iwlagn: support v2 of enhanced sensitivity table
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / iwlwifi / iwl-commands.h
blob0016c61b3000e84f52e1d4ceed2aa3406aedf24a
1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
6 * GPL LICENSE SUMMARY
8 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 * BSD LICENSE
33 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 *****************************************************************************/
64 * Please use this file (iwl-commands.h) only for uCode API definitions.
65 * Please use iwl-xxxx-hw.h for hardware-related definitions.
66 * Please use iwl-dev.h for driver implementation definitions.
69 #ifndef __iwl_commands_h__
70 #define __iwl_commands_h__
72 struct iwl_priv;
74 /* uCode version contains 4 values: Major/Minor/API/Serial */
75 #define IWL_UCODE_MAJOR(ver) (((ver) & 0xFF000000) >> 24)
76 #define IWL_UCODE_MINOR(ver) (((ver) & 0x00FF0000) >> 16)
77 #define IWL_UCODE_API(ver) (((ver) & 0x0000FF00) >> 8)
78 #define IWL_UCODE_SERIAL(ver) ((ver) & 0x000000FF)
81 /* Tx rates */
82 #define IWL_CCK_RATES 4
83 #define IWL_OFDM_RATES 8
84 #define IWL_MAX_RATES (IWL_CCK_RATES + IWL_OFDM_RATES)
86 enum {
87 REPLY_ALIVE = 0x1,
88 REPLY_ERROR = 0x2,
90 /* RXON and QOS commands */
91 REPLY_RXON = 0x10,
92 REPLY_RXON_ASSOC = 0x11,
93 REPLY_QOS_PARAM = 0x13,
94 REPLY_RXON_TIMING = 0x14,
96 /* Multi-Station support */
97 REPLY_ADD_STA = 0x18,
98 REPLY_REMOVE_STA = 0x19,
99 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
100 REPLY_TXFIFO_FLUSH = 0x1e,
102 /* Security */
103 REPLY_WEPKEY = 0x20,
105 /* RX, TX, LEDs */
106 REPLY_TX = 0x1c,
107 REPLY_LEDS_CMD = 0x48,
108 REPLY_TX_LINK_QUALITY_CMD = 0x4e, /* for 4965 and up */
110 /* WiMAX coexistence */
111 COEX_PRIORITY_TABLE_CMD = 0x5a, /* for 5000 series and up */
112 COEX_MEDIUM_NOTIFICATION = 0x5b,
113 COEX_EVENT_CMD = 0x5c,
115 /* Calibration */
116 TEMPERATURE_NOTIFICATION = 0x62,
117 CALIBRATION_CFG_CMD = 0x65,
118 CALIBRATION_RES_NOTIFICATION = 0x66,
119 CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
121 /* 802.11h related */
122 REPLY_QUIET_CMD = 0x71, /* not used */
123 REPLY_CHANNEL_SWITCH = 0x72,
124 CHANNEL_SWITCH_NOTIFICATION = 0x73,
125 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
126 SPECTRUM_MEASURE_NOTIFICATION = 0x75,
128 /* Power Management */
129 POWER_TABLE_CMD = 0x77,
130 PM_SLEEP_NOTIFICATION = 0x7A,
131 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
133 /* Scan commands and notifications */
134 REPLY_SCAN_CMD = 0x80,
135 REPLY_SCAN_ABORT_CMD = 0x81,
136 SCAN_START_NOTIFICATION = 0x82,
137 SCAN_RESULTS_NOTIFICATION = 0x83,
138 SCAN_COMPLETE_NOTIFICATION = 0x84,
140 /* IBSS/AP commands */
141 BEACON_NOTIFICATION = 0x90,
142 REPLY_TX_BEACON = 0x91,
143 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
145 /* Miscellaneous commands */
146 REPLY_TX_POWER_DBM_CMD = 0x95,
147 QUIET_NOTIFICATION = 0x96, /* not used */
148 REPLY_TX_PWR_TABLE_CMD = 0x97,
149 REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */
150 TX_ANT_CONFIGURATION_CMD = 0x98,
151 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
153 /* Bluetooth device coexistence config command */
154 REPLY_BT_CONFIG = 0x9b,
156 /* Statistics */
157 REPLY_STATISTICS_CMD = 0x9c,
158 STATISTICS_NOTIFICATION = 0x9d,
160 /* RF-KILL commands and notifications */
161 REPLY_CARD_STATE_CMD = 0xa0,
162 CARD_STATE_NOTIFICATION = 0xa1,
164 /* Missed beacons notification */
165 MISSED_BEACONS_NOTIFICATION = 0xa2,
167 REPLY_CT_KILL_CONFIG_CMD = 0xa4,
168 SENSITIVITY_CMD = 0xa8,
169 REPLY_PHY_CALIBRATION_CMD = 0xb0,
170 REPLY_RX_PHY_CMD = 0xc0,
171 REPLY_RX_MPDU_CMD = 0xc1,
172 REPLY_RX = 0xc3,
173 REPLY_COMPRESSED_BA = 0xc5,
175 /* BT Coex */
176 REPLY_BT_COEX_PRIO_TABLE = 0xcc,
177 REPLY_BT_COEX_PROT_ENV = 0xcd,
178 REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
180 /* PAN commands */
181 REPLY_WIPAN_PARAMS = 0xb2,
182 REPLY_WIPAN_RXON = 0xb3, /* use REPLY_RXON structure */
183 REPLY_WIPAN_RXON_TIMING = 0xb4, /* use REPLY_RXON_TIMING structure */
184 REPLY_WIPAN_RXON_ASSOC = 0xb6, /* use REPLY_RXON_ASSOC structure */
185 REPLY_WIPAN_QOS_PARAM = 0xb7, /* use REPLY_QOS_PARAM structure */
186 REPLY_WIPAN_WEPKEY = 0xb8, /* use REPLY_WEPKEY structure */
187 REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
188 REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
189 REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
191 REPLY_WOWLAN_PATTERNS = 0xe0,
192 REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
193 REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
194 REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
195 REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
196 REPLY_WOWLAN_GET_STATUS = 0xe5,
198 REPLY_MAX = 0xff
201 /******************************************************************************
202 * (0)
203 * Commonly used structures and definitions:
204 * Command header, rate_n_flags, txpower
206 *****************************************************************************/
208 /* iwl_cmd_header flags value */
209 #define IWL_CMD_FAILED_MSK 0x40
211 #define SEQ_TO_QUEUE(s) (((s) >> 8) & 0x1f)
212 #define QUEUE_TO_SEQ(q) (((q) & 0x1f) << 8)
213 #define SEQ_TO_INDEX(s) ((s) & 0xff)
214 #define INDEX_TO_SEQ(i) ((i) & 0xff)
215 #define SEQ_RX_FRAME cpu_to_le16(0x8000)
218 * struct iwl_cmd_header
220 * This header format appears in the beginning of each command sent from the
221 * driver, and each response/notification received from uCode.
223 struct iwl_cmd_header {
224 u8 cmd; /* Command ID: REPLY_RXON, etc. */
225 u8 flags; /* 0:5 reserved, 6 abort, 7 internal */
227 * The driver sets up the sequence number to values of its choosing.
228 * uCode does not use this value, but passes it back to the driver
229 * when sending the response to each driver-originated command, so
230 * the driver can match the response to the command. Since the values
231 * don't get used by uCode, the driver may set up an arbitrary format.
233 * There is one exception: uCode sets bit 15 when it originates
234 * the response/notification, i.e. when the response/notification
235 * is not a direct response to a command sent by the driver. For
236 * example, uCode issues REPLY_RX when it sends a received frame
237 * to the driver; it is not a direct response to any driver command.
239 * The Linux driver uses the following format:
241 * 0:7 tfd index - position within TX queue
242 * 8:12 TX queue id
243 * 13:14 reserved
244 * 15 unsolicited RX or uCode-originated notification
246 __le16 sequence;
248 /* command or response/notification data follows immediately */
249 u8 data[0];
250 } __packed;
254 * iwlagn rate_n_flags bit fields
256 * rate_n_flags format is used in following iwlagn commands:
257 * REPLY_RX (response only)
258 * REPLY_RX_MPDU (response only)
259 * REPLY_TX (both command and response)
260 * REPLY_TX_LINK_QUALITY_CMD
262 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
263 * 2-0: 0) 6 Mbps
264 * 1) 12 Mbps
265 * 2) 18 Mbps
266 * 3) 24 Mbps
267 * 4) 36 Mbps
268 * 5) 48 Mbps
269 * 6) 54 Mbps
270 * 7) 60 Mbps
272 * 4-3: 0) Single stream (SISO)
273 * 1) Dual stream (MIMO)
274 * 2) Triple stream (MIMO)
276 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
278 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
279 * 3-0: 0xD) 6 Mbps
280 * 0xF) 9 Mbps
281 * 0x5) 12 Mbps
282 * 0x7) 18 Mbps
283 * 0x9) 24 Mbps
284 * 0xB) 36 Mbps
285 * 0x1) 48 Mbps
286 * 0x3) 54 Mbps
288 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
289 * 6-0: 10) 1 Mbps
290 * 20) 2 Mbps
291 * 55) 5.5 Mbps
292 * 110) 11 Mbps
294 #define RATE_MCS_CODE_MSK 0x7
295 #define RATE_MCS_SPATIAL_POS 3
296 #define RATE_MCS_SPATIAL_MSK 0x18
297 #define RATE_MCS_HT_DUP_POS 5
298 #define RATE_MCS_HT_DUP_MSK 0x20
299 /* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
300 #define RATE_MCS_RATE_MSK 0xff
302 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
303 #define RATE_MCS_FLAGS_POS 8
304 #define RATE_MCS_HT_POS 8
305 #define RATE_MCS_HT_MSK 0x100
307 /* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
308 #define RATE_MCS_CCK_POS 9
309 #define RATE_MCS_CCK_MSK 0x200
311 /* Bit 10: (1) Use Green Field preamble */
312 #define RATE_MCS_GF_POS 10
313 #define RATE_MCS_GF_MSK 0x400
315 /* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
316 #define RATE_MCS_HT40_POS 11
317 #define RATE_MCS_HT40_MSK 0x800
319 /* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
320 #define RATE_MCS_DUP_POS 12
321 #define RATE_MCS_DUP_MSK 0x1000
323 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
324 #define RATE_MCS_SGI_POS 13
325 #define RATE_MCS_SGI_MSK 0x2000
328 * rate_n_flags Tx antenna masks
329 * 4965 has 2 transmitters
330 * 5100 has 1 transmitter B
331 * 5150 has 1 transmitter A
332 * 5300 has 3 transmitters
333 * 5350 has 3 transmitters
334 * bit14:16
336 #define RATE_MCS_ANT_POS 14
337 #define RATE_MCS_ANT_A_MSK 0x04000
338 #define RATE_MCS_ANT_B_MSK 0x08000
339 #define RATE_MCS_ANT_C_MSK 0x10000
340 #define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
341 #define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
342 #define RATE_ANT_NUM 3
344 #define POWER_TABLE_NUM_ENTRIES 33
345 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
346 #define POWER_TABLE_CCK_ENTRY 32
348 #define IWL_PWR_NUM_HT_OFDM_ENTRIES 24
349 #define IWL_PWR_CCK_ENTRIES 2
352 * struct tx_power_dual_stream
354 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
356 * Same format as iwl_tx_power_dual_stream, but __le32
358 struct tx_power_dual_stream {
359 __le32 dw;
360 } __packed;
363 * Command REPLY_TX_POWER_DBM_CMD = 0x98
364 * struct iwlagn_tx_power_dbm_cmd
366 #define IWLAGN_TX_POWER_AUTO 0x7f
367 #define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
369 struct iwlagn_tx_power_dbm_cmd {
370 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
371 u8 flags;
372 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
373 u8 reserved;
374 } __packed;
377 * Command TX_ANT_CONFIGURATION_CMD = 0x98
378 * This command is used to configure valid Tx antenna.
379 * By default uCode concludes the valid antenna according to the radio flavor.
380 * This command enables the driver to override/modify this conclusion.
382 struct iwl_tx_ant_config_cmd {
383 __le32 valid;
384 } __packed;
386 /******************************************************************************
387 * (0a)
388 * Alive and Error Commands & Responses:
390 *****************************************************************************/
392 #define UCODE_VALID_OK cpu_to_le32(0x1)
395 * REPLY_ALIVE = 0x1 (response only, not a command)
397 * uCode issues this "alive" notification once the runtime image is ready
398 * to receive commands from the driver. This is the *second* "alive"
399 * notification that the driver will receive after rebooting uCode;
400 * this "alive" is indicated by subtype field != 9.
402 * See comments documenting "BSM" (bootstrap state machine).
404 * This response includes two pointers to structures within the device's
405 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
407 * 1) log_event_table_ptr indicates base of the event log. This traces
408 * a 256-entry history of uCode execution within a circular buffer.
409 * Its header format is:
411 * __le32 log_size; log capacity (in number of entries)
412 * __le32 type; (1) timestamp with each entry, (0) no timestamp
413 * __le32 wraps; # times uCode has wrapped to top of circular buffer
414 * __le32 write_index; next circular buffer entry that uCode would fill
416 * The header is followed by the circular buffer of log entries. Entries
417 * with timestamps have the following format:
419 * __le32 event_id; range 0 - 1500
420 * __le32 timestamp; low 32 bits of TSF (of network, if associated)
421 * __le32 data; event_id-specific data value
423 * Entries without timestamps contain only event_id and data.
426 * 2) error_event_table_ptr indicates base of the error log. This contains
427 * information about any uCode error that occurs. For agn, the format
428 * of the error log is defined by struct iwl_error_event_table.
430 * The Linux driver can print both logs to the system log when a uCode error
431 * occurs.
435 * Note: This structure is read from the device with IO accesses,
436 * and the reading already does the endian conversion. As it is
437 * read with u32-sized accesses, any members with a different size
438 * need to be ordered correctly though!
440 struct iwl_error_event_table {
441 u32 valid; /* (nonzero) valid, (0) log is empty */
442 u32 error_id; /* type of error */
443 u32 pc; /* program counter */
444 u32 blink1; /* branch link */
445 u32 blink2; /* branch link */
446 u32 ilink1; /* interrupt link */
447 u32 ilink2; /* interrupt link */
448 u32 data1; /* error-specific data */
449 u32 data2; /* error-specific data */
450 u32 line; /* source code line of error */
451 u32 bcon_time; /* beacon timer */
452 u32 tsf_low; /* network timestamp function timer */
453 u32 tsf_hi; /* network timestamp function timer */
454 u32 gp1; /* GP1 timer register */
455 u32 gp2; /* GP2 timer register */
456 u32 gp3; /* GP3 timer register */
457 u32 ucode_ver; /* uCode version */
458 u32 hw_ver; /* HW Silicon version */
459 u32 brd_ver; /* HW board version */
460 u32 log_pc; /* log program counter */
461 u32 frame_ptr; /* frame pointer */
462 u32 stack_ptr; /* stack pointer */
463 u32 hcmd; /* last host command header */
464 #if 0
465 /* no need to read the remainder, we don't use the values */
466 u32 isr0; /* isr status register LMPM_NIC_ISR0: rxtx_flag */
467 u32 isr1; /* isr status register LMPM_NIC_ISR1: host_flag */
468 u32 isr2; /* isr status register LMPM_NIC_ISR2: enc_flag */
469 u32 isr3; /* isr status register LMPM_NIC_ISR3: time_flag */
470 u32 isr4; /* isr status register LMPM_NIC_ISR4: wico interrupt */
471 u32 isr_pref; /* isr status register LMPM_NIC_PREF_STAT */
472 u32 wait_event; /* wait event() caller address */
473 u32 l2p_control; /* L2pControlField */
474 u32 l2p_duration; /* L2pDurationField */
475 u32 l2p_mhvalid; /* L2pMhValidBits */
476 u32 l2p_addr_match; /* L2pAddrMatchStat */
477 u32 lmpm_pmg_sel; /* indicate which clocks are turned on (LMPM_PMG_SEL) */
478 u32 u_timestamp; /* indicate when the date and time of the compilation */
479 u32 flow_handler; /* FH read/write pointers, RX credit */
480 #endif
481 } __packed;
483 struct iwl_alive_resp {
484 u8 ucode_minor;
485 u8 ucode_major;
486 __le16 reserved1;
487 u8 sw_rev[8];
488 u8 ver_type;
489 u8 ver_subtype; /* not "9" for runtime alive */
490 __le16 reserved2;
491 __le32 log_event_table_ptr; /* SRAM address for event log */
492 __le32 error_event_table_ptr; /* SRAM address for error log */
493 __le32 timestamp;
494 __le32 is_valid;
495 } __packed;
498 * REPLY_ERROR = 0x2 (response only, not a command)
500 struct iwl_error_resp {
501 __le32 error_type;
502 u8 cmd_id;
503 u8 reserved1;
504 __le16 bad_cmd_seq_num;
505 __le32 error_info;
506 __le64 timestamp;
507 } __packed;
509 /******************************************************************************
510 * (1)
511 * RXON Commands & Responses:
513 *****************************************************************************/
516 * Rx config defines & structure
518 /* rx_config device types */
519 enum {
520 RXON_DEV_TYPE_AP = 1,
521 RXON_DEV_TYPE_ESS = 3,
522 RXON_DEV_TYPE_IBSS = 4,
523 RXON_DEV_TYPE_SNIFFER = 6,
524 RXON_DEV_TYPE_CP = 7,
525 RXON_DEV_TYPE_2STA = 8,
526 RXON_DEV_TYPE_P2P = 9,
530 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0)
531 #define RXON_RX_CHAIN_DRIVER_FORCE_POS (0)
532 #define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1)
533 #define RXON_RX_CHAIN_VALID_POS (1)
534 #define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4)
535 #define RXON_RX_CHAIN_FORCE_SEL_POS (4)
536 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7)
537 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
538 #define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10)
539 #define RXON_RX_CHAIN_CNT_POS (10)
540 #define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12)
541 #define RXON_RX_CHAIN_MIMO_CNT_POS (12)
542 #define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14)
543 #define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
545 /* rx_config flags */
546 /* band & modulation selection */
547 #define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0)
548 #define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1)
549 /* auto detection enable */
550 #define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2)
551 /* TGg protection when tx */
552 #define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3)
553 /* cck short slot & preamble */
554 #define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4)
555 #define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5)
556 /* antenna selection */
557 #define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7)
558 #define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00)
559 #define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
560 #define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
561 /* radar detection enable */
562 #define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12)
563 #define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13)
564 /* rx response to host with 8-byte TSF
565 * (according to ON_AIR deassertion) */
566 #define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15)
569 /* HT flags */
570 #define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
571 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22)
573 #define RXON_FLG_HT_OPERATING_MODE_POS (23)
575 #define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23)
576 #define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23)
578 #define RXON_FLG_CHANNEL_MODE_POS (25)
579 #define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25)
581 /* channel mode */
582 enum {
583 CHANNEL_MODE_LEGACY = 0,
584 CHANNEL_MODE_PURE_40 = 1,
585 CHANNEL_MODE_MIXED = 2,
586 CHANNEL_MODE_RESERVED = 3,
588 #define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
589 #define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
590 #define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
592 /* CTS to self (if spec allows) flag */
593 #define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30)
595 /* rx_config filter flags */
596 /* accept all data frames */
597 #define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0)
598 /* pass control & management to host */
599 #define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1)
600 /* accept multi-cast */
601 #define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2)
602 /* don't decrypt uni-cast frames */
603 #define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3)
604 /* don't decrypt multi-cast frames */
605 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
606 /* STA is associated */
607 #define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5)
608 /* transfer to host non bssid beacons in associated state */
609 #define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6)
612 * REPLY_RXON = 0x10 (command, has simple generic response)
614 * RXON tunes the radio tuner to a service channel, and sets up a number
615 * of parameters that are used primarily for Rx, but also for Tx operations.
617 * NOTE: When tuning to a new channel, driver must set the
618 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
619 * info within the device, including the station tables, tx retry
620 * rate tables, and txpower tables. Driver must build a new station
621 * table and txpower table before transmitting anything on the RXON
622 * channel.
624 * NOTE: All RXONs wipe clean the internal txpower table. Driver must
625 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
626 * regardless of whether RXON_FILTER_ASSOC_MSK is set.
629 struct iwl_rxon_cmd {
630 u8 node_addr[6];
631 __le16 reserved1;
632 u8 bssid_addr[6];
633 __le16 reserved2;
634 u8 wlap_bssid_addr[6];
635 __le16 reserved3;
636 u8 dev_type;
637 u8 air_propagation;
638 __le16 rx_chain;
639 u8 ofdm_basic_rates;
640 u8 cck_basic_rates;
641 __le16 assoc_id;
642 __le32 flags;
643 __le32 filter_flags;
644 __le16 channel;
645 u8 ofdm_ht_single_stream_basic_rates;
646 u8 ofdm_ht_dual_stream_basic_rates;
647 u8 ofdm_ht_triple_stream_basic_rates;
648 u8 reserved5;
649 __le16 acquisition_data;
650 __le16 reserved6;
651 } __packed;
654 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
656 struct iwl_rxon_assoc_cmd {
657 __le32 flags;
658 __le32 filter_flags;
659 u8 ofdm_basic_rates;
660 u8 cck_basic_rates;
661 __le16 reserved1;
662 u8 ofdm_ht_single_stream_basic_rates;
663 u8 ofdm_ht_dual_stream_basic_rates;
664 u8 ofdm_ht_triple_stream_basic_rates;
665 u8 reserved2;
666 __le16 rx_chain_select_flags;
667 __le16 acquisition_data;
668 __le32 reserved3;
669 } __packed;
671 #define IWL_CONN_MAX_LISTEN_INTERVAL 10
672 #define IWL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */
673 #define IWL39_MAX_UCODE_BEACON_INTERVAL 1 /* 1024 */
676 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
678 struct iwl_rxon_time_cmd {
679 __le64 timestamp;
680 __le16 beacon_interval;
681 __le16 atim_window;
682 __le32 beacon_init_val;
683 __le16 listen_interval;
684 u8 dtim_period;
685 u8 delta_cp_bss_tbtts;
686 } __packed;
689 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
692 * struct iwl5000_channel_switch_cmd
693 * @band: 0- 5.2GHz, 1- 2.4GHz
694 * @expect_beacon: 0- resume transmits after channel switch
695 * 1- wait for beacon to resume transmits
696 * @channel: new channel number
697 * @rxon_flags: Rx on flags
698 * @rxon_filter_flags: filtering parameters
699 * @switch_time: switch time in extended beacon format
700 * @reserved: reserved bytes
702 struct iwl5000_channel_switch_cmd {
703 u8 band;
704 u8 expect_beacon;
705 __le16 channel;
706 __le32 rxon_flags;
707 __le32 rxon_filter_flags;
708 __le32 switch_time;
709 __le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
710 } __packed;
713 * struct iwl6000_channel_switch_cmd
714 * @band: 0- 5.2GHz, 1- 2.4GHz
715 * @expect_beacon: 0- resume transmits after channel switch
716 * 1- wait for beacon to resume transmits
717 * @channel: new channel number
718 * @rxon_flags: Rx on flags
719 * @rxon_filter_flags: filtering parameters
720 * @switch_time: switch time in extended beacon format
721 * @reserved: reserved bytes
723 struct iwl6000_channel_switch_cmd {
724 u8 band;
725 u8 expect_beacon;
726 __le16 channel;
727 __le32 rxon_flags;
728 __le32 rxon_filter_flags;
729 __le32 switch_time;
730 __le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
731 } __packed;
734 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
736 struct iwl_csa_notification {
737 __le16 band;
738 __le16 channel;
739 __le32 status; /* 0 - OK, 1 - fail */
740 } __packed;
742 /******************************************************************************
743 * (2)
744 * Quality-of-Service (QOS) Commands & Responses:
746 *****************************************************************************/
749 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
750 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
752 * @cw_min: Contention window, start value in numbers of slots.
753 * Should be a power-of-2, minus 1. Device's default is 0x0f.
754 * @cw_max: Contention window, max value in numbers of slots.
755 * Should be a power-of-2, minus 1. Device's default is 0x3f.
756 * @aifsn: Number of slots in Arbitration Interframe Space (before
757 * performing random backoff timing prior to Tx). Device default 1.
758 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
760 * Device will automatically increase contention window by (2*CW) + 1 for each
761 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
762 * value, to cap the CW value.
764 struct iwl_ac_qos {
765 __le16 cw_min;
766 __le16 cw_max;
767 u8 aifsn;
768 u8 reserved1;
769 __le16 edca_txop;
770 } __packed;
772 /* QoS flags defines */
773 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01)
774 #define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02)
775 #define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10)
777 /* Number of Access Categories (AC) (EDCA), queues 0..3 */
778 #define AC_NUM 4
781 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
783 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
784 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
786 struct iwl_qosparam_cmd {
787 __le32 qos_flags;
788 struct iwl_ac_qos ac[AC_NUM];
789 } __packed;
791 /******************************************************************************
792 * (3)
793 * Add/Modify Stations Commands & Responses:
795 *****************************************************************************/
797 * Multi station support
800 /* Special, dedicated locations within device's station table */
801 #define IWL_AP_ID 0
802 #define IWL_AP_ID_PAN 1
803 #define IWL_STA_ID 2
804 #define IWLAGN_PAN_BCAST_ID 14
805 #define IWLAGN_BROADCAST_ID 15
806 #define IWLAGN_STATION_COUNT 16
808 #define IWL_INVALID_STATION 255
810 #define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2)
811 #define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8)
812 #define STA_FLG_PAN_STATION cpu_to_le32(1 << 13)
813 #define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17)
814 #define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18)
815 #define STA_FLG_MAX_AGG_SIZE_POS (19)
816 #define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19)
817 #define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21)
818 #define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22)
819 #define STA_FLG_AGG_MPDU_DENSITY_POS (23)
820 #define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23)
822 /* Use in mode field. 1: modify existing entry, 0: add new station entry */
823 #define STA_CONTROL_MODIFY_MSK 0x01
825 /* key flags __le16*/
826 #define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007)
827 #define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000)
828 #define STA_KEY_FLG_WEP cpu_to_le16(0x0001)
829 #define STA_KEY_FLG_CCMP cpu_to_le16(0x0002)
830 #define STA_KEY_FLG_TKIP cpu_to_le16(0x0003)
832 #define STA_KEY_FLG_KEYID_POS 8
833 #define STA_KEY_FLG_INVALID cpu_to_le16(0x0800)
834 /* wep key is either from global key (0) or from station info array (1) */
835 #define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008)
837 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */
838 #define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000)
839 #define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000)
840 #define STA_KEY_MAX_NUM 8
841 #define STA_KEY_MAX_NUM_PAN 16
842 /* must not match WEP_INVALID_OFFSET */
843 #define IWLAGN_HW_KEY_DEFAULT 0xfe
845 /* Flags indicate whether to modify vs. don't change various station params */
846 #define STA_MODIFY_KEY_MASK 0x01
847 #define STA_MODIFY_TID_DISABLE_TX 0x02
848 #define STA_MODIFY_TX_RATE_MSK 0x04
849 #define STA_MODIFY_ADDBA_TID_MSK 0x08
850 #define STA_MODIFY_DELBA_TID_MSK 0x10
851 #define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20
853 /* Receiver address (actually, Rx station's index into station table),
854 * combined with Traffic ID (QOS priority), in format used by Tx Scheduler */
855 #define BUILD_RAxTID(sta_id, tid) (((sta_id) << 4) + (tid))
857 /* agn */
858 struct iwl_keyinfo {
859 __le16 key_flags;
860 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
861 u8 reserved1;
862 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
863 u8 key_offset;
864 u8 reserved2;
865 u8 key[16]; /* 16-byte unicast decryption key */
866 __le64 tx_secur_seq_cnt;
867 __le64 hw_tkip_mic_rx_key;
868 __le64 hw_tkip_mic_tx_key;
869 } __packed;
872 * struct sta_id_modify
873 * @addr[ETH_ALEN]: station's MAC address
874 * @sta_id: index of station in uCode's station table
875 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
877 * Driver selects unused table index when adding new station,
878 * or the index to a pre-existing station entry when modifying that station.
879 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
881 * modify_mask flags select which parameters to modify vs. leave alone.
883 struct sta_id_modify {
884 u8 addr[ETH_ALEN];
885 __le16 reserved1;
886 u8 sta_id;
887 u8 modify_mask;
888 __le16 reserved2;
889 } __packed;
892 * REPLY_ADD_STA = 0x18 (command)
894 * The device contains an internal table of per-station information,
895 * with info on security keys, aggregation parameters, and Tx rates for
896 * initial Tx attempt and any retries (agn devices uses
897 * REPLY_TX_LINK_QUALITY_CMD,
899 * REPLY_ADD_STA sets up the table entry for one station, either creating
900 * a new entry, or modifying a pre-existing one.
902 * NOTE: RXON command (without "associated" bit set) wipes the station table
903 * clean. Moving into RF_KILL state does this also. Driver must set up
904 * new station table before transmitting anything on the RXON channel
905 * (except active scans or active measurements; those commands carry
906 * their own txpower/rate setup data).
908 * When getting started on a new channel, driver must set up the
909 * IWL_BROADCAST_ID entry (last entry in the table). For a client
910 * station in a BSS, once an AP is selected, driver sets up the AP STA
911 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP
912 * are all that are needed for a BSS client station. If the device is
913 * used as AP, or in an IBSS network, driver must set up station table
914 * entries for all STAs in network, starting with index IWL_STA_ID.
917 struct iwl_addsta_cmd {
918 u8 mode; /* 1: modify existing, 0: add new station */
919 u8 reserved[3];
920 struct sta_id_modify sta;
921 struct iwl_keyinfo key;
922 __le32 station_flags; /* STA_FLG_* */
923 __le32 station_flags_msk; /* STA_FLG_* */
925 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
926 * corresponding to bit (e.g. bit 5 controls TID 5).
927 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
928 __le16 tid_disable_tx;
930 __le16 rate_n_flags; /* 3945 only */
932 /* TID for which to add block-ack support.
933 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
934 u8 add_immediate_ba_tid;
936 /* TID for which to remove block-ack support.
937 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
938 u8 remove_immediate_ba_tid;
940 /* Starting Sequence Number for added block-ack support.
941 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
942 __le16 add_immediate_ba_ssn;
945 * Number of packets OK to transmit to station even though
946 * it is asleep -- used to synchronise PS-poll and u-APSD
947 * responses while ucode keeps track of STA sleep state.
949 __le16 sleep_tx_count;
951 __le16 reserved2;
952 } __packed;
955 #define ADD_STA_SUCCESS_MSK 0x1
956 #define ADD_STA_NO_ROOM_IN_TABLE 0x2
957 #define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
958 #define ADD_STA_MODIFY_NON_EXIST_STA 0x8
960 * REPLY_ADD_STA = 0x18 (response)
962 struct iwl_add_sta_resp {
963 u8 status; /* ADD_STA_* */
964 } __packed;
966 #define REM_STA_SUCCESS_MSK 0x1
968 * REPLY_REM_STA = 0x19 (response)
970 struct iwl_rem_sta_resp {
971 u8 status;
972 } __packed;
975 * REPLY_REM_STA = 0x19 (command)
977 struct iwl_rem_sta_cmd {
978 u8 num_sta; /* number of removed stations */
979 u8 reserved[3];
980 u8 addr[ETH_ALEN]; /* MAC addr of the first station */
981 u8 reserved2[2];
982 } __packed;
985 /* WiFi queues mask */
986 #define IWL_SCD_BK_MSK cpu_to_le32(BIT(0))
987 #define IWL_SCD_BE_MSK cpu_to_le32(BIT(1))
988 #define IWL_SCD_VI_MSK cpu_to_le32(BIT(2))
989 #define IWL_SCD_VO_MSK cpu_to_le32(BIT(3))
990 #define IWL_SCD_MGMT_MSK cpu_to_le32(BIT(3))
992 /* PAN queues mask */
993 #define IWL_PAN_SCD_BK_MSK cpu_to_le32(BIT(4))
994 #define IWL_PAN_SCD_BE_MSK cpu_to_le32(BIT(5))
995 #define IWL_PAN_SCD_VI_MSK cpu_to_le32(BIT(6))
996 #define IWL_PAN_SCD_VO_MSK cpu_to_le32(BIT(7))
997 #define IWL_PAN_SCD_MGMT_MSK cpu_to_le32(BIT(7))
998 #define IWL_PAN_SCD_MULTICAST_MSK cpu_to_le32(BIT(8))
1000 #define IWL_AGG_TX_QUEUE_MSK cpu_to_le32(0xffc00)
1002 #define IWL_DROP_SINGLE 0
1003 #define IWL_DROP_ALL (BIT(IWL_RXON_CTX_BSS) | BIT(IWL_RXON_CTX_PAN))
1006 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
1008 * When using full FIFO flush this command checks the scheduler HW block WR/RD
1009 * pointers to check if all the frames were transferred by DMA into the
1010 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
1011 * empty the command can finish.
1012 * This command is used to flush the TXFIFO from transmit commands, it may
1013 * operate on single or multiple queues, the command queue can't be flushed by
1014 * this command. The command response is returned when all the queue flush
1015 * operations are done. Each TX command flushed return response with the FLUSH
1016 * status set in the TX response status. When FIFO flush operation is used,
1017 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
1018 * are set.
1020 * @fifo_control: bit mask for which queues to flush
1021 * @flush_control: flush controls
1022 * 0: Dump single MSDU
1023 * 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
1024 * 2: Dump all FIFO
1026 struct iwl_txfifo_flush_cmd {
1027 __le32 fifo_control;
1028 __le16 flush_control;
1029 __le16 reserved;
1030 } __packed;
1033 * REPLY_WEP_KEY = 0x20
1035 struct iwl_wep_key {
1036 u8 key_index;
1037 u8 key_offset;
1038 u8 reserved1[2];
1039 u8 key_size;
1040 u8 reserved2[3];
1041 u8 key[16];
1042 } __packed;
1044 struct iwl_wep_cmd {
1045 u8 num_keys;
1046 u8 global_key_type;
1047 u8 flags;
1048 u8 reserved;
1049 struct iwl_wep_key key[0];
1050 } __packed;
1052 #define WEP_KEY_WEP_TYPE 1
1053 #define WEP_KEYS_MAX 4
1054 #define WEP_INVALID_OFFSET 0xff
1055 #define WEP_KEY_LEN_64 5
1056 #define WEP_KEY_LEN_128 13
1058 /******************************************************************************
1059 * (4)
1060 * Rx Responses:
1062 *****************************************************************************/
1064 #define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0)
1065 #define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1)
1067 #define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0)
1068 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1)
1069 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2)
1070 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3)
1071 #define RX_RES_PHY_FLAGS_ANTENNA_MSK 0xf0
1072 #define RX_RES_PHY_FLAGS_ANTENNA_POS 4
1074 #define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
1075 #define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
1076 #define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
1077 #define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
1078 #define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
1079 #define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8)
1081 #define RX_RES_STATUS_STATION_FOUND (1<<6)
1082 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7)
1084 #define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
1085 #define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
1086 #define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
1087 #define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
1088 #define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
1090 #define RX_MPDU_RES_STATUS_ICV_OK (0x20)
1091 #define RX_MPDU_RES_STATUS_MIC_OK (0x40)
1092 #define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7)
1093 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800)
1096 #define IWLAGN_RX_RES_PHY_CNT 8
1097 #define IWLAGN_RX_RES_AGC_IDX 1
1098 #define IWLAGN_RX_RES_RSSI_AB_IDX 2
1099 #define IWLAGN_RX_RES_RSSI_C_IDX 3
1100 #define IWLAGN_OFDM_AGC_MSK 0xfe00
1101 #define IWLAGN_OFDM_AGC_BIT_POS 9
1102 #define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1103 #define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1104 #define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1105 #define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1106 #define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1107 #define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1108 #define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1109 #define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1110 #define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1112 struct iwlagn_non_cfg_phy {
1113 __le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT]; /* up to 8 phy entries */
1114 } __packed;
1118 * REPLY_RX = 0xc3 (response only, not a command)
1119 * Used only for legacy (non 11n) frames.
1121 struct iwl_rx_phy_res {
1122 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
1123 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
1124 u8 stat_id; /* configurable DSP phy data set ID */
1125 u8 reserved1;
1126 __le64 timestamp; /* TSF at on air rise */
1127 __le32 beacon_time_stamp; /* beacon at on-air rise */
1128 __le16 phy_flags; /* general phy flags: band, modulation, ... */
1129 __le16 channel; /* channel number */
1130 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1131 __le32 rate_n_flags; /* RATE_MCS_* */
1132 __le16 byte_count; /* frame's byte-count */
1133 __le16 frame_time; /* frame's time on the air */
1134 } __packed;
1136 struct iwl_rx_mpdu_res_start {
1137 __le16 byte_count;
1138 __le16 reserved;
1139 } __packed;
1142 /******************************************************************************
1143 * (5)
1144 * Tx Commands & Responses:
1146 * Driver must place each REPLY_TX command into one of the prioritized Tx
1147 * queues in host DRAM, shared between driver and device (see comments for
1148 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
1149 * are preparing to transmit, the device pulls the Tx command over the PCI
1150 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1151 * from which data will be transmitted.
1153 * uCode handles all timing and protocol related to control frames
1154 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
1155 * handle reception of block-acks; uCode updates the host driver via
1156 * REPLY_COMPRESSED_BA.
1158 * uCode handles retrying Tx when an ACK is expected but not received.
1159 * This includes trying lower data rates than the one requested in the Tx
1160 * command, as set up by the REPLY_RATE_SCALE (for 3945) or
1161 * REPLY_TX_LINK_QUALITY_CMD (agn).
1163 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1164 * This command must be executed after every RXON command, before Tx can occur.
1165 *****************************************************************************/
1167 /* REPLY_TX Tx flags field */
1170 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1171 * before this frame. if CTS-to-self required check
1172 * RXON_FLG_SELF_CTS_EN status.
1173 * unused in 3945/4965, used in 5000 series and after
1175 #define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1178 * 1: Use Request-To-Send protocol before this frame.
1179 * Mutually exclusive vs. TX_CMD_FLG_CTS_MSK.
1180 * used in 3945/4965, unused in 5000 series and after
1182 #define TX_CMD_FLG_RTS_MSK cpu_to_le32(1 << 1)
1185 * 1: Transmit Clear-To-Send to self before this frame.
1186 * Driver should set this for AUTH/DEAUTH/ASSOC-REQ/REASSOC mgmnt frames.
1187 * Mutually exclusive vs. TX_CMD_FLG_RTS_MSK.
1188 * used in 3945/4965, unused in 5000 series and after
1190 #define TX_CMD_FLG_CTS_MSK cpu_to_le32(1 << 2)
1192 /* 1: Expect ACK from receiving station
1193 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1194 * Set this for unicast frames, but not broadcast/multicast. */
1195 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1197 /* For agn devices:
1198 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1199 * Tx command's initial_rate_index indicates first rate to try;
1200 * uCode walks through table for additional Tx attempts.
1201 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1202 * This rate will be used for all Tx attempts; it will not be scaled. */
1203 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1205 /* 1: Expect immediate block-ack.
1206 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
1207 #define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6)
1210 * 1: Frame requires full Tx-Op protection.
1211 * Set this if either RTS or CTS Tx Flag gets set.
1212 * used in 3945/4965, unused in 5000 series and after
1214 #define TX_CMD_FLG_FULL_TXOP_PROT_MSK cpu_to_le32(1 << 7)
1216 /* Tx antenna selection field; used only for 3945, reserved (0) for agn devices.
1217 * Set field to "0" to allow 3945 uCode to select antenna (normal usage). */
1218 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1219 #define TX_CMD_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
1220 #define TX_CMD_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
1222 /* 1: Ignore Bluetooth priority for this frame.
1223 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1224 #define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1226 /* 1: uCode overrides sequence control field in MAC header.
1227 * 0: Driver provides sequence control field in MAC header.
1228 * Set this for management frames, non-QOS data frames, non-unicast frames,
1229 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1230 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1232 /* 1: This frame is non-last MPDU; more fragments are coming.
1233 * 0: Last fragment, or not using fragmentation. */
1234 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1236 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1237 * 0: No TSF required in outgoing frame.
1238 * Set this for transmitting beacons and probe responses. */
1239 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1241 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1242 * alignment of frame's payload data field.
1243 * 0: No pad
1244 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1245 * field (but not both). Driver must align frame data (i.e. data following
1246 * MAC header) to DWORD boundary. */
1247 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1249 /* accelerate aggregation support
1250 * 0 - no CCMP encryption; 1 - CCMP encryption */
1251 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1253 /* HCCA-AP - disable duration overwriting. */
1254 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1258 * TX command security control
1260 #define TX_CMD_SEC_WEP 0x01
1261 #define TX_CMD_SEC_CCM 0x02
1262 #define TX_CMD_SEC_TKIP 0x03
1263 #define TX_CMD_SEC_MSK 0x03
1264 #define TX_CMD_SEC_SHIFT 6
1265 #define TX_CMD_SEC_KEY128 0x08
1268 * security overhead sizes
1270 #define WEP_IV_LEN 4
1271 #define WEP_ICV_LEN 4
1272 #define CCMP_MIC_LEN 8
1273 #define TKIP_ICV_LEN 4
1276 * REPLY_TX = 0x1c (command)
1280 * 4965 uCode updates these Tx attempt count values in host DRAM.
1281 * Used for managing Tx retries when expecting block-acks.
1282 * Driver should set these fields to 0.
1284 struct iwl_dram_scratch {
1285 u8 try_cnt; /* Tx attempts */
1286 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
1287 __le16 reserved;
1288 } __packed;
1290 struct iwl_tx_cmd {
1292 * MPDU byte count:
1293 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1294 * + 8 byte IV for CCM or TKIP (not used for WEP)
1295 * + Data payload
1296 * + 8-byte MIC (not used for CCM/WEP)
1297 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1298 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1299 * Range: 14-2342 bytes.
1301 __le16 len;
1304 * MPDU or MSDU byte count for next frame.
1305 * Used for fragmentation and bursting, but not 11n aggregation.
1306 * Same as "len", but for next frame. Set to 0 if not applicable.
1308 __le16 next_frame_len;
1310 __le32 tx_flags; /* TX_CMD_FLG_* */
1312 /* uCode may modify this field of the Tx command (in host DRAM!).
1313 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1314 struct iwl_dram_scratch scratch;
1316 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1317 __le32 rate_n_flags; /* RATE_MCS_* */
1319 /* Index of destination station in uCode's station table */
1320 u8 sta_id;
1322 /* Type of security encryption: CCM or TKIP */
1323 u8 sec_ctl; /* TX_CMD_SEC_* */
1326 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1327 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
1328 * data frames, this field may be used to selectively reduce initial
1329 * rate (via non-0 value) for special frames (e.g. management), while
1330 * still supporting rate scaling for all frames.
1332 u8 initial_rate_index;
1333 u8 reserved;
1334 u8 key[16];
1335 __le16 next_frame_flags;
1336 __le16 reserved2;
1337 union {
1338 __le32 life_time;
1339 __le32 attempt;
1340 } stop_time;
1342 /* Host DRAM physical address pointer to "scratch" in this command.
1343 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
1344 __le32 dram_lsb_ptr;
1345 u8 dram_msb_ptr;
1347 u8 rts_retry_limit; /*byte 50 */
1348 u8 data_retry_limit; /*byte 51 */
1349 u8 tid_tspec;
1350 union {
1351 __le16 pm_frame_timeout;
1352 __le16 attempt_duration;
1353 } timeout;
1356 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1357 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1359 __le16 driver_txop;
1362 * MAC header goes here, followed by 2 bytes padding if MAC header
1363 * length is 26 or 30 bytes, followed by payload data
1365 u8 payload[0];
1366 struct ieee80211_hdr hdr[0];
1367 } __packed;
1370 * TX command response is sent after *agn* transmission attempts.
1372 * both postpone and abort status are expected behavior from uCode. there is
1373 * no special operation required from driver; except for RFKILL_FLUSH,
1374 * which required tx flush host command to flush all the tx frames in queues
1376 enum {
1377 TX_STATUS_SUCCESS = 0x01,
1378 TX_STATUS_DIRECT_DONE = 0x02,
1379 /* postpone TX */
1380 TX_STATUS_POSTPONE_DELAY = 0x40,
1381 TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1382 TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1383 TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1384 TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1385 /* abort TX */
1386 TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1387 TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1388 TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1389 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1390 TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1391 TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1392 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1393 TX_STATUS_FAIL_DEST_PS = 0x88,
1394 TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1395 TX_STATUS_FAIL_BT_RETRY = 0x8a,
1396 TX_STATUS_FAIL_STA_INVALID = 0x8b,
1397 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1398 TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1399 TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1400 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1401 TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1402 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1405 #define TX_PACKET_MODE_REGULAR 0x0000
1406 #define TX_PACKET_MODE_BURST_SEQ 0x0100
1407 #define TX_PACKET_MODE_BURST_FIRST 0x0200
1409 enum {
1410 TX_POWER_PA_NOT_ACTIVE = 0x0,
1413 enum {
1414 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
1415 TX_STATUS_DELAY_MSK = 0x00000040,
1416 TX_STATUS_ABORT_MSK = 0x00000080,
1417 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
1418 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
1419 TX_RESERVED = 0x00780000, /* bits 19:22 */
1420 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
1421 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
1424 /* *******************************
1425 * TX aggregation status
1426 ******************************* */
1428 enum {
1429 AGG_TX_STATE_TRANSMITTED = 0x00,
1430 AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1431 AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1432 AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1433 AGG_TX_STATE_ABORT_MSK = 0x08,
1434 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1435 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1436 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1437 AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1438 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1439 AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1440 AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1441 AGG_TX_STATE_DELAY_TX_MSK = 0x400
1444 #define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */
1445 #define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */
1447 #define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1448 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1449 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1451 /* # tx attempts for first frame in aggregation */
1452 #define AGG_TX_STATE_TRY_CNT_POS 12
1453 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1455 /* Command ID and sequence number of Tx command for this frame */
1456 #define AGG_TX_STATE_SEQ_NUM_POS 16
1457 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1460 * REPLY_TX = 0x1c (response)
1462 * This response may be in one of two slightly different formats, indicated
1463 * by the frame_count field:
1465 * 1) No aggregation (frame_count == 1). This reports Tx results for
1466 * a single frame. Multiple attempts, at various bit rates, may have
1467 * been made for this frame.
1469 * 2) Aggregation (frame_count > 1). This reports Tx results for
1470 * 2 or more frames that used block-acknowledge. All frames were
1471 * transmitted at same rate. Rate scaling may have been used if first
1472 * frame in this new agg block failed in previous agg block(s).
1474 * Note that, for aggregation, ACK (block-ack) status is not delivered here;
1475 * block-ack has not been received by the time the agn device records
1476 * this status.
1477 * This status relates to reasons the tx might have been blocked or aborted
1478 * within the sending station (this agn device), rather than whether it was
1479 * received successfully by the destination station.
1481 struct agg_tx_status {
1482 __le16 status;
1483 __le16 sequence;
1484 } __packed;
1487 * definitions for initial rate index field
1488 * bits [3:0] initial rate index
1489 * bits [6:4] rate table color, used for the initial rate
1490 * bit-7 invalid rate indication
1491 * i.e. rate was not chosen from rate table
1492 * or rate table color was changed during frame retries
1493 * refer tlc rate info
1496 #define IWL50_TX_RES_INIT_RATE_INDEX_POS 0
1497 #define IWL50_TX_RES_INIT_RATE_INDEX_MSK 0x0f
1498 #define IWL50_TX_RES_RATE_TABLE_COLOR_POS 4
1499 #define IWL50_TX_RES_RATE_TABLE_COLOR_MSK 0x70
1500 #define IWL50_TX_RES_INV_RATE_INDEX_MSK 0x80
1502 /* refer to ra_tid */
1503 #define IWLAGN_TX_RES_TID_POS 0
1504 #define IWLAGN_TX_RES_TID_MSK 0x0f
1505 #define IWLAGN_TX_RES_RA_POS 4
1506 #define IWLAGN_TX_RES_RA_MSK 0xf0
1508 struct iwlagn_tx_resp {
1509 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1510 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1511 u8 failure_rts; /* # failures due to unsuccessful RTS */
1512 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1514 /* For non-agg: Rate at which frame was successful.
1515 * For agg: Rate at which all frames were transmitted. */
1516 __le32 rate_n_flags; /* RATE_MCS_* */
1518 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1519 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1520 __le16 wireless_media_time; /* uSecs */
1522 u8 pa_status; /* RF power amplifier measurement (not used) */
1523 u8 pa_integ_res_a[3];
1524 u8 pa_integ_res_b[3];
1525 u8 pa_integ_res_C[3];
1527 __le32 tfd_info;
1528 __le16 seq_ctl;
1529 __le16 byte_cnt;
1530 u8 tlc_info;
1531 u8 ra_tid; /* tid (0:3), sta_id (4:7) */
1532 __le16 frame_ctrl;
1534 * For non-agg: frame status TX_STATUS_*
1535 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1536 * fields follow this one, up to frame_count.
1537 * Bit fields:
1538 * 11- 0: AGG_TX_STATE_* status code
1539 * 15-12: Retry count for 1st frame in aggregation (retries
1540 * occur if tx failed for this frame when it was a
1541 * member of a previous aggregation block). If rate
1542 * scaling is used, retry count indicates the rate
1543 * table entry used for all frames in the new agg.
1544 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1546 struct agg_tx_status status; /* TX status (in aggregation -
1547 * status of 1st frame) */
1548 } __packed;
1550 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1552 * Reports Block-Acknowledge from recipient station
1554 struct iwl_compressed_ba_resp {
1555 __le32 sta_addr_lo32;
1556 __le16 sta_addr_hi16;
1557 __le16 reserved;
1559 /* Index of recipient (BA-sending) station in uCode's station table */
1560 u8 sta_id;
1561 u8 tid;
1562 __le16 seq_ctl;
1563 __le64 bitmap;
1564 __le16 scd_flow;
1565 __le16 scd_ssn;
1566 /* following only for 5000 series and up */
1567 u8 txed; /* number of frames sent */
1568 u8 txed_2_done; /* number of frames acked */
1569 } __packed;
1572 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1576 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1577 #define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
1579 /* # of EDCA prioritized tx fifos */
1580 #define LINK_QUAL_AC_NUM AC_NUM
1582 /* # entries in rate scale table to support Tx retries */
1583 #define LINK_QUAL_MAX_RETRY_NUM 16
1585 /* Tx antenna selection values */
1586 #define LINK_QUAL_ANT_A_MSK (1 << 0)
1587 #define LINK_QUAL_ANT_B_MSK (1 << 1)
1588 #define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1592 * struct iwl_link_qual_general_params
1594 * Used in REPLY_TX_LINK_QUALITY_CMD
1596 struct iwl_link_qual_general_params {
1597 u8 flags;
1599 /* No entries at or above this (driver chosen) index contain MIMO */
1600 u8 mimo_delimiter;
1602 /* Best single antenna to use for single stream (legacy, SISO). */
1603 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
1605 /* Best antennas to use for MIMO (unused for 4965, assumes both). */
1606 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
1609 * If driver needs to use different initial rates for different
1610 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1611 * this table will set that up, by indicating the indexes in the
1612 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1613 * Otherwise, driver should set all entries to 0.
1615 * Entry usage:
1616 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1617 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1619 u8 start_rate_index[LINK_QUAL_AC_NUM];
1620 } __packed;
1622 #define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */
1623 #define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000)
1624 #define LINK_QUAL_AGG_TIME_LIMIT_MIN (100)
1626 #define LINK_QUAL_AGG_DISABLE_START_DEF (3)
1627 #define LINK_QUAL_AGG_DISABLE_START_MAX (255)
1628 #define LINK_QUAL_AGG_DISABLE_START_MIN (0)
1630 #define LINK_QUAL_AGG_FRAME_LIMIT_DEF (63)
1631 #define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63)
1632 #define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0)
1635 * struct iwl_link_qual_agg_params
1637 * Used in REPLY_TX_LINK_QUALITY_CMD
1639 struct iwl_link_qual_agg_params {
1642 *Maximum number of uSec in aggregation.
1643 * default set to 4000 (4 milliseconds) if not configured in .cfg
1645 __le16 agg_time_limit;
1648 * Number of Tx retries allowed for a frame, before that frame will
1649 * no longer be considered for the start of an aggregation sequence
1650 * (scheduler will then try to tx it as single frame).
1651 * Driver should set this to 3.
1653 u8 agg_dis_start_th;
1656 * Maximum number of frames in aggregation.
1657 * 0 = no limit (default). 1 = no aggregation.
1658 * Other values = max # frames in aggregation.
1660 u8 agg_frame_cnt_limit;
1662 __le32 reserved;
1663 } __packed;
1666 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1668 * For agn devices only; 3945 uses REPLY_RATE_SCALE.
1670 * Each station in the agn device's internal station table has its own table
1671 * of 16
1672 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1673 * an ACK is not received. This command replaces the entire table for
1674 * one station.
1676 * NOTE: Station must already be in agn device's station table.
1677 * Use REPLY_ADD_STA.
1679 * The rate scaling procedures described below work well. Of course, other
1680 * procedures are possible, and may work better for particular environments.
1683 * FILLING THE RATE TABLE
1685 * Given a particular initial rate and mode, as determined by the rate
1686 * scaling algorithm described below, the Linux driver uses the following
1687 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1688 * Link Quality command:
1691 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
1692 * a) Use this same initial rate for first 3 entries.
1693 * b) Find next lower available rate using same mode (SISO or MIMO),
1694 * use for next 3 entries. If no lower rate available, switch to
1695 * legacy mode (no HT40 channel, no MIMO, no short guard interval).
1696 * c) If using MIMO, set command's mimo_delimiter to number of entries
1697 * using MIMO (3 or 6).
1698 * d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1699 * no MIMO, no short guard interval), at the next lower bit rate
1700 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1701 * legacy procedure for remaining table entries.
1703 * 2) If using legacy initial rate:
1704 * a) Use the initial rate for only one entry.
1705 * b) For each following entry, reduce the rate to next lower available
1706 * rate, until reaching the lowest available rate.
1707 * c) When reducing rate, also switch antenna selection.
1708 * d) Once lowest available rate is reached, repeat this rate until
1709 * rate table is filled (16 entries), switching antenna each entry.
1712 * ACCUMULATING HISTORY
1714 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1715 * uses two sets of frame Tx success history: One for the current/active
1716 * modulation mode, and one for a speculative/search mode that is being
1717 * attempted. If the speculative mode turns out to be more effective (i.e.
1718 * actual transfer rate is better), then the driver continues to use the
1719 * speculative mode as the new current active mode.
1721 * Each history set contains, separately for each possible rate, data for a
1722 * sliding window of the 62 most recent tx attempts at that rate. The data
1723 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1724 * and attempted frames, from which the driver can additionally calculate a
1725 * success ratio (success / attempted) and number of failures
1726 * (attempted - success), and control the size of the window (attempted).
1727 * The driver uses the bit map to remove successes from the success sum, as
1728 * the oldest tx attempts fall out of the window.
1730 * When the agn device makes multiple tx attempts for a given frame, each
1731 * attempt might be at a different rate, and have different modulation
1732 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1733 * up in the rate scaling table in the Link Quality command. The driver must
1734 * determine which rate table entry was used for each tx attempt, to determine
1735 * which rate-specific history to update, and record only those attempts that
1736 * match the modulation characteristics of the history set.
1738 * When using block-ack (aggregation), all frames are transmitted at the same
1739 * rate, since there is no per-attempt acknowledgment from the destination
1740 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in
1741 * rate_n_flags field. After receiving a block-ack, the driver can update
1742 * history for the entire block all at once.
1745 * FINDING BEST STARTING RATE:
1747 * When working with a selected initial modulation mode (see below), the
1748 * driver attempts to find a best initial rate. The initial rate is the
1749 * first entry in the Link Quality command's rate table.
1751 * 1) Calculate actual throughput (success ratio * expected throughput, see
1752 * table below) for current initial rate. Do this only if enough frames
1753 * have been attempted to make the value meaningful: at least 6 failed
1754 * tx attempts, or at least 8 successes. If not enough, don't try rate
1755 * scaling yet.
1757 * 2) Find available rates adjacent to current initial rate. Available means:
1758 * a) supported by hardware &&
1759 * b) supported by association &&
1760 * c) within any constraints selected by user
1762 * 3) Gather measured throughputs for adjacent rates. These might not have
1763 * enough history to calculate a throughput. That's okay, we might try
1764 * using one of them anyway!
1766 * 4) Try decreasing rate if, for current rate:
1767 * a) success ratio is < 15% ||
1768 * b) lower adjacent rate has better measured throughput ||
1769 * c) higher adjacent rate has worse throughput, and lower is unmeasured
1771 * As a sanity check, if decrease was determined above, leave rate
1772 * unchanged if:
1773 * a) lower rate unavailable
1774 * b) success ratio at current rate > 85% (very good)
1775 * c) current measured throughput is better than expected throughput
1776 * of lower rate (under perfect 100% tx conditions, see table below)
1778 * 5) Try increasing rate if, for current rate:
1779 * a) success ratio is < 15% ||
1780 * b) both adjacent rates' throughputs are unmeasured (try it!) ||
1781 * b) higher adjacent rate has better measured throughput ||
1782 * c) lower adjacent rate has worse throughput, and higher is unmeasured
1784 * As a sanity check, if increase was determined above, leave rate
1785 * unchanged if:
1786 * a) success ratio at current rate < 70%. This is not particularly
1787 * good performance; higher rate is sure to have poorer success.
1789 * 6) Re-evaluate the rate after each tx frame. If working with block-
1790 * acknowledge, history and statistics may be calculated for the entire
1791 * block (including prior history that fits within the history windows),
1792 * before re-evaluation.
1794 * FINDING BEST STARTING MODULATION MODE:
1796 * After working with a modulation mode for a "while" (and doing rate scaling),
1797 * the driver searches for a new initial mode in an attempt to improve
1798 * throughput. The "while" is measured by numbers of attempted frames:
1800 * For legacy mode, search for new mode after:
1801 * 480 successful frames, or 160 failed frames
1802 * For high-throughput modes (SISO or MIMO), search for new mode after:
1803 * 4500 successful frames, or 400 failed frames
1805 * Mode switch possibilities are (3 for each mode):
1807 * For legacy:
1808 * Change antenna, try SISO (if HT association), try MIMO (if HT association)
1809 * For SISO:
1810 * Change antenna, try MIMO, try shortened guard interval (SGI)
1811 * For MIMO:
1812 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1814 * When trying a new mode, use the same bit rate as the old/current mode when
1815 * trying antenna switches and shortened guard interval. When switching to
1816 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1817 * for which the expected throughput (under perfect conditions) is about the
1818 * same or slightly better than the actual measured throughput delivered by
1819 * the old/current mode.
1821 * Actual throughput can be estimated by multiplying the expected throughput
1822 * by the success ratio (successful / attempted tx frames). Frame size is
1823 * not considered in this calculation; it assumes that frame size will average
1824 * out to be fairly consistent over several samples. The following are
1825 * metric values for expected throughput assuming 100% success ratio.
1826 * Only G band has support for CCK rates:
1828 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
1830 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186
1831 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186
1832 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
1833 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
1834 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
1835 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
1836 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
1837 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
1838 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
1839 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
1841 * After the new mode has been tried for a short while (minimum of 6 failed
1842 * frames or 8 successful frames), compare success ratio and actual throughput
1843 * estimate of the new mode with the old. If either is better with the new
1844 * mode, continue to use the new mode.
1846 * Continue comparing modes until all 3 possibilities have been tried.
1847 * If moving from legacy to HT, try all 3 possibilities from the new HT
1848 * mode. After trying all 3, a best mode is found. Continue to use this mode
1849 * for the longer "while" described above (e.g. 480 successful frames for
1850 * legacy), and then repeat the search process.
1853 struct iwl_link_quality_cmd {
1855 /* Index of destination/recipient station in uCode's station table */
1856 u8 sta_id;
1857 u8 reserved1;
1858 __le16 control; /* not used */
1859 struct iwl_link_qual_general_params general_params;
1860 struct iwl_link_qual_agg_params agg_params;
1863 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1864 * specifies 1st Tx rate attempted, via index into this table.
1865 * agn devices works its way through table when retrying Tx.
1867 struct {
1868 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */
1869 } rs_table[LINK_QUAL_MAX_RETRY_NUM];
1870 __le32 reserved2;
1871 } __packed;
1874 * BT configuration enable flags:
1875 * bit 0 - 1: BT channel announcement enabled
1876 * 0: disable
1877 * bit 1 - 1: priority of BT device enabled
1878 * 0: disable
1879 * bit 2 - 1: BT 2 wire support enabled
1880 * 0: disable
1882 #define BT_COEX_DISABLE (0x0)
1883 #define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1884 #define BT_ENABLE_PRIORITY BIT(1)
1885 #define BT_ENABLE_2_WIRE BIT(2)
1887 #define BT_COEX_DISABLE (0x0)
1888 #define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1890 #define BT_LEAD_TIME_MIN (0x0)
1891 #define BT_LEAD_TIME_DEF (0x1E)
1892 #define BT_LEAD_TIME_MAX (0xFF)
1894 #define BT_MAX_KILL_MIN (0x1)
1895 #define BT_MAX_KILL_DEF (0x5)
1896 #define BT_MAX_KILL_MAX (0xFF)
1898 #define BT_DURATION_LIMIT_DEF 625
1899 #define BT_DURATION_LIMIT_MAX 1250
1900 #define BT_DURATION_LIMIT_MIN 625
1902 #define BT_ON_THRESHOLD_DEF 4
1903 #define BT_ON_THRESHOLD_MAX 1000
1904 #define BT_ON_THRESHOLD_MIN 1
1906 #define BT_FRAG_THRESHOLD_DEF 0
1907 #define BT_FRAG_THRESHOLD_MAX 0
1908 #define BT_FRAG_THRESHOLD_MIN 0
1910 #define BT_AGG_THRESHOLD_DEF 1200
1911 #define BT_AGG_THRESHOLD_MAX 8000
1912 #define BT_AGG_THRESHOLD_MIN 400
1915 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1917 * 3945 and agn devices support hardware handshake with Bluetooth device on
1918 * same platform. Bluetooth device alerts wireless device when it will Tx;
1919 * wireless device can delay or kill its own Tx to accommodate.
1921 struct iwl_bt_cmd {
1922 u8 flags;
1923 u8 lead_time;
1924 u8 max_kill;
1925 u8 reserved;
1926 __le32 kill_ack_mask;
1927 __le32 kill_cts_mask;
1928 } __packed;
1930 #define IWLAGN_BT_FLAG_CHANNEL_INHIBITION BIT(0)
1932 #define IWLAGN_BT_FLAG_COEX_MODE_MASK (BIT(3)|BIT(4)|BIT(5))
1933 #define IWLAGN_BT_FLAG_COEX_MODE_SHIFT 3
1934 #define IWLAGN_BT_FLAG_COEX_MODE_DISABLED 0
1935 #define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W 1
1936 #define IWLAGN_BT_FLAG_COEX_MODE_3W 2
1937 #define IWLAGN_BT_FLAG_COEX_MODE_4W 3
1939 #define IWLAGN_BT_FLAG_UCODE_DEFAULT BIT(6)
1940 /* Disable Sync PSPoll on SCO/eSCO */
1941 #define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE BIT(7)
1943 #define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD -75 /* dBm */
1944 #define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD -65 /* dBm */
1946 #define IWLAGN_BT_PRIO_BOOST_MAX 0xFF
1947 #define IWLAGN_BT_PRIO_BOOST_MIN 0x00
1948 #define IWLAGN_BT_PRIO_BOOST_DEFAULT 0xF0
1950 #define IWLAGN_BT_MAX_KILL_DEFAULT 5
1952 #define IWLAGN_BT3_T7_DEFAULT 1
1954 #define IWLAGN_BT_KILL_ACK_MASK_DEFAULT cpu_to_le32(0xffff0000)
1955 #define IWLAGN_BT_KILL_CTS_MASK_DEFAULT cpu_to_le32(0xffff0000)
1956 #define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO cpu_to_le32(0xffffffff)
1958 #define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT 2
1960 #define IWLAGN_BT3_T2_DEFAULT 0xc
1962 #define IWLAGN_BT_VALID_ENABLE_FLAGS cpu_to_le16(BIT(0))
1963 #define IWLAGN_BT_VALID_BOOST cpu_to_le16(BIT(1))
1964 #define IWLAGN_BT_VALID_MAX_KILL cpu_to_le16(BIT(2))
1965 #define IWLAGN_BT_VALID_3W_TIMERS cpu_to_le16(BIT(3))
1966 #define IWLAGN_BT_VALID_KILL_ACK_MASK cpu_to_le16(BIT(4))
1967 #define IWLAGN_BT_VALID_KILL_CTS_MASK cpu_to_le16(BIT(5))
1968 #define IWLAGN_BT_VALID_BT4_TIMES cpu_to_le16(BIT(6))
1969 #define IWLAGN_BT_VALID_3W_LUT cpu_to_le16(BIT(7))
1971 #define IWLAGN_BT_ALL_VALID_MSK (IWLAGN_BT_VALID_ENABLE_FLAGS | \
1972 IWLAGN_BT_VALID_BOOST | \
1973 IWLAGN_BT_VALID_MAX_KILL | \
1974 IWLAGN_BT_VALID_3W_TIMERS | \
1975 IWLAGN_BT_VALID_KILL_ACK_MASK | \
1976 IWLAGN_BT_VALID_KILL_CTS_MASK | \
1977 IWLAGN_BT_VALID_BT4_TIMES | \
1978 IWLAGN_BT_VALID_3W_LUT)
1980 struct iwl_basic_bt_cmd {
1981 u8 flags;
1982 u8 ledtime; /* unused */
1983 u8 max_kill;
1984 u8 bt3_timer_t7_value;
1985 __le32 kill_ack_mask;
1986 __le32 kill_cts_mask;
1987 u8 bt3_prio_sample_time;
1988 u8 bt3_timer_t2_value;
1989 __le16 bt4_reaction_time; /* unused */
1990 __le32 bt3_lookup_table[12];
1991 __le16 bt4_decision_time; /* unused */
1992 __le16 valid;
1995 struct iwl6000_bt_cmd {
1996 struct iwl_basic_bt_cmd basic;
1997 u8 prio_boost;
1999 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
2000 * if configure the following patterns
2002 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
2003 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
2006 struct iwl2000_bt_cmd {
2007 struct iwl_basic_bt_cmd basic;
2008 __le32 prio_boost;
2010 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
2011 * if configure the following patterns
2013 u8 reserved;
2014 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
2015 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
2018 #define IWLAGN_BT_SCO_ACTIVE cpu_to_le32(BIT(0))
2020 struct iwlagn_bt_sco_cmd {
2021 __le32 flags;
2024 /******************************************************************************
2025 * (6)
2026 * Spectrum Management (802.11h) Commands, Responses, Notifications:
2028 *****************************************************************************/
2031 * Spectrum Management
2033 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
2034 RXON_FILTER_CTL2HOST_MSK | \
2035 RXON_FILTER_ACCEPT_GRP_MSK | \
2036 RXON_FILTER_DIS_DECRYPT_MSK | \
2037 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
2038 RXON_FILTER_ASSOC_MSK | \
2039 RXON_FILTER_BCON_AWARE_MSK)
2041 struct iwl_measure_channel {
2042 __le32 duration; /* measurement duration in extended beacon
2043 * format */
2044 u8 channel; /* channel to measure */
2045 u8 type; /* see enum iwl_measure_type */
2046 __le16 reserved;
2047 } __packed;
2050 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
2052 struct iwl_spectrum_cmd {
2053 __le16 len; /* number of bytes starting from token */
2054 u8 token; /* token id */
2055 u8 id; /* measurement id -- 0 or 1 */
2056 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
2057 u8 periodic; /* 1 = periodic */
2058 __le16 path_loss_timeout;
2059 __le32 start_time; /* start time in extended beacon format */
2060 __le32 reserved2;
2061 __le32 flags; /* rxon flags */
2062 __le32 filter_flags; /* rxon filter flags */
2063 __le16 channel_count; /* minimum 1, maximum 10 */
2064 __le16 reserved3;
2065 struct iwl_measure_channel channels[10];
2066 } __packed;
2069 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2071 struct iwl_spectrum_resp {
2072 u8 token;
2073 u8 id; /* id of the prior command replaced, or 0xff */
2074 __le16 status; /* 0 - command will be handled
2075 * 1 - cannot handle (conflicts with another
2076 * measurement) */
2077 } __packed;
2079 enum iwl_measurement_state {
2080 IWL_MEASUREMENT_START = 0,
2081 IWL_MEASUREMENT_STOP = 1,
2084 enum iwl_measurement_status {
2085 IWL_MEASUREMENT_OK = 0,
2086 IWL_MEASUREMENT_CONCURRENT = 1,
2087 IWL_MEASUREMENT_CSA_CONFLICT = 2,
2088 IWL_MEASUREMENT_TGH_CONFLICT = 3,
2089 /* 4-5 reserved */
2090 IWL_MEASUREMENT_STOPPED = 6,
2091 IWL_MEASUREMENT_TIMEOUT = 7,
2092 IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2095 #define NUM_ELEMENTS_IN_HISTOGRAM 8
2097 struct iwl_measurement_histogram {
2098 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
2099 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
2100 } __packed;
2102 /* clear channel availability counters */
2103 struct iwl_measurement_cca_counters {
2104 __le32 ofdm;
2105 __le32 cck;
2106 } __packed;
2108 enum iwl_measure_type {
2109 IWL_MEASURE_BASIC = (1 << 0),
2110 IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2111 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2112 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2113 IWL_MEASURE_FRAME = (1 << 4),
2114 /* bits 5:6 are reserved */
2115 IWL_MEASURE_IDLE = (1 << 7),
2119 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2121 struct iwl_spectrum_notification {
2122 u8 id; /* measurement id -- 0 or 1 */
2123 u8 token;
2124 u8 channel_index; /* index in measurement channel list */
2125 u8 state; /* 0 - start, 1 - stop */
2126 __le32 start_time; /* lower 32-bits of TSF */
2127 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
2128 u8 channel;
2129 u8 type; /* see enum iwl_measurement_type */
2130 u8 reserved1;
2131 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
2132 * valid if applicable for measurement type requested. */
2133 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
2134 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
2135 __le32 cca_time; /* channel load time in usecs */
2136 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
2137 * unidentified */
2138 u8 reserved2[3];
2139 struct iwl_measurement_histogram histogram;
2140 __le32 stop_time; /* lower 32-bits of TSF */
2141 __le32 status; /* see iwl_measurement_status */
2142 } __packed;
2144 /******************************************************************************
2145 * (7)
2146 * Power Management Commands, Responses, Notifications:
2148 *****************************************************************************/
2151 * struct iwl_powertable_cmd - Power Table Command
2152 * @flags: See below:
2154 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2156 * PM allow:
2157 * bit 0 - '0' Driver not allow power management
2158 * '1' Driver allow PM (use rest of parameters)
2160 * uCode send sleep notifications:
2161 * bit 1 - '0' Don't send sleep notification
2162 * '1' send sleep notification (SEND_PM_NOTIFICATION)
2164 * Sleep over DTIM
2165 * bit 2 - '0' PM have to walk up every DTIM
2166 * '1' PM could sleep over DTIM till listen Interval.
2168 * PCI power managed
2169 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2170 * '1' !(PCI_CFG_LINK_CTRL & 0x1)
2172 * Fast PD
2173 * bit 4 - '1' Put radio to sleep when receiving frame for others
2175 * Force sleep Modes
2176 * bit 31/30- '00' use both mac/xtal sleeps
2177 * '01' force Mac sleep
2178 * '10' force xtal sleep
2179 * '11' Illegal set
2181 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2182 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2183 * for every DTIM.
2185 #define IWL_POWER_VEC_SIZE 5
2187 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0))
2188 #define IWL_POWER_POWER_SAVE_ENA_MSK cpu_to_le16(BIT(0))
2189 #define IWL_POWER_POWER_MANAGEMENT_ENA_MSK cpu_to_le16(BIT(1))
2190 #define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2))
2191 #define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3))
2192 #define IWL_POWER_FAST_PD cpu_to_le16(BIT(4))
2193 #define IWL_POWER_BEACON_FILTERING cpu_to_le16(BIT(5))
2194 #define IWL_POWER_SHADOW_REG_ENA cpu_to_le16(BIT(6))
2195 #define IWL_POWER_CT_KILL_SET cpu_to_le16(BIT(7))
2196 #define IWL_POWER_BT_SCO_ENA cpu_to_le16(BIT(8))
2197 #define IWL_POWER_ADVANCE_PM_ENA_MSK cpu_to_le16(BIT(9))
2199 struct iwl_powertable_cmd {
2200 __le16 flags;
2201 u8 keep_alive_seconds; /* 3945 reserved */
2202 u8 debug_flags; /* 3945 reserved */
2203 __le32 rx_data_timeout;
2204 __le32 tx_data_timeout;
2205 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2206 __le32 keep_alive_beacons;
2207 } __packed;
2210 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2211 * all devices identical.
2213 struct iwl_sleep_notification {
2214 u8 pm_sleep_mode;
2215 u8 pm_wakeup_src;
2216 __le16 reserved;
2217 __le32 sleep_time;
2218 __le32 tsf_low;
2219 __le32 bcon_timer;
2220 } __packed;
2222 /* Sleep states. all devices identical. */
2223 enum {
2224 IWL_PM_NO_SLEEP = 0,
2225 IWL_PM_SLP_MAC = 1,
2226 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2227 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2228 IWL_PM_SLP_PHY = 4,
2229 IWL_PM_SLP_REPENT = 5,
2230 IWL_PM_WAKEUP_BY_TIMER = 6,
2231 IWL_PM_WAKEUP_BY_DRIVER = 7,
2232 IWL_PM_WAKEUP_BY_RFKILL = 8,
2233 /* 3 reserved */
2234 IWL_PM_NUM_OF_MODES = 12,
2238 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2240 #define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
2241 #define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
2242 #define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
2243 struct iwl_card_state_cmd {
2244 __le32 status; /* CARD_STATE_CMD_* request new power state */
2245 } __packed;
2248 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2250 struct iwl_card_state_notif {
2251 __le32 flags;
2252 } __packed;
2254 #define HW_CARD_DISABLED 0x01
2255 #define SW_CARD_DISABLED 0x02
2256 #define CT_CARD_DISABLED 0x04
2257 #define RXON_CARD_DISABLED 0x10
2259 struct iwl_ct_kill_config {
2260 __le32 reserved;
2261 __le32 critical_temperature_M;
2262 __le32 critical_temperature_R;
2263 } __packed;
2265 /* 1000, and 6x00 */
2266 struct iwl_ct_kill_throttling_config {
2267 __le32 critical_temperature_exit;
2268 __le32 reserved;
2269 __le32 critical_temperature_enter;
2270 } __packed;
2272 /******************************************************************************
2273 * (8)
2274 * Scan Commands, Responses, Notifications:
2276 *****************************************************************************/
2278 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2279 #define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1)
2282 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2284 * One for each channel in the scan list.
2285 * Each channel can independently select:
2286 * 1) SSID for directed active scans
2287 * 2) Txpower setting (for rate specified within Tx command)
2288 * 3) How long to stay on-channel (behavior may be modified by quiet_time,
2289 * quiet_plcp_th, good_CRC_th)
2291 * To avoid uCode errors, make sure the following are true (see comments
2292 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2293 * 1) If using passive_dwell (i.e. passive_dwell != 0):
2294 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2295 * 2) quiet_time <= active_dwell
2296 * 3) If restricting off-channel time (i.e. max_out_time !=0):
2297 * passive_dwell < max_out_time
2298 * active_dwell < max_out_time
2301 struct iwl_scan_channel {
2303 * type is defined as:
2304 * 0:0 1 = active, 0 = passive
2305 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2306 * SSID IE is transmitted in probe request.
2307 * 21:31 reserved
2309 __le32 type;
2310 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */
2311 u8 tx_gain; /* gain for analog radio */
2312 u8 dsp_atten; /* gain for DSP */
2313 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2314 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2315 } __packed;
2317 /* set number of direct probes __le32 type */
2318 #define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2321 * struct iwl_ssid_ie - directed scan network information element
2323 * Up to 20 of these may appear in REPLY_SCAN_CMD (Note: Only 4 are in
2324 * 3945 SCAN api), selected by "type" bit field in struct iwl_scan_channel;
2325 * each channel may select different ssids from among the 20 (4) entries.
2326 * SSID IEs get transmitted in reverse order of entry.
2328 struct iwl_ssid_ie {
2329 u8 id;
2330 u8 len;
2331 u8 ssid[32];
2332 } __packed;
2334 #define PROBE_OPTION_MAX_3945 4
2335 #define PROBE_OPTION_MAX 20
2336 #define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF)
2337 #define IWL_GOOD_CRC_TH_DISABLED 0
2338 #define IWL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1)
2339 #define IWL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff)
2340 #define IWL_MAX_SCAN_SIZE 1024
2341 #define IWL_MAX_CMD_SIZE 4096
2344 * REPLY_SCAN_CMD = 0x80 (command)
2346 * The hardware scan command is very powerful; the driver can set it up to
2347 * maintain (relatively) normal network traffic while doing a scan in the
2348 * background. The max_out_time and suspend_time control the ratio of how
2349 * long the device stays on an associated network channel ("service channel")
2350 * vs. how long it's away from the service channel, i.e. tuned to other channels
2351 * for scanning.
2353 * max_out_time is the max time off-channel (in usec), and suspend_time
2354 * is how long (in "extended beacon" format) that the scan is "suspended"
2355 * after returning to the service channel. That is, suspend_time is the
2356 * time that we stay on the service channel, doing normal work, between
2357 * scan segments. The driver may set these parameters differently to support
2358 * scanning when associated vs. not associated, and light vs. heavy traffic
2359 * loads when associated.
2361 * After receiving this command, the device's scan engine does the following;
2363 * 1) Sends SCAN_START notification to driver
2364 * 2) Checks to see if it has time to do scan for one channel
2365 * 3) Sends NULL packet, with power-save (PS) bit set to 1,
2366 * to tell AP that we're going off-channel
2367 * 4) Tunes to first channel in scan list, does active or passive scan
2368 * 5) Sends SCAN_RESULT notification to driver
2369 * 6) Checks to see if it has time to do scan on *next* channel in list
2370 * 7) Repeats 4-6 until it no longer has time to scan the next channel
2371 * before max_out_time expires
2372 * 8) Returns to service channel
2373 * 9) Sends NULL packet with PS=0 to tell AP that we're back
2374 * 10) Stays on service channel until suspend_time expires
2375 * 11) Repeats entire process 2-10 until list is complete
2376 * 12) Sends SCAN_COMPLETE notification
2378 * For fast, efficient scans, the scan command also has support for staying on
2379 * a channel for just a short time, if doing active scanning and getting no
2380 * responses to the transmitted probe request. This time is controlled by
2381 * quiet_time, and the number of received packets below which a channel is
2382 * considered "quiet" is controlled by quiet_plcp_threshold.
2384 * For active scanning on channels that have regulatory restrictions against
2385 * blindly transmitting, the scan can listen before transmitting, to make sure
2386 * that there is already legitimate activity on the channel. If enough
2387 * packets are cleanly received on the channel (controlled by good_CRC_th,
2388 * typical value 1), the scan engine starts transmitting probe requests.
2390 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2392 * To avoid uCode errors, see timing restrictions described under
2393 * struct iwl_scan_channel.
2396 enum iwl_scan_flags {
2397 /* BIT(0) currently unused */
2398 IWL_SCAN_FLAGS_ACTION_FRAME_TX = BIT(1),
2399 /* bits 2-7 reserved */
2402 struct iwl_scan_cmd {
2403 __le16 len;
2404 u8 scan_flags; /* scan flags: see enum iwl_scan_flags */
2405 u8 channel_count; /* # channels in channel list */
2406 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2407 * (only for active scan) */
2408 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2409 __le16 good_CRC_th; /* passive -> active promotion threshold */
2410 __le16 rx_chain; /* RXON_RX_CHAIN_* */
2411 __le32 max_out_time; /* max usec to be away from associated (service)
2412 * channel */
2413 __le32 suspend_time; /* pause scan this long (in "extended beacon
2414 * format") when returning to service chnl:
2415 * 3945; 31:24 # beacons, 19:0 additional usec,
2416 * 4965; 31:22 # beacons, 21:0 additional usec.
2418 __le32 flags; /* RXON_FLG_* */
2419 __le32 filter_flags; /* RXON_FILTER_* */
2421 /* For active scans (set to all-0s for passive scans).
2422 * Does not include payload. Must specify Tx rate; no rate scaling. */
2423 struct iwl_tx_cmd tx_cmd;
2425 /* For directed active scans (set to all-0s otherwise) */
2426 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2429 * Probe request frame, followed by channel list.
2431 * Size of probe request frame is specified by byte count in tx_cmd.
2432 * Channel list follows immediately after probe request frame.
2433 * Number of channels in list is specified by channel_count.
2434 * Each channel in list is of type:
2436 * struct iwl_scan_channel channels[0];
2438 * NOTE: Only one band of channels can be scanned per pass. You
2439 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2440 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2441 * before requesting another scan.
2443 u8 data[0];
2444 } __packed;
2446 /* Can abort will notify by complete notification with abort status. */
2447 #define CAN_ABORT_STATUS cpu_to_le32(0x1)
2448 /* complete notification statuses */
2449 #define ABORT_STATUS 0x2
2452 * REPLY_SCAN_CMD = 0x80 (response)
2454 struct iwl_scanreq_notification {
2455 __le32 status; /* 1: okay, 2: cannot fulfill request */
2456 } __packed;
2459 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2461 struct iwl_scanstart_notification {
2462 __le32 tsf_low;
2463 __le32 tsf_high;
2464 __le32 beacon_timer;
2465 u8 channel;
2466 u8 band;
2467 u8 reserved[2];
2468 __le32 status;
2469 } __packed;
2471 #define SCAN_OWNER_STATUS 0x1
2472 #define MEASURE_OWNER_STATUS 0x2
2474 #define IWL_PROBE_STATUS_OK 0
2475 #define IWL_PROBE_STATUS_TX_FAILED BIT(0)
2476 /* error statuses combined with TX_FAILED */
2477 #define IWL_PROBE_STATUS_FAIL_TTL BIT(1)
2478 #define IWL_PROBE_STATUS_FAIL_BT BIT(2)
2480 #define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
2482 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2484 struct iwl_scanresults_notification {
2485 u8 channel;
2486 u8 band;
2487 u8 probe_status;
2488 u8 num_probe_not_sent; /* not enough time to send */
2489 __le32 tsf_low;
2490 __le32 tsf_high;
2491 __le32 statistics[NUMBER_OF_STATISTICS];
2492 } __packed;
2495 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2497 struct iwl_scancomplete_notification {
2498 u8 scanned_channels;
2499 u8 status;
2500 u8 bt_status; /* BT On/Off status */
2501 u8 last_channel;
2502 __le32 tsf_low;
2503 __le32 tsf_high;
2504 } __packed;
2507 /******************************************************************************
2508 * (9)
2509 * IBSS/AP Commands and Notifications:
2511 *****************************************************************************/
2513 enum iwl_ibss_manager {
2514 IWL_NOT_IBSS_MANAGER = 0,
2515 IWL_IBSS_MANAGER = 1,
2519 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2522 struct iwlagn_beacon_notif {
2523 struct iwlagn_tx_resp beacon_notify_hdr;
2524 __le32 low_tsf;
2525 __le32 high_tsf;
2526 __le32 ibss_mgr_status;
2527 } __packed;
2530 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2533 struct iwl_tx_beacon_cmd {
2534 struct iwl_tx_cmd tx;
2535 __le16 tim_idx;
2536 u8 tim_size;
2537 u8 reserved1;
2538 struct ieee80211_hdr frame[0]; /* beacon frame */
2539 } __packed;
2541 /******************************************************************************
2542 * (10)
2543 * Statistics Commands and Notifications:
2545 *****************************************************************************/
2547 #define IWL_TEMP_CONVERT 260
2549 #define SUP_RATE_11A_MAX_NUM_CHANNELS 8
2550 #define SUP_RATE_11B_MAX_NUM_CHANNELS 4
2551 #define SUP_RATE_11G_MAX_NUM_CHANNELS 12
2553 /* Used for passing to driver number of successes and failures per rate */
2554 struct rate_histogram {
2555 union {
2556 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2557 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2558 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2559 } success;
2560 union {
2561 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2562 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2563 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2564 } failed;
2565 } __packed;
2567 /* statistics command response */
2569 struct statistics_dbg {
2570 __le32 burst_check;
2571 __le32 burst_count;
2572 __le32 wait_for_silence_timeout_cnt;
2573 __le32 reserved[3];
2574 } __packed;
2576 struct statistics_rx_phy {
2577 __le32 ina_cnt;
2578 __le32 fina_cnt;
2579 __le32 plcp_err;
2580 __le32 crc32_err;
2581 __le32 overrun_err;
2582 __le32 early_overrun_err;
2583 __le32 crc32_good;
2584 __le32 false_alarm_cnt;
2585 __le32 fina_sync_err_cnt;
2586 __le32 sfd_timeout;
2587 __le32 fina_timeout;
2588 __le32 unresponded_rts;
2589 __le32 rxe_frame_limit_overrun;
2590 __le32 sent_ack_cnt;
2591 __le32 sent_cts_cnt;
2592 __le32 sent_ba_rsp_cnt;
2593 __le32 dsp_self_kill;
2594 __le32 mh_format_err;
2595 __le32 re_acq_main_rssi_sum;
2596 __le32 reserved3;
2597 } __packed;
2599 struct statistics_rx_ht_phy {
2600 __le32 plcp_err;
2601 __le32 overrun_err;
2602 __le32 early_overrun_err;
2603 __le32 crc32_good;
2604 __le32 crc32_err;
2605 __le32 mh_format_err;
2606 __le32 agg_crc32_good;
2607 __le32 agg_mpdu_cnt;
2608 __le32 agg_cnt;
2609 __le32 unsupport_mcs;
2610 } __packed;
2612 #define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1)
2614 struct statistics_rx_non_phy {
2615 __le32 bogus_cts; /* CTS received when not expecting CTS */
2616 __le32 bogus_ack; /* ACK received when not expecting ACK */
2617 __le32 non_bssid_frames; /* number of frames with BSSID that
2618 * doesn't belong to the STA BSSID */
2619 __le32 filtered_frames; /* count frames that were dumped in the
2620 * filtering process */
2621 __le32 non_channel_beacons; /* beacons with our bss id but not on
2622 * our serving channel */
2623 __le32 channel_beacons; /* beacons with our bss id and in our
2624 * serving channel */
2625 __le32 num_missed_bcon; /* number of missed beacons */
2626 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the
2627 * ADC was in saturation */
2628 __le32 ina_detection_search_time;/* total time (in 0.8us) searched
2629 * for INA */
2630 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
2631 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
2632 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
2633 __le32 interference_data_flag; /* flag for interference data
2634 * availability. 1 when data is
2635 * available. */
2636 __le32 channel_load; /* counts RX Enable time in uSec */
2637 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM
2638 * and CCK) counter */
2639 __le32 beacon_rssi_a;
2640 __le32 beacon_rssi_b;
2641 __le32 beacon_rssi_c;
2642 __le32 beacon_energy_a;
2643 __le32 beacon_energy_b;
2644 __le32 beacon_energy_c;
2645 } __packed;
2647 struct statistics_rx_non_phy_bt {
2648 struct statistics_rx_non_phy common;
2649 /* additional stats for bt */
2650 __le32 num_bt_kills;
2651 __le32 reserved[2];
2652 } __packed;
2654 struct statistics_rx {
2655 struct statistics_rx_phy ofdm;
2656 struct statistics_rx_phy cck;
2657 struct statistics_rx_non_phy general;
2658 struct statistics_rx_ht_phy ofdm_ht;
2659 } __packed;
2661 struct statistics_rx_bt {
2662 struct statistics_rx_phy ofdm;
2663 struct statistics_rx_phy cck;
2664 struct statistics_rx_non_phy_bt general;
2665 struct statistics_rx_ht_phy ofdm_ht;
2666 } __packed;
2669 * struct statistics_tx_power - current tx power
2671 * @ant_a: current tx power on chain a in 1/2 dB step
2672 * @ant_b: current tx power on chain b in 1/2 dB step
2673 * @ant_c: current tx power on chain c in 1/2 dB step
2675 struct statistics_tx_power {
2676 u8 ant_a;
2677 u8 ant_b;
2678 u8 ant_c;
2679 u8 reserved;
2680 } __packed;
2682 struct statistics_tx_non_phy_agg {
2683 __le32 ba_timeout;
2684 __le32 ba_reschedule_frames;
2685 __le32 scd_query_agg_frame_cnt;
2686 __le32 scd_query_no_agg;
2687 __le32 scd_query_agg;
2688 __le32 scd_query_mismatch;
2689 __le32 frame_not_ready;
2690 __le32 underrun;
2691 __le32 bt_prio_kill;
2692 __le32 rx_ba_rsp_cnt;
2693 } __packed;
2695 struct statistics_tx {
2696 __le32 preamble_cnt;
2697 __le32 rx_detected_cnt;
2698 __le32 bt_prio_defer_cnt;
2699 __le32 bt_prio_kill_cnt;
2700 __le32 few_bytes_cnt;
2701 __le32 cts_timeout;
2702 __le32 ack_timeout;
2703 __le32 expected_ack_cnt;
2704 __le32 actual_ack_cnt;
2705 __le32 dump_msdu_cnt;
2706 __le32 burst_abort_next_frame_mismatch_cnt;
2707 __le32 burst_abort_missing_next_frame_cnt;
2708 __le32 cts_timeout_collision;
2709 __le32 ack_or_ba_timeout_collision;
2710 struct statistics_tx_non_phy_agg agg;
2712 * "tx_power" are optional parameters provided by uCode,
2713 * 6000 series is the only device provide the information,
2714 * Those are reserved fields for all the other devices
2716 struct statistics_tx_power tx_power;
2717 __le32 reserved1;
2718 } __packed;
2721 struct statistics_div {
2722 __le32 tx_on_a;
2723 __le32 tx_on_b;
2724 __le32 exec_time;
2725 __le32 probe_time;
2726 __le32 reserved1;
2727 __le32 reserved2;
2728 } __packed;
2730 struct statistics_general_common {
2731 __le32 temperature; /* radio temperature */
2732 __le32 temperature_m; /* for 5000 and up, this is radio voltage */
2733 struct statistics_dbg dbg;
2734 __le32 sleep_time;
2735 __le32 slots_out;
2736 __le32 slots_idle;
2737 __le32 ttl_timestamp;
2738 struct statistics_div div;
2739 __le32 rx_enable_counter;
2741 * num_of_sos_states:
2742 * count the number of times we have to re-tune
2743 * in order to get out of bad PHY status
2745 __le32 num_of_sos_states;
2746 } __packed;
2748 struct statistics_bt_activity {
2749 /* Tx statistics */
2750 __le32 hi_priority_tx_req_cnt;
2751 __le32 hi_priority_tx_denied_cnt;
2752 __le32 lo_priority_tx_req_cnt;
2753 __le32 lo_priority_tx_denied_cnt;
2754 /* Rx statistics */
2755 __le32 hi_priority_rx_req_cnt;
2756 __le32 hi_priority_rx_denied_cnt;
2757 __le32 lo_priority_rx_req_cnt;
2758 __le32 lo_priority_rx_denied_cnt;
2759 } __packed;
2761 struct statistics_general {
2762 struct statistics_general_common common;
2763 __le32 reserved2;
2764 __le32 reserved3;
2765 } __packed;
2767 struct statistics_general_bt {
2768 struct statistics_general_common common;
2769 struct statistics_bt_activity activity;
2770 __le32 reserved2;
2771 __le32 reserved3;
2772 } __packed;
2774 #define UCODE_STATISTICS_CLEAR_MSK (0x1 << 0)
2775 #define UCODE_STATISTICS_FREQUENCY_MSK (0x1 << 1)
2776 #define UCODE_STATISTICS_NARROW_BAND_MSK (0x1 << 2)
2779 * REPLY_STATISTICS_CMD = 0x9c,
2780 * all devices identical.
2782 * This command triggers an immediate response containing uCode statistics.
2783 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2785 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2786 * internal copy of the statistics (counters) after issuing the response.
2787 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2789 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2790 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
2791 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2793 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */
2794 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2795 struct iwl_statistics_cmd {
2796 __le32 configuration_flags; /* IWL_STATS_CONF_* */
2797 } __packed;
2800 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2802 * By default, uCode issues this notification after receiving a beacon
2803 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the
2804 * REPLY_STATISTICS_CMD 0x9c, above.
2806 * Statistics counters continue to increment beacon after beacon, but are
2807 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2808 * 0x9c with CLEAR_STATS bit set (see above).
2810 * uCode also issues this notification during scans. uCode clears statistics
2811 * appropriately so that each notification contains statistics for only the
2812 * one channel that has just been scanned.
2814 #define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2)
2815 #define STATISTICS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8)
2817 struct iwl_notif_statistics {
2818 __le32 flag;
2819 struct statistics_rx rx;
2820 struct statistics_tx tx;
2821 struct statistics_general general;
2822 } __packed;
2824 struct iwl_bt_notif_statistics {
2825 __le32 flag;
2826 struct statistics_rx_bt rx;
2827 struct statistics_tx tx;
2828 struct statistics_general_bt general;
2829 } __packed;
2832 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2834 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2835 * in regardless of how many missed beacons, which mean when driver receive the
2836 * notification, inside the command, it can find all the beacons information
2837 * which include number of total missed beacons, number of consecutive missed
2838 * beacons, number of beacons received and number of beacons expected to
2839 * receive.
2841 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2842 * in order to bring the radio/PHY back to working state; which has no relation
2843 * to when driver will perform sensitivity calibration.
2845 * Driver should set it own missed_beacon_threshold to decide when to perform
2846 * sensitivity calibration based on number of consecutive missed beacons in
2847 * order to improve overall performance, especially in noisy environment.
2851 #define IWL_MISSED_BEACON_THRESHOLD_MIN (1)
2852 #define IWL_MISSED_BEACON_THRESHOLD_DEF (5)
2853 #define IWL_MISSED_BEACON_THRESHOLD_MAX IWL_MISSED_BEACON_THRESHOLD_DEF
2855 struct iwl_missed_beacon_notif {
2856 __le32 consecutive_missed_beacons;
2857 __le32 total_missed_becons;
2858 __le32 num_expected_beacons;
2859 __le32 num_recvd_beacons;
2860 } __packed;
2863 /******************************************************************************
2864 * (11)
2865 * Rx Calibration Commands:
2867 * With the uCode used for open source drivers, most Tx calibration (except
2868 * for Tx Power) and most Rx calibration is done by uCode during the
2869 * "initialize" phase of uCode boot. Driver must calibrate only:
2871 * 1) Tx power (depends on temperature), described elsewhere
2872 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2873 * 3) Receiver sensitivity (to optimize signal detection)
2875 *****************************************************************************/
2878 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2880 * This command sets up the Rx signal detector for a sensitivity level that
2881 * is high enough to lock onto all signals within the associated network,
2882 * but low enough to ignore signals that are below a certain threshold, so as
2883 * not to have too many "false alarms". False alarms are signals that the
2884 * Rx DSP tries to lock onto, but then discards after determining that they
2885 * are noise.
2887 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2888 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2889 * time listening, not transmitting). Driver must adjust sensitivity so that
2890 * the ratio of actual false alarms to actual Rx time falls within this range.
2892 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2893 * received beacon. These provide information to the driver to analyze the
2894 * sensitivity. Don't analyze statistics that come in from scanning, or any
2895 * other non-associated-network source. Pertinent statistics include:
2897 * From "general" statistics (struct statistics_rx_non_phy):
2899 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2900 * Measure of energy of desired signal. Used for establishing a level
2901 * below which the device does not detect signals.
2903 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2904 * Measure of background noise in silent period after beacon.
2906 * channel_load
2907 * uSecs of actual Rx time during beacon period (varies according to
2908 * how much time was spent transmitting).
2910 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2912 * false_alarm_cnt
2913 * Signal locks abandoned early (before phy-level header).
2915 * plcp_err
2916 * Signal locks abandoned late (during phy-level header).
2918 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
2919 * beacon to beacon, i.e. each value is an accumulation of all errors
2920 * before and including the latest beacon. Values will wrap around to 0
2921 * after counting up to 2^32 - 1. Driver must differentiate vs.
2922 * previous beacon's values to determine # false alarms in the current
2923 * beacon period.
2925 * Total number of false alarms = false_alarms + plcp_errs
2927 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2928 * (notice that the start points for OFDM are at or close to settings for
2929 * maximum sensitivity):
2931 * START / MIN / MAX
2932 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120
2933 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210
2934 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140
2935 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270
2937 * If actual rate of OFDM false alarms (+ plcp_errors) is too high
2938 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2939 * by *adding* 1 to all 4 of the table entries above, up to the max for
2940 * each entry. Conversely, if false alarm rate is too low (less than 5
2941 * for each 204.8 msecs listening), *subtract* 1 from each entry to
2942 * increase sensitivity.
2944 * For CCK sensitivity, keep track of the following:
2946 * 1). 20-beacon history of maximum background noise, indicated by
2947 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2948 * 3 receivers. For any given beacon, the "silence reference" is
2949 * the maximum of last 60 samples (20 beacons * 3 receivers).
2951 * 2). 10-beacon history of strongest signal level, as indicated
2952 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2953 * i.e. the strength of the signal through the best receiver at the
2954 * moment. These measurements are "upside down", with lower values
2955 * for stronger signals, so max energy will be *minimum* value.
2957 * Then for any given beacon, the driver must determine the *weakest*
2958 * of the strongest signals; this is the minimum level that needs to be
2959 * successfully detected, when using the best receiver at the moment.
2960 * "Max cck energy" is the maximum (higher value means lower energy!)
2961 * of the last 10 minima. Once this is determined, driver must add
2962 * a little margin by adding "6" to it.
2964 * 3). Number of consecutive beacon periods with too few false alarms.
2965 * Reset this to 0 at the first beacon period that falls within the
2966 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2968 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2969 * (notice that the start points for CCK are at maximum sensitivity):
2971 * START / MIN / MAX
2972 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200
2973 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400
2974 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100
2976 * If actual rate of CCK false alarms (+ plcp_errors) is too high
2977 * (greater than 50 for each 204.8 msecs listening), method for reducing
2978 * sensitivity is:
2980 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2981 * up to max 400.
2983 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2984 * sensitivity has been reduced a significant amount; bring it up to
2985 * a moderate 161. Otherwise, *add* 3, up to max 200.
2987 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2988 * sensitivity has been reduced only a moderate or small amount;
2989 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2990 * down to min 0. Otherwise (if gain has been significantly reduced),
2991 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2993 * b) Save a snapshot of the "silence reference".
2995 * If actual rate of CCK false alarms (+ plcp_errors) is too low
2996 * (less than 5 for each 204.8 msecs listening), method for increasing
2997 * sensitivity is used only if:
2999 * 1a) Previous beacon did not have too many false alarms
3000 * 1b) AND difference between previous "silence reference" and current
3001 * "silence reference" (prev - current) is 2 or more,
3002 * OR 2) 100 or more consecutive beacon periods have had rate of
3003 * less than 5 false alarms per 204.8 milliseconds rx time.
3005 * Method for increasing sensitivity:
3007 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
3008 * down to min 125.
3010 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
3011 * down to min 200.
3013 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
3015 * If actual rate of CCK false alarms (+ plcp_errors) is within good range
3016 * (between 5 and 50 for each 204.8 msecs listening):
3018 * 1) Save a snapshot of the silence reference.
3020 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
3021 * give some extra margin to energy threshold by *subtracting* 8
3022 * from value in HD_MIN_ENERGY_CCK_DET_INDEX.
3024 * For all cases (too few, too many, good range), make sure that the CCK
3025 * detection threshold (energy) is below the energy level for robust
3026 * detection over the past 10 beacon periods, the "Max cck energy".
3027 * Lower values mean higher energy; this means making sure that the value
3028 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
3033 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
3035 #define HD_TABLE_SIZE (11) /* number of entries */
3036 #define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */
3037 #define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
3038 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
3039 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
3040 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
3041 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
3042 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
3043 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
3044 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
3045 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
3046 #define HD_OFDM_ENERGY_TH_IN_INDEX (10)
3049 * Additional table entries in enhance SENSITIVITY_CMD
3051 #define HD_INA_NON_SQUARE_DET_OFDM_INDEX (11)
3052 #define HD_INA_NON_SQUARE_DET_CCK_INDEX (12)
3053 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX (13)
3054 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX (14)
3055 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (15)
3056 #define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX (16)
3057 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX (17)
3058 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX (18)
3059 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (19)
3060 #define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX (20)
3061 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX (21)
3062 #define HD_RESERVED (22)
3064 /* number of entries for enhanced tbl */
3065 #define ENHANCE_HD_TABLE_SIZE (23)
3067 /* number of additional entries for enhanced tbl */
3068 #define ENHANCE_HD_TABLE_ENTRIES (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3070 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1 cpu_to_le16(0)
3071 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V1 cpu_to_le16(0)
3072 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1 cpu_to_le16(0)
3073 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(668)
3074 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3075 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(486)
3076 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(37)
3077 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(853)
3078 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3079 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(476)
3080 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(99)
3082 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2 cpu_to_le16(1)
3083 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V2 cpu_to_le16(1)
3084 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2 cpu_to_le16(1)
3085 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(600)
3086 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(40)
3087 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(486)
3088 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(45)
3089 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(853)
3090 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(60)
3091 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(476)
3092 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(99)
3095 /* Control field in struct iwl_sensitivity_cmd */
3096 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0)
3097 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1)
3100 * struct iwl_sensitivity_cmd
3101 * @control: (1) updates working table, (0) updates default table
3102 * @table: energy threshold values, use HD_* as index into table
3104 * Always use "1" in "control" to update uCode's working table and DSP.
3106 struct iwl_sensitivity_cmd {
3107 __le16 control; /* always use "1" */
3108 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */
3109 } __packed;
3114 struct iwl_enhance_sensitivity_cmd {
3115 __le16 control; /* always use "1" */
3116 __le16 enhance_table[ENHANCE_HD_TABLE_SIZE]; /* use HD_* as index */
3117 } __packed;
3121 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3123 * This command sets the relative gains of agn device's 3 radio receiver chains.
3125 * After the first association, driver should accumulate signal and noise
3126 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3127 * beacons from the associated network (don't collect statistics that come
3128 * in from scanning, or any other non-network source).
3130 * DISCONNECTED ANTENNA:
3132 * Driver should determine which antennas are actually connected, by comparing
3133 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the
3134 * following values over 20 beacons, one accumulator for each of the chains
3135 * a/b/c, from struct statistics_rx_non_phy:
3137 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3139 * Find the strongest signal from among a/b/c. Compare the other two to the
3140 * strongest. If any signal is more than 15 dB (times 20, unless you
3141 * divide the accumulated values by 20) below the strongest, the driver
3142 * considers that antenna to be disconnected, and should not try to use that
3143 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
3144 * driver should declare the stronger one as connected, and attempt to use it
3145 * (A and B are the only 2 Tx chains!).
3148 * RX BALANCE:
3150 * Driver should balance the 3 receivers (but just the ones that are connected
3151 * to antennas, see above) for gain, by comparing the average signal levels
3152 * detected during the silence after each beacon (background noise).
3153 * Accumulate (add) the following values over 20 beacons, one accumulator for
3154 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3156 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3158 * Find the weakest background noise level from among a/b/c. This Rx chain
3159 * will be the reference, with 0 gain adjustment. Attenuate other channels by
3160 * finding noise difference:
3162 * (accum_noise[i] - accum_noise[reference]) / 30
3164 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3165 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3166 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3167 * and set bit 2 to indicate "reduce gain". The value for the reference
3168 * (weakest) chain should be "0".
3170 * diff_gain_[abc] bit fields:
3171 * 2: (1) reduce gain, (0) increase gain
3172 * 1-0: amount of gain, units of 1.5 dB
3175 /* Phy calibration command for series */
3176 /* The default calibrate table size if not specified by firmware */
3177 #define IWL_DEFAULT_STANDARD_PHY_CALIBRATE_TBL_SIZE 18
3178 enum {
3179 IWL_PHY_CALIBRATE_DC_CMD = 8,
3180 IWL_PHY_CALIBRATE_LO_CMD = 9,
3181 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11,
3182 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15,
3183 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16,
3184 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17,
3185 IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD = 18,
3186 IWL_MAX_STANDARD_PHY_CALIBRATE_TBL_SIZE = 19,
3189 #define IWL_MAX_PHY_CALIBRATE_TBL_SIZE (253)
3191 /* This enum defines the bitmap of various calibrations to enable in both
3192 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3194 enum iwl_ucode_calib_cfg {
3195 IWL_CALIB_CFG_RX_BB_IDX = BIT(0),
3196 IWL_CALIB_CFG_DC_IDX = BIT(1),
3197 IWL_CALIB_CFG_LO_IDX = BIT(2),
3198 IWL_CALIB_CFG_TX_IQ_IDX = BIT(3),
3199 IWL_CALIB_CFG_RX_IQ_IDX = BIT(4),
3200 IWL_CALIB_CFG_NOISE_IDX = BIT(5),
3201 IWL_CALIB_CFG_CRYSTAL_IDX = BIT(6),
3202 IWL_CALIB_CFG_TEMPERATURE_IDX = BIT(7),
3203 IWL_CALIB_CFG_PAPD_IDX = BIT(8),
3204 IWL_CALIB_CFG_SENSITIVITY_IDX = BIT(9),
3205 IWL_CALIB_CFG_TX_PWR_IDX = BIT(10),
3208 #define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3209 IWL_CALIB_CFG_DC_IDX | \
3210 IWL_CALIB_CFG_LO_IDX | \
3211 IWL_CALIB_CFG_TX_IQ_IDX | \
3212 IWL_CALIB_CFG_RX_IQ_IDX | \
3213 IWL_CALIB_CFG_NOISE_IDX | \
3214 IWL_CALIB_CFG_CRYSTAL_IDX | \
3215 IWL_CALIB_CFG_TEMPERATURE_IDX | \
3216 IWL_CALIB_CFG_PAPD_IDX | \
3217 IWL_CALIB_CFG_SENSITIVITY_IDX | \
3218 IWL_CALIB_CFG_TX_PWR_IDX)
3220 #define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK cpu_to_le32(BIT(0))
3222 struct iwl_calib_cfg_elmnt_s {
3223 __le32 is_enable;
3224 __le32 start;
3225 __le32 send_res;
3226 __le32 apply_res;
3227 __le32 reserved;
3228 } __packed;
3230 struct iwl_calib_cfg_status_s {
3231 struct iwl_calib_cfg_elmnt_s once;
3232 struct iwl_calib_cfg_elmnt_s perd;
3233 __le32 flags;
3234 } __packed;
3236 struct iwl_calib_cfg_cmd {
3237 struct iwl_calib_cfg_status_s ucd_calib_cfg;
3238 struct iwl_calib_cfg_status_s drv_calib_cfg;
3239 __le32 reserved1;
3240 } __packed;
3242 struct iwl_calib_hdr {
3243 u8 op_code;
3244 u8 first_group;
3245 u8 groups_num;
3246 u8 data_valid;
3247 } __packed;
3249 struct iwl_calib_cmd {
3250 struct iwl_calib_hdr hdr;
3251 u8 data[0];
3252 } __packed;
3254 struct iwl_calib_xtal_freq_cmd {
3255 struct iwl_calib_hdr hdr;
3256 u8 cap_pin1;
3257 u8 cap_pin2;
3258 u8 pad[2];
3259 } __packed;
3261 #define DEFAULT_RADIO_SENSOR_OFFSET cpu_to_le16(2700)
3262 struct iwl_calib_temperature_offset_cmd {
3263 struct iwl_calib_hdr hdr;
3264 __le16 radio_sensor_offset;
3265 __le16 reserved;
3266 } __packed;
3268 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3269 struct iwl_calib_chain_noise_reset_cmd {
3270 struct iwl_calib_hdr hdr;
3271 u8 data[0];
3274 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3275 struct iwl_calib_chain_noise_gain_cmd {
3276 struct iwl_calib_hdr hdr;
3277 u8 delta_gain_1;
3278 u8 delta_gain_2;
3279 u8 pad[2];
3280 } __packed;
3282 /******************************************************************************
3283 * (12)
3284 * Miscellaneous Commands:
3286 *****************************************************************************/
3289 * LEDs Command & Response
3290 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3292 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3293 * this command turns it on or off, or sets up a periodic blinking cycle.
3295 struct iwl_led_cmd {
3296 __le32 interval; /* "interval" in uSec */
3297 u8 id; /* 1: Activity, 2: Link, 3: Tech */
3298 u8 off; /* # intervals off while blinking;
3299 * "0", with >0 "on" value, turns LED on */
3300 u8 on; /* # intervals on while blinking;
3301 * "0", regardless of "off", turns LED off */
3302 u8 reserved;
3303 } __packed;
3306 * station priority table entries
3307 * also used as potential "events" value for both
3308 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3312 * COEX events entry flag masks
3313 * RP - Requested Priority
3314 * WP - Win Medium Priority: priority assigned when the contention has been won
3316 #define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG (0x1)
3317 #define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG (0x2)
3318 #define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG (0x4)
3320 #define COEX_CU_UNASSOC_IDLE_RP 4
3321 #define COEX_CU_UNASSOC_MANUAL_SCAN_RP 4
3322 #define COEX_CU_UNASSOC_AUTO_SCAN_RP 4
3323 #define COEX_CU_CALIBRATION_RP 4
3324 #define COEX_CU_PERIODIC_CALIBRATION_RP 4
3325 #define COEX_CU_CONNECTION_ESTAB_RP 4
3326 #define COEX_CU_ASSOCIATED_IDLE_RP 4
3327 #define COEX_CU_ASSOC_MANUAL_SCAN_RP 4
3328 #define COEX_CU_ASSOC_AUTO_SCAN_RP 4
3329 #define COEX_CU_ASSOC_ACTIVE_LEVEL_RP 4
3330 #define COEX_CU_RF_ON_RP 6
3331 #define COEX_CU_RF_OFF_RP 4
3332 #define COEX_CU_STAND_ALONE_DEBUG_RP 6
3333 #define COEX_CU_IPAN_ASSOC_LEVEL_RP 4
3334 #define COEX_CU_RSRVD1_RP 4
3335 #define COEX_CU_RSRVD2_RP 4
3337 #define COEX_CU_UNASSOC_IDLE_WP 3
3338 #define COEX_CU_UNASSOC_MANUAL_SCAN_WP 3
3339 #define COEX_CU_UNASSOC_AUTO_SCAN_WP 3
3340 #define COEX_CU_CALIBRATION_WP 3
3341 #define COEX_CU_PERIODIC_CALIBRATION_WP 3
3342 #define COEX_CU_CONNECTION_ESTAB_WP 3
3343 #define COEX_CU_ASSOCIATED_IDLE_WP 3
3344 #define COEX_CU_ASSOC_MANUAL_SCAN_WP 3
3345 #define COEX_CU_ASSOC_AUTO_SCAN_WP 3
3346 #define COEX_CU_ASSOC_ACTIVE_LEVEL_WP 3
3347 #define COEX_CU_RF_ON_WP 3
3348 #define COEX_CU_RF_OFF_WP 3
3349 #define COEX_CU_STAND_ALONE_DEBUG_WP 6
3350 #define COEX_CU_IPAN_ASSOC_LEVEL_WP 3
3351 #define COEX_CU_RSRVD1_WP 3
3352 #define COEX_CU_RSRVD2_WP 3
3354 #define COEX_UNASSOC_IDLE_FLAGS 0
3355 #define COEX_UNASSOC_MANUAL_SCAN_FLAGS \
3356 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3357 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3358 #define COEX_UNASSOC_AUTO_SCAN_FLAGS \
3359 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3360 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3361 #define COEX_CALIBRATION_FLAGS \
3362 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3363 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3364 #define COEX_PERIODIC_CALIBRATION_FLAGS 0
3366 * COEX_CONNECTION_ESTAB:
3367 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3369 #define COEX_CONNECTION_ESTAB_FLAGS \
3370 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3371 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3372 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3373 #define COEX_ASSOCIATED_IDLE_FLAGS 0
3374 #define COEX_ASSOC_MANUAL_SCAN_FLAGS \
3375 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3376 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3377 #define COEX_ASSOC_AUTO_SCAN_FLAGS \
3378 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3379 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3380 #define COEX_ASSOC_ACTIVE_LEVEL_FLAGS 0
3381 #define COEX_RF_ON_FLAGS 0
3382 #define COEX_RF_OFF_FLAGS 0
3383 #define COEX_STAND_ALONE_DEBUG_FLAGS \
3384 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3385 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3386 #define COEX_IPAN_ASSOC_LEVEL_FLAGS \
3387 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3388 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3389 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3390 #define COEX_RSRVD1_FLAGS 0
3391 #define COEX_RSRVD2_FLAGS 0
3393 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3394 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3396 #define COEX_CU_RF_ON_FLAGS \
3397 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3398 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3399 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3402 enum {
3403 /* un-association part */
3404 COEX_UNASSOC_IDLE = 0,
3405 COEX_UNASSOC_MANUAL_SCAN = 1,
3406 COEX_UNASSOC_AUTO_SCAN = 2,
3407 /* calibration */
3408 COEX_CALIBRATION = 3,
3409 COEX_PERIODIC_CALIBRATION = 4,
3410 /* connection */
3411 COEX_CONNECTION_ESTAB = 5,
3412 /* association part */
3413 COEX_ASSOCIATED_IDLE = 6,
3414 COEX_ASSOC_MANUAL_SCAN = 7,
3415 COEX_ASSOC_AUTO_SCAN = 8,
3416 COEX_ASSOC_ACTIVE_LEVEL = 9,
3417 /* RF ON/OFF */
3418 COEX_RF_ON = 10,
3419 COEX_RF_OFF = 11,
3420 COEX_STAND_ALONE_DEBUG = 12,
3421 /* IPAN */
3422 COEX_IPAN_ASSOC_LEVEL = 13,
3423 /* reserved */
3424 COEX_RSRVD1 = 14,
3425 COEX_RSRVD2 = 15,
3426 COEX_NUM_OF_EVENTS = 16
3430 * Coexistence WIFI/WIMAX Command
3431 * COEX_PRIORITY_TABLE_CMD = 0x5a
3434 struct iwl_wimax_coex_event_entry {
3435 u8 request_prio;
3436 u8 win_medium_prio;
3437 u8 reserved;
3438 u8 flags;
3439 } __packed;
3441 /* COEX flag masks */
3443 /* Station table is valid */
3444 #define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1)
3445 /* UnMask wake up src at unassociated sleep */
3446 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4)
3447 /* UnMask wake up src at associated sleep */
3448 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8)
3449 /* Enable CoEx feature. */
3450 #define COEX_FLAGS_COEX_ENABLE_MSK (0x80)
3452 struct iwl_wimax_coex_cmd {
3453 u8 flags;
3454 u8 reserved[3];
3455 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3456 } __packed;
3459 * Coexistence MEDIUM NOTIFICATION
3460 * COEX_MEDIUM_NOTIFICATION = 0x5b
3462 * notification from uCode to host to indicate medium changes
3466 * status field
3467 * bit 0 - 2: medium status
3468 * bit 3: medium change indication
3469 * bit 4 - 31: reserved
3471 /* status option values, (0 - 2 bits) */
3472 #define COEX_MEDIUM_BUSY (0x0) /* radio belongs to WiMAX */
3473 #define COEX_MEDIUM_ACTIVE (0x1) /* radio belongs to WiFi */
3474 #define COEX_MEDIUM_PRE_RELEASE (0x2) /* received radio release */
3475 #define COEX_MEDIUM_MSK (0x7)
3477 /* send notification status (1 bit) */
3478 #define COEX_MEDIUM_CHANGED (0x8)
3479 #define COEX_MEDIUM_CHANGED_MSK (0x8)
3480 #define COEX_MEDIUM_SHIFT (3)
3482 struct iwl_coex_medium_notification {
3483 __le32 status;
3484 __le32 events;
3485 } __packed;
3488 * Coexistence EVENT Command
3489 * COEX_EVENT_CMD = 0x5c
3491 * send from host to uCode for coex event request.
3493 /* flags options */
3494 #define COEX_EVENT_REQUEST_MSK (0x1)
3496 struct iwl_coex_event_cmd {
3497 u8 flags;
3498 u8 event;
3499 __le16 reserved;
3500 } __packed;
3502 struct iwl_coex_event_resp {
3503 __le32 status;
3504 } __packed;
3507 /******************************************************************************
3508 * Bluetooth Coexistence commands
3510 *****************************************************************************/
3513 * BT Status notification
3514 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3516 enum iwl_bt_coex_profile_traffic_load {
3517 IWL_BT_COEX_TRAFFIC_LOAD_NONE = 0,
3518 IWL_BT_COEX_TRAFFIC_LOAD_LOW = 1,
3519 IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 2,
3520 IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS = 3,
3522 * There are no more even though below is a u8, the
3523 * indication from the BT device only has two bits.
3527 #define BT_SESSION_ACTIVITY_1_UART_MSG 0x1
3528 #define BT_SESSION_ACTIVITY_2_UART_MSG 0x2
3530 /* BT UART message - Share Part (BT -> WiFi) */
3531 #define BT_UART_MSG_FRAME1MSGTYPE_POS (0)
3532 #define BT_UART_MSG_FRAME1MSGTYPE_MSK \
3533 (0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3534 #define BT_UART_MSG_FRAME1SSN_POS (3)
3535 #define BT_UART_MSG_FRAME1SSN_MSK \
3536 (0x3 << BT_UART_MSG_FRAME1SSN_POS)
3537 #define BT_UART_MSG_FRAME1UPDATEREQ_POS (5)
3538 #define BT_UART_MSG_FRAME1UPDATEREQ_MSK \
3539 (0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3540 #define BT_UART_MSG_FRAME1RESERVED_POS (6)
3541 #define BT_UART_MSG_FRAME1RESERVED_MSK \
3542 (0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3544 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS (0)
3545 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK \
3546 (0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3547 #define BT_UART_MSG_FRAME2TRAFFICLOAD_POS (2)
3548 #define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK \
3549 (0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3550 #define BT_UART_MSG_FRAME2CHLSEQN_POS (4)
3551 #define BT_UART_MSG_FRAME2CHLSEQN_MSK \
3552 (0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3553 #define BT_UART_MSG_FRAME2INBAND_POS (5)
3554 #define BT_UART_MSG_FRAME2INBAND_MSK \
3555 (0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3556 #define BT_UART_MSG_FRAME2RESERVED_POS (6)
3557 #define BT_UART_MSG_FRAME2RESERVED_MSK \
3558 (0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3560 #define BT_UART_MSG_FRAME3SCOESCO_POS (0)
3561 #define BT_UART_MSG_FRAME3SCOESCO_MSK \
3562 (0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3563 #define BT_UART_MSG_FRAME3SNIFF_POS (1)
3564 #define BT_UART_MSG_FRAME3SNIFF_MSK \
3565 (0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3566 #define BT_UART_MSG_FRAME3A2DP_POS (2)
3567 #define BT_UART_MSG_FRAME3A2DP_MSK \
3568 (0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3569 #define BT_UART_MSG_FRAME3ACL_POS (3)
3570 #define BT_UART_MSG_FRAME3ACL_MSK \
3571 (0x1 << BT_UART_MSG_FRAME3ACL_POS)
3572 #define BT_UART_MSG_FRAME3MASTER_POS (4)
3573 #define BT_UART_MSG_FRAME3MASTER_MSK \
3574 (0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3575 #define BT_UART_MSG_FRAME3OBEX_POS (5)
3576 #define BT_UART_MSG_FRAME3OBEX_MSK \
3577 (0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3578 #define BT_UART_MSG_FRAME3RESERVED_POS (6)
3579 #define BT_UART_MSG_FRAME3RESERVED_MSK \
3580 (0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3582 #define BT_UART_MSG_FRAME4IDLEDURATION_POS (0)
3583 #define BT_UART_MSG_FRAME4IDLEDURATION_MSK \
3584 (0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3585 #define BT_UART_MSG_FRAME4RESERVED_POS (6)
3586 #define BT_UART_MSG_FRAME4RESERVED_MSK \
3587 (0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3589 #define BT_UART_MSG_FRAME5TXACTIVITY_POS (0)
3590 #define BT_UART_MSG_FRAME5TXACTIVITY_MSK \
3591 (0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3592 #define BT_UART_MSG_FRAME5RXACTIVITY_POS (2)
3593 #define BT_UART_MSG_FRAME5RXACTIVITY_MSK \
3594 (0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3595 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS (4)
3596 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK \
3597 (0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3598 #define BT_UART_MSG_FRAME5RESERVED_POS (6)
3599 #define BT_UART_MSG_FRAME5RESERVED_MSK \
3600 (0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3602 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS (0)
3603 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK \
3604 (0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3605 #define BT_UART_MSG_FRAME6DISCOVERABLE_POS (5)
3606 #define BT_UART_MSG_FRAME6DISCOVERABLE_MSK \
3607 (0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3608 #define BT_UART_MSG_FRAME6RESERVED_POS (6)
3609 #define BT_UART_MSG_FRAME6RESERVED_MSK \
3610 (0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3612 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS (0)
3613 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK \
3614 (0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3615 #define BT_UART_MSG_FRAME7PAGE_POS (3)
3616 #define BT_UART_MSG_FRAME7PAGE_MSK \
3617 (0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3618 #define BT_UART_MSG_FRAME7INQUIRY_POS (4)
3619 #define BT_UART_MSG_FRAME7INQUIRY_MSK \
3620 (0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3621 #define BT_UART_MSG_FRAME7CONNECTABLE_POS (5)
3622 #define BT_UART_MSG_FRAME7CONNECTABLE_MSK \
3623 (0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3624 #define BT_UART_MSG_FRAME7RESERVED_POS (6)
3625 #define BT_UART_MSG_FRAME7RESERVED_MSK \
3626 (0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3628 /* BT Session Activity 2 UART message (BT -> WiFi) */
3629 #define BT_UART_MSG_2_FRAME1RESERVED1_POS (5)
3630 #define BT_UART_MSG_2_FRAME1RESERVED1_MSK \
3631 (0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3632 #define BT_UART_MSG_2_FRAME1RESERVED2_POS (6)
3633 #define BT_UART_MSG_2_FRAME1RESERVED2_MSK \
3634 (0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3636 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS (0)
3637 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK \
3638 (0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3639 #define BT_UART_MSG_2_FRAME2RESERVED_POS (6)
3640 #define BT_UART_MSG_2_FRAME2RESERVED_MSK \
3641 (0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3643 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS (0)
3644 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK \
3645 (0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3646 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS (4)
3647 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK \
3648 (0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3649 #define BT_UART_MSG_2_FRAME3LEMASTER_POS (5)
3650 #define BT_UART_MSG_2_FRAME3LEMASTER_MSK \
3651 (0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3652 #define BT_UART_MSG_2_FRAME3RESERVED_POS (6)
3653 #define BT_UART_MSG_2_FRAME3RESERVED_MSK \
3654 (0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3656 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS (0)
3657 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK \
3658 (0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3659 #define BT_UART_MSG_2_FRAME4NUMLECONN_POS (4)
3660 #define BT_UART_MSG_2_FRAME4NUMLECONN_MSK \
3661 (0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3662 #define BT_UART_MSG_2_FRAME4RESERVED_POS (6)
3663 #define BT_UART_MSG_2_FRAME4RESERVED_MSK \
3664 (0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3666 #define BT_UART_MSG_2_FRAME5BTMINRSSI_POS (0)
3667 #define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK \
3668 (0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3669 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS (4)
3670 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK \
3671 (0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3672 #define BT_UART_MSG_2_FRAME5LEADVERMODE_POS (5)
3673 #define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK \
3674 (0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3675 #define BT_UART_MSG_2_FRAME5RESERVED_POS (6)
3676 #define BT_UART_MSG_2_FRAME5RESERVED_MSK \
3677 (0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3679 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS (0)
3680 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK \
3681 (0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3682 #define BT_UART_MSG_2_FRAME6RFU_POS (5)
3683 #define BT_UART_MSG_2_FRAME6RFU_MSK \
3684 (0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3685 #define BT_UART_MSG_2_FRAME6RESERVED_POS (6)
3686 #define BT_UART_MSG_2_FRAME6RESERVED_MSK \
3687 (0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3689 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS (0)
3690 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK \
3691 (0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3692 #define BT_UART_MSG_2_FRAME7LEPROFILE1_POS (3)
3693 #define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK \
3694 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3695 #define BT_UART_MSG_2_FRAME7LEPROFILE2_POS (4)
3696 #define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK \
3697 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3698 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS (5)
3699 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK \
3700 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3701 #define BT_UART_MSG_2_FRAME7RESERVED_POS (6)
3702 #define BT_UART_MSG_2_FRAME7RESERVED_MSK \
3703 (0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3706 struct iwl_bt_uart_msg {
3707 u8 header;
3708 u8 frame1;
3709 u8 frame2;
3710 u8 frame3;
3711 u8 frame4;
3712 u8 frame5;
3713 u8 frame6;
3714 u8 frame7;
3715 } __attribute__((packed));
3717 struct iwl_bt_coex_profile_notif {
3718 struct iwl_bt_uart_msg last_bt_uart_msg;
3719 u8 bt_status; /* 0 - off, 1 - on */
3720 u8 bt_traffic_load; /* 0 .. 3? */
3721 u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3722 u8 reserved;
3723 } __attribute__((packed));
3725 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS 0
3726 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK 0x1
3727 #define IWL_BT_COEX_PRIO_TBL_PRIO_POS 1
3728 #define IWL_BT_COEX_PRIO_TBL_PRIO_MASK 0x0e
3729 #define IWL_BT_COEX_PRIO_TBL_RESERVED_POS 4
3730 #define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK 0xf0
3731 #define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT 1
3734 * BT Coexistence Priority table
3735 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3737 enum bt_coex_prio_table_events {
3738 BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3739 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3740 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3741 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3742 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3743 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3744 BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3745 BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3746 BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3747 BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3748 BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3749 BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3750 BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3751 BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3752 BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3753 BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3754 /* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3755 BT_COEX_PRIO_TBL_EVT_MAX,
3758 enum bt_coex_prio_table_priorities {
3759 BT_COEX_PRIO_TBL_DISABLED = 0,
3760 BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3761 BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3762 BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3763 BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3764 BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3765 BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3766 BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3767 BT_COEX_PRIO_TBL_MAX,
3770 struct iwl_bt_coex_prio_table_cmd {
3771 u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3772 } __attribute__((packed));
3774 #define IWL_BT_COEX_ENV_CLOSE 0
3775 #define IWL_BT_COEX_ENV_OPEN 1
3777 * BT Protection Envelope
3778 * REPLY_BT_COEX_PROT_ENV = 0xcd
3780 struct iwl_bt_coex_prot_env_cmd {
3781 u8 action; /* 0 = closed, 1 = open */
3782 u8 type; /* 0 .. 15 */
3783 u8 reserved[2];
3784 } __attribute__((packed));
3787 * REPLY_WOWLAN_PATTERNS
3789 #define IWLAGN_WOWLAN_MIN_PATTERN_LEN 16
3790 #define IWLAGN_WOWLAN_MAX_PATTERN_LEN 128
3792 struct iwlagn_wowlan_pattern {
3793 u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3794 u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3795 u8 mask_size;
3796 u8 pattern_size;
3797 __le16 reserved;
3798 } __packed;
3800 #define IWLAGN_WOWLAN_MAX_PATTERNS 20
3802 struct iwlagn_wowlan_patterns_cmd {
3803 __le32 n_patterns;
3804 struct iwlagn_wowlan_pattern patterns[];
3805 } __packed;
3808 * REPLY_WOWLAN_WAKEUP_FILTER
3810 enum iwlagn_wowlan_wakeup_filters {
3811 IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET = BIT(0),
3812 IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH = BIT(1),
3813 IWLAGN_WOWLAN_WAKEUP_BEACON_MISS = BIT(2),
3814 IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE = BIT(3),
3815 IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL = BIT(4),
3816 IWLAGN_WOWLAN_WAKEUP_RFKILL = BIT(5),
3817 IWLAGN_WOWLAN_WAKEUP_UCODE_ERROR = BIT(6),
3818 IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ = BIT(7),
3819 IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE = BIT(8),
3820 IWLAGN_WOWLAN_WAKEUP_ALWAYS = BIT(9),
3821 IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT = BIT(10),
3824 struct iwlagn_wowlan_wakeup_filter_cmd {
3825 __le32 enabled;
3826 __le16 non_qos_seq;
3827 u8 min_sleep_seconds;
3828 u8 reserved;
3829 __le16 qos_seq[8];
3833 * REPLY_WOWLAN_TSC_RSC_PARAMS
3835 #define IWLAGN_NUM_RSC 16
3837 struct tkip_sc {
3838 __le16 iv16;
3839 __le16 pad;
3840 __le32 iv32;
3841 } __packed;
3843 struct iwlagn_tkip_rsc_tsc {
3844 struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3845 struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3846 struct tkip_sc tsc;
3847 } __packed;
3849 struct aes_sc {
3850 __le64 pn;
3851 } __packed;
3853 struct iwlagn_aes_rsc_tsc {
3854 struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3855 struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3856 struct aes_sc tsc;
3857 } __packed;
3859 union iwlagn_all_tsc_rsc {
3860 struct iwlagn_tkip_rsc_tsc tkip;
3861 struct iwlagn_aes_rsc_tsc aes;
3864 struct iwlagn_wowlan_rsc_tsc_params_cmd {
3865 union iwlagn_all_tsc_rsc all_tsc_rsc;
3866 } __packed;
3869 * REPLY_WOWLAN_TKIP_PARAMS
3871 #define IWLAGN_MIC_KEY_SIZE 8
3872 #define IWLAGN_P1K_SIZE 5
3873 struct iwlagn_mic_keys {
3874 u8 tx[IWLAGN_MIC_KEY_SIZE];
3875 u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3876 u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3877 } __packed;
3879 struct iwlagn_p1k_cache {
3880 __le16 p1k[IWLAGN_P1K_SIZE];
3881 } __packed;
3883 #define IWLAGN_NUM_RX_P1K_CACHE 2
3885 struct iwlagn_wowlan_tkip_params_cmd {
3886 struct iwlagn_mic_keys mic_keys;
3887 struct iwlagn_p1k_cache tx;
3888 struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3889 struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3890 } __packed;
3893 * REPLY_WOWLAN_KEK_KCK_MATERIAL
3896 #define IWLAGN_KCK_MAX_SIZE 32
3897 #define IWLAGN_KEK_MAX_SIZE 32
3899 struct iwlagn_wowlan_kek_kck_material_cmd {
3900 u8 kck[IWLAGN_KCK_MAX_SIZE];
3901 u8 kek[IWLAGN_KEK_MAX_SIZE];
3902 __le16 kck_len;
3903 __le16 kek_len;
3904 __le64 replay_ctr;
3905 } __packed;
3907 /******************************************************************************
3908 * (13)
3909 * Union of all expected notifications/responses:
3911 *****************************************************************************/
3913 struct iwl_rx_packet {
3915 * The first 4 bytes of the RX frame header contain both the RX frame
3916 * size and some flags.
3917 * Bit fields:
3918 * 31: flag flush RB request
3919 * 30: flag ignore TC (terminal counter) request
3920 * 29: flag fast IRQ request
3921 * 28-14: Reserved
3922 * 13-00: RX frame size
3924 __le32 len_n_flags;
3925 struct iwl_cmd_header hdr;
3926 union {
3927 struct iwl_alive_resp alive_frame;
3928 struct iwl_spectrum_notification spectrum_notif;
3929 struct iwl_csa_notification csa_notif;
3930 struct iwl_error_resp err_resp;
3931 struct iwl_card_state_notif card_state_notif;
3932 struct iwl_add_sta_resp add_sta;
3933 struct iwl_rem_sta_resp rem_sta;
3934 struct iwl_sleep_notification sleep_notif;
3935 struct iwl_spectrum_resp spectrum;
3936 struct iwl_notif_statistics stats;
3937 struct iwl_bt_notif_statistics stats_bt;
3938 struct iwl_compressed_ba_resp compressed_ba;
3939 struct iwl_missed_beacon_notif missed_beacon;
3940 struct iwl_coex_medium_notification coex_medium_notif;
3941 struct iwl_coex_event_resp coex_event;
3942 struct iwl_bt_coex_profile_notif bt_coex_profile_notif;
3943 __le32 status;
3944 u8 raw[0];
3945 } u;
3946 } __packed;
3948 int iwl_agn_check_rxon_cmd(struct iwl_priv *priv);
3951 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3955 * Minimum slot time in TU
3957 #define IWL_MIN_SLOT_TIME 20
3960 * struct iwl_wipan_slot
3961 * @width: Time in TU
3962 * @type:
3963 * 0 - BSS
3964 * 1 - PAN
3966 struct iwl_wipan_slot {
3967 __le16 width;
3968 u8 type;
3969 u8 reserved;
3970 } __packed;
3972 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS BIT(1) /* reserved */
3973 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET BIT(2) /* reserved */
3974 #define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE BIT(3) /* reserved */
3975 #define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF BIT(4)
3976 #define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE BIT(5)
3979 * struct iwl_wipan_params_cmd
3980 * @flags:
3981 * bit0: reserved
3982 * bit1: CP leave channel with CTS
3983 * bit2: CP leave channel qith Quiet
3984 * bit3: slotted mode
3985 * 1 - work in slotted mode
3986 * 0 - work in non slotted mode
3987 * bit4: filter beacon notification
3988 * bit5: full tx slotted mode. if this flag is set,
3989 * uCode will perform leaving channel methods in context switch
3990 * also when working in same channel mode
3991 * @num_slots: 1 - 10
3993 struct iwl_wipan_params_cmd {
3994 __le16 flags;
3995 u8 reserved;
3996 u8 num_slots;
3997 struct iwl_wipan_slot slots[10];
3998 } __packed;
4001 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
4003 * TODO: Figure out what this is used for,
4004 * it can only switch between 2.4 GHz
4005 * channels!!
4008 struct iwl_wipan_p2p_channel_switch_cmd {
4009 __le16 channel;
4010 __le16 reserved;
4014 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
4016 * This is used by the device to notify us of the
4017 * NoA schedule it determined so we can forward it
4018 * to userspace for inclusion in probe responses.
4020 * In beacons, the NoA schedule is simply appended
4021 * to the frame we give the device.
4024 struct iwl_wipan_noa_descriptor {
4025 u8 count;
4026 __le32 duration;
4027 __le32 interval;
4028 __le32 starttime;
4029 } __packed;
4031 struct iwl_wipan_noa_attribute {
4032 u8 id;
4033 __le16 length;
4034 u8 index;
4035 u8 ct_window;
4036 struct iwl_wipan_noa_descriptor descr0, descr1;
4037 u8 reserved;
4038 } __packed;
4040 struct iwl_wipan_noa_notification {
4041 u32 noa_active;
4042 struct iwl_wipan_noa_attribute noa_attribute;
4043 } __packed;
4045 #endif /* __iwl_commands_h__ */