audit: complex interfield comparison helper
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ssb / driver_chipcommon_pmu.c
blobe5a2e0e9bc19bbf586c49cc06b49f35cb16c5a88
1 /*
2 * Sonics Silicon Backplane
3 * Broadcom ChipCommon Power Management Unit driver
5 * Copyright 2009, Michael Buesch <m@bues.ch>
6 * Copyright 2007, Broadcom Corporation
8 * Licensed under the GNU/GPL. See COPYING for details.
9 */
11 #include <linux/ssb/ssb.h>
12 #include <linux/ssb/ssb_regs.h>
13 #include <linux/ssb/ssb_driver_chipcommon.h>
14 #include <linux/delay.h>
15 #include <linux/export.h>
17 #include "ssb_private.h"
19 static u32 ssb_chipco_pll_read(struct ssb_chipcommon *cc, u32 offset)
21 chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
22 return chipco_read32(cc, SSB_CHIPCO_PLLCTL_DATA);
25 static void ssb_chipco_pll_write(struct ssb_chipcommon *cc,
26 u32 offset, u32 value)
28 chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
29 chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, value);
32 static void ssb_chipco_regctl_maskset(struct ssb_chipcommon *cc,
33 u32 offset, u32 mask, u32 set)
35 u32 value;
37 chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
38 chipco_write32(cc, SSB_CHIPCO_REGCTL_ADDR, offset);
39 chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
40 value = chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
41 value &= mask;
42 value |= set;
43 chipco_write32(cc, SSB_CHIPCO_REGCTL_DATA, value);
44 chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
47 struct pmu0_plltab_entry {
48 u16 freq; /* Crystal frequency in kHz.*/
49 u8 xf; /* Crystal frequency value for PMU control */
50 u8 wb_int;
51 u32 wb_frac;
54 static const struct pmu0_plltab_entry pmu0_plltab[] = {
55 { .freq = 12000, .xf = 1, .wb_int = 73, .wb_frac = 349525, },
56 { .freq = 13000, .xf = 2, .wb_int = 67, .wb_frac = 725937, },
57 { .freq = 14400, .xf = 3, .wb_int = 61, .wb_frac = 116508, },
58 { .freq = 15360, .xf = 4, .wb_int = 57, .wb_frac = 305834, },
59 { .freq = 16200, .xf = 5, .wb_int = 54, .wb_frac = 336579, },
60 { .freq = 16800, .xf = 6, .wb_int = 52, .wb_frac = 399457, },
61 { .freq = 19200, .xf = 7, .wb_int = 45, .wb_frac = 873813, },
62 { .freq = 19800, .xf = 8, .wb_int = 44, .wb_frac = 466033, },
63 { .freq = 20000, .xf = 9, .wb_int = 44, .wb_frac = 0, },
64 { .freq = 25000, .xf = 10, .wb_int = 70, .wb_frac = 419430, },
65 { .freq = 26000, .xf = 11, .wb_int = 67, .wb_frac = 725937, },
66 { .freq = 30000, .xf = 12, .wb_int = 58, .wb_frac = 699050, },
67 { .freq = 38400, .xf = 13, .wb_int = 45, .wb_frac = 873813, },
68 { .freq = 40000, .xf = 14, .wb_int = 45, .wb_frac = 0, },
70 #define SSB_PMU0_DEFAULT_XTALFREQ 20000
72 static const struct pmu0_plltab_entry * pmu0_plltab_find_entry(u32 crystalfreq)
74 const struct pmu0_plltab_entry *e;
75 unsigned int i;
77 for (i = 0; i < ARRAY_SIZE(pmu0_plltab); i++) {
78 e = &pmu0_plltab[i];
79 if (e->freq == crystalfreq)
80 return e;
83 return NULL;
86 /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
87 static void ssb_pmu0_pllinit_r0(struct ssb_chipcommon *cc,
88 u32 crystalfreq)
90 struct ssb_bus *bus = cc->dev->bus;
91 const struct pmu0_plltab_entry *e = NULL;
92 u32 pmuctl, tmp, pllctl;
93 unsigned int i;
95 if ((bus->chip_id == 0x5354) && !crystalfreq) {
96 /* The 5354 crystal freq is 25MHz */
97 crystalfreq = 25000;
99 if (crystalfreq)
100 e = pmu0_plltab_find_entry(crystalfreq);
101 if (!e)
102 e = pmu0_plltab_find_entry(SSB_PMU0_DEFAULT_XTALFREQ);
103 BUG_ON(!e);
104 crystalfreq = e->freq;
105 cc->pmu.crystalfreq = e->freq;
107 /* Check if the PLL already is programmed to this frequency. */
108 pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
109 if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
110 /* We're already there... */
111 return;
114 ssb_printk(KERN_INFO PFX "Programming PLL to %u.%03u MHz\n",
115 (crystalfreq / 1000), (crystalfreq % 1000));
117 /* First turn the PLL off. */
118 switch (bus->chip_id) {
119 case 0x4328:
120 chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
121 ~(1 << SSB_PMURES_4328_BB_PLL_PU));
122 chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
123 ~(1 << SSB_PMURES_4328_BB_PLL_PU));
124 break;
125 case 0x5354:
126 chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
127 ~(1 << SSB_PMURES_5354_BB_PLL_PU));
128 chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
129 ~(1 << SSB_PMURES_5354_BB_PLL_PU));
130 break;
131 default:
132 SSB_WARN_ON(1);
134 for (i = 1500; i; i--) {
135 tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
136 if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
137 break;
138 udelay(10);
140 tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
141 if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
142 ssb_printk(KERN_EMERG PFX "Failed to turn the PLL off!\n");
144 /* Set PDIV in PLL control 0. */
145 pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL0);
146 if (crystalfreq >= SSB_PMU0_PLLCTL0_PDIV_FREQ)
147 pllctl |= SSB_PMU0_PLLCTL0_PDIV_MSK;
148 else
149 pllctl &= ~SSB_PMU0_PLLCTL0_PDIV_MSK;
150 ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL0, pllctl);
152 /* Set WILD in PLL control 1. */
153 pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL1);
154 pllctl &= ~SSB_PMU0_PLLCTL1_STOPMOD;
155 pllctl &= ~(SSB_PMU0_PLLCTL1_WILD_IMSK | SSB_PMU0_PLLCTL1_WILD_FMSK);
156 pllctl |= ((u32)e->wb_int << SSB_PMU0_PLLCTL1_WILD_IMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_IMSK;
157 pllctl |= ((u32)e->wb_frac << SSB_PMU0_PLLCTL1_WILD_FMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_FMSK;
158 if (e->wb_frac == 0)
159 pllctl |= SSB_PMU0_PLLCTL1_STOPMOD;
160 ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL1, pllctl);
162 /* Set WILD in PLL control 2. */
163 pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL2);
164 pllctl &= ~SSB_PMU0_PLLCTL2_WILD_IMSKHI;
165 pllctl |= (((u32)e->wb_int >> 4) << SSB_PMU0_PLLCTL2_WILD_IMSKHI_SHIFT) & SSB_PMU0_PLLCTL2_WILD_IMSKHI;
166 ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL2, pllctl);
168 /* Set the crystalfrequency and the divisor. */
169 pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
170 pmuctl &= ~SSB_CHIPCO_PMU_CTL_ILP_DIV;
171 pmuctl |= (((crystalfreq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
172 & SSB_CHIPCO_PMU_CTL_ILP_DIV;
173 pmuctl &= ~SSB_CHIPCO_PMU_CTL_XTALFREQ;
174 pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
175 chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
178 struct pmu1_plltab_entry {
179 u16 freq; /* Crystal frequency in kHz.*/
180 u8 xf; /* Crystal frequency value for PMU control */
181 u8 ndiv_int;
182 u32 ndiv_frac;
183 u8 p1div;
184 u8 p2div;
187 static const struct pmu1_plltab_entry pmu1_plltab[] = {
188 { .freq = 12000, .xf = 1, .p1div = 3, .p2div = 22, .ndiv_int = 0x9, .ndiv_frac = 0xFFFFEF, },
189 { .freq = 13000, .xf = 2, .p1div = 1, .p2div = 6, .ndiv_int = 0xb, .ndiv_frac = 0x483483, },
190 { .freq = 14400, .xf = 3, .p1div = 1, .p2div = 10, .ndiv_int = 0xa, .ndiv_frac = 0x1C71C7, },
191 { .freq = 15360, .xf = 4, .p1div = 1, .p2div = 5, .ndiv_int = 0xb, .ndiv_frac = 0x755555, },
192 { .freq = 16200, .xf = 5, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x6E9E06, },
193 { .freq = 16800, .xf = 6, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x3CF3CF, },
194 { .freq = 19200, .xf = 7, .p1div = 1, .p2div = 9, .ndiv_int = 0x5, .ndiv_frac = 0x17B425, },
195 { .freq = 19800, .xf = 8, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0xA57EB, },
196 { .freq = 20000, .xf = 9, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0, },
197 { .freq = 24000, .xf = 10, .p1div = 3, .p2div = 11, .ndiv_int = 0xa, .ndiv_frac = 0, },
198 { .freq = 25000, .xf = 11, .p1div = 5, .p2div = 16, .ndiv_int = 0xb, .ndiv_frac = 0, },
199 { .freq = 26000, .xf = 12, .p1div = 1, .p2div = 2, .ndiv_int = 0x10, .ndiv_frac = 0xEC4EC4, },
200 { .freq = 30000, .xf = 13, .p1div = 3, .p2div = 8, .ndiv_int = 0xb, .ndiv_frac = 0, },
201 { .freq = 38400, .xf = 14, .p1div = 1, .p2div = 5, .ndiv_int = 0x4, .ndiv_frac = 0x955555, },
202 { .freq = 40000, .xf = 15, .p1div = 1, .p2div = 2, .ndiv_int = 0xb, .ndiv_frac = 0, },
205 #define SSB_PMU1_DEFAULT_XTALFREQ 15360
207 static const struct pmu1_plltab_entry * pmu1_plltab_find_entry(u32 crystalfreq)
209 const struct pmu1_plltab_entry *e;
210 unsigned int i;
212 for (i = 0; i < ARRAY_SIZE(pmu1_plltab); i++) {
213 e = &pmu1_plltab[i];
214 if (e->freq == crystalfreq)
215 return e;
218 return NULL;
221 /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
222 static void ssb_pmu1_pllinit_r0(struct ssb_chipcommon *cc,
223 u32 crystalfreq)
225 struct ssb_bus *bus = cc->dev->bus;
226 const struct pmu1_plltab_entry *e = NULL;
227 u32 buffer_strength = 0;
228 u32 tmp, pllctl, pmuctl;
229 unsigned int i;
231 if (bus->chip_id == 0x4312) {
232 /* We do not touch the BCM4312 PLL and assume
233 * the default crystal settings work out-of-the-box. */
234 cc->pmu.crystalfreq = 20000;
235 return;
238 if (crystalfreq)
239 e = pmu1_plltab_find_entry(crystalfreq);
240 if (!e)
241 e = pmu1_plltab_find_entry(SSB_PMU1_DEFAULT_XTALFREQ);
242 BUG_ON(!e);
243 crystalfreq = e->freq;
244 cc->pmu.crystalfreq = e->freq;
246 /* Check if the PLL already is programmed to this frequency. */
247 pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
248 if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
249 /* We're already there... */
250 return;
253 ssb_printk(KERN_INFO PFX "Programming PLL to %u.%03u MHz\n",
254 (crystalfreq / 1000), (crystalfreq % 1000));
256 /* First turn the PLL off. */
257 switch (bus->chip_id) {
258 case 0x4325:
259 chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
260 ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
261 (1 << SSB_PMURES_4325_HT_AVAIL)));
262 chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
263 ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
264 (1 << SSB_PMURES_4325_HT_AVAIL)));
265 /* Adjust the BBPLL to 2 on all channels later. */
266 buffer_strength = 0x222222;
267 break;
268 default:
269 SSB_WARN_ON(1);
271 for (i = 1500; i; i--) {
272 tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
273 if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
274 break;
275 udelay(10);
277 tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
278 if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
279 ssb_printk(KERN_EMERG PFX "Failed to turn the PLL off!\n");
281 /* Set p1div and p2div. */
282 pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL0);
283 pllctl &= ~(SSB_PMU1_PLLCTL0_P1DIV | SSB_PMU1_PLLCTL0_P2DIV);
284 pllctl |= ((u32)e->p1div << SSB_PMU1_PLLCTL0_P1DIV_SHIFT) & SSB_PMU1_PLLCTL0_P1DIV;
285 pllctl |= ((u32)e->p2div << SSB_PMU1_PLLCTL0_P2DIV_SHIFT) & SSB_PMU1_PLLCTL0_P2DIV;
286 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, pllctl);
288 /* Set ndiv int and ndiv mode */
289 pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL2);
290 pllctl &= ~(SSB_PMU1_PLLCTL2_NDIVINT | SSB_PMU1_PLLCTL2_NDIVMODE);
291 pllctl |= ((u32)e->ndiv_int << SSB_PMU1_PLLCTL2_NDIVINT_SHIFT) & SSB_PMU1_PLLCTL2_NDIVINT;
292 pllctl |= (1 << SSB_PMU1_PLLCTL2_NDIVMODE_SHIFT) & SSB_PMU1_PLLCTL2_NDIVMODE;
293 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, pllctl);
295 /* Set ndiv frac */
296 pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL3);
297 pllctl &= ~SSB_PMU1_PLLCTL3_NDIVFRAC;
298 pllctl |= ((u32)e->ndiv_frac << SSB_PMU1_PLLCTL3_NDIVFRAC_SHIFT) & SSB_PMU1_PLLCTL3_NDIVFRAC;
299 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, pllctl);
301 /* Change the drive strength, if required. */
302 if (buffer_strength) {
303 pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL5);
304 pllctl &= ~SSB_PMU1_PLLCTL5_CLKDRV;
305 pllctl |= (buffer_strength << SSB_PMU1_PLLCTL5_CLKDRV_SHIFT) & SSB_PMU1_PLLCTL5_CLKDRV;
306 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, pllctl);
309 /* Tune the crystalfreq and the divisor. */
310 pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
311 pmuctl &= ~(SSB_CHIPCO_PMU_CTL_ILP_DIV | SSB_CHIPCO_PMU_CTL_XTALFREQ);
312 pmuctl |= ((((u32)e->freq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
313 & SSB_CHIPCO_PMU_CTL_ILP_DIV;
314 pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
315 chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
318 static void ssb_pmu_pll_init(struct ssb_chipcommon *cc)
320 struct ssb_bus *bus = cc->dev->bus;
321 u32 crystalfreq = 0; /* in kHz. 0 = keep default freq. */
323 if (bus->bustype == SSB_BUSTYPE_SSB) {
324 /* TODO: The user may override the crystal frequency. */
327 switch (bus->chip_id) {
328 case 0x4312:
329 case 0x4325:
330 ssb_pmu1_pllinit_r0(cc, crystalfreq);
331 break;
332 case 0x4328:
333 case 0x5354:
334 ssb_pmu0_pllinit_r0(cc, crystalfreq);
335 break;
336 case 0x4322:
337 if (cc->pmu.rev == 2) {
338 chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, 0x0000000A);
339 chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, 0x380005C0);
341 break;
342 default:
343 ssb_printk(KERN_ERR PFX
344 "ERROR: PLL init unknown for device %04X\n",
345 bus->chip_id);
349 struct pmu_res_updown_tab_entry {
350 u8 resource; /* The resource number */
351 u16 updown; /* The updown value */
354 enum pmu_res_depend_tab_task {
355 PMU_RES_DEP_SET = 1,
356 PMU_RES_DEP_ADD,
357 PMU_RES_DEP_REMOVE,
360 struct pmu_res_depend_tab_entry {
361 u8 resource; /* The resource number */
362 u8 task; /* SET | ADD | REMOVE */
363 u32 depend; /* The depend mask */
366 static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4328a0[] = {
367 { .resource = SSB_PMURES_4328_EXT_SWITCHER_PWM, .updown = 0x0101, },
368 { .resource = SSB_PMURES_4328_BB_SWITCHER_PWM, .updown = 0x1F01, },
369 { .resource = SSB_PMURES_4328_BB_SWITCHER_BURST, .updown = 0x010F, },
370 { .resource = SSB_PMURES_4328_BB_EXT_SWITCHER_BURST, .updown = 0x0101, },
371 { .resource = SSB_PMURES_4328_ILP_REQUEST, .updown = 0x0202, },
372 { .resource = SSB_PMURES_4328_RADIO_SWITCHER_PWM, .updown = 0x0F01, },
373 { .resource = SSB_PMURES_4328_RADIO_SWITCHER_BURST, .updown = 0x0F01, },
374 { .resource = SSB_PMURES_4328_ROM_SWITCH, .updown = 0x0101, },
375 { .resource = SSB_PMURES_4328_PA_REF_LDO, .updown = 0x0F01, },
376 { .resource = SSB_PMURES_4328_RADIO_LDO, .updown = 0x0F01, },
377 { .resource = SSB_PMURES_4328_AFE_LDO, .updown = 0x0F01, },
378 { .resource = SSB_PMURES_4328_PLL_LDO, .updown = 0x0F01, },
379 { .resource = SSB_PMURES_4328_BG_FILTBYP, .updown = 0x0101, },
380 { .resource = SSB_PMURES_4328_TX_FILTBYP, .updown = 0x0101, },
381 { .resource = SSB_PMURES_4328_RX_FILTBYP, .updown = 0x0101, },
382 { .resource = SSB_PMURES_4328_XTAL_PU, .updown = 0x0101, },
383 { .resource = SSB_PMURES_4328_XTAL_EN, .updown = 0xA001, },
384 { .resource = SSB_PMURES_4328_BB_PLL_FILTBYP, .updown = 0x0101, },
385 { .resource = SSB_PMURES_4328_RF_PLL_FILTBYP, .updown = 0x0101, },
386 { .resource = SSB_PMURES_4328_BB_PLL_PU, .updown = 0x0701, },
389 static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4328a0[] = {
391 /* Adjust ILP Request to avoid forcing EXT/BB into burst mode. */
392 .resource = SSB_PMURES_4328_ILP_REQUEST,
393 .task = PMU_RES_DEP_SET,
394 .depend = ((1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
395 (1 << SSB_PMURES_4328_BB_SWITCHER_PWM)),
399 static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4325a0[] = {
400 { .resource = SSB_PMURES_4325_XTAL_PU, .updown = 0x1501, },
403 static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4325a0[] = {
405 /* Adjust HT-Available dependencies. */
406 .resource = SSB_PMURES_4325_HT_AVAIL,
407 .task = PMU_RES_DEP_ADD,
408 .depend = ((1 << SSB_PMURES_4325_RX_PWRSW_PU) |
409 (1 << SSB_PMURES_4325_TX_PWRSW_PU) |
410 (1 << SSB_PMURES_4325_LOGEN_PWRSW_PU) |
411 (1 << SSB_PMURES_4325_AFE_PWRSW_PU)),
415 static void ssb_pmu_resources_init(struct ssb_chipcommon *cc)
417 struct ssb_bus *bus = cc->dev->bus;
418 u32 min_msk = 0, max_msk = 0;
419 unsigned int i;
420 const struct pmu_res_updown_tab_entry *updown_tab = NULL;
421 unsigned int updown_tab_size = 0;
422 const struct pmu_res_depend_tab_entry *depend_tab = NULL;
423 unsigned int depend_tab_size = 0;
425 switch (bus->chip_id) {
426 case 0x4312:
427 min_msk = 0xCBB;
428 break;
429 case 0x4322:
430 /* We keep the default settings:
431 * min_msk = 0xCBB
432 * max_msk = 0x7FFFF
434 break;
435 case 0x4325:
436 /* Power OTP down later. */
437 min_msk = (1 << SSB_PMURES_4325_CBUCK_BURST) |
438 (1 << SSB_PMURES_4325_LNLDO2_PU);
439 if (chipco_read32(cc, SSB_CHIPCO_CHIPSTAT) &
440 SSB_CHIPCO_CHST_4325_PMUTOP_2B)
441 min_msk |= (1 << SSB_PMURES_4325_CLDO_CBUCK_BURST);
442 /* The PLL may turn on, if it decides so. */
443 max_msk = 0xFFFFF;
444 updown_tab = pmu_res_updown_tab_4325a0;
445 updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4325a0);
446 depend_tab = pmu_res_depend_tab_4325a0;
447 depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4325a0);
448 break;
449 case 0x4328:
450 min_msk = (1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
451 (1 << SSB_PMURES_4328_BB_SWITCHER_PWM) |
452 (1 << SSB_PMURES_4328_XTAL_EN);
453 /* The PLL may turn on, if it decides so. */
454 max_msk = 0xFFFFF;
455 updown_tab = pmu_res_updown_tab_4328a0;
456 updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4328a0);
457 depend_tab = pmu_res_depend_tab_4328a0;
458 depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4328a0);
459 break;
460 case 0x5354:
461 /* The PLL may turn on, if it decides so. */
462 max_msk = 0xFFFFF;
463 break;
464 default:
465 ssb_printk(KERN_ERR PFX
466 "ERROR: PMU resource config unknown for device %04X\n",
467 bus->chip_id);
470 if (updown_tab) {
471 for (i = 0; i < updown_tab_size; i++) {
472 chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
473 updown_tab[i].resource);
474 chipco_write32(cc, SSB_CHIPCO_PMU_RES_UPDNTM,
475 updown_tab[i].updown);
478 if (depend_tab) {
479 for (i = 0; i < depend_tab_size; i++) {
480 chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
481 depend_tab[i].resource);
482 switch (depend_tab[i].task) {
483 case PMU_RES_DEP_SET:
484 chipco_write32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
485 depend_tab[i].depend);
486 break;
487 case PMU_RES_DEP_ADD:
488 chipco_set32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
489 depend_tab[i].depend);
490 break;
491 case PMU_RES_DEP_REMOVE:
492 chipco_mask32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
493 ~(depend_tab[i].depend));
494 break;
495 default:
496 SSB_WARN_ON(1);
501 /* Set the resource masks. */
502 if (min_msk)
503 chipco_write32(cc, SSB_CHIPCO_PMU_MINRES_MSK, min_msk);
504 if (max_msk)
505 chipco_write32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, max_msk);
508 /* http://bcm-v4.sipsolutions.net/802.11/SSB/PmuInit */
509 void ssb_pmu_init(struct ssb_chipcommon *cc)
511 u32 pmucap;
513 if (!(cc->capabilities & SSB_CHIPCO_CAP_PMU))
514 return;
516 pmucap = chipco_read32(cc, SSB_CHIPCO_PMU_CAP);
517 cc->pmu.rev = (pmucap & SSB_CHIPCO_PMU_CAP_REVISION);
519 ssb_dprintk(KERN_DEBUG PFX "Found rev %u PMU (capabilities 0x%08X)\n",
520 cc->pmu.rev, pmucap);
522 if (cc->pmu.rev == 1)
523 chipco_mask32(cc, SSB_CHIPCO_PMU_CTL,
524 ~SSB_CHIPCO_PMU_CTL_NOILPONW);
525 else
526 chipco_set32(cc, SSB_CHIPCO_PMU_CTL,
527 SSB_CHIPCO_PMU_CTL_NOILPONW);
528 ssb_pmu_pll_init(cc);
529 ssb_pmu_resources_init(cc);
532 void ssb_pmu_set_ldo_voltage(struct ssb_chipcommon *cc,
533 enum ssb_pmu_ldo_volt_id id, u32 voltage)
535 struct ssb_bus *bus = cc->dev->bus;
536 u32 addr, shift, mask;
538 switch (bus->chip_id) {
539 case 0x4328:
540 case 0x5354:
541 switch (id) {
542 case LDO_VOLT1:
543 addr = 2;
544 shift = 25;
545 mask = 0xF;
546 break;
547 case LDO_VOLT2:
548 addr = 3;
549 shift = 1;
550 mask = 0xF;
551 break;
552 case LDO_VOLT3:
553 addr = 3;
554 shift = 9;
555 mask = 0xF;
556 break;
557 case LDO_PAREF:
558 addr = 3;
559 shift = 17;
560 mask = 0x3F;
561 break;
562 default:
563 SSB_WARN_ON(1);
564 return;
566 break;
567 case 0x4312:
568 if (SSB_WARN_ON(id != LDO_PAREF))
569 return;
570 addr = 0;
571 shift = 21;
572 mask = 0x3F;
573 break;
574 default:
575 return;
578 ssb_chipco_regctl_maskset(cc, addr, ~(mask << shift),
579 (voltage & mask) << shift);
582 void ssb_pmu_set_ldo_paref(struct ssb_chipcommon *cc, bool on)
584 struct ssb_bus *bus = cc->dev->bus;
585 int ldo;
587 switch (bus->chip_id) {
588 case 0x4312:
589 ldo = SSB_PMURES_4312_PA_REF_LDO;
590 break;
591 case 0x4328:
592 ldo = SSB_PMURES_4328_PA_REF_LDO;
593 break;
594 case 0x5354:
595 ldo = SSB_PMURES_5354_PA_REF_LDO;
596 break;
597 default:
598 return;
601 if (on)
602 chipco_set32(cc, SSB_CHIPCO_PMU_MINRES_MSK, 1 << ldo);
603 else
604 chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK, ~(1 << ldo));
605 chipco_read32(cc, SSB_CHIPCO_PMU_MINRES_MSK); //SPEC FIXME found via mmiotrace - dummy read?
608 EXPORT_SYMBOL(ssb_pmu_set_ldo_voltage);
609 EXPORT_SYMBOL(ssb_pmu_set_ldo_paref);