audit: complex interfield comparison helper
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / dlm / lowcomms.c
blob0b3109ee42571e258fd4a2ff3ef342e9ddb1658c
1 /******************************************************************************
2 *******************************************************************************
3 **
4 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
5 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
6 **
7 ** This copyrighted material is made available to anyone wishing to use,
8 ** modify, copy, or redistribute it subject to the terms and conditions
9 ** of the GNU General Public License v.2.
11 *******************************************************************************
12 ******************************************************************************/
15 * lowcomms.c
17 * This is the "low-level" comms layer.
19 * It is responsible for sending/receiving messages
20 * from other nodes in the cluster.
22 * Cluster nodes are referred to by their nodeids. nodeids are
23 * simply 32 bit numbers to the locking module - if they need to
24 * be expanded for the cluster infrastructure then that is its
25 * responsibility. It is this layer's
26 * responsibility to resolve these into IP address or
27 * whatever it needs for inter-node communication.
29 * The comms level is two kernel threads that deal mainly with
30 * the receiving of messages from other nodes and passing them
31 * up to the mid-level comms layer (which understands the
32 * message format) for execution by the locking core, and
33 * a send thread which does all the setting up of connections
34 * to remote nodes and the sending of data. Threads are not allowed
35 * to send their own data because it may cause them to wait in times
36 * of high load. Also, this way, the sending thread can collect together
37 * messages bound for one node and send them in one block.
39 * lowcomms will choose to use either TCP or SCTP as its transport layer
40 * depending on the configuration variable 'protocol'. This should be set
41 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42 * cluster-wide mechanism as it must be the same on all nodes of the cluster
43 * for the DLM to function.
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/user.h>
56 #include <net/ipv6.h>
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "config.h"
63 #define NEEDED_RMEM (4*1024*1024)
64 #define CONN_HASH_SIZE 32
66 /* Number of messages to send before rescheduling */
67 #define MAX_SEND_MSG_COUNT 25
69 struct cbuf {
70 unsigned int base;
71 unsigned int len;
72 unsigned int mask;
75 static void cbuf_add(struct cbuf *cb, int n)
77 cb->len += n;
80 static int cbuf_data(struct cbuf *cb)
82 return ((cb->base + cb->len) & cb->mask);
85 static void cbuf_init(struct cbuf *cb, int size)
87 cb->base = cb->len = 0;
88 cb->mask = size-1;
91 static void cbuf_eat(struct cbuf *cb, int n)
93 cb->len -= n;
94 cb->base += n;
95 cb->base &= cb->mask;
98 static bool cbuf_empty(struct cbuf *cb)
100 return cb->len == 0;
103 struct connection {
104 struct socket *sock; /* NULL if not connected */
105 uint32_t nodeid; /* So we know who we are in the list */
106 struct mutex sock_mutex;
107 unsigned long flags;
108 #define CF_READ_PENDING 1
109 #define CF_WRITE_PENDING 2
110 #define CF_CONNECT_PENDING 3
111 #define CF_INIT_PENDING 4
112 #define CF_IS_OTHERCON 5
113 #define CF_CLOSE 6
114 #define CF_APP_LIMITED 7
115 struct list_head writequeue; /* List of outgoing writequeue_entries */
116 spinlock_t writequeue_lock;
117 int (*rx_action) (struct connection *); /* What to do when active */
118 void (*connect_action) (struct connection *); /* What to do to connect */
119 struct page *rx_page;
120 struct cbuf cb;
121 int retries;
122 #define MAX_CONNECT_RETRIES 3
123 int sctp_assoc;
124 struct hlist_node list;
125 struct connection *othercon;
126 struct work_struct rwork; /* Receive workqueue */
127 struct work_struct swork; /* Send workqueue */
129 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
131 /* An entry waiting to be sent */
132 struct writequeue_entry {
133 struct list_head list;
134 struct page *page;
135 int offset;
136 int len;
137 int end;
138 int users;
139 struct connection *con;
142 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
143 static int dlm_local_count;
145 /* Work queues */
146 static struct workqueue_struct *recv_workqueue;
147 static struct workqueue_struct *send_workqueue;
149 static struct hlist_head connection_hash[CONN_HASH_SIZE];
150 static DEFINE_MUTEX(connections_lock);
151 static struct kmem_cache *con_cache;
153 static void process_recv_sockets(struct work_struct *work);
154 static void process_send_sockets(struct work_struct *work);
157 /* This is deliberately very simple because most clusters have simple
158 sequential nodeids, so we should be able to go straight to a connection
159 struct in the array */
160 static inline int nodeid_hash(int nodeid)
162 return nodeid & (CONN_HASH_SIZE-1);
165 static struct connection *__find_con(int nodeid)
167 int r;
168 struct hlist_node *h;
169 struct connection *con;
171 r = nodeid_hash(nodeid);
173 hlist_for_each_entry(con, h, &connection_hash[r], list) {
174 if (con->nodeid == nodeid)
175 return con;
177 return NULL;
181 * If 'allocation' is zero then we don't attempt to create a new
182 * connection structure for this node.
184 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
186 struct connection *con = NULL;
187 int r;
189 con = __find_con(nodeid);
190 if (con || !alloc)
191 return con;
193 con = kmem_cache_zalloc(con_cache, alloc);
194 if (!con)
195 return NULL;
197 r = nodeid_hash(nodeid);
198 hlist_add_head(&con->list, &connection_hash[r]);
200 con->nodeid = nodeid;
201 mutex_init(&con->sock_mutex);
202 INIT_LIST_HEAD(&con->writequeue);
203 spin_lock_init(&con->writequeue_lock);
204 INIT_WORK(&con->swork, process_send_sockets);
205 INIT_WORK(&con->rwork, process_recv_sockets);
207 /* Setup action pointers for child sockets */
208 if (con->nodeid) {
209 struct connection *zerocon = __find_con(0);
211 con->connect_action = zerocon->connect_action;
212 if (!con->rx_action)
213 con->rx_action = zerocon->rx_action;
216 return con;
219 /* Loop round all connections */
220 static void foreach_conn(void (*conn_func)(struct connection *c))
222 int i;
223 struct hlist_node *h, *n;
224 struct connection *con;
226 for (i = 0; i < CONN_HASH_SIZE; i++) {
227 hlist_for_each_entry_safe(con, h, n, &connection_hash[i], list){
228 conn_func(con);
233 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
235 struct connection *con;
237 mutex_lock(&connections_lock);
238 con = __nodeid2con(nodeid, allocation);
239 mutex_unlock(&connections_lock);
241 return con;
244 /* This is a bit drastic, but only called when things go wrong */
245 static struct connection *assoc2con(int assoc_id)
247 int i;
248 struct hlist_node *h;
249 struct connection *con;
251 mutex_lock(&connections_lock);
253 for (i = 0 ; i < CONN_HASH_SIZE; i++) {
254 hlist_for_each_entry(con, h, &connection_hash[i], list) {
255 if (con->sctp_assoc == assoc_id) {
256 mutex_unlock(&connections_lock);
257 return con;
261 mutex_unlock(&connections_lock);
262 return NULL;
265 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
267 struct sockaddr_storage addr;
268 int error;
270 if (!dlm_local_count)
271 return -1;
273 error = dlm_nodeid_to_addr(nodeid, &addr);
274 if (error)
275 return error;
277 if (dlm_local_addr[0]->ss_family == AF_INET) {
278 struct sockaddr_in *in4 = (struct sockaddr_in *) &addr;
279 struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
280 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
281 } else {
282 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &addr;
283 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
284 ret6->sin6_addr = in6->sin6_addr;
287 return 0;
290 /* Data available on socket or listen socket received a connect */
291 static void lowcomms_data_ready(struct sock *sk, int count_unused)
293 struct connection *con = sock2con(sk);
294 if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
295 queue_work(recv_workqueue, &con->rwork);
298 static void lowcomms_write_space(struct sock *sk)
300 struct connection *con = sock2con(sk);
302 if (!con)
303 return;
305 clear_bit(SOCK_NOSPACE, &con->sock->flags);
307 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
308 con->sock->sk->sk_write_pending--;
309 clear_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags);
312 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
313 queue_work(send_workqueue, &con->swork);
316 static inline void lowcomms_connect_sock(struct connection *con)
318 if (test_bit(CF_CLOSE, &con->flags))
319 return;
320 if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
321 queue_work(send_workqueue, &con->swork);
324 static void lowcomms_state_change(struct sock *sk)
326 if (sk->sk_state == TCP_ESTABLISHED)
327 lowcomms_write_space(sk);
330 int dlm_lowcomms_connect_node(int nodeid)
332 struct connection *con;
334 /* with sctp there's no connecting without sending */
335 if (dlm_config.ci_protocol != 0)
336 return 0;
338 if (nodeid == dlm_our_nodeid())
339 return 0;
341 con = nodeid2con(nodeid, GFP_NOFS);
342 if (!con)
343 return -ENOMEM;
344 lowcomms_connect_sock(con);
345 return 0;
348 /* Make a socket active */
349 static int add_sock(struct socket *sock, struct connection *con)
351 con->sock = sock;
353 /* Install a data_ready callback */
354 con->sock->sk->sk_data_ready = lowcomms_data_ready;
355 con->sock->sk->sk_write_space = lowcomms_write_space;
356 con->sock->sk->sk_state_change = lowcomms_state_change;
357 con->sock->sk->sk_user_data = con;
358 con->sock->sk->sk_allocation = GFP_NOFS;
359 return 0;
362 /* Add the port number to an IPv6 or 4 sockaddr and return the address
363 length */
364 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
365 int *addr_len)
367 saddr->ss_family = dlm_local_addr[0]->ss_family;
368 if (saddr->ss_family == AF_INET) {
369 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
370 in4_addr->sin_port = cpu_to_be16(port);
371 *addr_len = sizeof(struct sockaddr_in);
372 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
373 } else {
374 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
375 in6_addr->sin6_port = cpu_to_be16(port);
376 *addr_len = sizeof(struct sockaddr_in6);
378 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
381 /* Close a remote connection and tidy up */
382 static void close_connection(struct connection *con, bool and_other)
384 mutex_lock(&con->sock_mutex);
386 if (con->sock) {
387 sock_release(con->sock);
388 con->sock = NULL;
390 if (con->othercon && and_other) {
391 /* Will only re-enter once. */
392 close_connection(con->othercon, false);
394 if (con->rx_page) {
395 __free_page(con->rx_page);
396 con->rx_page = NULL;
399 con->retries = 0;
400 mutex_unlock(&con->sock_mutex);
403 /* We only send shutdown messages to nodes that are not part of the cluster */
404 static void sctp_send_shutdown(sctp_assoc_t associd)
406 static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
407 struct msghdr outmessage;
408 struct cmsghdr *cmsg;
409 struct sctp_sndrcvinfo *sinfo;
410 int ret;
411 struct connection *con;
413 con = nodeid2con(0,0);
414 BUG_ON(con == NULL);
416 outmessage.msg_name = NULL;
417 outmessage.msg_namelen = 0;
418 outmessage.msg_control = outcmsg;
419 outmessage.msg_controllen = sizeof(outcmsg);
420 outmessage.msg_flags = MSG_EOR;
422 cmsg = CMSG_FIRSTHDR(&outmessage);
423 cmsg->cmsg_level = IPPROTO_SCTP;
424 cmsg->cmsg_type = SCTP_SNDRCV;
425 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
426 outmessage.msg_controllen = cmsg->cmsg_len;
427 sinfo = CMSG_DATA(cmsg);
428 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
430 sinfo->sinfo_flags |= MSG_EOF;
431 sinfo->sinfo_assoc_id = associd;
433 ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
435 if (ret != 0)
436 log_print("send EOF to node failed: %d", ret);
439 static void sctp_init_failed_foreach(struct connection *con)
441 con->sctp_assoc = 0;
442 if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
443 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
444 queue_work(send_workqueue, &con->swork);
448 /* INIT failed but we don't know which node...
449 restart INIT on all pending nodes */
450 static void sctp_init_failed(void)
452 mutex_lock(&connections_lock);
454 foreach_conn(sctp_init_failed_foreach);
456 mutex_unlock(&connections_lock);
459 /* Something happened to an association */
460 static void process_sctp_notification(struct connection *con,
461 struct msghdr *msg, char *buf)
463 union sctp_notification *sn = (union sctp_notification *)buf;
465 if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
466 switch (sn->sn_assoc_change.sac_state) {
468 case SCTP_COMM_UP:
469 case SCTP_RESTART:
471 /* Check that the new node is in the lockspace */
472 struct sctp_prim prim;
473 int nodeid;
474 int prim_len, ret;
475 int addr_len;
476 struct connection *new_con;
477 sctp_peeloff_arg_t parg;
478 int parglen = sizeof(parg);
479 int err;
482 * We get this before any data for an association.
483 * We verify that the node is in the cluster and
484 * then peel off a socket for it.
486 if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
487 log_print("COMM_UP for invalid assoc ID %d",
488 (int)sn->sn_assoc_change.sac_assoc_id);
489 sctp_init_failed();
490 return;
492 memset(&prim, 0, sizeof(struct sctp_prim));
493 prim_len = sizeof(struct sctp_prim);
494 prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
496 ret = kernel_getsockopt(con->sock,
497 IPPROTO_SCTP,
498 SCTP_PRIMARY_ADDR,
499 (char*)&prim,
500 &prim_len);
501 if (ret < 0) {
502 log_print("getsockopt/sctp_primary_addr on "
503 "new assoc %d failed : %d",
504 (int)sn->sn_assoc_change.sac_assoc_id,
505 ret);
507 /* Retry INIT later */
508 new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
509 if (new_con)
510 clear_bit(CF_CONNECT_PENDING, &con->flags);
511 return;
513 make_sockaddr(&prim.ssp_addr, 0, &addr_len);
514 if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
515 unsigned char *b=(unsigned char *)&prim.ssp_addr;
516 log_print("reject connect from unknown addr");
517 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
518 b, sizeof(struct sockaddr_storage));
519 sctp_send_shutdown(prim.ssp_assoc_id);
520 return;
523 new_con = nodeid2con(nodeid, GFP_NOFS);
524 if (!new_con)
525 return;
527 /* Peel off a new sock */
528 parg.associd = sn->sn_assoc_change.sac_assoc_id;
529 ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
530 SCTP_SOCKOPT_PEELOFF,
531 (void *)&parg, &parglen);
532 if (ret < 0) {
533 log_print("Can't peel off a socket for "
534 "connection %d to node %d: err=%d",
535 parg.associd, nodeid, ret);
536 return;
538 new_con->sock = sockfd_lookup(parg.sd, &err);
539 if (!new_con->sock) {
540 log_print("sockfd_lookup error %d", err);
541 return;
543 add_sock(new_con->sock, new_con);
544 sockfd_put(new_con->sock);
546 log_print("connecting to %d sctp association %d",
547 nodeid, (int)sn->sn_assoc_change.sac_assoc_id);
549 /* Send any pending writes */
550 clear_bit(CF_CONNECT_PENDING, &new_con->flags);
551 clear_bit(CF_INIT_PENDING, &con->flags);
552 if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
553 queue_work(send_workqueue, &new_con->swork);
555 if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
556 queue_work(recv_workqueue, &new_con->rwork);
558 break;
560 case SCTP_COMM_LOST:
561 case SCTP_SHUTDOWN_COMP:
563 con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
564 if (con) {
565 con->sctp_assoc = 0;
568 break;
570 /* We don't know which INIT failed, so clear the PENDING flags
571 * on them all. if assoc_id is zero then it will then try
572 * again */
574 case SCTP_CANT_STR_ASSOC:
576 log_print("Can't start SCTP association - retrying");
577 sctp_init_failed();
579 break;
581 default:
582 log_print("unexpected SCTP assoc change id=%d state=%d",
583 (int)sn->sn_assoc_change.sac_assoc_id,
584 sn->sn_assoc_change.sac_state);
589 /* Data received from remote end */
590 static int receive_from_sock(struct connection *con)
592 int ret = 0;
593 struct msghdr msg = {};
594 struct kvec iov[2];
595 unsigned len;
596 int r;
597 int call_again_soon = 0;
598 int nvec;
599 char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
601 mutex_lock(&con->sock_mutex);
603 if (con->sock == NULL) {
604 ret = -EAGAIN;
605 goto out_close;
608 if (con->rx_page == NULL) {
610 * This doesn't need to be atomic, but I think it should
611 * improve performance if it is.
613 con->rx_page = alloc_page(GFP_ATOMIC);
614 if (con->rx_page == NULL)
615 goto out_resched;
616 cbuf_init(&con->cb, PAGE_CACHE_SIZE);
619 /* Only SCTP needs these really */
620 memset(&incmsg, 0, sizeof(incmsg));
621 msg.msg_control = incmsg;
622 msg.msg_controllen = sizeof(incmsg);
625 * iov[0] is the bit of the circular buffer between the current end
626 * point (cb.base + cb.len) and the end of the buffer.
628 iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
629 iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
630 iov[1].iov_len = 0;
631 nvec = 1;
634 * iov[1] is the bit of the circular buffer between the start of the
635 * buffer and the start of the currently used section (cb.base)
637 if (cbuf_data(&con->cb) >= con->cb.base) {
638 iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
639 iov[1].iov_len = con->cb.base;
640 iov[1].iov_base = page_address(con->rx_page);
641 nvec = 2;
643 len = iov[0].iov_len + iov[1].iov_len;
645 r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
646 MSG_DONTWAIT | MSG_NOSIGNAL);
647 if (ret <= 0)
648 goto out_close;
650 /* Process SCTP notifications */
651 if (msg.msg_flags & MSG_NOTIFICATION) {
652 msg.msg_control = incmsg;
653 msg.msg_controllen = sizeof(incmsg);
655 process_sctp_notification(con, &msg,
656 page_address(con->rx_page) + con->cb.base);
657 mutex_unlock(&con->sock_mutex);
658 return 0;
660 BUG_ON(con->nodeid == 0);
662 if (ret == len)
663 call_again_soon = 1;
664 cbuf_add(&con->cb, ret);
665 ret = dlm_process_incoming_buffer(con->nodeid,
666 page_address(con->rx_page),
667 con->cb.base, con->cb.len,
668 PAGE_CACHE_SIZE);
669 if (ret == -EBADMSG) {
670 log_print("lowcomms: addr=%p, base=%u, len=%u, "
671 "iov_len=%u, iov_base[0]=%p, read=%d",
672 page_address(con->rx_page), con->cb.base, con->cb.len,
673 len, iov[0].iov_base, r);
675 if (ret < 0)
676 goto out_close;
677 cbuf_eat(&con->cb, ret);
679 if (cbuf_empty(&con->cb) && !call_again_soon) {
680 __free_page(con->rx_page);
681 con->rx_page = NULL;
684 if (call_again_soon)
685 goto out_resched;
686 mutex_unlock(&con->sock_mutex);
687 return 0;
689 out_resched:
690 if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
691 queue_work(recv_workqueue, &con->rwork);
692 mutex_unlock(&con->sock_mutex);
693 return -EAGAIN;
695 out_close:
696 mutex_unlock(&con->sock_mutex);
697 if (ret != -EAGAIN) {
698 close_connection(con, false);
699 /* Reconnect when there is something to send */
701 /* Don't return success if we really got EOF */
702 if (ret == 0)
703 ret = -EAGAIN;
705 return ret;
708 /* Listening socket is busy, accept a connection */
709 static int tcp_accept_from_sock(struct connection *con)
711 int result;
712 struct sockaddr_storage peeraddr;
713 struct socket *newsock;
714 int len;
715 int nodeid;
716 struct connection *newcon;
717 struct connection *addcon;
719 memset(&peeraddr, 0, sizeof(peeraddr));
720 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
721 IPPROTO_TCP, &newsock);
722 if (result < 0)
723 return -ENOMEM;
725 mutex_lock_nested(&con->sock_mutex, 0);
727 result = -ENOTCONN;
728 if (con->sock == NULL)
729 goto accept_err;
731 newsock->type = con->sock->type;
732 newsock->ops = con->sock->ops;
734 result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
735 if (result < 0)
736 goto accept_err;
738 /* Get the connected socket's peer */
739 memset(&peeraddr, 0, sizeof(peeraddr));
740 if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
741 &len, 2)) {
742 result = -ECONNABORTED;
743 goto accept_err;
746 /* Get the new node's NODEID */
747 make_sockaddr(&peeraddr, 0, &len);
748 if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
749 unsigned char *b=(unsigned char *)&peeraddr;
750 log_print("connect from non cluster node");
751 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
752 b, sizeof(struct sockaddr_storage));
753 sock_release(newsock);
754 mutex_unlock(&con->sock_mutex);
755 return -1;
758 log_print("got connection from %d", nodeid);
760 /* Check to see if we already have a connection to this node. This
761 * could happen if the two nodes initiate a connection at roughly
762 * the same time and the connections cross on the wire.
763 * In this case we store the incoming one in "othercon"
765 newcon = nodeid2con(nodeid, GFP_NOFS);
766 if (!newcon) {
767 result = -ENOMEM;
768 goto accept_err;
770 mutex_lock_nested(&newcon->sock_mutex, 1);
771 if (newcon->sock) {
772 struct connection *othercon = newcon->othercon;
774 if (!othercon) {
775 othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
776 if (!othercon) {
777 log_print("failed to allocate incoming socket");
778 mutex_unlock(&newcon->sock_mutex);
779 result = -ENOMEM;
780 goto accept_err;
782 othercon->nodeid = nodeid;
783 othercon->rx_action = receive_from_sock;
784 mutex_init(&othercon->sock_mutex);
785 INIT_WORK(&othercon->swork, process_send_sockets);
786 INIT_WORK(&othercon->rwork, process_recv_sockets);
787 set_bit(CF_IS_OTHERCON, &othercon->flags);
789 if (!othercon->sock) {
790 newcon->othercon = othercon;
791 othercon->sock = newsock;
792 newsock->sk->sk_user_data = othercon;
793 add_sock(newsock, othercon);
794 addcon = othercon;
796 else {
797 printk("Extra connection from node %d attempted\n", nodeid);
798 result = -EAGAIN;
799 mutex_unlock(&newcon->sock_mutex);
800 goto accept_err;
803 else {
804 newsock->sk->sk_user_data = newcon;
805 newcon->rx_action = receive_from_sock;
806 add_sock(newsock, newcon);
807 addcon = newcon;
810 mutex_unlock(&newcon->sock_mutex);
813 * Add it to the active queue in case we got data
814 * between processing the accept adding the socket
815 * to the read_sockets list
817 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
818 queue_work(recv_workqueue, &addcon->rwork);
819 mutex_unlock(&con->sock_mutex);
821 return 0;
823 accept_err:
824 mutex_unlock(&con->sock_mutex);
825 sock_release(newsock);
827 if (result != -EAGAIN)
828 log_print("error accepting connection from node: %d", result);
829 return result;
832 static void free_entry(struct writequeue_entry *e)
834 __free_page(e->page);
835 kfree(e);
838 /* Initiate an SCTP association.
839 This is a special case of send_to_sock() in that we don't yet have a
840 peeled-off socket for this association, so we use the listening socket
841 and add the primary IP address of the remote node.
843 static void sctp_init_assoc(struct connection *con)
845 struct sockaddr_storage rem_addr;
846 char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
847 struct msghdr outmessage;
848 struct cmsghdr *cmsg;
849 struct sctp_sndrcvinfo *sinfo;
850 struct connection *base_con;
851 struct writequeue_entry *e;
852 int len, offset;
853 int ret;
854 int addrlen;
855 struct kvec iov[1];
857 if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
858 return;
860 if (con->retries++ > MAX_CONNECT_RETRIES)
861 return;
863 if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
864 log_print("no address for nodeid %d", con->nodeid);
865 return;
867 base_con = nodeid2con(0, 0);
868 BUG_ON(base_con == NULL);
870 make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
872 outmessage.msg_name = &rem_addr;
873 outmessage.msg_namelen = addrlen;
874 outmessage.msg_control = outcmsg;
875 outmessage.msg_controllen = sizeof(outcmsg);
876 outmessage.msg_flags = MSG_EOR;
878 spin_lock(&con->writequeue_lock);
880 if (list_empty(&con->writequeue)) {
881 spin_unlock(&con->writequeue_lock);
882 log_print("writequeue empty for nodeid %d", con->nodeid);
883 return;
886 e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
887 len = e->len;
888 offset = e->offset;
889 spin_unlock(&con->writequeue_lock);
891 /* Send the first block off the write queue */
892 iov[0].iov_base = page_address(e->page)+offset;
893 iov[0].iov_len = len;
895 cmsg = CMSG_FIRSTHDR(&outmessage);
896 cmsg->cmsg_level = IPPROTO_SCTP;
897 cmsg->cmsg_type = SCTP_SNDRCV;
898 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
899 sinfo = CMSG_DATA(cmsg);
900 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
901 sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
902 outmessage.msg_controllen = cmsg->cmsg_len;
904 ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
905 if (ret < 0) {
906 log_print("Send first packet to node %d failed: %d",
907 con->nodeid, ret);
909 /* Try again later */
910 clear_bit(CF_CONNECT_PENDING, &con->flags);
911 clear_bit(CF_INIT_PENDING, &con->flags);
913 else {
914 spin_lock(&con->writequeue_lock);
915 e->offset += ret;
916 e->len -= ret;
918 if (e->len == 0 && e->users == 0) {
919 list_del(&e->list);
920 free_entry(e);
922 spin_unlock(&con->writequeue_lock);
926 /* Connect a new socket to its peer */
927 static void tcp_connect_to_sock(struct connection *con)
929 int result = -EHOSTUNREACH;
930 struct sockaddr_storage saddr, src_addr;
931 int addr_len;
932 struct socket *sock = NULL;
933 int one = 1;
935 if (con->nodeid == 0) {
936 log_print("attempt to connect sock 0 foiled");
937 return;
940 mutex_lock(&con->sock_mutex);
941 if (con->retries++ > MAX_CONNECT_RETRIES)
942 goto out;
944 /* Some odd races can cause double-connects, ignore them */
945 if (con->sock) {
946 result = 0;
947 goto out;
950 /* Create a socket to communicate with */
951 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
952 IPPROTO_TCP, &sock);
953 if (result < 0)
954 goto out_err;
956 memset(&saddr, 0, sizeof(saddr));
957 if (dlm_nodeid_to_addr(con->nodeid, &saddr))
958 goto out_err;
960 sock->sk->sk_user_data = con;
961 con->rx_action = receive_from_sock;
962 con->connect_action = tcp_connect_to_sock;
963 add_sock(sock, con);
965 /* Bind to our cluster-known address connecting to avoid
966 routing problems */
967 memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
968 make_sockaddr(&src_addr, 0, &addr_len);
969 result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
970 addr_len);
971 if (result < 0) {
972 log_print("could not bind for connect: %d", result);
973 /* This *may* not indicate a critical error */
976 make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
978 log_print("connecting to %d", con->nodeid);
980 /* Turn off Nagle's algorithm */
981 kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
982 sizeof(one));
984 result =
985 sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
986 O_NONBLOCK);
987 if (result == -EINPROGRESS)
988 result = 0;
989 if (result == 0)
990 goto out;
992 out_err:
993 if (con->sock) {
994 sock_release(con->sock);
995 con->sock = NULL;
996 } else if (sock) {
997 sock_release(sock);
1000 * Some errors are fatal and this list might need adjusting. For other
1001 * errors we try again until the max number of retries is reached.
1003 if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
1004 result != -ENETDOWN && result != -EINVAL
1005 && result != -EPROTONOSUPPORT) {
1006 lowcomms_connect_sock(con);
1007 result = 0;
1009 out:
1010 mutex_unlock(&con->sock_mutex);
1011 return;
1014 static struct socket *tcp_create_listen_sock(struct connection *con,
1015 struct sockaddr_storage *saddr)
1017 struct socket *sock = NULL;
1018 int result = 0;
1019 int one = 1;
1020 int addr_len;
1022 if (dlm_local_addr[0]->ss_family == AF_INET)
1023 addr_len = sizeof(struct sockaddr_in);
1024 else
1025 addr_len = sizeof(struct sockaddr_in6);
1027 /* Create a socket to communicate with */
1028 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1029 IPPROTO_TCP, &sock);
1030 if (result < 0) {
1031 log_print("Can't create listening comms socket");
1032 goto create_out;
1035 /* Turn off Nagle's algorithm */
1036 kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1037 sizeof(one));
1039 result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1040 (char *)&one, sizeof(one));
1042 if (result < 0) {
1043 log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1045 sock->sk->sk_user_data = con;
1046 con->rx_action = tcp_accept_from_sock;
1047 con->connect_action = tcp_connect_to_sock;
1048 con->sock = sock;
1050 /* Bind to our port */
1051 make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1052 result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1053 if (result < 0) {
1054 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1055 sock_release(sock);
1056 sock = NULL;
1057 con->sock = NULL;
1058 goto create_out;
1060 result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1061 (char *)&one, sizeof(one));
1062 if (result < 0) {
1063 log_print("Set keepalive failed: %d", result);
1066 result = sock->ops->listen(sock, 5);
1067 if (result < 0) {
1068 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1069 sock_release(sock);
1070 sock = NULL;
1071 goto create_out;
1074 create_out:
1075 return sock;
1078 /* Get local addresses */
1079 static void init_local(void)
1081 struct sockaddr_storage sas, *addr;
1082 int i;
1084 dlm_local_count = 0;
1085 for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
1086 if (dlm_our_addr(&sas, i))
1087 break;
1089 addr = kmalloc(sizeof(*addr), GFP_NOFS);
1090 if (!addr)
1091 break;
1092 memcpy(addr, &sas, sizeof(*addr));
1093 dlm_local_addr[dlm_local_count++] = addr;
1097 /* Bind to an IP address. SCTP allows multiple address so it can do
1098 multi-homing */
1099 static int add_sctp_bind_addr(struct connection *sctp_con,
1100 struct sockaddr_storage *addr,
1101 int addr_len, int num)
1103 int result = 0;
1105 if (num == 1)
1106 result = kernel_bind(sctp_con->sock,
1107 (struct sockaddr *) addr,
1108 addr_len);
1109 else
1110 result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1111 SCTP_SOCKOPT_BINDX_ADD,
1112 (char *)addr, addr_len);
1114 if (result < 0)
1115 log_print("Can't bind to port %d addr number %d",
1116 dlm_config.ci_tcp_port, num);
1118 return result;
1121 /* Initialise SCTP socket and bind to all interfaces */
1122 static int sctp_listen_for_all(void)
1124 struct socket *sock = NULL;
1125 struct sockaddr_storage localaddr;
1126 struct sctp_event_subscribe subscribe;
1127 int result = -EINVAL, num = 1, i, addr_len;
1128 struct connection *con = nodeid2con(0, GFP_NOFS);
1129 int bufsize = NEEDED_RMEM;
1131 if (!con)
1132 return -ENOMEM;
1134 log_print("Using SCTP for communications");
1136 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1137 IPPROTO_SCTP, &sock);
1138 if (result < 0) {
1139 log_print("Can't create comms socket, check SCTP is loaded");
1140 goto out;
1143 /* Listen for events */
1144 memset(&subscribe, 0, sizeof(subscribe));
1145 subscribe.sctp_data_io_event = 1;
1146 subscribe.sctp_association_event = 1;
1147 subscribe.sctp_send_failure_event = 1;
1148 subscribe.sctp_shutdown_event = 1;
1149 subscribe.sctp_partial_delivery_event = 1;
1151 result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1152 (char *)&bufsize, sizeof(bufsize));
1153 if (result)
1154 log_print("Error increasing buffer space on socket %d", result);
1156 result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1157 (char *)&subscribe, sizeof(subscribe));
1158 if (result < 0) {
1159 log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1160 result);
1161 goto create_delsock;
1164 /* Init con struct */
1165 sock->sk->sk_user_data = con;
1166 con->sock = sock;
1167 con->sock->sk->sk_data_ready = lowcomms_data_ready;
1168 con->rx_action = receive_from_sock;
1169 con->connect_action = sctp_init_assoc;
1171 /* Bind to all interfaces. */
1172 for (i = 0; i < dlm_local_count; i++) {
1173 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1174 make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1176 result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1177 if (result)
1178 goto create_delsock;
1179 ++num;
1182 result = sock->ops->listen(sock, 5);
1183 if (result < 0) {
1184 log_print("Can't set socket listening");
1185 goto create_delsock;
1188 return 0;
1190 create_delsock:
1191 sock_release(sock);
1192 con->sock = NULL;
1193 out:
1194 return result;
1197 static int tcp_listen_for_all(void)
1199 struct socket *sock = NULL;
1200 struct connection *con = nodeid2con(0, GFP_NOFS);
1201 int result = -EINVAL;
1203 if (!con)
1204 return -ENOMEM;
1206 /* We don't support multi-homed hosts */
1207 if (dlm_local_addr[1] != NULL) {
1208 log_print("TCP protocol can't handle multi-homed hosts, "
1209 "try SCTP");
1210 return -EINVAL;
1213 log_print("Using TCP for communications");
1215 sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1216 if (sock) {
1217 add_sock(sock, con);
1218 result = 0;
1220 else {
1221 result = -EADDRINUSE;
1224 return result;
1229 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1230 gfp_t allocation)
1232 struct writequeue_entry *entry;
1234 entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1235 if (!entry)
1236 return NULL;
1238 entry->page = alloc_page(allocation);
1239 if (!entry->page) {
1240 kfree(entry);
1241 return NULL;
1244 entry->offset = 0;
1245 entry->len = 0;
1246 entry->end = 0;
1247 entry->users = 0;
1248 entry->con = con;
1250 return entry;
1253 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1255 struct connection *con;
1256 struct writequeue_entry *e;
1257 int offset = 0;
1258 int users = 0;
1260 con = nodeid2con(nodeid, allocation);
1261 if (!con)
1262 return NULL;
1264 spin_lock(&con->writequeue_lock);
1265 e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1266 if ((&e->list == &con->writequeue) ||
1267 (PAGE_CACHE_SIZE - e->end < len)) {
1268 e = NULL;
1269 } else {
1270 offset = e->end;
1271 e->end += len;
1272 users = e->users++;
1274 spin_unlock(&con->writequeue_lock);
1276 if (e) {
1277 got_one:
1278 *ppc = page_address(e->page) + offset;
1279 return e;
1282 e = new_writequeue_entry(con, allocation);
1283 if (e) {
1284 spin_lock(&con->writequeue_lock);
1285 offset = e->end;
1286 e->end += len;
1287 users = e->users++;
1288 list_add_tail(&e->list, &con->writequeue);
1289 spin_unlock(&con->writequeue_lock);
1290 goto got_one;
1292 return NULL;
1295 void dlm_lowcomms_commit_buffer(void *mh)
1297 struct writequeue_entry *e = (struct writequeue_entry *)mh;
1298 struct connection *con = e->con;
1299 int users;
1301 spin_lock(&con->writequeue_lock);
1302 users = --e->users;
1303 if (users)
1304 goto out;
1305 e->len = e->end - e->offset;
1306 spin_unlock(&con->writequeue_lock);
1308 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1309 queue_work(send_workqueue, &con->swork);
1311 return;
1313 out:
1314 spin_unlock(&con->writequeue_lock);
1315 return;
1318 /* Send a message */
1319 static void send_to_sock(struct connection *con)
1321 int ret = 0;
1322 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1323 struct writequeue_entry *e;
1324 int len, offset;
1325 int count = 0;
1327 mutex_lock(&con->sock_mutex);
1328 if (con->sock == NULL)
1329 goto out_connect;
1331 spin_lock(&con->writequeue_lock);
1332 for (;;) {
1333 e = list_entry(con->writequeue.next, struct writequeue_entry,
1334 list);
1335 if ((struct list_head *) e == &con->writequeue)
1336 break;
1338 len = e->len;
1339 offset = e->offset;
1340 BUG_ON(len == 0 && e->users == 0);
1341 spin_unlock(&con->writequeue_lock);
1343 ret = 0;
1344 if (len) {
1345 ret = kernel_sendpage(con->sock, e->page, offset, len,
1346 msg_flags);
1347 if (ret == -EAGAIN || ret == 0) {
1348 if (ret == -EAGAIN &&
1349 test_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags) &&
1350 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1351 /* Notify TCP that we're limited by the
1352 * application window size.
1354 set_bit(SOCK_NOSPACE, &con->sock->flags);
1355 con->sock->sk->sk_write_pending++;
1357 cond_resched();
1358 goto out;
1360 if (ret <= 0)
1361 goto send_error;
1364 /* Don't starve people filling buffers */
1365 if (++count >= MAX_SEND_MSG_COUNT) {
1366 cond_resched();
1367 count = 0;
1370 spin_lock(&con->writequeue_lock);
1371 e->offset += ret;
1372 e->len -= ret;
1374 if (e->len == 0 && e->users == 0) {
1375 list_del(&e->list);
1376 free_entry(e);
1377 continue;
1380 spin_unlock(&con->writequeue_lock);
1381 out:
1382 mutex_unlock(&con->sock_mutex);
1383 return;
1385 send_error:
1386 mutex_unlock(&con->sock_mutex);
1387 close_connection(con, false);
1388 lowcomms_connect_sock(con);
1389 return;
1391 out_connect:
1392 mutex_unlock(&con->sock_mutex);
1393 if (!test_bit(CF_INIT_PENDING, &con->flags))
1394 lowcomms_connect_sock(con);
1395 return;
1398 static void clean_one_writequeue(struct connection *con)
1400 struct writequeue_entry *e, *safe;
1402 spin_lock(&con->writequeue_lock);
1403 list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1404 list_del(&e->list);
1405 free_entry(e);
1407 spin_unlock(&con->writequeue_lock);
1410 /* Called from recovery when it knows that a node has
1411 left the cluster */
1412 int dlm_lowcomms_close(int nodeid)
1414 struct connection *con;
1416 log_print("closing connection to node %d", nodeid);
1417 con = nodeid2con(nodeid, 0);
1418 if (con) {
1419 clear_bit(CF_CONNECT_PENDING, &con->flags);
1420 clear_bit(CF_WRITE_PENDING, &con->flags);
1421 set_bit(CF_CLOSE, &con->flags);
1422 if (cancel_work_sync(&con->swork))
1423 log_print("canceled swork for node %d", nodeid);
1424 if (cancel_work_sync(&con->rwork))
1425 log_print("canceled rwork for node %d", nodeid);
1426 clean_one_writequeue(con);
1427 close_connection(con, true);
1429 return 0;
1432 /* Receive workqueue function */
1433 static void process_recv_sockets(struct work_struct *work)
1435 struct connection *con = container_of(work, struct connection, rwork);
1436 int err;
1438 clear_bit(CF_READ_PENDING, &con->flags);
1439 do {
1440 err = con->rx_action(con);
1441 } while (!err);
1444 /* Send workqueue function */
1445 static void process_send_sockets(struct work_struct *work)
1447 struct connection *con = container_of(work, struct connection, swork);
1449 if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1450 con->connect_action(con);
1451 set_bit(CF_WRITE_PENDING, &con->flags);
1453 if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1454 send_to_sock(con);
1458 /* Discard all entries on the write queues */
1459 static void clean_writequeues(void)
1461 foreach_conn(clean_one_writequeue);
1464 static void work_stop(void)
1466 destroy_workqueue(recv_workqueue);
1467 destroy_workqueue(send_workqueue);
1470 static int work_start(void)
1472 recv_workqueue = alloc_workqueue("dlm_recv",
1473 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1474 if (!recv_workqueue) {
1475 log_print("can't start dlm_recv");
1476 return -ENOMEM;
1479 send_workqueue = alloc_workqueue("dlm_send",
1480 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1481 if (!send_workqueue) {
1482 log_print("can't start dlm_send");
1483 destroy_workqueue(recv_workqueue);
1484 return -ENOMEM;
1487 return 0;
1490 static void stop_conn(struct connection *con)
1492 con->flags |= 0x0F;
1493 if (con->sock && con->sock->sk)
1494 con->sock->sk->sk_user_data = NULL;
1497 static void free_conn(struct connection *con)
1499 close_connection(con, true);
1500 if (con->othercon)
1501 kmem_cache_free(con_cache, con->othercon);
1502 hlist_del(&con->list);
1503 kmem_cache_free(con_cache, con);
1506 void dlm_lowcomms_stop(void)
1508 /* Set all the flags to prevent any
1509 socket activity.
1511 mutex_lock(&connections_lock);
1512 foreach_conn(stop_conn);
1513 mutex_unlock(&connections_lock);
1515 work_stop();
1517 mutex_lock(&connections_lock);
1518 clean_writequeues();
1520 foreach_conn(free_conn);
1522 mutex_unlock(&connections_lock);
1523 kmem_cache_destroy(con_cache);
1526 int dlm_lowcomms_start(void)
1528 int error = -EINVAL;
1529 struct connection *con;
1530 int i;
1532 for (i = 0; i < CONN_HASH_SIZE; i++)
1533 INIT_HLIST_HEAD(&connection_hash[i]);
1535 init_local();
1536 if (!dlm_local_count) {
1537 error = -ENOTCONN;
1538 log_print("no local IP address has been set");
1539 goto out;
1542 error = -ENOMEM;
1543 con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1544 __alignof__(struct connection), 0,
1545 NULL);
1546 if (!con_cache)
1547 goto out;
1549 /* Start listening */
1550 if (dlm_config.ci_protocol == 0)
1551 error = tcp_listen_for_all();
1552 else
1553 error = sctp_listen_for_all();
1554 if (error)
1555 goto fail_unlisten;
1557 error = work_start();
1558 if (error)
1559 goto fail_unlisten;
1561 return 0;
1563 fail_unlisten:
1564 con = nodeid2con(0,0);
1565 if (con) {
1566 close_connection(con, false);
1567 kmem_cache_free(con_cache, con);
1569 kmem_cache_destroy(con_cache);
1571 out:
1572 return error;