immutable dir (done in permission())
1365 * 5. If the sticky bit on dir is set we should either
1366 * a. be owner of dir, or
1367 * b. be owner of victim, or
1368 * c. have CAP_FOWNER capability
1369 * 6. If the victim is append-only or immutable we can't do antyhing with
1370 * links pointing to it.
1371 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1372 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1373 * 9. We can't remove a root or mountpoint.
1374 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1375 * nfs_async_unlink().
1377 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1379 int error;
1381 if (!victim->d_inode)
1382 return -ENOENT;
1384 BUG_ON(victim->d_parent->d_inode != dir);
1385 audit_inode_child(victim->d_name.name, victim, dir);
1387 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1388 if (error)
1389 return error;
1390 if (IS_APPEND(dir))
1391 return -EPERM;
1392 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1393 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1394 return -EPERM;
1395 if (isdir) {
1396 if (!S_ISDIR(victim->d_inode->i_mode))
1397 return -ENOTDIR;
1398 if (IS_ROOT(victim))
1399 return -EBUSY;
1400 } else if (S_ISDIR(victim->d_inode->i_mode))
1401 return -EISDIR;
1402 if (IS_DEADDIR(dir))
1403 return -ENOENT;
1404 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1405 return -EBUSY;
1406 return 0;
1409 /* Check whether we can create an object with dentry child in directory
1410 * dir.
1411 * 1. We can't do it if child already exists (open has special treatment for
1412 * this case, but since we are inlined it's OK)
1413 * 2. We can't do it if dir is read-only (done in permission())
1414 * 3. We should have write and exec permissions on dir
1415 * 4. We can't do it if dir is immutable (done in permission())
1417 static inline int may_create(struct inode *dir, struct dentry *child)
1419 if (child->d_inode)
1420 return -EEXIST;
1421 if (IS_DEADDIR(dir))
1422 return -ENOENT;
1423 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1427 * O_DIRECTORY translates into forcing a directory lookup.
1429 static inline int lookup_flags(unsigned int f)
1431 unsigned long retval = LOOKUP_FOLLOW;
1433 if (f & O_NOFOLLOW)
1434 retval &= ~LOOKUP_FOLLOW;
1436 if (f & O_DIRECTORY)
1437 retval |= LOOKUP_DIRECTORY;
1439 return retval;
1443 * p1 and p2 should be directories on the same fs.
1445 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1447 struct dentry *p;
1449 if (p1 == p2) {
1450 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1451 return NULL;
1454 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1456 p = d_ancestor(p2, p1);
1457 if (p) {
1458 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1459 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1460 return p;
1463 p = d_ancestor(p1, p2);
1464 if (p) {
1465 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1466 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1467 return p;
1470 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1471 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1472 return NULL;
1475 void unlock_rename(struct dentry *p1, struct dentry *p2)
1477 mutex_unlock(&p1->d_inode->i_mutex);
1478 if (p1 != p2) {
1479 mutex_unlock(&p2->d_inode->i_mutex);
1480 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1484 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1485 struct nameidata *nd)
1487 int error = may_create(dir, dentry);
1489 if (error)
1490 return error;
1492 if (!dir->i_op->create)
1493 return -EACCES; /* shouldn't it be ENOSYS? */
1494 mode &= S_IALLUGO;
1495 mode |= S_IFREG;
1496 error = security_inode_create(dir, dentry, mode);
1497 if (error)
1498 return error;
1499 vfs_dq_init(dir);
1500 error = dir->i_op->create(dir, dentry, mode, nd);
1501 if (!error)
1502 fsnotify_create(dir, dentry);
1503 return error;
1506 int may_open(struct path *path, int acc_mode, int flag)
1508 struct dentry *dentry = path->dentry;
1509 struct inode *inode = dentry->d_inode;
1510 int error;
1512 if (!inode)
1513 return -ENOENT;
1515 switch (inode->i_mode & S_IFMT) {
1516 case S_IFLNK:
1517 return -ELOOP;
1518 case S_IFDIR:
1519 if (acc_mode & MAY_WRITE)
1520 return -EISDIR;
1521 break;
1522 case S_IFBLK:
1523 case S_IFCHR:
1524 if (path->mnt->mnt_flags & MNT_NODEV)
1525 return -EACCES;
1526 /*FALLTHRU*/
1527 case S_IFIFO:
1528 case S_IFSOCK:
1529 flag &= ~O_TRUNC;
1530 break;
1533 error = inode_permission(inode, acc_mode);
1534 if (error)
1535 return error;
1537 error = ima_path_check(path, acc_mode ?
1538 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC) :
1539 ACC_MODE(flag) & (MAY_READ | MAY_WRITE),
1540 IMA_COUNT_UPDATE);
1542 if (error)
1543 return error;
1545 * An append-only file must be opened in append mode for writing.
1547 if (IS_APPEND(inode)) {
1548 error = -EPERM;
1549 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1550 goto err_out;
1551 if (flag & O_TRUNC)
1552 goto err_out;
1555 /* O_NOATIME can only be set by the owner or superuser */
1556 if (flag & O_NOATIME)
1557 if (!is_owner_or_cap(inode)) {
1558 error = -EPERM;
1559 goto err_out;
1563 * Ensure there are no outstanding leases on the file.
1565 error = break_lease(inode, flag);
1566 if (error)
1567 goto err_out;
1569 if (flag & O_TRUNC) {
1570 error = get_write_access(inode);
1571 if (error)
1572 goto err_out;
1575 * Refuse to truncate files with mandatory locks held on them.
1577 error = locks_verify_locked(inode);
1578 if (!error)
1579 error = security_path_truncate(path, 0,
1580 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1581 if (!error) {
1582 vfs_dq_init(inode);
1584 error = do_truncate(dentry, 0,
1585 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1586 NULL);
1588 put_write_access(inode);
1589 if (error)
1590 goto err_out;
1591 } else
1592 if (flag & FMODE_WRITE)
1593 vfs_dq_init(inode);
1595 return 0;
1596 err_out:
1597 ima_counts_put(path, acc_mode ?
1598 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC) :
1599 ACC_MODE(flag) & (MAY_READ | MAY_WRITE));
1600 return error;
1604 * Be careful about ever adding any more callers of this
1605 * function. Its flags must be in the namei format, not
1606 * what get passed to sys_open().
1608 static int __open_namei_create(struct nameidata *nd, struct path *path,
1609 int flag, int mode)
1611 int error;
1612 struct dentry *dir = nd->path.dentry;
1614 if (!IS_POSIXACL(dir->d_inode))
1615 mode &= ~current_umask();
1616 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1617 if (error)
1618 goto out_unlock;
1619 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1620 out_unlock:
1621 mutex_unlock(&dir->d_inode->i_mutex);
1622 dput(nd->path.dentry);
1623 nd->path.dentry = path->dentry;
1624 if (error)
1625 return error;
1626 /* Don't check for write permission, don't truncate */
1627 return may_open(&nd->path, 0, flag & ~O_TRUNC);
1631 * Note that while the flag value (low two bits) for sys_open means:
1632 * 00 - read-only
1633 * 01 - write-only
1634 * 10 - read-write
1635 * 11 - special
1636 * it is changed into
1637 * 00 - no permissions needed
1638 * 01 - read-permission
1639 * 10 - write-permission
1640 * 11 - read-write
1641 * for the internal routines (ie open_namei()/follow_link() etc)
1642 * This is more logical, and also allows the 00 "no perm needed"
1643 * to be used for symlinks (where the permissions are checked
1644 * later).
1647 static inline int open_to_namei_flags(int flag)
1649 if ((flag+1) & O_ACCMODE)
1650 flag++;
1651 return flag;
1654 static int open_will_write_to_fs(int flag, struct inode *inode)
1657 * We'll never write to the fs underlying
1658 * a device file.
1660 if (special_file(inode->i_mode))
1661 return 0;
1662 return (flag & O_TRUNC);
1666 * Note that the low bits of the passed in "open_flag"
1667 * are not the same as in the local variable "flag". See
1668 * open_to_namei_flags() for more details.
1670 struct file *do_filp_open(int dfd, const char *pathname,
1671 int open_flag, int mode, int acc_mode)
1673 struct file *filp;
1674 struct nameidata nd;
1675 int error;
1676 struct path path;
1677 struct dentry *dir;
1678 int count = 0;
1679 int will_write;
1680 int flag = open_to_namei_flags(open_flag);
1682 if (!acc_mode)
1683 acc_mode = MAY_OPEN | ACC_MODE(flag);
1685 /* O_TRUNC implies we need access checks for write permissions */
1686 if (flag & O_TRUNC)
1687 acc_mode |= MAY_WRITE;
1689 /* Allow the LSM permission hook to distinguish append
1690 access from general write access. */
1691 if (flag & O_APPEND)
1692 acc_mode |= MAY_APPEND;
1695 * The simplest case - just a plain lookup.
1697 if (!(flag & O_CREAT)) {
1698 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1699 &nd, flag);
1700 if (error)
1701 return ERR_PTR(error);
1702 goto ok;
1706 * Create - we need to know the parent.
1708 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1709 if (error)
1710 return ERR_PTR(error);
1711 error = path_walk(pathname, &nd);
1712 if (error) {
1713 if (nd.root.mnt)
1714 path_put(&nd.root);
1715 return ERR_PTR(error);
1717 if (unlikely(!audit_dummy_context()))
1718 audit_inode(pathname, nd.path.dentry);
1721 * We have the parent and last component. First of all, check
1722 * that we are not asked to creat(2) an obvious directory - that
1723 * will not do.
1725 error = -EISDIR;
1726 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1727 goto exit_parent;
1729 error = -ENFILE;
1730 filp = get_empty_filp();
1731 if (filp == NULL)
1732 goto exit_parent;
1733 nd.intent.open.file = filp;
1734 nd.intent.open.flags = flag;
1735 nd.intent.open.create_mode = mode;
1736 dir = nd.path.dentry;
1737 nd.flags &= ~LOOKUP_PARENT;
1738 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1739 if (flag & O_EXCL)
1740 nd.flags |= LOOKUP_EXCL;
1741 mutex_lock(&dir->d_inode->i_mutex);
1742 path.dentry = lookup_hash(&nd);
1743 path.mnt = nd.path.mnt;
1745 do_last:
1746 error = PTR_ERR(path.dentry);
1747 if (IS_ERR(path.dentry)) {
1748 mutex_unlock(&dir->d_inode->i_mutex);
1749 goto exit;
1752 if (IS_ERR(nd.intent.open.file)) {
1753 error = PTR_ERR(nd.intent.open.file);
1754 goto exit_mutex_unlock;
1757 /* Negative dentry, just create the file */
1758 if (!path.dentry->d_inode) {
1760 * This write is needed to ensure that a
1761 * ro->rw transition does not occur between
1762 * the time when the file is created and when
1763 * a permanent write count is taken through
1764 * the 'struct file' in nameidata_to_filp().
1766 error = mnt_want_write(nd.path.mnt);
1767 if (error)
1768 goto exit_mutex_unlock;
1769 error = __open_namei_create(&nd, &path, flag, mode);
1770 if (error) {
1771 mnt_drop_write(nd.path.mnt);
1772 goto exit;
1774 filp = nameidata_to_filp(&nd, open_flag);
1775 if (IS_ERR(filp))
1776 ima_counts_put(&nd.path,
1777 acc_mode & (MAY_READ | MAY_WRITE |
1778 MAY_EXEC));
1779 mnt_drop_write(nd.path.mnt);
1780 if (nd.root.mnt)
1781 path_put(&nd.root);
1782 return filp;
1786 * It already exists.
1788 mutex_unlock(&dir->d_inode->i_mutex);
1789 audit_inode(pathname, path.dentry);
1791 error = -EEXIST;
1792 if (flag & O_EXCL)
1793 goto exit_dput;
1795 if (__follow_mount(&path)) {
1796 error = -ELOOP;
1797 if (flag & O_NOFOLLOW)
1798 goto exit_dput;
1801 error = -ENOENT;
1802 if (!path.dentry->d_inode)
1803 goto exit_dput;
1804 if (path.dentry->d_inode->i_op->follow_link)
1805 goto do_link;
1807 path_to_nameidata(&path, &nd);
1808 error = -EISDIR;
1809 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1810 goto exit;
1813 * Consider:
1814 * 1. may_open() truncates a file
1815 * 2. a rw->ro mount transition occurs
1816 * 3. nameidata_to_filp() fails due to
1817 * the ro mount.
1818 * That would be inconsistent, and should
1819 * be avoided. Taking this mnt write here
1820 * ensures that (2) can not occur.
1822 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1823 if (will_write) {
1824 error = mnt_want_write(nd.path.mnt);
1825 if (error)
1826 goto exit;
1828 error = may_open(&nd.path, acc_mode, flag);
1829 if (error) {
1830 if (will_write)
1831 mnt_drop_write(nd.path.mnt);
1832 goto exit;
1834 filp = nameidata_to_filp(&nd, open_flag);
1835 if (IS_ERR(filp))
1836 ima_counts_put(&nd.path,
1837 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC));
1839 * It is now safe to drop the mnt write
1840 * because the filp has had a write taken
1841 * on its behalf.
1843 if (will_write)
1844 mnt_drop_write(nd.path.mnt);
1845 if (nd.root.mnt)
1846 path_put(&nd.root);
1847 return filp;
1849 exit_mutex_unlock:
1850 mutex_unlock(&dir->d_inode->i_mutex);
1851 exit_dput:
1852 path_put_conditional(&path, &nd);
1853 exit:
1854 if (!IS_ERR(nd.intent.open.file))
1855 release_open_intent(&nd);
1856 exit_parent:
1857 if (nd.root.mnt)
1858 path_put(&nd.root);
1859 path_put(&nd.path);
1860 return ERR_PTR(error);
1862 do_link:
1863 error = -ELOOP;
1864 if (flag & O_NOFOLLOW)
1865 goto exit_dput;
1867 * This is subtle. Instead of calling do_follow_link() we do the
1868 * thing by hands. The reason is that this way we have zero link_count
1869 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1870 * After that we have the parent and last component, i.e.
1871 * we are in the same situation as after the first path_walk().
1872 * Well, almost - if the last component is normal we get its copy
1873 * stored in nd->last.name and we will have to putname() it when we
1874 * are done. Procfs-like symlinks just set LAST_BIND.
1876 nd.flags |= LOOKUP_PARENT;
1877 error = security_inode_follow_link(path.dentry, &nd);
1878 if (error)
1879 goto exit_dput;
1880 error = __do_follow_link(&path, &nd);
1881 if (error) {
1882 /* Does someone understand code flow here? Or it is only
1883 * me so stupid? Anathema to whoever designed this non-sense
1884 * with "intent.open".
1886 release_open_intent(&nd);
1887 if (nd.root.mnt)
1888 path_put(&nd.root);
1889 return ERR_PTR(error);
1891 nd.flags &= ~LOOKUP_PARENT;
1892 if (nd.last_type == LAST_BIND)
1893 goto ok;
1894 error = -EISDIR;
1895 if (nd.last_type != LAST_NORM)
1896 goto exit;
1897 if (nd.last.name[nd.last.len]) {
1898 __putname(nd.last.name);
1899 goto exit;
1901 error = -ELOOP;
1902 if (count++==32) {
1903 __putname(nd.last.name);
1904 goto exit;
1906 dir = nd.path.dentry;
1907 mutex_lock(&dir->d_inode->i_mutex);
1908 path.dentry = lookup_hash(&nd);
1909 path.mnt = nd.path.mnt;
1910 __putname(nd.last.name);
1911 goto do_last;
1915 * filp_open - open file and return file pointer
1917 * @filename: path to open
1918 * @flags: open flags as per the open(2) second argument
1919 * @mode: mode for the new file if O_CREAT is set, else ignored
1921 * This is the helper to open a file from kernelspace if you really
1922 * have to. But in generally you should not do this, so please move
1923 * along, nothing to see here..
1925 struct file *filp_open(const char *filename, int flags, int mode)
1927 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1929 EXPORT_SYMBOL(filp_open);
1932 * lookup_create - lookup a dentry, creating it if it doesn't exist
1933 * @nd: nameidata info
1934 * @is_dir: directory flag
1936 * Simple function to lookup and return a dentry and create it
1937 * if it doesn't exist. Is SMP-safe.
1939 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1941 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1943 struct dentry *dentry = ERR_PTR(-EEXIST);
1945 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1947 * Yucky last component or no last component at all?
1948 * (foo/., foo/.., /////)
1950 if (nd->last_type != LAST_NORM)
1951 goto fail;
1952 nd->flags &= ~LOOKUP_PARENT;
1953 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1954 nd->intent.open.flags = O_EXCL;
1957 * Do the final lookup.
1959 dentry = lookup_hash(nd);
1960 if (IS_ERR(dentry))
1961 goto fail;
1963 if (dentry->d_inode)
1964 goto eexist;
1966 * Special case - lookup gave negative, but... we had foo/bar/
1967 * From the vfs_mknod() POV we just have a negative dentry -
1968 * all is fine. Let's be bastards - you had / on the end, you've
1969 * been asking for (non-existent) directory. -ENOENT for you.
1971 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1972 dput(dentry);
1973 dentry = ERR_PTR(-ENOENT);
1975 return dentry;
1976 eexist:
1977 dput(dentry);
1978 dentry = ERR_PTR(-EEXIST);
1979 fail:
1980 return dentry;
1982 EXPORT_SYMBOL_GPL(lookup_create);
1984 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1986 int error = may_create(dir, dentry);
1988 if (error)
1989 return error;
1991 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1992 return -EPERM;
1994 if (!dir->i_op->mknod)
1995 return -EPERM;
1997 error = devcgroup_inode_mknod(mode, dev);
1998 if (error)
1999 return error;
2001 error = security_inode_mknod(dir, dentry, mode, dev);
2002 if (error)
2003 return error;
2005 vfs_dq_init(dir);
2006 error = dir->i_op->mknod(dir, dentry, mode, dev);
2007 if (!error)
2008 fsnotify_create(dir, dentry);
2009 return error;
2012 static int may_mknod(mode_t mode)
2014 switch (mode & S_IFMT) {
2015 case S_IFREG:
2016 case S_IFCHR:
2017 case S_IFBLK:
2018 case S_IFIFO:
2019 case S_IFSOCK:
2020 case 0: /* zero mode translates to S_IFREG */
2021 return 0;
2022 case S_IFDIR:
2023 return -EPERM;
2024 default:
2025 return -EINVAL;
2029 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2030 unsigned, dev)
2032 int error;
2033 char *tmp;
2034 struct dentry *dentry;
2035 struct nameidata nd;
2037 if (S_ISDIR(mode))
2038 return -EPERM;
2040 error = user_path_parent(dfd, filename, &nd, &tmp);
2041 if (error)
2042 return error;
2044 dentry = lookup_create(&nd, 0);
2045 if (IS_ERR(dentry)) {
2046 error = PTR_ERR(dentry);
2047 goto out_unlock;
2049 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2050 mode &= ~current_umask();
2051 error = may_mknod(mode);
2052 if (error)
2053 goto out_dput;
2054 error = mnt_want_write(nd.path.mnt);
2055 if (error)
2056 goto out_dput;
2057 error = security_path_mknod(&nd.path, dentry, mode, dev);
2058 if (error)
2059 goto out_drop_write;
2060 switch (mode & S_IFMT) {
2061 case 0: case S_IFREG:
2062 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2063 break;
2064 case S_IFCHR: case S_IFBLK:
2065 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2066 new_decode_dev(dev));
2067 break;
2068 case S_IFIFO: case S_IFSOCK:
2069 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2070 break;
2072 out_drop_write:
2073 mnt_drop_write(nd.path.mnt);
2074 out_dput:
2075 dput(dentry);
2076 out_unlock:
2077 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2078 path_put(&nd.path);
2079 putname(tmp);
2081 return error;
2084 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2086 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2089 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2091 int error = may_create(dir, dentry);
2093 if (error)
2094 return error;
2096 if (!dir->i_op->mkdir)
2097 return -EPERM;
2099 mode &= (S_IRWXUGO|S_ISVTX);
2100 error = security_inode_mkdir(dir, dentry, mode);
2101 if (error)
2102 return error;
2104 vfs_dq_init(dir);
2105 error = dir->i_op->mkdir(dir, dentry, mode);
2106 if (!error)
2107 fsnotify_mkdir(dir, dentry);
2108 return error;
2111 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2113 int error = 0;
2114 char * tmp;
2115 struct dentry *dentry;
2116 struct nameidata nd;
2118 error = user_path_parent(dfd, pathname, &nd, &tmp);
2119 if (error)
2120 goto out_err;
2122 dentry = lookup_create(&nd, 1);
2123 error = PTR_ERR(dentry);
2124 if (IS_ERR(dentry))
2125 goto out_unlock;
2127 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2128 mode &= ~current_umask();
2129 error = mnt_want_write(nd.path.mnt);
2130 if (error)
2131 goto out_dput;
2132 error = security_path_mkdir(&nd.path, dentry, mode);
2133 if (error)
2134 goto out_drop_write;
2135 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2136 out_drop_write:
2137 mnt_drop_write(nd.path.mnt);
2138 out_dput:
2139 dput(dentry);
2140 out_unlock:
2141 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2142 path_put(&nd.path);
2143 putname(tmp);
2144 out_err:
2145 return error;
2148 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2150 return sys_mkdirat(AT_FDCWD, pathname, mode);
2154 * We try to drop the dentry early: we should have
2155 * a usage count of 2 if we're the only user of this
2156 * dentry, and if that is true (possibly after pruning
2157 * the dcache), then we drop the dentry now.
2159 * A low-level filesystem can, if it choses, legally
2160 * do a
2162 * if (!d_unhashed(dentry))
2163 * return -EBUSY;
2165 * if it cannot handle the case of removing a directory
2166 * that is still in use by something else..
2168 void dentry_unhash(struct dentry *dentry)
2170 dget(dentry);
2171 shrink_dcache_parent(dentry);
2172 spin_lock(&dcache_lock);
2173 spin_lock(&dentry->d_lock);
2174 if (atomic_read(&dentry->d_count) == 2)
2175 __d_drop(dentry);
2176 spin_unlock(&dentry->d_lock);
2177 spin_unlock(&dcache_lock);
2180 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2182 int error = may_delete(dir, dentry, 1);
2184 if (error)
2185 return error;
2187 if (!dir->i_op->rmdir)
2188 return -EPERM;
2190 vfs_dq_init(dir);
2192 mutex_lock(&dentry->d_inode->i_mutex);
2193 dentry_unhash(dentry);
2194 if (d_mountpoint(dentry))
2195 error = -EBUSY;
2196 else {
2197 error = security_inode_rmdir(dir, dentry);
2198 if (!error) {
2199 error = dir->i_op->rmdir(dir, dentry);
2200 if (!error)
2201 dentry->d_inode->i_flags |= S_DEAD;
2204 mutex_unlock(&dentry->d_inode->i_mutex);
2205 if (!error) {
2206 d_delete(dentry);
2208 dput(dentry);
2210 return error;
2213 static long do_rmdir(int dfd, const char __user *pathname)
2215 int error = 0;
2216 char * name;
2217 struct dentry *dentry;
2218 struct nameidata nd;
2220 error = user_path_parent(dfd, pathname, &nd, &name);
2221 if (error)
2222 return error;
2224 switch(nd.last_type) {
2225 case LAST_DOTDOT:
2226 error = -ENOTEMPTY;
2227 goto exit1;
2228 case LAST_DOT:
2229 error = -EINVAL;
2230 goto exit1;
2231 case LAST_ROOT:
2232 error = -EBUSY;
2233 goto exit1;
2236 nd.flags &= ~LOOKUP_PARENT;
2238 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2239 dentry = lookup_hash(&nd);
2240 error = PTR_ERR(dentry);
2241 if (IS_ERR(dentry))
2242 goto exit2;
2243 error = mnt_want_write(nd.path.mnt);
2244 if (error)
2245 goto exit3;
2246 error = security_path_rmdir(&nd.path, dentry);
2247 if (error)
2248 goto exit4;
2249 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2250 exit4:
2251 mnt_drop_write(nd.path.mnt);
2252 exit3:
2253 dput(dentry);
2254 exit2:
2255 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2256 exit1:
2257 path_put(&nd.path);
2258 putname(name);
2259 return error;
2262 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2264 return do_rmdir(AT_FDCWD, pathname);
2267 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2269 int error = may_delete(dir, dentry, 0);
2271 if (error)
2272 return error;
2274 if (!dir->i_op->unlink)
2275 return -EPERM;
2277 vfs_dq_init(dir);
2279 mutex_lock(&dentry->d_inode->i_mutex);
2280 if (d_mountpoint(dentry))
2281 error = -EBUSY;
2282 else {
2283 error = security_inode_unlink(dir, dentry);
2284 if (!error)
2285 error = dir->i_op->unlink(dir, dentry);
2287 mutex_unlock(&dentry->d_inode->i_mutex);
2289 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2290 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2291 fsnotify_link_count(dentry->d_inode);
2292 d_delete(dentry);
2295 return error;
2299 * Make sure that the actual truncation of the file will occur outside its
2300 * directory's i_mutex. Truncate can take a long time if there is a lot of
2301 * writeout happening, and we don't want to prevent access to the directory
2302 * while waiting on the I/O.
2304 static long do_unlinkat(int dfd, const char __user *pathname)
2306 int error;
2307 char *name;
2308 struct dentry *dentry;
2309 struct nameidata nd;
2310 struct inode *inode = NULL;
2312 error = user_path_parent(dfd, pathname, &nd, &name);
2313 if (error)
2314 return error;
2316 error = -EISDIR;
2317 if (nd.last_type != LAST_NORM)
2318 goto exit1;
2320 nd.flags &= ~LOOKUP_PARENT;
2322 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2323 dentry = lookup_hash(&nd);
2324 error = PTR_ERR(dentry);
2325 if (!IS_ERR(dentry)) {
2326 /* Why not before? Because we want correct error value */
2327 if (nd.last.name[nd.last.len])
2328 goto slashes;
2329 inode = dentry->d_inode;
2330 if (inode)
2331 atomic_inc(&inode->i_count);
2332 error = mnt_want_write(nd.path.mnt);
2333 if (error)
2334 goto exit2;
2335 error = security_path_unlink(&nd.path, dentry);
2336 if (error)
2337 goto exit3;
2338 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2339 exit3:
2340 mnt_drop_write(nd.path.mnt);
2341 exit2:
2342 dput(dentry);
2344 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2345 if (inode)
2346 iput(inode); /* truncate the inode here */
2347 exit1:
2348 path_put(&nd.path);
2349 putname(name);
2350 return error;
2352 slashes:
2353 error = !dentry->d_inode ? -ENOENT :
2354 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2355 goto exit2;
2358 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2360 if ((flag & ~AT_REMOVEDIR) != 0)
2361 return -EINVAL;
2363 if (flag & AT_REMOVEDIR)
2364 return do_rmdir(dfd, pathname);
2366 return do_unlinkat(dfd, pathname);
2369 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2371 return do_unlinkat(AT_FDCWD, pathname);
2374 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2376 int error = may_create(dir, dentry);
2378 if (error)
2379 return error;
2381 if (!dir->i_op->symlink)
2382 return -EPERM;
2384 error = security_inode_symlink(dir, dentry, oldname);
2385 if (error)
2386 return error;
2388 vfs_dq_init(dir);
2389 error = dir->i_op->symlink(dir, dentry, oldname);
2390 if (!error)
2391 fsnotify_create(dir, dentry);
2392 return error;
2395 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2396 int, newdfd, const char __user *, newname)
2398 int error;
2399 char *from;
2400 char *to;
2401 struct dentry *dentry;
2402 struct nameidata nd;
2404 from = getname(oldname);
2405 if (IS_ERR(from))
2406 return PTR_ERR(from);
2408 error = user_path_parent(newdfd, newname, &nd, &to);
2409 if (error)
2410 goto out_putname;
2412 dentry = lookup_create(&nd, 0);
2413 error = PTR_ERR(dentry);
2414 if (IS_ERR(dentry))
2415 goto out_unlock;
2417 error = mnt_want_write(nd.path.mnt);
2418 if (error)
2419 goto out_dput;
2420 error = security_path_symlink(&nd.path, dentry, from);
2421 if (error)
2422 goto out_drop_write;
2423 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2424 out_drop_write:
2425 mnt_drop_write(nd.path.mnt);
2426 out_dput:
2427 dput(dentry);
2428 out_unlock:
2429 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2430 path_put(&nd.path);
2431 putname(to);
2432 out_putname:
2433 putname(from);
2434 return error;
2437 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2439 return sys_symlinkat(oldname, AT_FDCWD, newname);
2442 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2444 struct inode *inode = old_dentry->d_inode;
2445 int error;
2447 if (!inode)
2448 return -ENOENT;
2450 error = may_create(dir, new_dentry);
2451 if (error)
2452 return error;
2454 if (dir->i_sb != inode->i_sb)
2455 return -EXDEV;
2458 * A link to an append-only or immutable file cannot be created.
2460 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2461 return -EPERM;
2462 if (!dir->i_op->link)
2463 return -EPERM;
2464 if (S_ISDIR(inode->i_mode))
2465 return -EPERM;
2467 error = security_inode_link(old_dentry, dir, new_dentry);
2468 if (error)
2469 return error;
2471 mutex_lock(&inode->i_mutex);
2472 vfs_dq_init(dir);
2473 error = dir->i_op->link(old_dentry, dir, new_dentry);
2474 mutex_unlock(&inode->i_mutex);
2475 if (!error)
2476 fsnotify_link(dir, inode, new_dentry);
2477 return error;
2481 * Hardlinks are often used in delicate situations. We avoid
2482 * security-related surprises by not following symlinks on the
2483 * newname. --KAB
2485 * We don't follow them on the oldname either to be compatible
2486 * with linux 2.0, and to avoid hard-linking to directories
2487 * and other special files. --ADM
2489 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2490 int, newdfd, const char __user *, newname, int, flags)
2492 struct dentry *new_dentry;
2493 struct nameidata nd;
2494 struct path old_path;
2495 int error;
2496 char *to;
2498 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2499 return -EINVAL;
2501 error = user_path_at(olddfd, oldname,
2502 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2503 &old_path);
2504 if (error)
2505 return error;
2507 error = user_path_parent(newdfd, newname, &nd, &to);
2508 if (error)
2509 goto out;
2510 error = -EXDEV;
2511 if (old_path.mnt != nd.path.mnt)
2512 goto out_release;
2513 new_dentry = lookup_create(&nd, 0);
2514 error = PTR_ERR(new_dentry);
2515 if (IS_ERR(new_dentry))
2516 goto out_unlock;
2517 error = mnt_want_write(nd.path.mnt);
2518 if (error)
2519 goto out_dput;
2520 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2521 if (error)
2522 goto out_drop_write;
2523 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2524 out_drop_write:
2525 mnt_drop_write(nd.path.mnt);
2526 out_dput:
2527 dput(new_dentry);
2528 out_unlock:
2529 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2530 out_release:
2531 path_put(&nd.path);
2532 putname(to);
2533 out:
2534 path_put(&old_path);
2536 return error;
2539 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2541 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2545 * The worst of all namespace operations - renaming directory. "Perverted"
2546 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2547 * Problems:
2548 * a) we can get into loop creation. Check is done in is_subdir().
2549 * b) race potential - two innocent renames can create a loop together.
2550 * That's where 4.4 screws up. Current fix: serialization on
2551 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2552 * story.
2553 * c) we have to lock _three_ objects - parents and victim (if it exists).
2554 * And that - after we got ->i_mutex on parents (until then we don't know
2555 * whether the target exists). Solution: try to be smart with locking
2556 * order for inodes. We rely on the fact that tree topology may change
2557 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2558 * move will be locked. Thus we can rank directories by the tree
2559 * (ancestors first) and rank all non-directories after them.
2560 * That works since everybody except rename does "lock parent, lookup,
2561 * lock child" and rename is under ->s_vfs_rename_mutex.
2562 * HOWEVER, it relies on the assumption that any object with ->lookup()
2563 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2564 * we'd better make sure that there's no link(2) for them.
2565 * d) some filesystems don't support opened-but-unlinked directories,
2566 * either because of layout or because they are not ready to deal with
2567 * all cases correctly. The latter will be fixed (taking this sort of
2568 * stuff into VFS), but the former is not going away. Solution: the same
2569 * trick as in rmdir().
2570 * e) conversion from fhandle to dentry may come in the wrong moment - when
2571 * we are removing the target. Solution: we will have to grab ->i_mutex
2572 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2573 * ->i_mutex on parents, which works but leads to some truely excessive
2574 * locking].
2576 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2577 struct inode *new_dir, struct dentry *new_dentry)
2579 int error = 0;
2580 struct inode *target;
2583 * If we are going to change the parent - check write permissions,
2584 * we'll need to flip '..'.
2586 if (new_dir != old_dir) {
2587 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2588 if (error)
2589 return error;
2592 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2593 if (error)
2594 return error;
2596 target = new_dentry->d_inode;
2597 if (target) {
2598 mutex_lock(&target->i_mutex);
2599 dentry_unhash(new_dentry);
2601 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2602 error = -EBUSY;
2603 else
2604 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2605 if (target) {
2606 if (!error)
2607 target->i_flags |= S_DEAD;
2608 mutex_unlock(&target->i_mutex);
2609 if (d_unhashed(new_dentry))
2610 d_rehash(new_dentry);
2611 dput(new_dentry);
2613 if (!error)
2614 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2615 d_move(old_dentry,new_dentry);
2616 return error;
2619 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2620 struct inode *new_dir, struct dentry *new_dentry)
2622 struct inode *target;
2623 int error;
2625 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2626 if (error)
2627 return error;
2629 dget(new_dentry);
2630 target = new_dentry->d_inode;
2631 if (target)
2632 mutex_lock(&target->i_mutex);
2633 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2634 error = -EBUSY;
2635 else
2636 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2637 if (!error) {
2638 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2639 d_move(old_dentry, new_dentry);
2641 if (target)
2642 mutex_unlock(&target->i_mutex);
2643 dput(new_dentry);
2644 return error;
2647 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2648 struct inode *new_dir, struct dentry *new_dentry)
2650 int error;
2651 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2652 const char *old_name;
2654 if (old_dentry->d_inode == new_dentry->d_inode)
2655 return 0;
2657 error = may_delete(old_dir, old_dentry, is_dir);
2658 if (error)
2659 return error;
2661 if (!new_dentry->d_inode)
2662 error = may_create(new_dir, new_dentry);
2663 else
2664 error = may_delete(new_dir, new_dentry, is_dir);
2665 if (error)
2666 return error;
2668 if (!old_dir->i_op->rename)
2669 return -EPERM;
2671 vfs_dq_init(old_dir);
2672 vfs_dq_init(new_dir);
2674 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2676 if (is_dir)
2677 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2678 else
2679 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2680 if (!error) {
2681 const char *new_name = old_dentry->d_name.name;
2682 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2683 new_dentry->d_inode, old_dentry);
2685 fsnotify_oldname_free(old_name);
2687 return error;
2690 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2691 int, newdfd, const char __user *, newname)
2693 struct dentry *old_dir, *new_dir;
2694 struct dentry *old_dentry, *new_dentry;
2695 struct dentry *trap;
2696 struct nameidata oldnd, newnd;
2697 char *from;
2698 char *to;
2699 int error;
2701 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2702 if (error)
2703 goto exit;
2705 error = user_path_parent(newdfd, newname, &newnd, &to);
2706 if (error)
2707 goto exit1;
2709 error = -EXDEV;
2710 if (oldnd.path.mnt != newnd.path.mnt)
2711 goto exit2;
2713 old_dir = oldnd.path.dentry;
2714 error = -EBUSY;
2715 if (oldnd.last_type != LAST_NORM)
2716 goto exit2;
2718 new_dir = newnd.path.dentry;
2719 if (newnd.last_type != LAST_NORM)
2720 goto exit2;
2722 oldnd.flags &= ~LOOKUP_PARENT;
2723 newnd.flags &= ~LOOKUP_PARENT;
2724 newnd.flags |= LOOKUP_RENAME_TARGET;
2726 trap = lock_rename(new_dir, old_dir);
2728 old_dentry = lookup_hash(&oldnd);
2729 error = PTR_ERR(old_dentry);
2730 if (IS_ERR(old_dentry))
2731 goto exit3;
2732 /* source must exist */
2733 error = -ENOENT;
2734 if (!old_dentry->d_inode)
2735 goto exit4;
2736 /* unless the source is a directory trailing slashes give -ENOTDIR */
2737 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2738 error = -ENOTDIR;
2739 if (oldnd.last.name[oldnd.last.len])
2740 goto exit4;
2741 if (newnd.last.name[newnd.last.len])
2742 goto exit4;
2744 /* source should not be ancestor of target */
2745 error = -EINVAL;
2746 if (old_dentry == trap)
2747 goto exit4;
2748 new_dentry = lookup_hash(&newnd);
2749 error = PTR_ERR(new_dentry);
2750 if (IS_ERR(new_dentry))
2751 goto exit4;
2752 /* target should not be an ancestor of source */
2753 error = -ENOTEMPTY;
2754 if (new_dentry == trap)
2755 goto exit5;
2757 error = mnt_want_write(oldnd.path.mnt);
2758 if (error)
2759 goto exit5;
2760 error = security_path_rename(&oldnd.path, old_dentry,
2761 &newnd.path, new_dentry);
2762 if (error)
2763 goto exit6;
2764 error = vfs_rename(old_dir->d_inode, old_dentry,
2765 new_dir->d_inode, new_dentry);
2766 exit6:
2767 mnt_drop_write(oldnd.path.mnt);
2768 exit5:
2769 dput(new_dentry);
2770 exit4:
2771 dput(old_dentry);
2772 exit3:
2773 unlock_rename(new_dir, old_dir);
2774 exit2:
2775 path_put(&newnd.path);
2776 putname(to);
2777 exit1:
2778 path_put(&oldnd.path);
2779 putname(from);
2780 exit:
2781 return error;
2784 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2786 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2789 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2791 int len;
2793 len = PTR_ERR(link);
2794 if (IS_ERR(link))
2795 goto out;
2797 len = strlen(link);
2798 if (len > (unsigned) buflen)
2799 len = buflen;
2800 if (copy_to_user(buffer, link, len))
2801 len = -EFAULT;
2802 out:
2803 return len;
2807 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2808 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2809 * using) it for any given inode is up to filesystem.
2811 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2813 struct nameidata nd;
2814 void *cookie;
2815 int res;
2817 nd.depth = 0;
2818 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2819 if (IS_ERR(cookie))
2820 return PTR_ERR(cookie);
2822 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2823 if (dentry->d_inode->i_op->put_link)
2824 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2825 return res;
2828 int vfs_follow_link(struct nameidata *nd, const char *link)
2830 return __vfs_follow_link(nd, link);
2833 /* get the link contents into pagecache */
2834 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2836 char *kaddr;
2837 struct page *page;
2838 struct address_space *mapping = dentry->d_inode->i_mapping;
2839 page = read_mapping_page(mapping, 0, NULL);
2840 if (IS_ERR(page))
2841 return (char*)page;
2842 *ppage = page;
2843 kaddr = kmap(page);
2844 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2845 return kaddr;
2848 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2850 struct page *page = NULL;
2851 char *s = page_getlink(dentry, &page);
2852 int res = vfs_readlink(dentry,buffer,buflen,s);
2853 if (page) {
2854 kunmap(page);
2855 page_cache_release(page);
2857 return res;
2860 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2862 struct page *page = NULL;
2863 nd_set_link(nd, page_getlink(dentry, &page));
2864 return page;
2867 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2869 struct page *page = cookie;
2871 if (page) {
2872 kunmap(page);
2873 page_cache_release(page);
2878 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2880 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2882 struct address_space *mapping = inode->i_mapping;
2883 struct page *page;
2884 void *fsdata;
2885 int err;
2886 char *kaddr;
2887 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2888 if (nofs)
2889 flags |= AOP_FLAG_NOFS;
2891 retry:
2892 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2893 flags, &page, &fsdata);
2894 if (err)
2895 goto fail;
2897 kaddr = kmap_atomic(page, KM_USER0);
2898 memcpy(kaddr, symname, len-1);
2899 kunmap_atomic(kaddr, KM_USER0);
2901 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2902 page, fsdata);
2903 if (err < 0)
2904 goto fail;
2905 if (err < len-1)
2906 goto retry;
2908 mark_inode_dirty(inode);
2909 return 0;
2910 fail:
2911 return err;
2914 int page_symlink(struct inode *inode, const char *symname, int len)
2916 return __page_symlink(inode, symname, len,
2917 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2920 const struct inode_operations page_symlink_inode_operations = {
2921 .readlink = generic_readlink,
2922 .follow_link = page_follow_link_light,
2923 .put_link = page_put_link,
2926 EXPORT_SYMBOL(user_path_at);
2927 EXPORT_SYMBOL(follow_down);
2928 EXPORT_SYMBOL(follow_up);
2929 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2930 EXPORT_SYMBOL(getname);
2931 EXPORT_SYMBOL(lock_rename);
2932 EXPORT_SYMBOL(lookup_one_len);
2933 EXPORT_SYMBOL(page_follow_link_light);
2934 EXPORT_SYMBOL(page_put_link);
2935 EXPORT_SYMBOL(page_readlink);
2936 EXPORT_SYMBOL(__page_symlink);
2937 EXPORT_SYMBOL(page_symlink);
2938 EXPORT_SYMBOL(page_symlink_inode_operations);
2939 EXPORT_SYMBOL(path_lookup);
2940 EXPORT_SYMBOL(kern_path);
2941 EXPORT_SYMBOL(vfs_path_lookup);
2942 EXPORT_SYMBOL(inode_permission);
2943 EXPORT_SYMBOL(file_permission);
2944 EXPORT_SYMBOL(unlock_rename);
2945 EXPORT_SYMBOL(vfs_create);
2946 EXPORT_SYMBOL(vfs_follow_link);
2947 EXPORT_SYMBOL(vfs_link);
2948 EXPORT_SYMBOL(vfs_mkdir);
2949 EXPORT_SYMBOL(vfs_mknod);
2950 EXPORT_SYMBOL(generic_permission);
2951 EXPORT_SYMBOL(vfs_readlink);
2952 EXPORT_SYMBOL(vfs_rename);
2953 EXPORT_SYMBOL(vfs_rmdir);
2954 EXPORT_SYMBOL(vfs_symlink);
2955 EXPORT_SYMBOL(vfs_unlink);
2956 EXPORT_SYMBOL(dentry_unhash);
2957 EXPORT_SYMBOL(generic_readlink);