audit: complex interfield comparison helper
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / net / red.h
blobbaab385a47363e85765ebf4b1b829684ef6024db
1 #ifndef __NET_SCHED_RED_H
2 #define __NET_SCHED_RED_H
4 #include <linux/types.h>
5 #include <net/pkt_sched.h>
6 #include <net/inet_ecn.h>
7 #include <net/dsfield.h>
8 #include <linux/reciprocal_div.h>
10 /* Random Early Detection (RED) algorithm.
11 =======================================
13 Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
14 for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
16 This file codes a "divisionless" version of RED algorithm
17 as written down in Fig.17 of the paper.
19 Short description.
20 ------------------
22 When a new packet arrives we calculate the average queue length:
24 avg = (1-W)*avg + W*current_queue_len,
26 W is the filter time constant (chosen as 2^(-Wlog)), it controls
27 the inertia of the algorithm. To allow larger bursts, W should be
28 decreased.
30 if (avg > th_max) -> packet marked (dropped).
31 if (avg < th_min) -> packet passes.
32 if (th_min < avg < th_max) we calculate probability:
34 Pb = max_P * (avg - th_min)/(th_max-th_min)
36 and mark (drop) packet with this probability.
37 Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
38 max_P should be small (not 1), usually 0.01..0.02 is good value.
40 max_P is chosen as a number, so that max_P/(th_max-th_min)
41 is a negative power of two in order arithmetics to contain
42 only shifts.
45 Parameters, settable by user:
46 -----------------------------
48 qth_min - bytes (should be < qth_max/2)
49 qth_max - bytes (should be at least 2*qth_min and less limit)
50 Wlog - bits (<32) log(1/W).
51 Plog - bits (<32)
53 Plog is related to max_P by formula:
55 max_P = (qth_max-qth_min)/2^Plog;
57 F.e. if qth_max=128K and qth_min=32K, then Plog=22
58 corresponds to max_P=0.02
60 Scell_log
61 Stab
63 Lookup table for log((1-W)^(t/t_ave).
66 NOTES:
68 Upper bound on W.
69 -----------------
71 If you want to allow bursts of L packets of size S,
72 you should choose W:
74 L + 1 - th_min/S < (1-(1-W)^L)/W
76 th_min/S = 32 th_min/S = 4
78 log(W) L
79 -1 33
80 -2 35
81 -3 39
82 -4 46
83 -5 57
84 -6 75
85 -7 101
86 -8 135
87 -9 190
88 etc.
92 * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
93 * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
95 * Every 500 ms:
96 * if (avg > target and max_p <= 0.5)
97 * increase max_p : max_p += alpha;
98 * else if (avg < target and max_p >= 0.01)
99 * decrease max_p : max_p *= beta;
101 * target :[qth_min + 0.4*(qth_min - qth_max),
102 * qth_min + 0.6*(qth_min - qth_max)].
103 * alpha : min(0.01, max_p / 4)
104 * beta : 0.9
105 * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
106 * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
108 #define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
110 #define MAX_P_MIN (1 * RED_ONE_PERCENT)
111 #define MAX_P_MAX (50 * RED_ONE_PERCENT)
112 #define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
114 #define RED_STAB_SIZE 256
115 #define RED_STAB_MASK (RED_STAB_SIZE - 1)
117 struct red_stats {
118 u32 prob_drop; /* Early probability drops */
119 u32 prob_mark; /* Early probability marks */
120 u32 forced_drop; /* Forced drops, qavg > max_thresh */
121 u32 forced_mark; /* Forced marks, qavg > max_thresh */
122 u32 pdrop; /* Drops due to queue limits */
123 u32 other; /* Drops due to drop() calls */
126 struct red_parms {
127 /* Parameters */
128 u32 qth_min; /* Min avg length threshold: Wlog scaled */
129 u32 qth_max; /* Max avg length threshold: Wlog scaled */
130 u32 Scell_max;
131 u32 max_P; /* probability, [0 .. 1.0] 32 scaled */
132 u32 max_P_reciprocal; /* reciprocal_value(max_P / qth_delta) */
133 u32 qth_delta; /* max_th - min_th */
134 u32 target_min; /* min_th + 0.4*(max_th - min_th) */
135 u32 target_max; /* min_th + 0.6*(max_th - min_th) */
136 u8 Scell_log;
137 u8 Wlog; /* log(W) */
138 u8 Plog; /* random number bits */
139 u8 Stab[RED_STAB_SIZE];
142 struct red_vars {
143 /* Variables */
144 int qcount; /* Number of packets since last random
145 number generation */
146 u32 qR; /* Cached random number */
148 unsigned long qavg; /* Average queue length: Wlog scaled */
149 ktime_t qidlestart; /* Start of current idle period */
152 static inline u32 red_maxp(u8 Plog)
154 return Plog < 32 ? (~0U >> Plog) : ~0U;
157 static inline void red_set_vars(struct red_vars *v)
159 /* Reset average queue length, the value is strictly bound
160 * to the parameters below, reseting hurts a bit but leaving
161 * it might result in an unreasonable qavg for a while. --TGR
163 v->qavg = 0;
165 v->qcount = -1;
168 static inline void red_set_parms(struct red_parms *p,
169 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
170 u8 Scell_log, u8 *stab, u32 max_P)
172 int delta = qth_max - qth_min;
173 u32 max_p_delta;
175 p->qth_min = qth_min << Wlog;
176 p->qth_max = qth_max << Wlog;
177 p->Wlog = Wlog;
178 p->Plog = Plog;
179 if (delta < 0)
180 delta = 1;
181 p->qth_delta = delta;
182 if (!max_P) {
183 max_P = red_maxp(Plog);
184 max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
186 p->max_P = max_P;
187 max_p_delta = max_P / delta;
188 max_p_delta = max(max_p_delta, 1U);
189 p->max_P_reciprocal = reciprocal_value(max_p_delta);
191 /* RED Adaptative target :
192 * [min_th + 0.4*(min_th - max_th),
193 * min_th + 0.6*(min_th - max_th)].
195 delta /= 5;
196 p->target_min = qth_min + 2*delta;
197 p->target_max = qth_min + 3*delta;
199 p->Scell_log = Scell_log;
200 p->Scell_max = (255 << Scell_log);
202 memcpy(p->Stab, stab, sizeof(p->Stab));
205 static inline int red_is_idling(const struct red_vars *v)
207 return v->qidlestart.tv64 != 0;
210 static inline void red_start_of_idle_period(struct red_vars *v)
212 v->qidlestart = ktime_get();
215 static inline void red_end_of_idle_period(struct red_vars *v)
217 v->qidlestart.tv64 = 0;
220 static inline void red_restart(struct red_vars *v)
222 red_end_of_idle_period(v);
223 v->qavg = 0;
224 v->qcount = -1;
227 static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
228 const struct red_vars *v)
230 s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
231 long us_idle = min_t(s64, delta, p->Scell_max);
232 int shift;
235 * The problem: ideally, average length queue recalcultion should
236 * be done over constant clock intervals. This is too expensive, so
237 * that the calculation is driven by outgoing packets.
238 * When the queue is idle we have to model this clock by hand.
240 * SF+VJ proposed to "generate":
242 * m = idletime / (average_pkt_size / bandwidth)
244 * dummy packets as a burst after idle time, i.e.
246 * p->qavg *= (1-W)^m
248 * This is an apparently overcomplicated solution (f.e. we have to
249 * precompute a table to make this calculation in reasonable time)
250 * I believe that a simpler model may be used here,
251 * but it is field for experiments.
254 shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
256 if (shift)
257 return v->qavg >> shift;
258 else {
259 /* Approximate initial part of exponent with linear function:
261 * (1-W)^m ~= 1-mW + ...
263 * Seems, it is the best solution to
264 * problem of too coarse exponent tabulation.
266 us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;
268 if (us_idle < (v->qavg >> 1))
269 return v->qavg - us_idle;
270 else
271 return v->qavg >> 1;
275 static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
276 const struct red_vars *v,
277 unsigned int backlog)
280 * NOTE: p->qavg is fixed point number with point at Wlog.
281 * The formula below is equvalent to floating point
282 * version:
284 * qavg = qavg*(1-W) + backlog*W;
286 * --ANK (980924)
288 return v->qavg + (backlog - (v->qavg >> p->Wlog));
291 static inline unsigned long red_calc_qavg(const struct red_parms *p,
292 const struct red_vars *v,
293 unsigned int backlog)
295 if (!red_is_idling(v))
296 return red_calc_qavg_no_idle_time(p, v, backlog);
297 else
298 return red_calc_qavg_from_idle_time(p, v);
302 static inline u32 red_random(const struct red_parms *p)
304 return reciprocal_divide(net_random(), p->max_P_reciprocal);
307 static inline int red_mark_probability(const struct red_parms *p,
308 const struct red_vars *v,
309 unsigned long qavg)
311 /* The formula used below causes questions.
313 OK. qR is random number in the interval
314 (0..1/max_P)*(qth_max-qth_min)
315 i.e. 0..(2^Plog). If we used floating point
316 arithmetics, it would be: (2^Plog)*rnd_num,
317 where rnd_num is less 1.
319 Taking into account, that qavg have fixed
320 point at Wlog, two lines
321 below have the following floating point equivalent:
323 max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
325 Any questions? --ANK (980924)
327 return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
330 enum {
331 RED_BELOW_MIN_THRESH,
332 RED_BETWEEN_TRESH,
333 RED_ABOVE_MAX_TRESH,
336 static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
338 if (qavg < p->qth_min)
339 return RED_BELOW_MIN_THRESH;
340 else if (qavg >= p->qth_max)
341 return RED_ABOVE_MAX_TRESH;
342 else
343 return RED_BETWEEN_TRESH;
346 enum {
347 RED_DONT_MARK,
348 RED_PROB_MARK,
349 RED_HARD_MARK,
352 static inline int red_action(const struct red_parms *p,
353 struct red_vars *v,
354 unsigned long qavg)
356 switch (red_cmp_thresh(p, qavg)) {
357 case RED_BELOW_MIN_THRESH:
358 v->qcount = -1;
359 return RED_DONT_MARK;
361 case RED_BETWEEN_TRESH:
362 if (++v->qcount) {
363 if (red_mark_probability(p, v, qavg)) {
364 v->qcount = 0;
365 v->qR = red_random(p);
366 return RED_PROB_MARK;
368 } else
369 v->qR = red_random(p);
371 return RED_DONT_MARK;
373 case RED_ABOVE_MAX_TRESH:
374 v->qcount = -1;
375 return RED_HARD_MARK;
378 BUG();
379 return RED_DONT_MARK;
382 static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
384 unsigned long qavg;
385 u32 max_p_delta;
387 qavg = v->qavg;
388 if (red_is_idling(v))
389 qavg = red_calc_qavg_from_idle_time(p, v);
391 /* p->qavg is fixed point number with point at Wlog */
392 qavg >>= p->Wlog;
394 if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
395 p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
396 else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
397 p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
399 max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
400 max_p_delta = max(max_p_delta, 1U);
401 p->max_P_reciprocal = reciprocal_value(max_p_delta);
403 #endif