iwlagn: support v2 of enhanced sensitivity table
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / iwlwifi / iwl-agn-calib.c
blob1789e3af8101e27672f15b47cd4fe3e62a66a5c7
1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
6 * GPL LICENSE SUMMARY
8 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 * BSD LICENSE
33 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
66 #include "iwl-dev.h"
67 #include "iwl-core.h"
68 #include "iwl-agn-calib.h"
69 #include "iwl-trans.h"
70 #include "iwl-agn.h"
72 /*****************************************************************************
73 * INIT calibrations framework
74 *****************************************************************************/
76 struct statistics_general_data {
77 u32 beacon_silence_rssi_a;
78 u32 beacon_silence_rssi_b;
79 u32 beacon_silence_rssi_c;
80 u32 beacon_energy_a;
81 u32 beacon_energy_b;
82 u32 beacon_energy_c;
85 int iwl_send_calib_results(struct iwl_priv *priv)
87 int ret = 0;
88 int i = 0;
90 struct iwl_host_cmd hcmd = {
91 .id = REPLY_PHY_CALIBRATION_CMD,
92 .flags = CMD_SYNC,
95 for (i = 0; i < IWL_CALIB_MAX; i++) {
96 if ((BIT(i) & priv->hw_params.calib_init_cfg) &&
97 priv->calib_results[i].buf) {
98 hcmd.len[0] = priv->calib_results[i].buf_len;
99 hcmd.data[0] = priv->calib_results[i].buf;
100 hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
101 ret = trans_send_cmd(&priv->trans, &hcmd);
102 if (ret) {
103 IWL_ERR(priv, "Error %d iteration %d\n",
104 ret, i);
105 break;
110 return ret;
113 int iwl_calib_set(struct iwl_calib_result *res, const u8 *buf, int len)
115 if (res->buf_len != len) {
116 kfree(res->buf);
117 res->buf = kzalloc(len, GFP_ATOMIC);
119 if (unlikely(res->buf == NULL))
120 return -ENOMEM;
122 res->buf_len = len;
123 memcpy(res->buf, buf, len);
124 return 0;
127 void iwl_calib_free_results(struct iwl_priv *priv)
129 int i;
131 for (i = 0; i < IWL_CALIB_MAX; i++) {
132 kfree(priv->calib_results[i].buf);
133 priv->calib_results[i].buf = NULL;
134 priv->calib_results[i].buf_len = 0;
138 /*****************************************************************************
139 * RUNTIME calibrations framework
140 *****************************************************************************/
142 /* "false alarms" are signals that our DSP tries to lock onto,
143 * but then determines that they are either noise, or transmissions
144 * from a distant wireless network (also "noise", really) that get
145 * "stepped on" by stronger transmissions within our own network.
146 * This algorithm attempts to set a sensitivity level that is high
147 * enough to receive all of our own network traffic, but not so
148 * high that our DSP gets too busy trying to lock onto non-network
149 * activity/noise. */
150 static int iwl_sens_energy_cck(struct iwl_priv *priv,
151 u32 norm_fa,
152 u32 rx_enable_time,
153 struct statistics_general_data *rx_info)
155 u32 max_nrg_cck = 0;
156 int i = 0;
157 u8 max_silence_rssi = 0;
158 u32 silence_ref = 0;
159 u8 silence_rssi_a = 0;
160 u8 silence_rssi_b = 0;
161 u8 silence_rssi_c = 0;
162 u32 val;
164 /* "false_alarms" values below are cross-multiplications to assess the
165 * numbers of false alarms within the measured period of actual Rx
166 * (Rx is off when we're txing), vs the min/max expected false alarms
167 * (some should be expected if rx is sensitive enough) in a
168 * hypothetical listening period of 200 time units (TU), 204.8 msec:
170 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
172 * */
173 u32 false_alarms = norm_fa * 200 * 1024;
174 u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
175 u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
176 struct iwl_sensitivity_data *data = NULL;
177 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
179 data = &(priv->sensitivity_data);
181 data->nrg_auto_corr_silence_diff = 0;
183 /* Find max silence rssi among all 3 receivers.
184 * This is background noise, which may include transmissions from other
185 * networks, measured during silence before our network's beacon */
186 silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
187 ALL_BAND_FILTER) >> 8);
188 silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
189 ALL_BAND_FILTER) >> 8);
190 silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
191 ALL_BAND_FILTER) >> 8);
193 val = max(silence_rssi_b, silence_rssi_c);
194 max_silence_rssi = max(silence_rssi_a, (u8) val);
196 /* Store silence rssi in 20-beacon history table */
197 data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
198 data->nrg_silence_idx++;
199 if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
200 data->nrg_silence_idx = 0;
202 /* Find max silence rssi across 20 beacon history */
203 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
204 val = data->nrg_silence_rssi[i];
205 silence_ref = max(silence_ref, val);
207 IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
208 silence_rssi_a, silence_rssi_b, silence_rssi_c,
209 silence_ref);
211 /* Find max rx energy (min value!) among all 3 receivers,
212 * measured during beacon frame.
213 * Save it in 10-beacon history table. */
214 i = data->nrg_energy_idx;
215 val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
216 data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
218 data->nrg_energy_idx++;
219 if (data->nrg_energy_idx >= 10)
220 data->nrg_energy_idx = 0;
222 /* Find min rx energy (max value) across 10 beacon history.
223 * This is the minimum signal level that we want to receive well.
224 * Add backoff (margin so we don't miss slightly lower energy frames).
225 * This establishes an upper bound (min value) for energy threshold. */
226 max_nrg_cck = data->nrg_value[0];
227 for (i = 1; i < 10; i++)
228 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
229 max_nrg_cck += 6;
231 IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
232 rx_info->beacon_energy_a, rx_info->beacon_energy_b,
233 rx_info->beacon_energy_c, max_nrg_cck - 6);
235 /* Count number of consecutive beacons with fewer-than-desired
236 * false alarms. */
237 if (false_alarms < min_false_alarms)
238 data->num_in_cck_no_fa++;
239 else
240 data->num_in_cck_no_fa = 0;
241 IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
242 data->num_in_cck_no_fa);
244 /* If we got too many false alarms this time, reduce sensitivity */
245 if ((false_alarms > max_false_alarms) &&
246 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
247 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
248 false_alarms, max_false_alarms);
249 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
250 data->nrg_curr_state = IWL_FA_TOO_MANY;
251 /* Store for "fewer than desired" on later beacon */
252 data->nrg_silence_ref = silence_ref;
254 /* increase energy threshold (reduce nrg value)
255 * to decrease sensitivity */
256 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
257 /* Else if we got fewer than desired, increase sensitivity */
258 } else if (false_alarms < min_false_alarms) {
259 data->nrg_curr_state = IWL_FA_TOO_FEW;
261 /* Compare silence level with silence level for most recent
262 * healthy number or too many false alarms */
263 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
264 (s32)silence_ref;
266 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
267 false_alarms, min_false_alarms,
268 data->nrg_auto_corr_silence_diff);
270 /* Increase value to increase sensitivity, but only if:
271 * 1a) previous beacon did *not* have *too many* false alarms
272 * 1b) AND there's a significant difference in Rx levels
273 * from a previous beacon with too many, or healthy # FAs
274 * OR 2) We've seen a lot of beacons (100) with too few
275 * false alarms */
276 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
277 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
278 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
280 IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
281 /* Increase nrg value to increase sensitivity */
282 val = data->nrg_th_cck + NRG_STEP_CCK;
283 data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
284 } else {
285 IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
288 /* Else we got a healthy number of false alarms, keep status quo */
289 } else {
290 IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
291 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
293 /* Store for use in "fewer than desired" with later beacon */
294 data->nrg_silence_ref = silence_ref;
296 /* If previous beacon had too many false alarms,
297 * give it some extra margin by reducing sensitivity again
298 * (but don't go below measured energy of desired Rx) */
299 if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
300 IWL_DEBUG_CALIB(priv, "... increasing margin\n");
301 if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
302 data->nrg_th_cck -= NRG_MARGIN;
303 else
304 data->nrg_th_cck = max_nrg_cck;
308 /* Make sure the energy threshold does not go above the measured
309 * energy of the desired Rx signals (reduced by backoff margin),
310 * or else we might start missing Rx frames.
311 * Lower value is higher energy, so we use max()!
313 data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
314 IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
316 data->nrg_prev_state = data->nrg_curr_state;
318 /* Auto-correlation CCK algorithm */
319 if (false_alarms > min_false_alarms) {
321 /* increase auto_corr values to decrease sensitivity
322 * so the DSP won't be disturbed by the noise
324 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
325 data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
326 else {
327 val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
328 data->auto_corr_cck =
329 min((u32)ranges->auto_corr_max_cck, val);
331 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
332 data->auto_corr_cck_mrc =
333 min((u32)ranges->auto_corr_max_cck_mrc, val);
334 } else if ((false_alarms < min_false_alarms) &&
335 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
336 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
338 /* Decrease auto_corr values to increase sensitivity */
339 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
340 data->auto_corr_cck =
341 max((u32)ranges->auto_corr_min_cck, val);
342 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
343 data->auto_corr_cck_mrc =
344 max((u32)ranges->auto_corr_min_cck_mrc, val);
347 return 0;
351 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
352 u32 norm_fa,
353 u32 rx_enable_time)
355 u32 val;
356 u32 false_alarms = norm_fa * 200 * 1024;
357 u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
358 u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
359 struct iwl_sensitivity_data *data = NULL;
360 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
362 data = &(priv->sensitivity_data);
364 /* If we got too many false alarms this time, reduce sensitivity */
365 if (false_alarms > max_false_alarms) {
367 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
368 false_alarms, max_false_alarms);
370 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
371 data->auto_corr_ofdm =
372 min((u32)ranges->auto_corr_max_ofdm, val);
374 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
375 data->auto_corr_ofdm_mrc =
376 min((u32)ranges->auto_corr_max_ofdm_mrc, val);
378 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
379 data->auto_corr_ofdm_x1 =
380 min((u32)ranges->auto_corr_max_ofdm_x1, val);
382 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
383 data->auto_corr_ofdm_mrc_x1 =
384 min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
387 /* Else if we got fewer than desired, increase sensitivity */
388 else if (false_alarms < min_false_alarms) {
390 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
391 false_alarms, min_false_alarms);
393 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
394 data->auto_corr_ofdm =
395 max((u32)ranges->auto_corr_min_ofdm, val);
397 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
398 data->auto_corr_ofdm_mrc =
399 max((u32)ranges->auto_corr_min_ofdm_mrc, val);
401 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
402 data->auto_corr_ofdm_x1 =
403 max((u32)ranges->auto_corr_min_ofdm_x1, val);
405 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
406 data->auto_corr_ofdm_mrc_x1 =
407 max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
408 } else {
409 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
410 min_false_alarms, false_alarms, max_false_alarms);
412 return 0;
415 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
416 struct iwl_sensitivity_data *data,
417 __le16 *tbl)
419 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
420 cpu_to_le16((u16)data->auto_corr_ofdm);
421 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
422 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
423 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
424 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
425 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
426 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
428 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
429 cpu_to_le16((u16)data->auto_corr_cck);
430 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
431 cpu_to_le16((u16)data->auto_corr_cck_mrc);
433 tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
434 cpu_to_le16((u16)data->nrg_th_cck);
435 tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
436 cpu_to_le16((u16)data->nrg_th_ofdm);
438 tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
439 cpu_to_le16(data->barker_corr_th_min);
440 tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
441 cpu_to_le16(data->barker_corr_th_min_mrc);
442 tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
443 cpu_to_le16(data->nrg_th_cca);
445 IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
446 data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
447 data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
448 data->nrg_th_ofdm);
450 IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
451 data->auto_corr_cck, data->auto_corr_cck_mrc,
452 data->nrg_th_cck);
455 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
456 static int iwl_sensitivity_write(struct iwl_priv *priv)
458 struct iwl_sensitivity_cmd cmd;
459 struct iwl_sensitivity_data *data = NULL;
460 struct iwl_host_cmd cmd_out = {
461 .id = SENSITIVITY_CMD,
462 .len = { sizeof(struct iwl_sensitivity_cmd), },
463 .flags = CMD_ASYNC,
464 .data = { &cmd, },
467 data = &(priv->sensitivity_data);
469 memset(&cmd, 0, sizeof(cmd));
471 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
473 /* Update uCode's "work" table, and copy it to DSP */
474 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
476 /* Don't send command to uCode if nothing has changed */
477 if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
478 sizeof(u16)*HD_TABLE_SIZE)) {
479 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
480 return 0;
483 /* Copy table for comparison next time */
484 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
485 sizeof(u16)*HD_TABLE_SIZE);
487 return trans_send_cmd(&priv->trans, &cmd_out);
490 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
491 static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
493 struct iwl_enhance_sensitivity_cmd cmd;
494 struct iwl_sensitivity_data *data = NULL;
495 struct iwl_host_cmd cmd_out = {
496 .id = SENSITIVITY_CMD,
497 .len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
498 .flags = CMD_ASYNC,
499 .data = { &cmd, },
502 data = &(priv->sensitivity_data);
504 memset(&cmd, 0, sizeof(cmd));
506 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
508 if (priv->cfg->base_params->hd_v2) {
509 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
510 HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
511 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
512 HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
513 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
514 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
515 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
516 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
517 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
518 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
519 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
520 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
521 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
522 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
523 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
524 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
525 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
526 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
527 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
528 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
529 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
530 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
531 } else {
532 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
533 HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
534 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
535 HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
536 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
537 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
538 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
539 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
540 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
541 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
542 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
543 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
544 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
545 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
546 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
547 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
548 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
549 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
550 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
551 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
552 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
553 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
556 /* Update uCode's "work" table, and copy it to DSP */
557 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
559 /* Don't send command to uCode if nothing has changed */
560 if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
561 sizeof(u16)*HD_TABLE_SIZE) &&
562 !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
563 &(priv->enhance_sensitivity_tbl[0]),
564 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
565 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
566 return 0;
569 /* Copy table for comparison next time */
570 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
571 sizeof(u16)*HD_TABLE_SIZE);
572 memcpy(&(priv->enhance_sensitivity_tbl[0]),
573 &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
574 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
576 return trans_send_cmd(&priv->trans, &cmd_out);
579 void iwl_init_sensitivity(struct iwl_priv *priv)
581 int ret = 0;
582 int i;
583 struct iwl_sensitivity_data *data = NULL;
584 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
586 if (priv->disable_sens_cal)
587 return;
589 IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
591 /* Clear driver's sensitivity algo data */
592 data = &(priv->sensitivity_data);
594 if (ranges == NULL)
595 return;
597 memset(data, 0, sizeof(struct iwl_sensitivity_data));
599 data->num_in_cck_no_fa = 0;
600 data->nrg_curr_state = IWL_FA_TOO_MANY;
601 data->nrg_prev_state = IWL_FA_TOO_MANY;
602 data->nrg_silence_ref = 0;
603 data->nrg_silence_idx = 0;
604 data->nrg_energy_idx = 0;
606 for (i = 0; i < 10; i++)
607 data->nrg_value[i] = 0;
609 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
610 data->nrg_silence_rssi[i] = 0;
612 data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
613 data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
614 data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
615 data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
616 data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
617 data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
618 data->nrg_th_cck = ranges->nrg_th_cck;
619 data->nrg_th_ofdm = ranges->nrg_th_ofdm;
620 data->barker_corr_th_min = ranges->barker_corr_th_min;
621 data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
622 data->nrg_th_cca = ranges->nrg_th_cca;
624 data->last_bad_plcp_cnt_ofdm = 0;
625 data->last_fa_cnt_ofdm = 0;
626 data->last_bad_plcp_cnt_cck = 0;
627 data->last_fa_cnt_cck = 0;
629 if (priv->enhance_sensitivity_table)
630 ret |= iwl_enhance_sensitivity_write(priv);
631 else
632 ret |= iwl_sensitivity_write(priv);
633 IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
636 void iwl_sensitivity_calibration(struct iwl_priv *priv)
638 u32 rx_enable_time;
639 u32 fa_cck;
640 u32 fa_ofdm;
641 u32 bad_plcp_cck;
642 u32 bad_plcp_ofdm;
643 u32 norm_fa_ofdm;
644 u32 norm_fa_cck;
645 struct iwl_sensitivity_data *data = NULL;
646 struct statistics_rx_non_phy *rx_info;
647 struct statistics_rx_phy *ofdm, *cck;
648 unsigned long flags;
649 struct statistics_general_data statis;
651 if (priv->disable_sens_cal)
652 return;
654 data = &(priv->sensitivity_data);
656 if (!iwl_is_any_associated(priv)) {
657 IWL_DEBUG_CALIB(priv, "<< - not associated\n");
658 return;
661 spin_lock_irqsave(&priv->lock, flags);
662 rx_info = &priv->statistics.rx_non_phy;
663 ofdm = &priv->statistics.rx_ofdm;
664 cck = &priv->statistics.rx_cck;
665 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
666 IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
667 spin_unlock_irqrestore(&priv->lock, flags);
668 return;
671 /* Extract Statistics: */
672 rx_enable_time = le32_to_cpu(rx_info->channel_load);
673 fa_cck = le32_to_cpu(cck->false_alarm_cnt);
674 fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
675 bad_plcp_cck = le32_to_cpu(cck->plcp_err);
676 bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
678 statis.beacon_silence_rssi_a =
679 le32_to_cpu(rx_info->beacon_silence_rssi_a);
680 statis.beacon_silence_rssi_b =
681 le32_to_cpu(rx_info->beacon_silence_rssi_b);
682 statis.beacon_silence_rssi_c =
683 le32_to_cpu(rx_info->beacon_silence_rssi_c);
684 statis.beacon_energy_a =
685 le32_to_cpu(rx_info->beacon_energy_a);
686 statis.beacon_energy_b =
687 le32_to_cpu(rx_info->beacon_energy_b);
688 statis.beacon_energy_c =
689 le32_to_cpu(rx_info->beacon_energy_c);
691 spin_unlock_irqrestore(&priv->lock, flags);
693 IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
695 if (!rx_enable_time) {
696 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
697 return;
700 /* These statistics increase monotonically, and do not reset
701 * at each beacon. Calculate difference from last value, or just
702 * use the new statistics value if it has reset or wrapped around. */
703 if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
704 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
705 else {
706 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
707 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
710 if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
711 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
712 else {
713 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
714 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
717 if (data->last_fa_cnt_ofdm > fa_ofdm)
718 data->last_fa_cnt_ofdm = fa_ofdm;
719 else {
720 fa_ofdm -= data->last_fa_cnt_ofdm;
721 data->last_fa_cnt_ofdm += fa_ofdm;
724 if (data->last_fa_cnt_cck > fa_cck)
725 data->last_fa_cnt_cck = fa_cck;
726 else {
727 fa_cck -= data->last_fa_cnt_cck;
728 data->last_fa_cnt_cck += fa_cck;
731 /* Total aborted signal locks */
732 norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
733 norm_fa_cck = fa_cck + bad_plcp_cck;
735 IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
736 bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
738 iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
739 iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
740 if (priv->enhance_sensitivity_table)
741 iwl_enhance_sensitivity_write(priv);
742 else
743 iwl_sensitivity_write(priv);
746 static inline u8 find_first_chain(u8 mask)
748 if (mask & ANT_A)
749 return CHAIN_A;
750 if (mask & ANT_B)
751 return CHAIN_B;
752 return CHAIN_C;
756 * Run disconnected antenna algorithm to find out which antennas are
757 * disconnected.
759 static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
760 struct iwl_chain_noise_data *data)
762 u32 active_chains = 0;
763 u32 max_average_sig;
764 u16 max_average_sig_antenna_i;
765 u8 num_tx_chains;
766 u8 first_chain;
767 u16 i = 0;
769 average_sig[0] = data->chain_signal_a /
770 priv->cfg->base_params->chain_noise_num_beacons;
771 average_sig[1] = data->chain_signal_b /
772 priv->cfg->base_params->chain_noise_num_beacons;
773 average_sig[2] = data->chain_signal_c /
774 priv->cfg->base_params->chain_noise_num_beacons;
776 if (average_sig[0] >= average_sig[1]) {
777 max_average_sig = average_sig[0];
778 max_average_sig_antenna_i = 0;
779 active_chains = (1 << max_average_sig_antenna_i);
780 } else {
781 max_average_sig = average_sig[1];
782 max_average_sig_antenna_i = 1;
783 active_chains = (1 << max_average_sig_antenna_i);
786 if (average_sig[2] >= max_average_sig) {
787 max_average_sig = average_sig[2];
788 max_average_sig_antenna_i = 2;
789 active_chains = (1 << max_average_sig_antenna_i);
792 IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
793 average_sig[0], average_sig[1], average_sig[2]);
794 IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
795 max_average_sig, max_average_sig_antenna_i);
797 /* Compare signal strengths for all 3 receivers. */
798 for (i = 0; i < NUM_RX_CHAINS; i++) {
799 if (i != max_average_sig_antenna_i) {
800 s32 rssi_delta = (max_average_sig - average_sig[i]);
802 /* If signal is very weak, compared with
803 * strongest, mark it as disconnected. */
804 if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
805 data->disconn_array[i] = 1;
806 else
807 active_chains |= (1 << i);
808 IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d "
809 "disconn_array[i] = %d\n",
810 i, rssi_delta, data->disconn_array[i]);
815 * The above algorithm sometimes fails when the ucode
816 * reports 0 for all chains. It's not clear why that
817 * happens to start with, but it is then causing trouble
818 * because this can make us enable more chains than the
819 * hardware really has.
821 * To be safe, simply mask out any chains that we know
822 * are not on the device.
824 active_chains &= priv->hw_params.valid_rx_ant;
826 num_tx_chains = 0;
827 for (i = 0; i < NUM_RX_CHAINS; i++) {
828 /* loops on all the bits of
829 * priv->hw_setting.valid_tx_ant */
830 u8 ant_msk = (1 << i);
831 if (!(priv->hw_params.valid_tx_ant & ant_msk))
832 continue;
834 num_tx_chains++;
835 if (data->disconn_array[i] == 0)
836 /* there is a Tx antenna connected */
837 break;
838 if (num_tx_chains == priv->hw_params.tx_chains_num &&
839 data->disconn_array[i]) {
841 * If all chains are disconnected
842 * connect the first valid tx chain
844 first_chain =
845 find_first_chain(priv->cfg->valid_tx_ant);
846 data->disconn_array[first_chain] = 0;
847 active_chains |= BIT(first_chain);
848 IWL_DEBUG_CALIB(priv,
849 "All Tx chains are disconnected W/A - declare %d as connected\n",
850 first_chain);
851 break;
855 if (active_chains != priv->hw_params.valid_rx_ant &&
856 active_chains != priv->chain_noise_data.active_chains)
857 IWL_DEBUG_CALIB(priv,
858 "Detected that not all antennas are connected! "
859 "Connected: %#x, valid: %#x.\n",
860 active_chains, priv->hw_params.valid_rx_ant);
862 /* Save for use within RXON, TX, SCAN commands, etc. */
863 data->active_chains = active_chains;
864 IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
865 active_chains);
868 static void iwlagn_gain_computation(struct iwl_priv *priv,
869 u32 average_noise[NUM_RX_CHAINS],
870 u16 min_average_noise_antenna_i,
871 u32 min_average_noise,
872 u8 default_chain)
874 int i;
875 s32 delta_g;
876 struct iwl_chain_noise_data *data = &priv->chain_noise_data;
879 * Find Gain Code for the chains based on "default chain"
881 for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
882 if ((data->disconn_array[i])) {
883 data->delta_gain_code[i] = 0;
884 continue;
887 delta_g = (priv->cfg->base_params->chain_noise_scale *
888 ((s32)average_noise[default_chain] -
889 (s32)average_noise[i])) / 1500;
891 /* bound gain by 2 bits value max, 3rd bit is sign */
892 data->delta_gain_code[i] =
893 min(abs(delta_g),
894 (long) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
896 if (delta_g < 0)
898 * set negative sign ...
899 * note to Intel developers: This is uCode API format,
900 * not the format of any internal device registers.
901 * Do not change this format for e.g. 6050 or similar
902 * devices. Change format only if more resolution
903 * (i.e. more than 2 bits magnitude) is needed.
905 data->delta_gain_code[i] |= (1 << 2);
908 IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d ANT_C = %d\n",
909 data->delta_gain_code[1], data->delta_gain_code[2]);
911 if (!data->radio_write) {
912 struct iwl_calib_chain_noise_gain_cmd cmd;
914 memset(&cmd, 0, sizeof(cmd));
916 iwl_set_calib_hdr(&cmd.hdr,
917 priv->phy_calib_chain_noise_gain_cmd);
918 cmd.delta_gain_1 = data->delta_gain_code[1];
919 cmd.delta_gain_2 = data->delta_gain_code[2];
920 trans_send_cmd_pdu(&priv->trans, REPLY_PHY_CALIBRATION_CMD,
921 CMD_ASYNC, sizeof(cmd), &cmd);
923 data->radio_write = 1;
924 data->state = IWL_CHAIN_NOISE_CALIBRATED;
929 * Accumulate 16 beacons of signal and noise statistics for each of
930 * 3 receivers/antennas/rx-chains, then figure out:
931 * 1) Which antennas are connected.
932 * 2) Differential rx gain settings to balance the 3 receivers.
934 void iwl_chain_noise_calibration(struct iwl_priv *priv)
936 struct iwl_chain_noise_data *data = NULL;
938 u32 chain_noise_a;
939 u32 chain_noise_b;
940 u32 chain_noise_c;
941 u32 chain_sig_a;
942 u32 chain_sig_b;
943 u32 chain_sig_c;
944 u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
945 u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
946 u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
947 u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
948 u16 i = 0;
949 u16 rxon_chnum = INITIALIZATION_VALUE;
950 u16 stat_chnum = INITIALIZATION_VALUE;
951 u8 rxon_band24;
952 u8 stat_band24;
953 unsigned long flags;
954 struct statistics_rx_non_phy *rx_info;
957 * MULTI-FIXME:
958 * When we support multiple interfaces on different channels,
959 * this must be modified/fixed.
961 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
963 if (priv->disable_chain_noise_cal)
964 return;
966 data = &(priv->chain_noise_data);
969 * Accumulate just the first "chain_noise_num_beacons" after
970 * the first association, then we're done forever.
972 if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
973 if (data->state == IWL_CHAIN_NOISE_ALIVE)
974 IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
975 return;
978 spin_lock_irqsave(&priv->lock, flags);
980 rx_info = &priv->statistics.rx_non_phy;
982 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
983 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
984 spin_unlock_irqrestore(&priv->lock, flags);
985 return;
988 rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
989 rxon_chnum = le16_to_cpu(ctx->staging.channel);
990 stat_band24 =
991 !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
992 stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
994 /* Make sure we accumulate data for just the associated channel
995 * (even if scanning). */
996 if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
997 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
998 rxon_chnum, rxon_band24);
999 spin_unlock_irqrestore(&priv->lock, flags);
1000 return;
1004 * Accumulate beacon statistics values across
1005 * "chain_noise_num_beacons"
1007 chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
1008 IN_BAND_FILTER;
1009 chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
1010 IN_BAND_FILTER;
1011 chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
1012 IN_BAND_FILTER;
1014 chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
1015 chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
1016 chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
1018 spin_unlock_irqrestore(&priv->lock, flags);
1020 data->beacon_count++;
1022 data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
1023 data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
1024 data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
1026 data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
1027 data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
1028 data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
1030 IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
1031 rxon_chnum, rxon_band24, data->beacon_count);
1032 IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
1033 chain_sig_a, chain_sig_b, chain_sig_c);
1034 IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
1035 chain_noise_a, chain_noise_b, chain_noise_c);
1037 /* If this is the "chain_noise_num_beacons", determine:
1038 * 1) Disconnected antennas (using signal strengths)
1039 * 2) Differential gain (using silence noise) to balance receivers */
1040 if (data->beacon_count !=
1041 priv->cfg->base_params->chain_noise_num_beacons)
1042 return;
1044 /* Analyze signal for disconnected antenna */
1045 if (priv->cfg->bt_params &&
1046 priv->cfg->bt_params->advanced_bt_coexist) {
1047 /* Disable disconnected antenna algorithm for advanced
1048 bt coex, assuming valid antennas are connected */
1049 data->active_chains = priv->hw_params.valid_rx_ant;
1050 for (i = 0; i < NUM_RX_CHAINS; i++)
1051 if (!(data->active_chains & (1<<i)))
1052 data->disconn_array[i] = 1;
1053 } else
1054 iwl_find_disconn_antenna(priv, average_sig, data);
1056 /* Analyze noise for rx balance */
1057 average_noise[0] = data->chain_noise_a /
1058 priv->cfg->base_params->chain_noise_num_beacons;
1059 average_noise[1] = data->chain_noise_b /
1060 priv->cfg->base_params->chain_noise_num_beacons;
1061 average_noise[2] = data->chain_noise_c /
1062 priv->cfg->base_params->chain_noise_num_beacons;
1064 for (i = 0; i < NUM_RX_CHAINS; i++) {
1065 if (!(data->disconn_array[i]) &&
1066 (average_noise[i] <= min_average_noise)) {
1067 /* This means that chain i is active and has
1068 * lower noise values so far: */
1069 min_average_noise = average_noise[i];
1070 min_average_noise_antenna_i = i;
1074 IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1075 average_noise[0], average_noise[1],
1076 average_noise[2]);
1078 IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1079 min_average_noise, min_average_noise_antenna_i);
1081 iwlagn_gain_computation(priv, average_noise,
1082 min_average_noise_antenna_i, min_average_noise,
1083 find_first_chain(priv->cfg->valid_rx_ant));
1085 /* Some power changes may have been made during the calibration.
1086 * Update and commit the RXON
1088 iwl_update_chain_flags(priv);
1090 data->state = IWL_CHAIN_NOISE_DONE;
1091 iwl_power_update_mode(priv, false);
1094 void iwl_reset_run_time_calib(struct iwl_priv *priv)
1096 int i;
1097 memset(&(priv->sensitivity_data), 0,
1098 sizeof(struct iwl_sensitivity_data));
1099 memset(&(priv->chain_noise_data), 0,
1100 sizeof(struct iwl_chain_noise_data));
1101 for (i = 0; i < NUM_RX_CHAINS; i++)
1102 priv->chain_noise_data.delta_gain_code[i] =
1103 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1105 /* Ask for statistics now, the uCode will send notification
1106 * periodically after association */
1107 iwl_send_statistics_request(priv, CMD_ASYNC, true);