net: recvmmsg: Strip MSG_WAITFORONE when calling recvmsg
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / socket.c
blob1204afdfac6eee41e5385e7c1244101a034089fa
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
155 * The protocol list. Each protocol is registered in here.
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
162 * Statistics counters of the socket lists
165 static DEFINE_PER_CPU(int, sockets_in_use);
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
212 static int move_addr_to_user(struct sockaddr *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
215 int err;
216 int len;
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
235 return __put_user(klen, ulen);
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
240 static struct inode *sock_alloc_inode(struct super_block *sb)
242 struct socket_alloc *ei;
244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 if (!ei)
246 return NULL;
247 ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL);
248 if (!ei->socket.wq) {
249 kmem_cache_free(sock_inode_cachep, ei);
250 return NULL;
252 init_waitqueue_head(&ei->socket.wq->wait);
253 ei->socket.wq->fasync_list = NULL;
255 ei->socket.state = SS_UNCONNECTED;
256 ei->socket.flags = 0;
257 ei->socket.ops = NULL;
258 ei->socket.sk = NULL;
259 ei->socket.file = NULL;
261 return &ei->vfs_inode;
266 static void wq_free_rcu(struct rcu_head *head)
268 struct socket_wq *wq = container_of(head, struct socket_wq, rcu);
270 kfree(wq);
273 static void sock_destroy_inode(struct inode *inode)
275 struct socket_alloc *ei;
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 call_rcu(&ei->socket.wq->rcu, wq_free_rcu);
279 kmem_cache_free(sock_inode_cachep, ei);
282 static void init_once(void *foo)
284 struct socket_alloc *ei = (struct socket_alloc *)foo;
286 inode_init_once(&ei->vfs_inode);
289 static int init_inodecache(void)
291 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
292 sizeof(struct socket_alloc),
294 (SLAB_HWCACHE_ALIGN |
295 SLAB_RECLAIM_ACCOUNT |
296 SLAB_MEM_SPREAD),
297 init_once);
298 if (sock_inode_cachep == NULL)
299 return -ENOMEM;
300 return 0;
303 static const struct super_operations sockfs_ops = {
304 .alloc_inode = sock_alloc_inode,
305 .destroy_inode = sock_destroy_inode,
306 .statfs = simple_statfs,
310 * sockfs_dname() is called from d_path().
312 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
315 dentry->d_inode->i_ino);
318 static const struct dentry_operations sockfs_dentry_operations = {
319 .d_dname = sockfs_dname,
322 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
323 int flags, const char *dev_name, void *data)
325 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
326 &sockfs_dentry_operations, SOCKFS_MAGIC);
329 static struct vfsmount *sock_mnt __read_mostly;
331 static struct file_system_type sock_fs_type = {
332 .name = "sockfs",
333 .mount = sockfs_mount,
334 .kill_sb = kill_anon_super,
338 * Obtains the first available file descriptor and sets it up for use.
340 * These functions create file structures and maps them to fd space
341 * of the current process. On success it returns file descriptor
342 * and file struct implicitly stored in sock->file.
343 * Note that another thread may close file descriptor before we return
344 * from this function. We use the fact that now we do not refer
345 * to socket after mapping. If one day we will need it, this
346 * function will increment ref. count on file by 1.
348 * In any case returned fd MAY BE not valid!
349 * This race condition is unavoidable
350 * with shared fd spaces, we cannot solve it inside kernel,
351 * but we take care of internal coherence yet.
354 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
356 struct qstr name = { .name = "" };
357 struct path path;
358 struct file *file;
359 int fd;
361 fd = get_unused_fd_flags(flags);
362 if (unlikely(fd < 0))
363 return fd;
365 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
366 if (unlikely(!path.dentry)) {
367 put_unused_fd(fd);
368 return -ENOMEM;
370 path.mnt = mntget(sock_mnt);
372 d_instantiate(path.dentry, SOCK_INODE(sock));
373 SOCK_INODE(sock)->i_fop = &socket_file_ops;
375 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
376 &socket_file_ops);
377 if (unlikely(!file)) {
378 /* drop dentry, keep inode */
379 ihold(path.dentry->d_inode);
380 path_put(&path);
381 put_unused_fd(fd);
382 return -ENFILE;
385 sock->file = file;
386 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 file->f_pos = 0;
388 file->private_data = sock;
390 *f = file;
391 return fd;
394 int sock_map_fd(struct socket *sock, int flags)
396 struct file *newfile;
397 int fd = sock_alloc_file(sock, &newfile, flags);
399 if (likely(fd >= 0))
400 fd_install(fd, newfile);
402 return fd;
404 EXPORT_SYMBOL(sock_map_fd);
406 static struct socket *sock_from_file(struct file *file, int *err)
408 if (file->f_op == &socket_file_ops)
409 return file->private_data; /* set in sock_map_fd */
411 *err = -ENOTSOCK;
412 return NULL;
416 * sockfd_lookup - Go from a file number to its socket slot
417 * @fd: file handle
418 * @err: pointer to an error code return
420 * The file handle passed in is locked and the socket it is bound
421 * too is returned. If an error occurs the err pointer is overwritten
422 * with a negative errno code and NULL is returned. The function checks
423 * for both invalid handles and passing a handle which is not a socket.
425 * On a success the socket object pointer is returned.
428 struct socket *sockfd_lookup(int fd, int *err)
430 struct file *file;
431 struct socket *sock;
433 file = fget(fd);
434 if (!file) {
435 *err = -EBADF;
436 return NULL;
439 sock = sock_from_file(file, err);
440 if (!sock)
441 fput(file);
442 return sock;
444 EXPORT_SYMBOL(sockfd_lookup);
446 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
448 struct file *file;
449 struct socket *sock;
451 *err = -EBADF;
452 file = fget_light(fd, fput_needed);
453 if (file) {
454 sock = sock_from_file(file, err);
455 if (sock)
456 return sock;
457 fput_light(file, *fput_needed);
459 return NULL;
463 * sock_alloc - allocate a socket
465 * Allocate a new inode and socket object. The two are bound together
466 * and initialised. The socket is then returned. If we are out of inodes
467 * NULL is returned.
470 static struct socket *sock_alloc(void)
472 struct inode *inode;
473 struct socket *sock;
475 inode = new_inode(sock_mnt->mnt_sb);
476 if (!inode)
477 return NULL;
479 sock = SOCKET_I(inode);
481 kmemcheck_annotate_bitfield(sock, type);
482 inode->i_ino = get_next_ino();
483 inode->i_mode = S_IFSOCK | S_IRWXUGO;
484 inode->i_uid = current_fsuid();
485 inode->i_gid = current_fsgid();
487 percpu_add(sockets_in_use, 1);
488 return sock;
492 * In theory you can't get an open on this inode, but /proc provides
493 * a back door. Remember to keep it shut otherwise you'll let the
494 * creepy crawlies in.
497 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
499 return -ENXIO;
502 const struct file_operations bad_sock_fops = {
503 .owner = THIS_MODULE,
504 .open = sock_no_open,
505 .llseek = noop_llseek,
509 * sock_release - close a socket
510 * @sock: socket to close
512 * The socket is released from the protocol stack if it has a release
513 * callback, and the inode is then released if the socket is bound to
514 * an inode not a file.
517 void sock_release(struct socket *sock)
519 if (sock->ops) {
520 struct module *owner = sock->ops->owner;
522 sock->ops->release(sock);
523 sock->ops = NULL;
524 module_put(owner);
527 if (sock->wq->fasync_list)
528 printk(KERN_ERR "sock_release: fasync list not empty!\n");
530 percpu_sub(sockets_in_use, 1);
531 if (!sock->file) {
532 iput(SOCK_INODE(sock));
533 return;
535 sock->file = NULL;
537 EXPORT_SYMBOL(sock_release);
539 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
541 *tx_flags = 0;
542 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
543 *tx_flags |= SKBTX_HW_TSTAMP;
544 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
545 *tx_flags |= SKBTX_SW_TSTAMP;
546 return 0;
548 EXPORT_SYMBOL(sock_tx_timestamp);
550 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
551 struct msghdr *msg, size_t size)
553 struct sock_iocb *si = kiocb_to_siocb(iocb);
554 int err;
556 sock_update_classid(sock->sk);
558 si->sock = sock;
559 si->scm = NULL;
560 si->msg = msg;
561 si->size = size;
563 err = security_socket_sendmsg(sock, msg, size);
564 if (err)
565 return err;
567 return sock->ops->sendmsg(iocb, sock, msg, size);
570 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
572 struct kiocb iocb;
573 struct sock_iocb siocb;
574 int ret;
576 init_sync_kiocb(&iocb, NULL);
577 iocb.private = &siocb;
578 ret = __sock_sendmsg(&iocb, sock, msg, size);
579 if (-EIOCBQUEUED == ret)
580 ret = wait_on_sync_kiocb(&iocb);
581 return ret;
583 EXPORT_SYMBOL(sock_sendmsg);
585 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
586 struct kvec *vec, size_t num, size_t size)
588 mm_segment_t oldfs = get_fs();
589 int result;
591 set_fs(KERNEL_DS);
593 * the following is safe, since for compiler definitions of kvec and
594 * iovec are identical, yielding the same in-core layout and alignment
596 msg->msg_iov = (struct iovec *)vec;
597 msg->msg_iovlen = num;
598 result = sock_sendmsg(sock, msg, size);
599 set_fs(oldfs);
600 return result;
602 EXPORT_SYMBOL(kernel_sendmsg);
604 static int ktime2ts(ktime_t kt, struct timespec *ts)
606 if (kt.tv64) {
607 *ts = ktime_to_timespec(kt);
608 return 1;
609 } else {
610 return 0;
615 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
617 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
618 struct sk_buff *skb)
620 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
621 struct timespec ts[3];
622 int empty = 1;
623 struct skb_shared_hwtstamps *shhwtstamps =
624 skb_hwtstamps(skb);
626 /* Race occurred between timestamp enabling and packet
627 receiving. Fill in the current time for now. */
628 if (need_software_tstamp && skb->tstamp.tv64 == 0)
629 __net_timestamp(skb);
631 if (need_software_tstamp) {
632 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
633 struct timeval tv;
634 skb_get_timestamp(skb, &tv);
635 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
636 sizeof(tv), &tv);
637 } else {
638 skb_get_timestampns(skb, &ts[0]);
639 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
640 sizeof(ts[0]), &ts[0]);
645 memset(ts, 0, sizeof(ts));
646 if (skb->tstamp.tv64 &&
647 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
648 skb_get_timestampns(skb, ts + 0);
649 empty = 0;
651 if (shhwtstamps) {
652 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
653 ktime2ts(shhwtstamps->syststamp, ts + 1))
654 empty = 0;
655 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
656 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
657 empty = 0;
659 if (!empty)
660 put_cmsg(msg, SOL_SOCKET,
661 SCM_TIMESTAMPING, sizeof(ts), &ts);
663 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
665 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
666 struct sk_buff *skb)
668 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
669 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
670 sizeof(__u32), &skb->dropcount);
673 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
674 struct sk_buff *skb)
676 sock_recv_timestamp(msg, sk, skb);
677 sock_recv_drops(msg, sk, skb);
679 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
681 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
682 struct msghdr *msg, size_t size, int flags)
684 struct sock_iocb *si = kiocb_to_siocb(iocb);
686 sock_update_classid(sock->sk);
688 si->sock = sock;
689 si->scm = NULL;
690 si->msg = msg;
691 si->size = size;
692 si->flags = flags;
694 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
697 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
698 struct msghdr *msg, size_t size, int flags)
700 int err = security_socket_recvmsg(sock, msg, size, flags);
702 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
705 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
706 size_t size, int flags)
708 struct kiocb iocb;
709 struct sock_iocb siocb;
710 int ret;
712 init_sync_kiocb(&iocb, NULL);
713 iocb.private = &siocb;
714 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
715 if (-EIOCBQUEUED == ret)
716 ret = wait_on_sync_kiocb(&iocb);
717 return ret;
719 EXPORT_SYMBOL(sock_recvmsg);
721 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
722 size_t size, int flags)
724 struct kiocb iocb;
725 struct sock_iocb siocb;
726 int ret;
728 init_sync_kiocb(&iocb, NULL);
729 iocb.private = &siocb;
730 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
731 if (-EIOCBQUEUED == ret)
732 ret = wait_on_sync_kiocb(&iocb);
733 return ret;
737 * kernel_recvmsg - Receive a message from a socket (kernel space)
738 * @sock: The socket to receive the message from
739 * @msg: Received message
740 * @vec: Input s/g array for message data
741 * @num: Size of input s/g array
742 * @size: Number of bytes to read
743 * @flags: Message flags (MSG_DONTWAIT, etc...)
745 * On return the msg structure contains the scatter/gather array passed in the
746 * vec argument. The array is modified so that it consists of the unfilled
747 * portion of the original array.
749 * The returned value is the total number of bytes received, or an error.
751 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
752 struct kvec *vec, size_t num, size_t size, int flags)
754 mm_segment_t oldfs = get_fs();
755 int result;
757 set_fs(KERNEL_DS);
759 * the following is safe, since for compiler definitions of kvec and
760 * iovec are identical, yielding the same in-core layout and alignment
762 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
763 result = sock_recvmsg(sock, msg, size, flags);
764 set_fs(oldfs);
765 return result;
767 EXPORT_SYMBOL(kernel_recvmsg);
769 static void sock_aio_dtor(struct kiocb *iocb)
771 kfree(iocb->private);
774 static ssize_t sock_sendpage(struct file *file, struct page *page,
775 int offset, size_t size, loff_t *ppos, int more)
777 struct socket *sock;
778 int flags;
780 sock = file->private_data;
782 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
783 if (more)
784 flags |= MSG_MORE;
786 return kernel_sendpage(sock, page, offset, size, flags);
789 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
790 struct pipe_inode_info *pipe, size_t len,
791 unsigned int flags)
793 struct socket *sock = file->private_data;
795 if (unlikely(!sock->ops->splice_read))
796 return -EINVAL;
798 sock_update_classid(sock->sk);
800 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
803 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
804 struct sock_iocb *siocb)
806 if (!is_sync_kiocb(iocb)) {
807 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
808 if (!siocb)
809 return NULL;
810 iocb->ki_dtor = sock_aio_dtor;
813 siocb->kiocb = iocb;
814 iocb->private = siocb;
815 return siocb;
818 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
819 struct file *file, const struct iovec *iov,
820 unsigned long nr_segs)
822 struct socket *sock = file->private_data;
823 size_t size = 0;
824 int i;
826 for (i = 0; i < nr_segs; i++)
827 size += iov[i].iov_len;
829 msg->msg_name = NULL;
830 msg->msg_namelen = 0;
831 msg->msg_control = NULL;
832 msg->msg_controllen = 0;
833 msg->msg_iov = (struct iovec *)iov;
834 msg->msg_iovlen = nr_segs;
835 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
837 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
840 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
841 unsigned long nr_segs, loff_t pos)
843 struct sock_iocb siocb, *x;
845 if (pos != 0)
846 return -ESPIPE;
848 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
849 return 0;
852 x = alloc_sock_iocb(iocb, &siocb);
853 if (!x)
854 return -ENOMEM;
855 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
858 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
859 struct file *file, const struct iovec *iov,
860 unsigned long nr_segs)
862 struct socket *sock = file->private_data;
863 size_t size = 0;
864 int i;
866 for (i = 0; i < nr_segs; i++)
867 size += iov[i].iov_len;
869 msg->msg_name = NULL;
870 msg->msg_namelen = 0;
871 msg->msg_control = NULL;
872 msg->msg_controllen = 0;
873 msg->msg_iov = (struct iovec *)iov;
874 msg->msg_iovlen = nr_segs;
875 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
876 if (sock->type == SOCK_SEQPACKET)
877 msg->msg_flags |= MSG_EOR;
879 return __sock_sendmsg(iocb, sock, msg, size);
882 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
883 unsigned long nr_segs, loff_t pos)
885 struct sock_iocb siocb, *x;
887 if (pos != 0)
888 return -ESPIPE;
890 x = alloc_sock_iocb(iocb, &siocb);
891 if (!x)
892 return -ENOMEM;
894 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
898 * Atomic setting of ioctl hooks to avoid race
899 * with module unload.
902 static DEFINE_MUTEX(br_ioctl_mutex);
903 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
905 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
907 mutex_lock(&br_ioctl_mutex);
908 br_ioctl_hook = hook;
909 mutex_unlock(&br_ioctl_mutex);
911 EXPORT_SYMBOL(brioctl_set);
913 static DEFINE_MUTEX(vlan_ioctl_mutex);
914 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
916 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
918 mutex_lock(&vlan_ioctl_mutex);
919 vlan_ioctl_hook = hook;
920 mutex_unlock(&vlan_ioctl_mutex);
922 EXPORT_SYMBOL(vlan_ioctl_set);
924 static DEFINE_MUTEX(dlci_ioctl_mutex);
925 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
927 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
929 mutex_lock(&dlci_ioctl_mutex);
930 dlci_ioctl_hook = hook;
931 mutex_unlock(&dlci_ioctl_mutex);
933 EXPORT_SYMBOL(dlci_ioctl_set);
935 static long sock_do_ioctl(struct net *net, struct socket *sock,
936 unsigned int cmd, unsigned long arg)
938 int err;
939 void __user *argp = (void __user *)arg;
941 err = sock->ops->ioctl(sock, cmd, arg);
944 * If this ioctl is unknown try to hand it down
945 * to the NIC driver.
947 if (err == -ENOIOCTLCMD)
948 err = dev_ioctl(net, cmd, argp);
950 return err;
954 * With an ioctl, arg may well be a user mode pointer, but we don't know
955 * what to do with it - that's up to the protocol still.
958 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
960 struct socket *sock;
961 struct sock *sk;
962 void __user *argp = (void __user *)arg;
963 int pid, err;
964 struct net *net;
966 sock = file->private_data;
967 sk = sock->sk;
968 net = sock_net(sk);
969 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
970 err = dev_ioctl(net, cmd, argp);
971 } else
972 #ifdef CONFIG_WEXT_CORE
973 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
974 err = dev_ioctl(net, cmd, argp);
975 } else
976 #endif
977 switch (cmd) {
978 case FIOSETOWN:
979 case SIOCSPGRP:
980 err = -EFAULT;
981 if (get_user(pid, (int __user *)argp))
982 break;
983 err = f_setown(sock->file, pid, 1);
984 break;
985 case FIOGETOWN:
986 case SIOCGPGRP:
987 err = put_user(f_getown(sock->file),
988 (int __user *)argp);
989 break;
990 case SIOCGIFBR:
991 case SIOCSIFBR:
992 case SIOCBRADDBR:
993 case SIOCBRDELBR:
994 err = -ENOPKG;
995 if (!br_ioctl_hook)
996 request_module("bridge");
998 mutex_lock(&br_ioctl_mutex);
999 if (br_ioctl_hook)
1000 err = br_ioctl_hook(net, cmd, argp);
1001 mutex_unlock(&br_ioctl_mutex);
1002 break;
1003 case SIOCGIFVLAN:
1004 case SIOCSIFVLAN:
1005 err = -ENOPKG;
1006 if (!vlan_ioctl_hook)
1007 request_module("8021q");
1009 mutex_lock(&vlan_ioctl_mutex);
1010 if (vlan_ioctl_hook)
1011 err = vlan_ioctl_hook(net, argp);
1012 mutex_unlock(&vlan_ioctl_mutex);
1013 break;
1014 case SIOCADDDLCI:
1015 case SIOCDELDLCI:
1016 err = -ENOPKG;
1017 if (!dlci_ioctl_hook)
1018 request_module("dlci");
1020 mutex_lock(&dlci_ioctl_mutex);
1021 if (dlci_ioctl_hook)
1022 err = dlci_ioctl_hook(cmd, argp);
1023 mutex_unlock(&dlci_ioctl_mutex);
1024 break;
1025 default:
1026 err = sock_do_ioctl(net, sock, cmd, arg);
1027 break;
1029 return err;
1032 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1034 int err;
1035 struct socket *sock = NULL;
1037 err = security_socket_create(family, type, protocol, 1);
1038 if (err)
1039 goto out;
1041 sock = sock_alloc();
1042 if (!sock) {
1043 err = -ENOMEM;
1044 goto out;
1047 sock->type = type;
1048 err = security_socket_post_create(sock, family, type, protocol, 1);
1049 if (err)
1050 goto out_release;
1052 out:
1053 *res = sock;
1054 return err;
1055 out_release:
1056 sock_release(sock);
1057 sock = NULL;
1058 goto out;
1060 EXPORT_SYMBOL(sock_create_lite);
1062 /* No kernel lock held - perfect */
1063 static unsigned int sock_poll(struct file *file, poll_table *wait)
1065 struct socket *sock;
1068 * We can't return errors to poll, so it's either yes or no.
1070 sock = file->private_data;
1071 return sock->ops->poll(file, sock, wait);
1074 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1076 struct socket *sock = file->private_data;
1078 return sock->ops->mmap(file, sock, vma);
1081 static int sock_close(struct inode *inode, struct file *filp)
1084 * It was possible the inode is NULL we were
1085 * closing an unfinished socket.
1088 if (!inode) {
1089 printk(KERN_DEBUG "sock_close: NULL inode\n");
1090 return 0;
1092 sock_release(SOCKET_I(inode));
1093 return 0;
1097 * Update the socket async list
1099 * Fasync_list locking strategy.
1101 * 1. fasync_list is modified only under process context socket lock
1102 * i.e. under semaphore.
1103 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1104 * or under socket lock
1107 static int sock_fasync(int fd, struct file *filp, int on)
1109 struct socket *sock = filp->private_data;
1110 struct sock *sk = sock->sk;
1112 if (sk == NULL)
1113 return -EINVAL;
1115 lock_sock(sk);
1117 fasync_helper(fd, filp, on, &sock->wq->fasync_list);
1119 if (!sock->wq->fasync_list)
1120 sock_reset_flag(sk, SOCK_FASYNC);
1121 else
1122 sock_set_flag(sk, SOCK_FASYNC);
1124 release_sock(sk);
1125 return 0;
1128 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1130 int sock_wake_async(struct socket *sock, int how, int band)
1132 struct socket_wq *wq;
1134 if (!sock)
1135 return -1;
1136 rcu_read_lock();
1137 wq = rcu_dereference(sock->wq);
1138 if (!wq || !wq->fasync_list) {
1139 rcu_read_unlock();
1140 return -1;
1142 switch (how) {
1143 case SOCK_WAKE_WAITD:
1144 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1145 break;
1146 goto call_kill;
1147 case SOCK_WAKE_SPACE:
1148 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1149 break;
1150 /* fall through */
1151 case SOCK_WAKE_IO:
1152 call_kill:
1153 kill_fasync(&wq->fasync_list, SIGIO, band);
1154 break;
1155 case SOCK_WAKE_URG:
1156 kill_fasync(&wq->fasync_list, SIGURG, band);
1158 rcu_read_unlock();
1159 return 0;
1161 EXPORT_SYMBOL(sock_wake_async);
1163 int __sock_create(struct net *net, int family, int type, int protocol,
1164 struct socket **res, int kern)
1166 int err;
1167 struct socket *sock;
1168 const struct net_proto_family *pf;
1171 * Check protocol is in range
1173 if (family < 0 || family >= NPROTO)
1174 return -EAFNOSUPPORT;
1175 if (type < 0 || type >= SOCK_MAX)
1176 return -EINVAL;
1178 /* Compatibility.
1180 This uglymoron is moved from INET layer to here to avoid
1181 deadlock in module load.
1183 if (family == PF_INET && type == SOCK_PACKET) {
1184 static int warned;
1185 if (!warned) {
1186 warned = 1;
1187 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1188 current->comm);
1190 family = PF_PACKET;
1193 err = security_socket_create(family, type, protocol, kern);
1194 if (err)
1195 return err;
1198 * Allocate the socket and allow the family to set things up. if
1199 * the protocol is 0, the family is instructed to select an appropriate
1200 * default.
1202 sock = sock_alloc();
1203 if (!sock) {
1204 if (net_ratelimit())
1205 printk(KERN_WARNING "socket: no more sockets\n");
1206 return -ENFILE; /* Not exactly a match, but its the
1207 closest posix thing */
1210 sock->type = type;
1212 #ifdef CONFIG_MODULES
1213 /* Attempt to load a protocol module if the find failed.
1215 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1216 * requested real, full-featured networking support upon configuration.
1217 * Otherwise module support will break!
1219 if (rcu_access_pointer(net_families[family]) == NULL)
1220 request_module("net-pf-%d", family);
1221 #endif
1223 rcu_read_lock();
1224 pf = rcu_dereference(net_families[family]);
1225 err = -EAFNOSUPPORT;
1226 if (!pf)
1227 goto out_release;
1230 * We will call the ->create function, that possibly is in a loadable
1231 * module, so we have to bump that loadable module refcnt first.
1233 if (!try_module_get(pf->owner))
1234 goto out_release;
1236 /* Now protected by module ref count */
1237 rcu_read_unlock();
1239 err = pf->create(net, sock, protocol, kern);
1240 if (err < 0)
1241 goto out_module_put;
1244 * Now to bump the refcnt of the [loadable] module that owns this
1245 * socket at sock_release time we decrement its refcnt.
1247 if (!try_module_get(sock->ops->owner))
1248 goto out_module_busy;
1251 * Now that we're done with the ->create function, the [loadable]
1252 * module can have its refcnt decremented
1254 module_put(pf->owner);
1255 err = security_socket_post_create(sock, family, type, protocol, kern);
1256 if (err)
1257 goto out_sock_release;
1258 *res = sock;
1260 return 0;
1262 out_module_busy:
1263 err = -EAFNOSUPPORT;
1264 out_module_put:
1265 sock->ops = NULL;
1266 module_put(pf->owner);
1267 out_sock_release:
1268 sock_release(sock);
1269 return err;
1271 out_release:
1272 rcu_read_unlock();
1273 goto out_sock_release;
1275 EXPORT_SYMBOL(__sock_create);
1277 int sock_create(int family, int type, int protocol, struct socket **res)
1279 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1281 EXPORT_SYMBOL(sock_create);
1283 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1285 return __sock_create(&init_net, family, type, protocol, res, 1);
1287 EXPORT_SYMBOL(sock_create_kern);
1289 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1291 int retval;
1292 struct socket *sock;
1293 int flags;
1295 /* Check the SOCK_* constants for consistency. */
1296 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1297 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1298 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1299 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1301 flags = type & ~SOCK_TYPE_MASK;
1302 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1303 return -EINVAL;
1304 type &= SOCK_TYPE_MASK;
1306 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1307 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1309 retval = sock_create(family, type, protocol, &sock);
1310 if (retval < 0)
1311 goto out;
1313 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1314 if (retval < 0)
1315 goto out_release;
1317 out:
1318 /* It may be already another descriptor 8) Not kernel problem. */
1319 return retval;
1321 out_release:
1322 sock_release(sock);
1323 return retval;
1327 * Create a pair of connected sockets.
1330 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1331 int __user *, usockvec)
1333 struct socket *sock1, *sock2;
1334 int fd1, fd2, err;
1335 struct file *newfile1, *newfile2;
1336 int flags;
1338 flags = type & ~SOCK_TYPE_MASK;
1339 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1340 return -EINVAL;
1341 type &= SOCK_TYPE_MASK;
1343 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1344 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1347 * Obtain the first socket and check if the underlying protocol
1348 * supports the socketpair call.
1351 err = sock_create(family, type, protocol, &sock1);
1352 if (err < 0)
1353 goto out;
1355 err = sock_create(family, type, protocol, &sock2);
1356 if (err < 0)
1357 goto out_release_1;
1359 err = sock1->ops->socketpair(sock1, sock2);
1360 if (err < 0)
1361 goto out_release_both;
1363 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1364 if (unlikely(fd1 < 0)) {
1365 err = fd1;
1366 goto out_release_both;
1369 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1370 if (unlikely(fd2 < 0)) {
1371 err = fd2;
1372 fput(newfile1);
1373 put_unused_fd(fd1);
1374 sock_release(sock2);
1375 goto out;
1378 audit_fd_pair(fd1, fd2);
1379 fd_install(fd1, newfile1);
1380 fd_install(fd2, newfile2);
1381 /* fd1 and fd2 may be already another descriptors.
1382 * Not kernel problem.
1385 err = put_user(fd1, &usockvec[0]);
1386 if (!err)
1387 err = put_user(fd2, &usockvec[1]);
1388 if (!err)
1389 return 0;
1391 sys_close(fd2);
1392 sys_close(fd1);
1393 return err;
1395 out_release_both:
1396 sock_release(sock2);
1397 out_release_1:
1398 sock_release(sock1);
1399 out:
1400 return err;
1404 * Bind a name to a socket. Nothing much to do here since it's
1405 * the protocol's responsibility to handle the local address.
1407 * We move the socket address to kernel space before we call
1408 * the protocol layer (having also checked the address is ok).
1411 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1413 struct socket *sock;
1414 struct sockaddr_storage address;
1415 int err, fput_needed;
1417 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1418 if (sock) {
1419 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1420 if (err >= 0) {
1421 err = security_socket_bind(sock,
1422 (struct sockaddr *)&address,
1423 addrlen);
1424 if (!err)
1425 err = sock->ops->bind(sock,
1426 (struct sockaddr *)
1427 &address, addrlen);
1429 fput_light(sock->file, fput_needed);
1431 return err;
1435 * Perform a listen. Basically, we allow the protocol to do anything
1436 * necessary for a listen, and if that works, we mark the socket as
1437 * ready for listening.
1440 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1442 struct socket *sock;
1443 int err, fput_needed;
1444 int somaxconn;
1446 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1447 if (sock) {
1448 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1449 if ((unsigned)backlog > somaxconn)
1450 backlog = somaxconn;
1452 err = security_socket_listen(sock, backlog);
1453 if (!err)
1454 err = sock->ops->listen(sock, backlog);
1456 fput_light(sock->file, fput_needed);
1458 return err;
1462 * For accept, we attempt to create a new socket, set up the link
1463 * with the client, wake up the client, then return the new
1464 * connected fd. We collect the address of the connector in kernel
1465 * space and move it to user at the very end. This is unclean because
1466 * we open the socket then return an error.
1468 * 1003.1g adds the ability to recvmsg() to query connection pending
1469 * status to recvmsg. We need to add that support in a way thats
1470 * clean when we restucture accept also.
1473 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1474 int __user *, upeer_addrlen, int, flags)
1476 struct socket *sock, *newsock;
1477 struct file *newfile;
1478 int err, len, newfd, fput_needed;
1479 struct sockaddr_storage address;
1481 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1482 return -EINVAL;
1484 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1485 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1487 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1488 if (!sock)
1489 goto out;
1491 err = -ENFILE;
1492 newsock = sock_alloc();
1493 if (!newsock)
1494 goto out_put;
1496 newsock->type = sock->type;
1497 newsock->ops = sock->ops;
1500 * We don't need try_module_get here, as the listening socket (sock)
1501 * has the protocol module (sock->ops->owner) held.
1503 __module_get(newsock->ops->owner);
1505 newfd = sock_alloc_file(newsock, &newfile, flags);
1506 if (unlikely(newfd < 0)) {
1507 err = newfd;
1508 sock_release(newsock);
1509 goto out_put;
1512 err = security_socket_accept(sock, newsock);
1513 if (err)
1514 goto out_fd;
1516 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1517 if (err < 0)
1518 goto out_fd;
1520 if (upeer_sockaddr) {
1521 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1522 &len, 2) < 0) {
1523 err = -ECONNABORTED;
1524 goto out_fd;
1526 err = move_addr_to_user((struct sockaddr *)&address,
1527 len, upeer_sockaddr, upeer_addrlen);
1528 if (err < 0)
1529 goto out_fd;
1532 /* File flags are not inherited via accept() unlike another OSes. */
1534 fd_install(newfd, newfile);
1535 err = newfd;
1537 out_put:
1538 fput_light(sock->file, fput_needed);
1539 out:
1540 return err;
1541 out_fd:
1542 fput(newfile);
1543 put_unused_fd(newfd);
1544 goto out_put;
1547 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1548 int __user *, upeer_addrlen)
1550 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1554 * Attempt to connect to a socket with the server address. The address
1555 * is in user space so we verify it is OK and move it to kernel space.
1557 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1558 * break bindings
1560 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1561 * other SEQPACKET protocols that take time to connect() as it doesn't
1562 * include the -EINPROGRESS status for such sockets.
1565 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1566 int, addrlen)
1568 struct socket *sock;
1569 struct sockaddr_storage address;
1570 int err, fput_needed;
1572 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1573 if (!sock)
1574 goto out;
1575 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1576 if (err < 0)
1577 goto out_put;
1579 err =
1580 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1581 if (err)
1582 goto out_put;
1584 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1585 sock->file->f_flags);
1586 out_put:
1587 fput_light(sock->file, fput_needed);
1588 out:
1589 return err;
1593 * Get the local address ('name') of a socket object. Move the obtained
1594 * name to user space.
1597 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1598 int __user *, usockaddr_len)
1600 struct socket *sock;
1601 struct sockaddr_storage address;
1602 int len, err, fput_needed;
1604 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1605 if (!sock)
1606 goto out;
1608 err = security_socket_getsockname(sock);
1609 if (err)
1610 goto out_put;
1612 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1613 if (err)
1614 goto out_put;
1615 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1617 out_put:
1618 fput_light(sock->file, fput_needed);
1619 out:
1620 return err;
1624 * Get the remote address ('name') of a socket object. Move the obtained
1625 * name to user space.
1628 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1629 int __user *, usockaddr_len)
1631 struct socket *sock;
1632 struct sockaddr_storage address;
1633 int len, err, fput_needed;
1635 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1636 if (sock != NULL) {
1637 err = security_socket_getpeername(sock);
1638 if (err) {
1639 fput_light(sock->file, fput_needed);
1640 return err;
1643 err =
1644 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1646 if (!err)
1647 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1648 usockaddr_len);
1649 fput_light(sock->file, fput_needed);
1651 return err;
1655 * Send a datagram to a given address. We move the address into kernel
1656 * space and check the user space data area is readable before invoking
1657 * the protocol.
1660 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1661 unsigned, flags, struct sockaddr __user *, addr,
1662 int, addr_len)
1664 struct socket *sock;
1665 struct sockaddr_storage address;
1666 int err;
1667 struct msghdr msg;
1668 struct iovec iov;
1669 int fput_needed;
1671 if (len > INT_MAX)
1672 len = INT_MAX;
1673 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674 if (!sock)
1675 goto out;
1677 iov.iov_base = buff;
1678 iov.iov_len = len;
1679 msg.msg_name = NULL;
1680 msg.msg_iov = &iov;
1681 msg.msg_iovlen = 1;
1682 msg.msg_control = NULL;
1683 msg.msg_controllen = 0;
1684 msg.msg_namelen = 0;
1685 if (addr) {
1686 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1687 if (err < 0)
1688 goto out_put;
1689 msg.msg_name = (struct sockaddr *)&address;
1690 msg.msg_namelen = addr_len;
1692 if (sock->file->f_flags & O_NONBLOCK)
1693 flags |= MSG_DONTWAIT;
1694 msg.msg_flags = flags;
1695 err = sock_sendmsg(sock, &msg, len);
1697 out_put:
1698 fput_light(sock->file, fput_needed);
1699 out:
1700 return err;
1704 * Send a datagram down a socket.
1707 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1708 unsigned, flags)
1710 return sys_sendto(fd, buff, len, flags, NULL, 0);
1714 * Receive a frame from the socket and optionally record the address of the
1715 * sender. We verify the buffers are writable and if needed move the
1716 * sender address from kernel to user space.
1719 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1720 unsigned, flags, struct sockaddr __user *, addr,
1721 int __user *, addr_len)
1723 struct socket *sock;
1724 struct iovec iov;
1725 struct msghdr msg;
1726 struct sockaddr_storage address;
1727 int err, err2;
1728 int fput_needed;
1730 if (size > INT_MAX)
1731 size = INT_MAX;
1732 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1733 if (!sock)
1734 goto out;
1736 msg.msg_control = NULL;
1737 msg.msg_controllen = 0;
1738 msg.msg_iovlen = 1;
1739 msg.msg_iov = &iov;
1740 iov.iov_len = size;
1741 iov.iov_base = ubuf;
1742 msg.msg_name = (struct sockaddr *)&address;
1743 msg.msg_namelen = sizeof(address);
1744 if (sock->file->f_flags & O_NONBLOCK)
1745 flags |= MSG_DONTWAIT;
1746 err = sock_recvmsg(sock, &msg, size, flags);
1748 if (err >= 0 && addr != NULL) {
1749 err2 = move_addr_to_user((struct sockaddr *)&address,
1750 msg.msg_namelen, addr, addr_len);
1751 if (err2 < 0)
1752 err = err2;
1755 fput_light(sock->file, fput_needed);
1756 out:
1757 return err;
1761 * Receive a datagram from a socket.
1764 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1765 unsigned flags)
1767 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1771 * Set a socket option. Because we don't know the option lengths we have
1772 * to pass the user mode parameter for the protocols to sort out.
1775 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1776 char __user *, optval, int, optlen)
1778 int err, fput_needed;
1779 struct socket *sock;
1781 if (optlen < 0)
1782 return -EINVAL;
1784 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1785 if (sock != NULL) {
1786 err = security_socket_setsockopt(sock, level, optname);
1787 if (err)
1788 goto out_put;
1790 if (level == SOL_SOCKET)
1791 err =
1792 sock_setsockopt(sock, level, optname, optval,
1793 optlen);
1794 else
1795 err =
1796 sock->ops->setsockopt(sock, level, optname, optval,
1797 optlen);
1798 out_put:
1799 fput_light(sock->file, fput_needed);
1801 return err;
1805 * Get a socket option. Because we don't know the option lengths we have
1806 * to pass a user mode parameter for the protocols to sort out.
1809 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1810 char __user *, optval, int __user *, optlen)
1812 int err, fput_needed;
1813 struct socket *sock;
1815 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1816 if (sock != NULL) {
1817 err = security_socket_getsockopt(sock, level, optname);
1818 if (err)
1819 goto out_put;
1821 if (level == SOL_SOCKET)
1822 err =
1823 sock_getsockopt(sock, level, optname, optval,
1824 optlen);
1825 else
1826 err =
1827 sock->ops->getsockopt(sock, level, optname, optval,
1828 optlen);
1829 out_put:
1830 fput_light(sock->file, fput_needed);
1832 return err;
1836 * Shutdown a socket.
1839 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1841 int err, fput_needed;
1842 struct socket *sock;
1844 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1845 if (sock != NULL) {
1846 err = security_socket_shutdown(sock, how);
1847 if (!err)
1848 err = sock->ops->shutdown(sock, how);
1849 fput_light(sock->file, fput_needed);
1851 return err;
1854 /* A couple of helpful macros for getting the address of the 32/64 bit
1855 * fields which are the same type (int / unsigned) on our platforms.
1857 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1858 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1859 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1862 * BSD sendmsg interface
1865 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1867 struct compat_msghdr __user *msg_compat =
1868 (struct compat_msghdr __user *)msg;
1869 struct socket *sock;
1870 struct sockaddr_storage address;
1871 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1872 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1873 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1874 /* 20 is size of ipv6_pktinfo */
1875 unsigned char *ctl_buf = ctl;
1876 struct msghdr msg_sys;
1877 int err, ctl_len, iov_size, total_len;
1878 int fput_needed;
1880 err = -EFAULT;
1881 if (MSG_CMSG_COMPAT & flags) {
1882 if (get_compat_msghdr(&msg_sys, msg_compat))
1883 return -EFAULT;
1884 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1885 return -EFAULT;
1887 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1888 if (!sock)
1889 goto out;
1891 /* do not move before msg_sys is valid */
1892 err = -EMSGSIZE;
1893 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1894 goto out_put;
1896 /* Check whether to allocate the iovec area */
1897 err = -ENOMEM;
1898 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1899 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1900 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1901 if (!iov)
1902 goto out_put;
1905 /* This will also move the address data into kernel space */
1906 if (MSG_CMSG_COMPAT & flags) {
1907 err = verify_compat_iovec(&msg_sys, iov,
1908 (struct sockaddr *)&address,
1909 VERIFY_READ);
1910 } else
1911 err = verify_iovec(&msg_sys, iov,
1912 (struct sockaddr *)&address,
1913 VERIFY_READ);
1914 if (err < 0)
1915 goto out_freeiov;
1916 total_len = err;
1918 err = -ENOBUFS;
1920 if (msg_sys.msg_controllen > INT_MAX)
1921 goto out_freeiov;
1922 ctl_len = msg_sys.msg_controllen;
1923 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1924 err =
1925 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1926 sizeof(ctl));
1927 if (err)
1928 goto out_freeiov;
1929 ctl_buf = msg_sys.msg_control;
1930 ctl_len = msg_sys.msg_controllen;
1931 } else if (ctl_len) {
1932 if (ctl_len > sizeof(ctl)) {
1933 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1934 if (ctl_buf == NULL)
1935 goto out_freeiov;
1937 err = -EFAULT;
1939 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1940 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1941 * checking falls down on this.
1943 if (copy_from_user(ctl_buf,
1944 (void __user __force *)msg_sys.msg_control,
1945 ctl_len))
1946 goto out_freectl;
1947 msg_sys.msg_control = ctl_buf;
1949 msg_sys.msg_flags = flags;
1951 if (sock->file->f_flags & O_NONBLOCK)
1952 msg_sys.msg_flags |= MSG_DONTWAIT;
1953 err = sock_sendmsg(sock, &msg_sys, total_len);
1955 out_freectl:
1956 if (ctl_buf != ctl)
1957 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1958 out_freeiov:
1959 if (iov != iovstack)
1960 sock_kfree_s(sock->sk, iov, iov_size);
1961 out_put:
1962 fput_light(sock->file, fput_needed);
1963 out:
1964 return err;
1967 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1968 struct msghdr *msg_sys, unsigned flags, int nosec)
1970 struct compat_msghdr __user *msg_compat =
1971 (struct compat_msghdr __user *)msg;
1972 struct iovec iovstack[UIO_FASTIOV];
1973 struct iovec *iov = iovstack;
1974 unsigned long cmsg_ptr;
1975 int err, iov_size, total_len, len;
1977 /* kernel mode address */
1978 struct sockaddr_storage addr;
1980 /* user mode address pointers */
1981 struct sockaddr __user *uaddr;
1982 int __user *uaddr_len;
1984 if (MSG_CMSG_COMPAT & flags) {
1985 if (get_compat_msghdr(msg_sys, msg_compat))
1986 return -EFAULT;
1987 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1988 return -EFAULT;
1990 err = -EMSGSIZE;
1991 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1992 goto out;
1994 /* Check whether to allocate the iovec area */
1995 err = -ENOMEM;
1996 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1997 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1998 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1999 if (!iov)
2000 goto out;
2004 * Save the user-mode address (verify_iovec will change the
2005 * kernel msghdr to use the kernel address space)
2008 uaddr = (__force void __user *)msg_sys->msg_name;
2009 uaddr_len = COMPAT_NAMELEN(msg);
2010 if (MSG_CMSG_COMPAT & flags) {
2011 err = verify_compat_iovec(msg_sys, iov,
2012 (struct sockaddr *)&addr,
2013 VERIFY_WRITE);
2014 } else
2015 err = verify_iovec(msg_sys, iov,
2016 (struct sockaddr *)&addr,
2017 VERIFY_WRITE);
2018 if (err < 0)
2019 goto out_freeiov;
2020 total_len = err;
2022 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2023 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2025 if (sock->file->f_flags & O_NONBLOCK)
2026 flags |= MSG_DONTWAIT;
2027 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2028 total_len, flags);
2029 if (err < 0)
2030 goto out_freeiov;
2031 len = err;
2033 if (uaddr != NULL) {
2034 err = move_addr_to_user((struct sockaddr *)&addr,
2035 msg_sys->msg_namelen, uaddr,
2036 uaddr_len);
2037 if (err < 0)
2038 goto out_freeiov;
2040 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2041 COMPAT_FLAGS(msg));
2042 if (err)
2043 goto out_freeiov;
2044 if (MSG_CMSG_COMPAT & flags)
2045 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2046 &msg_compat->msg_controllen);
2047 else
2048 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2049 &msg->msg_controllen);
2050 if (err)
2051 goto out_freeiov;
2052 err = len;
2054 out_freeiov:
2055 if (iov != iovstack)
2056 sock_kfree_s(sock->sk, iov, iov_size);
2057 out:
2058 return err;
2062 * BSD recvmsg interface
2065 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2066 unsigned int, flags)
2068 int fput_needed, err;
2069 struct msghdr msg_sys;
2070 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2072 if (!sock)
2073 goto out;
2075 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2077 fput_light(sock->file, fput_needed);
2078 out:
2079 return err;
2083 * Linux recvmmsg interface
2086 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2087 unsigned int flags, struct timespec *timeout)
2089 int fput_needed, err, datagrams;
2090 struct socket *sock;
2091 struct mmsghdr __user *entry;
2092 struct compat_mmsghdr __user *compat_entry;
2093 struct msghdr msg_sys;
2094 struct timespec end_time;
2096 if (timeout &&
2097 poll_select_set_timeout(&end_time, timeout->tv_sec,
2098 timeout->tv_nsec))
2099 return -EINVAL;
2101 datagrams = 0;
2103 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2104 if (!sock)
2105 return err;
2107 err = sock_error(sock->sk);
2108 if (err)
2109 goto out_put;
2111 entry = mmsg;
2112 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2114 while (datagrams < vlen) {
2116 * No need to ask LSM for more than the first datagram.
2118 if (MSG_CMSG_COMPAT & flags) {
2119 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2120 &msg_sys, flags & ~MSG_WAITFORONE,
2121 datagrams);
2122 if (err < 0)
2123 break;
2124 err = __put_user(err, &compat_entry->msg_len);
2125 ++compat_entry;
2126 } else {
2127 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2128 &msg_sys, flags & ~MSG_WAITFORONE,
2129 datagrams);
2130 if (err < 0)
2131 break;
2132 err = put_user(err, &entry->msg_len);
2133 ++entry;
2136 if (err)
2137 break;
2138 ++datagrams;
2140 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2141 if (flags & MSG_WAITFORONE)
2142 flags |= MSG_DONTWAIT;
2144 if (timeout) {
2145 ktime_get_ts(timeout);
2146 *timeout = timespec_sub(end_time, *timeout);
2147 if (timeout->tv_sec < 0) {
2148 timeout->tv_sec = timeout->tv_nsec = 0;
2149 break;
2152 /* Timeout, return less than vlen datagrams */
2153 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2154 break;
2157 /* Out of band data, return right away */
2158 if (msg_sys.msg_flags & MSG_OOB)
2159 break;
2162 out_put:
2163 fput_light(sock->file, fput_needed);
2165 if (err == 0)
2166 return datagrams;
2168 if (datagrams != 0) {
2170 * We may return less entries than requested (vlen) if the
2171 * sock is non block and there aren't enough datagrams...
2173 if (err != -EAGAIN) {
2175 * ... or if recvmsg returns an error after we
2176 * received some datagrams, where we record the
2177 * error to return on the next call or if the
2178 * app asks about it using getsockopt(SO_ERROR).
2180 sock->sk->sk_err = -err;
2183 return datagrams;
2186 return err;
2189 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2190 unsigned int, vlen, unsigned int, flags,
2191 struct timespec __user *, timeout)
2193 int datagrams;
2194 struct timespec timeout_sys;
2196 if (!timeout)
2197 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2199 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2200 return -EFAULT;
2202 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2204 if (datagrams > 0 &&
2205 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2206 datagrams = -EFAULT;
2208 return datagrams;
2211 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2212 /* Argument list sizes for sys_socketcall */
2213 #define AL(x) ((x) * sizeof(unsigned long))
2214 static const unsigned char nargs[20] = {
2215 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2216 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2217 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2218 AL(4), AL(5)
2221 #undef AL
2224 * System call vectors.
2226 * Argument checking cleaned up. Saved 20% in size.
2227 * This function doesn't need to set the kernel lock because
2228 * it is set by the callees.
2231 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2233 unsigned long a[6];
2234 unsigned long a0, a1;
2235 int err;
2236 unsigned int len;
2238 if (call < 1 || call > SYS_RECVMMSG)
2239 return -EINVAL;
2241 len = nargs[call];
2242 if (len > sizeof(a))
2243 return -EINVAL;
2245 /* copy_from_user should be SMP safe. */
2246 if (copy_from_user(a, args, len))
2247 return -EFAULT;
2249 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2251 a0 = a[0];
2252 a1 = a[1];
2254 switch (call) {
2255 case SYS_SOCKET:
2256 err = sys_socket(a0, a1, a[2]);
2257 break;
2258 case SYS_BIND:
2259 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2260 break;
2261 case SYS_CONNECT:
2262 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2263 break;
2264 case SYS_LISTEN:
2265 err = sys_listen(a0, a1);
2266 break;
2267 case SYS_ACCEPT:
2268 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2269 (int __user *)a[2], 0);
2270 break;
2271 case SYS_GETSOCKNAME:
2272 err =
2273 sys_getsockname(a0, (struct sockaddr __user *)a1,
2274 (int __user *)a[2]);
2275 break;
2276 case SYS_GETPEERNAME:
2277 err =
2278 sys_getpeername(a0, (struct sockaddr __user *)a1,
2279 (int __user *)a[2]);
2280 break;
2281 case SYS_SOCKETPAIR:
2282 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2283 break;
2284 case SYS_SEND:
2285 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2286 break;
2287 case SYS_SENDTO:
2288 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2289 (struct sockaddr __user *)a[4], a[5]);
2290 break;
2291 case SYS_RECV:
2292 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2293 break;
2294 case SYS_RECVFROM:
2295 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2296 (struct sockaddr __user *)a[4],
2297 (int __user *)a[5]);
2298 break;
2299 case SYS_SHUTDOWN:
2300 err = sys_shutdown(a0, a1);
2301 break;
2302 case SYS_SETSOCKOPT:
2303 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2304 break;
2305 case SYS_GETSOCKOPT:
2306 err =
2307 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2308 (int __user *)a[4]);
2309 break;
2310 case SYS_SENDMSG:
2311 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2312 break;
2313 case SYS_RECVMSG:
2314 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2315 break;
2316 case SYS_RECVMMSG:
2317 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2318 (struct timespec __user *)a[4]);
2319 break;
2320 case SYS_ACCEPT4:
2321 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2322 (int __user *)a[2], a[3]);
2323 break;
2324 default:
2325 err = -EINVAL;
2326 break;
2328 return err;
2331 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2334 * sock_register - add a socket protocol handler
2335 * @ops: description of protocol
2337 * This function is called by a protocol handler that wants to
2338 * advertise its address family, and have it linked into the
2339 * socket interface. The value ops->family coresponds to the
2340 * socket system call protocol family.
2342 int sock_register(const struct net_proto_family *ops)
2344 int err;
2346 if (ops->family >= NPROTO) {
2347 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2348 NPROTO);
2349 return -ENOBUFS;
2352 spin_lock(&net_family_lock);
2353 if (rcu_dereference_protected(net_families[ops->family],
2354 lockdep_is_held(&net_family_lock)))
2355 err = -EEXIST;
2356 else {
2357 rcu_assign_pointer(net_families[ops->family], ops);
2358 err = 0;
2360 spin_unlock(&net_family_lock);
2362 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2363 return err;
2365 EXPORT_SYMBOL(sock_register);
2368 * sock_unregister - remove a protocol handler
2369 * @family: protocol family to remove
2371 * This function is called by a protocol handler that wants to
2372 * remove its address family, and have it unlinked from the
2373 * new socket creation.
2375 * If protocol handler is a module, then it can use module reference
2376 * counts to protect against new references. If protocol handler is not
2377 * a module then it needs to provide its own protection in
2378 * the ops->create routine.
2380 void sock_unregister(int family)
2382 BUG_ON(family < 0 || family >= NPROTO);
2384 spin_lock(&net_family_lock);
2385 rcu_assign_pointer(net_families[family], NULL);
2386 spin_unlock(&net_family_lock);
2388 synchronize_rcu();
2390 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2392 EXPORT_SYMBOL(sock_unregister);
2394 static int __init sock_init(void)
2396 int err;
2399 * Initialize sock SLAB cache.
2402 sk_init();
2405 * Initialize skbuff SLAB cache
2407 skb_init();
2410 * Initialize the protocols module.
2413 init_inodecache();
2415 err = register_filesystem(&sock_fs_type);
2416 if (err)
2417 goto out_fs;
2418 sock_mnt = kern_mount(&sock_fs_type);
2419 if (IS_ERR(sock_mnt)) {
2420 err = PTR_ERR(sock_mnt);
2421 goto out_mount;
2424 /* The real protocol initialization is performed in later initcalls.
2427 #ifdef CONFIG_NETFILTER
2428 netfilter_init();
2429 #endif
2431 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2432 skb_timestamping_init();
2433 #endif
2435 out:
2436 return err;
2438 out_mount:
2439 unregister_filesystem(&sock_fs_type);
2440 out_fs:
2441 goto out;
2444 core_initcall(sock_init); /* early initcall */
2446 #ifdef CONFIG_PROC_FS
2447 void socket_seq_show(struct seq_file *seq)
2449 int cpu;
2450 int counter = 0;
2452 for_each_possible_cpu(cpu)
2453 counter += per_cpu(sockets_in_use, cpu);
2455 /* It can be negative, by the way. 8) */
2456 if (counter < 0)
2457 counter = 0;
2459 seq_printf(seq, "sockets: used %d\n", counter);
2461 #endif /* CONFIG_PROC_FS */
2463 #ifdef CONFIG_COMPAT
2464 static int do_siocgstamp(struct net *net, struct socket *sock,
2465 unsigned int cmd, struct compat_timeval __user *up)
2467 mm_segment_t old_fs = get_fs();
2468 struct timeval ktv;
2469 int err;
2471 set_fs(KERNEL_DS);
2472 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2473 set_fs(old_fs);
2474 if (!err) {
2475 err = put_user(ktv.tv_sec, &up->tv_sec);
2476 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2478 return err;
2481 static int do_siocgstampns(struct net *net, struct socket *sock,
2482 unsigned int cmd, struct compat_timespec __user *up)
2484 mm_segment_t old_fs = get_fs();
2485 struct timespec kts;
2486 int err;
2488 set_fs(KERNEL_DS);
2489 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2490 set_fs(old_fs);
2491 if (!err) {
2492 err = put_user(kts.tv_sec, &up->tv_sec);
2493 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2495 return err;
2498 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2500 struct ifreq __user *uifr;
2501 int err;
2503 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2504 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2505 return -EFAULT;
2507 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2508 if (err)
2509 return err;
2511 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2512 return -EFAULT;
2514 return 0;
2517 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2519 struct compat_ifconf ifc32;
2520 struct ifconf ifc;
2521 struct ifconf __user *uifc;
2522 struct compat_ifreq __user *ifr32;
2523 struct ifreq __user *ifr;
2524 unsigned int i, j;
2525 int err;
2527 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2528 return -EFAULT;
2530 if (ifc32.ifcbuf == 0) {
2531 ifc32.ifc_len = 0;
2532 ifc.ifc_len = 0;
2533 ifc.ifc_req = NULL;
2534 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2535 } else {
2536 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2537 sizeof(struct ifreq);
2538 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2539 ifc.ifc_len = len;
2540 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2541 ifr32 = compat_ptr(ifc32.ifcbuf);
2542 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2543 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2544 return -EFAULT;
2545 ifr++;
2546 ifr32++;
2549 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2550 return -EFAULT;
2552 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2553 if (err)
2554 return err;
2556 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2557 return -EFAULT;
2559 ifr = ifc.ifc_req;
2560 ifr32 = compat_ptr(ifc32.ifcbuf);
2561 for (i = 0, j = 0;
2562 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2563 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2564 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2565 return -EFAULT;
2566 ifr32++;
2567 ifr++;
2570 if (ifc32.ifcbuf == 0) {
2571 /* Translate from 64-bit structure multiple to
2572 * a 32-bit one.
2574 i = ifc.ifc_len;
2575 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2576 ifc32.ifc_len = i;
2577 } else {
2578 ifc32.ifc_len = i;
2580 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2581 return -EFAULT;
2583 return 0;
2586 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2588 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2589 bool convert_in = false, convert_out = false;
2590 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2591 struct ethtool_rxnfc __user *rxnfc;
2592 struct ifreq __user *ifr;
2593 u32 rule_cnt = 0, actual_rule_cnt;
2594 u32 ethcmd;
2595 u32 data;
2596 int ret;
2598 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2599 return -EFAULT;
2601 compat_rxnfc = compat_ptr(data);
2603 if (get_user(ethcmd, &compat_rxnfc->cmd))
2604 return -EFAULT;
2606 /* Most ethtool structures are defined without padding.
2607 * Unfortunately struct ethtool_rxnfc is an exception.
2609 switch (ethcmd) {
2610 default:
2611 break;
2612 case ETHTOOL_GRXCLSRLALL:
2613 /* Buffer size is variable */
2614 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2615 return -EFAULT;
2616 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2617 return -ENOMEM;
2618 buf_size += rule_cnt * sizeof(u32);
2619 /* fall through */
2620 case ETHTOOL_GRXRINGS:
2621 case ETHTOOL_GRXCLSRLCNT:
2622 case ETHTOOL_GRXCLSRULE:
2623 convert_out = true;
2624 /* fall through */
2625 case ETHTOOL_SRXCLSRLDEL:
2626 case ETHTOOL_SRXCLSRLINS:
2627 buf_size += sizeof(struct ethtool_rxnfc);
2628 convert_in = true;
2629 break;
2632 ifr = compat_alloc_user_space(buf_size);
2633 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2635 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2636 return -EFAULT;
2638 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2639 &ifr->ifr_ifru.ifru_data))
2640 return -EFAULT;
2642 if (convert_in) {
2643 /* We expect there to be holes between fs.m_u and
2644 * fs.ring_cookie and at the end of fs, but nowhere else.
2646 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_u) +
2647 sizeof(compat_rxnfc->fs.m_u) !=
2648 offsetof(struct ethtool_rxnfc, fs.m_u) +
2649 sizeof(rxnfc->fs.m_u));
2650 BUILD_BUG_ON(
2651 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2652 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2653 offsetof(struct ethtool_rxnfc, fs.location) -
2654 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2656 if (copy_in_user(rxnfc, compat_rxnfc,
2657 (void *)(&rxnfc->fs.m_u + 1) -
2658 (void *)rxnfc) ||
2659 copy_in_user(&rxnfc->fs.ring_cookie,
2660 &compat_rxnfc->fs.ring_cookie,
2661 (void *)(&rxnfc->fs.location + 1) -
2662 (void *)&rxnfc->fs.ring_cookie) ||
2663 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2664 sizeof(rxnfc->rule_cnt)))
2665 return -EFAULT;
2668 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2669 if (ret)
2670 return ret;
2672 if (convert_out) {
2673 if (copy_in_user(compat_rxnfc, rxnfc,
2674 (const void *)(&rxnfc->fs.m_u + 1) -
2675 (const void *)rxnfc) ||
2676 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2677 &rxnfc->fs.ring_cookie,
2678 (const void *)(&rxnfc->fs.location + 1) -
2679 (const void *)&rxnfc->fs.ring_cookie) ||
2680 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2681 sizeof(rxnfc->rule_cnt)))
2682 return -EFAULT;
2684 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2685 /* As an optimisation, we only copy the actual
2686 * number of rules that the underlying
2687 * function returned. Since Mallory might
2688 * change the rule count in user memory, we
2689 * check that it is less than the rule count
2690 * originally given (as the user buffer size),
2691 * which has been range-checked.
2693 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2694 return -EFAULT;
2695 if (actual_rule_cnt < rule_cnt)
2696 rule_cnt = actual_rule_cnt;
2697 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2698 &rxnfc->rule_locs[0],
2699 rule_cnt * sizeof(u32)))
2700 return -EFAULT;
2704 return 0;
2707 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2709 void __user *uptr;
2710 compat_uptr_t uptr32;
2711 struct ifreq __user *uifr;
2713 uifr = compat_alloc_user_space(sizeof(*uifr));
2714 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2715 return -EFAULT;
2717 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2718 return -EFAULT;
2720 uptr = compat_ptr(uptr32);
2722 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2723 return -EFAULT;
2725 return dev_ioctl(net, SIOCWANDEV, uifr);
2728 static int bond_ioctl(struct net *net, unsigned int cmd,
2729 struct compat_ifreq __user *ifr32)
2731 struct ifreq kifr;
2732 struct ifreq __user *uifr;
2733 mm_segment_t old_fs;
2734 int err;
2735 u32 data;
2736 void __user *datap;
2738 switch (cmd) {
2739 case SIOCBONDENSLAVE:
2740 case SIOCBONDRELEASE:
2741 case SIOCBONDSETHWADDR:
2742 case SIOCBONDCHANGEACTIVE:
2743 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2744 return -EFAULT;
2746 old_fs = get_fs();
2747 set_fs(KERNEL_DS);
2748 err = dev_ioctl(net, cmd, &kifr);
2749 set_fs(old_fs);
2751 return err;
2752 case SIOCBONDSLAVEINFOQUERY:
2753 case SIOCBONDINFOQUERY:
2754 uifr = compat_alloc_user_space(sizeof(*uifr));
2755 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2756 return -EFAULT;
2758 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2759 return -EFAULT;
2761 datap = compat_ptr(data);
2762 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2763 return -EFAULT;
2765 return dev_ioctl(net, cmd, uifr);
2766 default:
2767 return -EINVAL;
2771 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2772 struct compat_ifreq __user *u_ifreq32)
2774 struct ifreq __user *u_ifreq64;
2775 char tmp_buf[IFNAMSIZ];
2776 void __user *data64;
2777 u32 data32;
2779 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2780 IFNAMSIZ))
2781 return -EFAULT;
2782 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2783 return -EFAULT;
2784 data64 = compat_ptr(data32);
2786 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2788 /* Don't check these user accesses, just let that get trapped
2789 * in the ioctl handler instead.
2791 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2792 IFNAMSIZ))
2793 return -EFAULT;
2794 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2795 return -EFAULT;
2797 return dev_ioctl(net, cmd, u_ifreq64);
2800 static int dev_ifsioc(struct net *net, struct socket *sock,
2801 unsigned int cmd, struct compat_ifreq __user *uifr32)
2803 struct ifreq __user *uifr;
2804 int err;
2806 uifr = compat_alloc_user_space(sizeof(*uifr));
2807 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2808 return -EFAULT;
2810 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2812 if (!err) {
2813 switch (cmd) {
2814 case SIOCGIFFLAGS:
2815 case SIOCGIFMETRIC:
2816 case SIOCGIFMTU:
2817 case SIOCGIFMEM:
2818 case SIOCGIFHWADDR:
2819 case SIOCGIFINDEX:
2820 case SIOCGIFADDR:
2821 case SIOCGIFBRDADDR:
2822 case SIOCGIFDSTADDR:
2823 case SIOCGIFNETMASK:
2824 case SIOCGIFPFLAGS:
2825 case SIOCGIFTXQLEN:
2826 case SIOCGMIIPHY:
2827 case SIOCGMIIREG:
2828 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2829 err = -EFAULT;
2830 break;
2833 return err;
2836 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2837 struct compat_ifreq __user *uifr32)
2839 struct ifreq ifr;
2840 struct compat_ifmap __user *uifmap32;
2841 mm_segment_t old_fs;
2842 int err;
2844 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2845 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2846 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2847 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2848 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2849 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2850 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2851 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2852 if (err)
2853 return -EFAULT;
2855 old_fs = get_fs();
2856 set_fs(KERNEL_DS);
2857 err = dev_ioctl(net, cmd, (void __user *)&ifr);
2858 set_fs(old_fs);
2860 if (cmd == SIOCGIFMAP && !err) {
2861 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2862 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2863 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2864 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2865 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2866 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2867 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2868 if (err)
2869 err = -EFAULT;
2871 return err;
2874 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2876 void __user *uptr;
2877 compat_uptr_t uptr32;
2878 struct ifreq __user *uifr;
2880 uifr = compat_alloc_user_space(sizeof(*uifr));
2881 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2882 return -EFAULT;
2884 if (get_user(uptr32, &uifr32->ifr_data))
2885 return -EFAULT;
2887 uptr = compat_ptr(uptr32);
2889 if (put_user(uptr, &uifr->ifr_data))
2890 return -EFAULT;
2892 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2895 struct rtentry32 {
2896 u32 rt_pad1;
2897 struct sockaddr rt_dst; /* target address */
2898 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2899 struct sockaddr rt_genmask; /* target network mask (IP) */
2900 unsigned short rt_flags;
2901 short rt_pad2;
2902 u32 rt_pad3;
2903 unsigned char rt_tos;
2904 unsigned char rt_class;
2905 short rt_pad4;
2906 short rt_metric; /* +1 for binary compatibility! */
2907 /* char * */ u32 rt_dev; /* forcing the device at add */
2908 u32 rt_mtu; /* per route MTU/Window */
2909 u32 rt_window; /* Window clamping */
2910 unsigned short rt_irtt; /* Initial RTT */
2913 struct in6_rtmsg32 {
2914 struct in6_addr rtmsg_dst;
2915 struct in6_addr rtmsg_src;
2916 struct in6_addr rtmsg_gateway;
2917 u32 rtmsg_type;
2918 u16 rtmsg_dst_len;
2919 u16 rtmsg_src_len;
2920 u32 rtmsg_metric;
2921 u32 rtmsg_info;
2922 u32 rtmsg_flags;
2923 s32 rtmsg_ifindex;
2926 static int routing_ioctl(struct net *net, struct socket *sock,
2927 unsigned int cmd, void __user *argp)
2929 int ret;
2930 void *r = NULL;
2931 struct in6_rtmsg r6;
2932 struct rtentry r4;
2933 char devname[16];
2934 u32 rtdev;
2935 mm_segment_t old_fs = get_fs();
2937 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2938 struct in6_rtmsg32 __user *ur6 = argp;
2939 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2940 3 * sizeof(struct in6_addr));
2941 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2942 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2943 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2944 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2945 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2946 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2947 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2949 r = (void *) &r6;
2950 } else { /* ipv4 */
2951 struct rtentry32 __user *ur4 = argp;
2952 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2953 3 * sizeof(struct sockaddr));
2954 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
2955 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
2956 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
2957 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
2958 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
2959 ret |= __get_user(rtdev, &(ur4->rt_dev));
2960 if (rtdev) {
2961 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
2962 r4.rt_dev = devname; devname[15] = 0;
2963 } else
2964 r4.rt_dev = NULL;
2966 r = (void *) &r4;
2969 if (ret) {
2970 ret = -EFAULT;
2971 goto out;
2974 set_fs(KERNEL_DS);
2975 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2976 set_fs(old_fs);
2978 out:
2979 return ret;
2982 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2983 * for some operations; this forces use of the newer bridge-utils that
2984 * use compatiable ioctls
2986 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2988 compat_ulong_t tmp;
2990 if (get_user(tmp, argp))
2991 return -EFAULT;
2992 if (tmp == BRCTL_GET_VERSION)
2993 return BRCTL_VERSION + 1;
2994 return -EINVAL;
2997 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2998 unsigned int cmd, unsigned long arg)
3000 void __user *argp = compat_ptr(arg);
3001 struct sock *sk = sock->sk;
3002 struct net *net = sock_net(sk);
3004 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3005 return siocdevprivate_ioctl(net, cmd, argp);
3007 switch (cmd) {
3008 case SIOCSIFBR:
3009 case SIOCGIFBR:
3010 return old_bridge_ioctl(argp);
3011 case SIOCGIFNAME:
3012 return dev_ifname32(net, argp);
3013 case SIOCGIFCONF:
3014 return dev_ifconf(net, argp);
3015 case SIOCETHTOOL:
3016 return ethtool_ioctl(net, argp);
3017 case SIOCWANDEV:
3018 return compat_siocwandev(net, argp);
3019 case SIOCGIFMAP:
3020 case SIOCSIFMAP:
3021 return compat_sioc_ifmap(net, cmd, argp);
3022 case SIOCBONDENSLAVE:
3023 case SIOCBONDRELEASE:
3024 case SIOCBONDSETHWADDR:
3025 case SIOCBONDSLAVEINFOQUERY:
3026 case SIOCBONDINFOQUERY:
3027 case SIOCBONDCHANGEACTIVE:
3028 return bond_ioctl(net, cmd, argp);
3029 case SIOCADDRT:
3030 case SIOCDELRT:
3031 return routing_ioctl(net, sock, cmd, argp);
3032 case SIOCGSTAMP:
3033 return do_siocgstamp(net, sock, cmd, argp);
3034 case SIOCGSTAMPNS:
3035 return do_siocgstampns(net, sock, cmd, argp);
3036 case SIOCSHWTSTAMP:
3037 return compat_siocshwtstamp(net, argp);
3039 case FIOSETOWN:
3040 case SIOCSPGRP:
3041 case FIOGETOWN:
3042 case SIOCGPGRP:
3043 case SIOCBRADDBR:
3044 case SIOCBRDELBR:
3045 case SIOCGIFVLAN:
3046 case SIOCSIFVLAN:
3047 case SIOCADDDLCI:
3048 case SIOCDELDLCI:
3049 return sock_ioctl(file, cmd, arg);
3051 case SIOCGIFFLAGS:
3052 case SIOCSIFFLAGS:
3053 case SIOCGIFMETRIC:
3054 case SIOCSIFMETRIC:
3055 case SIOCGIFMTU:
3056 case SIOCSIFMTU:
3057 case SIOCGIFMEM:
3058 case SIOCSIFMEM:
3059 case SIOCGIFHWADDR:
3060 case SIOCSIFHWADDR:
3061 case SIOCADDMULTI:
3062 case SIOCDELMULTI:
3063 case SIOCGIFINDEX:
3064 case SIOCGIFADDR:
3065 case SIOCSIFADDR:
3066 case SIOCSIFHWBROADCAST:
3067 case SIOCDIFADDR:
3068 case SIOCGIFBRDADDR:
3069 case SIOCSIFBRDADDR:
3070 case SIOCGIFDSTADDR:
3071 case SIOCSIFDSTADDR:
3072 case SIOCGIFNETMASK:
3073 case SIOCSIFNETMASK:
3074 case SIOCSIFPFLAGS:
3075 case SIOCGIFPFLAGS:
3076 case SIOCGIFTXQLEN:
3077 case SIOCSIFTXQLEN:
3078 case SIOCBRADDIF:
3079 case SIOCBRDELIF:
3080 case SIOCSIFNAME:
3081 case SIOCGMIIPHY:
3082 case SIOCGMIIREG:
3083 case SIOCSMIIREG:
3084 return dev_ifsioc(net, sock, cmd, argp);
3086 case SIOCSARP:
3087 case SIOCGARP:
3088 case SIOCDARP:
3089 case SIOCATMARK:
3090 return sock_do_ioctl(net, sock, cmd, arg);
3093 /* Prevent warning from compat_sys_ioctl, these always
3094 * result in -EINVAL in the native case anyway. */
3095 switch (cmd) {
3096 case SIOCRTMSG:
3097 case SIOCGIFCOUNT:
3098 case SIOCSRARP:
3099 case SIOCGRARP:
3100 case SIOCDRARP:
3101 case SIOCSIFLINK:
3102 case SIOCGIFSLAVE:
3103 case SIOCSIFSLAVE:
3104 return -EINVAL;
3107 return -ENOIOCTLCMD;
3110 static long compat_sock_ioctl(struct file *file, unsigned cmd,
3111 unsigned long arg)
3113 struct socket *sock = file->private_data;
3114 int ret = -ENOIOCTLCMD;
3115 struct sock *sk;
3116 struct net *net;
3118 sk = sock->sk;
3119 net = sock_net(sk);
3121 if (sock->ops->compat_ioctl)
3122 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3124 if (ret == -ENOIOCTLCMD &&
3125 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3126 ret = compat_wext_handle_ioctl(net, cmd, arg);
3128 if (ret == -ENOIOCTLCMD)
3129 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3131 return ret;
3133 #endif
3135 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3137 return sock->ops->bind(sock, addr, addrlen);
3139 EXPORT_SYMBOL(kernel_bind);
3141 int kernel_listen(struct socket *sock, int backlog)
3143 return sock->ops->listen(sock, backlog);
3145 EXPORT_SYMBOL(kernel_listen);
3147 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3149 struct sock *sk = sock->sk;
3150 int err;
3152 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3153 newsock);
3154 if (err < 0)
3155 goto done;
3157 err = sock->ops->accept(sock, *newsock, flags);
3158 if (err < 0) {
3159 sock_release(*newsock);
3160 *newsock = NULL;
3161 goto done;
3164 (*newsock)->ops = sock->ops;
3165 __module_get((*newsock)->ops->owner);
3167 done:
3168 return err;
3170 EXPORT_SYMBOL(kernel_accept);
3172 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3173 int flags)
3175 return sock->ops->connect(sock, addr, addrlen, flags);
3177 EXPORT_SYMBOL(kernel_connect);
3179 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3180 int *addrlen)
3182 return sock->ops->getname(sock, addr, addrlen, 0);
3184 EXPORT_SYMBOL(kernel_getsockname);
3186 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3187 int *addrlen)
3189 return sock->ops->getname(sock, addr, addrlen, 1);
3191 EXPORT_SYMBOL(kernel_getpeername);
3193 int kernel_getsockopt(struct socket *sock, int level, int optname,
3194 char *optval, int *optlen)
3196 mm_segment_t oldfs = get_fs();
3197 char __user *uoptval;
3198 int __user *uoptlen;
3199 int err;
3201 uoptval = (char __user __force *) optval;
3202 uoptlen = (int __user __force *) optlen;
3204 set_fs(KERNEL_DS);
3205 if (level == SOL_SOCKET)
3206 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3207 else
3208 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3209 uoptlen);
3210 set_fs(oldfs);
3211 return err;
3213 EXPORT_SYMBOL(kernel_getsockopt);
3215 int kernel_setsockopt(struct socket *sock, int level, int optname,
3216 char *optval, unsigned int optlen)
3218 mm_segment_t oldfs = get_fs();
3219 char __user *uoptval;
3220 int err;
3222 uoptval = (char __user __force *) optval;
3224 set_fs(KERNEL_DS);
3225 if (level == SOL_SOCKET)
3226 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3227 else
3228 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3229 optlen);
3230 set_fs(oldfs);
3231 return err;
3233 EXPORT_SYMBOL(kernel_setsockopt);
3235 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3236 size_t size, int flags)
3238 sock_update_classid(sock->sk);
3240 if (sock->ops->sendpage)
3241 return sock->ops->sendpage(sock, page, offset, size, flags);
3243 return sock_no_sendpage(sock, page, offset, size, flags);
3245 EXPORT_SYMBOL(kernel_sendpage);
3247 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3249 mm_segment_t oldfs = get_fs();
3250 int err;
3252 set_fs(KERNEL_DS);
3253 err = sock->ops->ioctl(sock, cmd, arg);
3254 set_fs(oldfs);
3256 return err;
3258 EXPORT_SYMBOL(kernel_sock_ioctl);
3260 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3262 return sock->ops->shutdown(sock, how);
3264 EXPORT_SYMBOL(kernel_sock_shutdown);