tty: dont needlessly cast kmalloc() return value
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / char / tty_io.c
blob9c867cf6de6456293314eb1675e697c87a9f64d2
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
107 #undef TTY_DEBUG_HANGUP
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
112 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
113 .c_iflag = ICRNL | IXON,
114 .c_oflag = OPOST | ONLCR,
115 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
116 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
117 ECHOCTL | ECHOKE | IEXTEN,
118 .c_cc = INIT_C_CC,
119 .c_ispeed = 38400,
120 .c_ospeed = 38400
123 EXPORT_SYMBOL(tty_std_termios);
125 /* This list gets poked at by procfs and various bits of boot up code. This
126 could do with some rationalisation such as pulling the tty proc function
127 into this file */
129 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131 /* Mutex to protect creating and releasing a tty. This is shared with
132 vt.c for deeply disgusting hack reasons */
133 DEFINE_MUTEX(tty_mutex);
134 EXPORT_SYMBOL(tty_mutex);
136 #ifdef CONFIG_UNIX98_PTYS
137 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
138 extern int pty_limit; /* Config limit on Unix98 ptys */
139 static DEFINE_IDR(allocated_ptys);
140 static DECLARE_MUTEX(allocated_ptys_lock);
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
144 static void initialize_tty_struct(struct tty_struct *tty);
146 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
147 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
148 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 static int tty_release(struct inode *, struct file *);
152 int tty_ioctl(struct inode * inode, struct file * file,
153 unsigned int cmd, unsigned long arg);
154 #ifdef CONFIG_COMPAT
155 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
156 unsigned long arg);
157 #else
158 #define tty_compat_ioctl NULL
159 #endif
160 static int tty_fasync(int fd, struct file * filp, int on);
161 static void release_tty(struct tty_struct *tty, int idx);
162 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
163 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
166 * alloc_tty_struct - allocate a tty object
168 * Return a new empty tty structure. The data fields have not
169 * been initialized in any way but has been zeroed
171 * Locking: none
174 static struct tty_struct *alloc_tty_struct(void)
176 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
179 static void tty_buffer_free_all(struct tty_struct *);
182 * free_tty_struct - free a disused tty
183 * @tty: tty struct to free
185 * Free the write buffers, tty queue and tty memory itself.
187 * Locking: none. Must be called after tty is definitely unused
190 static inline void free_tty_struct(struct tty_struct *tty)
192 kfree(tty->write_buf);
193 tty_buffer_free_all(tty);
194 kfree(tty);
197 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
200 * tty_name - return tty naming
201 * @tty: tty structure
202 * @buf: buffer for output
204 * Convert a tty structure into a name. The name reflects the kernel
205 * naming policy and if udev is in use may not reflect user space
207 * Locking: none
210 char *tty_name(struct tty_struct *tty, char *buf)
212 if (!tty) /* Hmm. NULL pointer. That's fun. */
213 strcpy(buf, "NULL tty");
214 else
215 strcpy(buf, tty->name);
216 return buf;
219 EXPORT_SYMBOL(tty_name);
221 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
222 const char *routine)
224 #ifdef TTY_PARANOIA_CHECK
225 if (!tty) {
226 printk(KERN_WARNING
227 "null TTY for (%d:%d) in %s\n",
228 imajor(inode), iminor(inode), routine);
229 return 1;
231 if (tty->magic != TTY_MAGIC) {
232 printk(KERN_WARNING
233 "bad magic number for tty struct (%d:%d) in %s\n",
234 imajor(inode), iminor(inode), routine);
235 return 1;
237 #endif
238 return 0;
241 static int check_tty_count(struct tty_struct *tty, const char *routine)
243 #ifdef CHECK_TTY_COUNT
244 struct list_head *p;
245 int count = 0;
247 file_list_lock();
248 list_for_each(p, &tty->tty_files) {
249 count++;
251 file_list_unlock();
252 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
253 tty->driver->subtype == PTY_TYPE_SLAVE &&
254 tty->link && tty->link->count)
255 count++;
256 if (tty->count != count) {
257 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
258 "!= #fd's(%d) in %s\n",
259 tty->name, tty->count, count, routine);
260 return count;
262 #endif
263 return 0;
267 * Tty buffer allocation management
271 * tty_buffer_free_all - free buffers used by a tty
272 * @tty: tty to free from
274 * Remove all the buffers pending on a tty whether queued with data
275 * or in the free ring. Must be called when the tty is no longer in use
277 * Locking: none
280 static void tty_buffer_free_all(struct tty_struct *tty)
282 struct tty_buffer *thead;
283 while((thead = tty->buf.head) != NULL) {
284 tty->buf.head = thead->next;
285 kfree(thead);
287 while((thead = tty->buf.free) != NULL) {
288 tty->buf.free = thead->next;
289 kfree(thead);
291 tty->buf.tail = NULL;
292 tty->buf.memory_used = 0;
296 * tty_buffer_init - prepare a tty buffer structure
297 * @tty: tty to initialise
299 * Set up the initial state of the buffer management for a tty device.
300 * Must be called before the other tty buffer functions are used.
302 * Locking: none
305 static void tty_buffer_init(struct tty_struct *tty)
307 spin_lock_init(&tty->buf.lock);
308 tty->buf.head = NULL;
309 tty->buf.tail = NULL;
310 tty->buf.free = NULL;
311 tty->buf.memory_used = 0;
315 * tty_buffer_alloc - allocate a tty buffer
316 * @tty: tty device
317 * @size: desired size (characters)
319 * Allocate a new tty buffer to hold the desired number of characters.
320 * Return NULL if out of memory or the allocation would exceed the
321 * per device queue
323 * Locking: Caller must hold tty->buf.lock
326 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
328 struct tty_buffer *p;
330 if (tty->buf.memory_used + size > 65536)
331 return NULL;
332 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
333 if(p == NULL)
334 return NULL;
335 p->used = 0;
336 p->size = size;
337 p->next = NULL;
338 p->commit = 0;
339 p->read = 0;
340 p->char_buf_ptr = (char *)(p->data);
341 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
342 tty->buf.memory_used += size;
343 return p;
347 * tty_buffer_free - free a tty buffer
348 * @tty: tty owning the buffer
349 * @b: the buffer to free
351 * Free a tty buffer, or add it to the free list according to our
352 * internal strategy
354 * Locking: Caller must hold tty->buf.lock
357 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
359 /* Dumb strategy for now - should keep some stats */
360 tty->buf.memory_used -= b->size;
361 WARN_ON(tty->buf.memory_used < 0);
363 if(b->size >= 512)
364 kfree(b);
365 else {
366 b->next = tty->buf.free;
367 tty->buf.free = b;
372 * __tty_buffer_flush - flush full tty buffers
373 * @tty: tty to flush
375 * flush all the buffers containing receive data. Caller must
376 * hold the buffer lock and must have ensured no parallel flush to
377 * ldisc is running.
379 * Locking: Caller must hold tty->buf.lock
382 static void __tty_buffer_flush(struct tty_struct *tty)
384 struct tty_buffer *thead;
386 while((thead = tty->buf.head) != NULL) {
387 tty->buf.head = thead->next;
388 tty_buffer_free(tty, thead);
390 tty->buf.tail = NULL;
394 * tty_buffer_flush - flush full tty buffers
395 * @tty: tty to flush
397 * flush all the buffers containing receive data. If the buffer is
398 * being processed by flush_to_ldisc then we defer the processing
399 * to that function
401 * Locking: none
404 static void tty_buffer_flush(struct tty_struct *tty)
406 unsigned long flags;
407 spin_lock_irqsave(&tty->buf.lock, flags);
409 /* If the data is being pushed to the tty layer then we can't
410 process it here. Instead set a flag and the flush_to_ldisc
411 path will process the flush request before it exits */
412 if (test_bit(TTY_FLUSHING, &tty->flags)) {
413 set_bit(TTY_FLUSHPENDING, &tty->flags);
414 spin_unlock_irqrestore(&tty->buf.lock, flags);
415 wait_event(tty->read_wait,
416 test_bit(TTY_FLUSHPENDING, &tty->flags) == 0);
417 return;
418 } else
419 __tty_buffer_flush(tty);
420 spin_unlock_irqrestore(&tty->buf.lock, flags);
424 * tty_buffer_find - find a free tty buffer
425 * @tty: tty owning the buffer
426 * @size: characters wanted
428 * Locate an existing suitable tty buffer or if we are lacking one then
429 * allocate a new one. We round our buffers off in 256 character chunks
430 * to get better allocation behaviour.
432 * Locking: Caller must hold tty->buf.lock
435 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
437 struct tty_buffer **tbh = &tty->buf.free;
438 while((*tbh) != NULL) {
439 struct tty_buffer *t = *tbh;
440 if(t->size >= size) {
441 *tbh = t->next;
442 t->next = NULL;
443 t->used = 0;
444 t->commit = 0;
445 t->read = 0;
446 tty->buf.memory_used += t->size;
447 return t;
449 tbh = &((*tbh)->next);
451 /* Round the buffer size out */
452 size = (size + 0xFF) & ~ 0xFF;
453 return tty_buffer_alloc(tty, size);
454 /* Should possibly check if this fails for the largest buffer we
455 have queued and recycle that ? */
459 * tty_buffer_request_room - grow tty buffer if needed
460 * @tty: tty structure
461 * @size: size desired
463 * Make at least size bytes of linear space available for the tty
464 * buffer. If we fail return the size we managed to find.
466 * Locking: Takes tty->buf.lock
468 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
470 struct tty_buffer *b, *n;
471 int left;
472 unsigned long flags;
474 spin_lock_irqsave(&tty->buf.lock, flags);
476 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
477 remove this conditional if its worth it. This would be invisible
478 to the callers */
479 if ((b = tty->buf.tail) != NULL)
480 left = b->size - b->used;
481 else
482 left = 0;
484 if (left < size) {
485 /* This is the slow path - looking for new buffers to use */
486 if ((n = tty_buffer_find(tty, size)) != NULL) {
487 if (b != NULL) {
488 b->next = n;
489 b->commit = b->used;
490 } else
491 tty->buf.head = n;
492 tty->buf.tail = n;
493 } else
494 size = left;
497 spin_unlock_irqrestore(&tty->buf.lock, flags);
498 return size;
500 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
503 * tty_insert_flip_string - Add characters to the tty buffer
504 * @tty: tty structure
505 * @chars: characters
506 * @size: size
508 * Queue a series of bytes to the tty buffering. All the characters
509 * passed are marked as without error. Returns the number added.
511 * Locking: Called functions may take tty->buf.lock
514 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
515 size_t size)
517 int copied = 0;
518 do {
519 int space = tty_buffer_request_room(tty, size - copied);
520 struct tty_buffer *tb = tty->buf.tail;
521 /* If there is no space then tb may be NULL */
522 if(unlikely(space == 0))
523 break;
524 memcpy(tb->char_buf_ptr + tb->used, chars, space);
525 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
526 tb->used += space;
527 copied += space;
528 chars += space;
529 /* There is a small chance that we need to split the data over
530 several buffers. If this is the case we must loop */
531 } while (unlikely(size > copied));
532 return copied;
534 EXPORT_SYMBOL(tty_insert_flip_string);
537 * tty_insert_flip_string_flags - Add characters to the tty buffer
538 * @tty: tty structure
539 * @chars: characters
540 * @flags: flag bytes
541 * @size: size
543 * Queue a series of bytes to the tty buffering. For each character
544 * the flags array indicates the status of the character. Returns the
545 * number added.
547 * Locking: Called functions may take tty->buf.lock
550 int tty_insert_flip_string_flags(struct tty_struct *tty,
551 const unsigned char *chars, const char *flags, size_t size)
553 int copied = 0;
554 do {
555 int space = tty_buffer_request_room(tty, size - copied);
556 struct tty_buffer *tb = tty->buf.tail;
557 /* If there is no space then tb may be NULL */
558 if(unlikely(space == 0))
559 break;
560 memcpy(tb->char_buf_ptr + tb->used, chars, space);
561 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
562 tb->used += space;
563 copied += space;
564 chars += space;
565 flags += space;
566 /* There is a small chance that we need to split the data over
567 several buffers. If this is the case we must loop */
568 } while (unlikely(size > copied));
569 return copied;
571 EXPORT_SYMBOL(tty_insert_flip_string_flags);
574 * tty_schedule_flip - push characters to ldisc
575 * @tty: tty to push from
577 * Takes any pending buffers and transfers their ownership to the
578 * ldisc side of the queue. It then schedules those characters for
579 * processing by the line discipline.
581 * Locking: Takes tty->buf.lock
584 void tty_schedule_flip(struct tty_struct *tty)
586 unsigned long flags;
587 spin_lock_irqsave(&tty->buf.lock, flags);
588 if (tty->buf.tail != NULL)
589 tty->buf.tail->commit = tty->buf.tail->used;
590 spin_unlock_irqrestore(&tty->buf.lock, flags);
591 schedule_delayed_work(&tty->buf.work, 1);
593 EXPORT_SYMBOL(tty_schedule_flip);
596 * tty_prepare_flip_string - make room for characters
597 * @tty: tty
598 * @chars: return pointer for character write area
599 * @size: desired size
601 * Prepare a block of space in the buffer for data. Returns the length
602 * available and buffer pointer to the space which is now allocated and
603 * accounted for as ready for normal characters. This is used for drivers
604 * that need their own block copy routines into the buffer. There is no
605 * guarantee the buffer is a DMA target!
607 * Locking: May call functions taking tty->buf.lock
610 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
612 int space = tty_buffer_request_room(tty, size);
613 if (likely(space)) {
614 struct tty_buffer *tb = tty->buf.tail;
615 *chars = tb->char_buf_ptr + tb->used;
616 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
617 tb->used += space;
619 return space;
622 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
625 * tty_prepare_flip_string_flags - make room for characters
626 * @tty: tty
627 * @chars: return pointer for character write area
628 * @flags: return pointer for status flag write area
629 * @size: desired size
631 * Prepare a block of space in the buffer for data. Returns the length
632 * available and buffer pointer to the space which is now allocated and
633 * accounted for as ready for characters. This is used for drivers
634 * that need their own block copy routines into the buffer. There is no
635 * guarantee the buffer is a DMA target!
637 * Locking: May call functions taking tty->buf.lock
640 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
642 int space = tty_buffer_request_room(tty, size);
643 if (likely(space)) {
644 struct tty_buffer *tb = tty->buf.tail;
645 *chars = tb->char_buf_ptr + tb->used;
646 *flags = tb->flag_buf_ptr + tb->used;
647 tb->used += space;
649 return space;
652 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
657 * tty_set_termios_ldisc - set ldisc field
658 * @tty: tty structure
659 * @num: line discipline number
661 * This is probably overkill for real world processors but
662 * they are not on hot paths so a little discipline won't do
663 * any harm.
665 * Locking: takes termios_mutex
668 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
670 mutex_lock(&tty->termios_mutex);
671 tty->termios->c_line = num;
672 mutex_unlock(&tty->termios_mutex);
676 * This guards the refcounted line discipline lists. The lock
677 * must be taken with irqs off because there are hangup path
678 * callers who will do ldisc lookups and cannot sleep.
681 static DEFINE_SPINLOCK(tty_ldisc_lock);
682 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
683 static struct tty_ldisc tty_ldiscs[NR_LDISCS]; /* line disc dispatch table */
686 * tty_register_ldisc - install a line discipline
687 * @disc: ldisc number
688 * @new_ldisc: pointer to the ldisc object
690 * Installs a new line discipline into the kernel. The discipline
691 * is set up as unreferenced and then made available to the kernel
692 * from this point onwards.
694 * Locking:
695 * takes tty_ldisc_lock to guard against ldisc races
698 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
700 unsigned long flags;
701 int ret = 0;
703 if (disc < N_TTY || disc >= NR_LDISCS)
704 return -EINVAL;
706 spin_lock_irqsave(&tty_ldisc_lock, flags);
707 tty_ldiscs[disc] = *new_ldisc;
708 tty_ldiscs[disc].num = disc;
709 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
710 tty_ldiscs[disc].refcount = 0;
711 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
713 return ret;
715 EXPORT_SYMBOL(tty_register_ldisc);
718 * tty_unregister_ldisc - unload a line discipline
719 * @disc: ldisc number
720 * @new_ldisc: pointer to the ldisc object
722 * Remove a line discipline from the kernel providing it is not
723 * currently in use.
725 * Locking:
726 * takes tty_ldisc_lock to guard against ldisc races
729 int tty_unregister_ldisc(int disc)
731 unsigned long flags;
732 int ret = 0;
734 if (disc < N_TTY || disc >= NR_LDISCS)
735 return -EINVAL;
737 spin_lock_irqsave(&tty_ldisc_lock, flags);
738 if (tty_ldiscs[disc].refcount)
739 ret = -EBUSY;
740 else
741 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
742 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
744 return ret;
746 EXPORT_SYMBOL(tty_unregister_ldisc);
749 * tty_ldisc_get - take a reference to an ldisc
750 * @disc: ldisc number
752 * Takes a reference to a line discipline. Deals with refcounts and
753 * module locking counts. Returns NULL if the discipline is not available.
754 * Returns a pointer to the discipline and bumps the ref count if it is
755 * available
757 * Locking:
758 * takes tty_ldisc_lock to guard against ldisc races
761 struct tty_ldisc *tty_ldisc_get(int disc)
763 unsigned long flags;
764 struct tty_ldisc *ld;
766 if (disc < N_TTY || disc >= NR_LDISCS)
767 return NULL;
769 spin_lock_irqsave(&tty_ldisc_lock, flags);
771 ld = &tty_ldiscs[disc];
772 /* Check the entry is defined */
773 if(ld->flags & LDISC_FLAG_DEFINED)
775 /* If the module is being unloaded we can't use it */
776 if (!try_module_get(ld->owner))
777 ld = NULL;
778 else /* lock it */
779 ld->refcount++;
781 else
782 ld = NULL;
783 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
784 return ld;
787 EXPORT_SYMBOL_GPL(tty_ldisc_get);
790 * tty_ldisc_put - drop ldisc reference
791 * @disc: ldisc number
793 * Drop a reference to a line discipline. Manage refcounts and
794 * module usage counts
796 * Locking:
797 * takes tty_ldisc_lock to guard against ldisc races
800 void tty_ldisc_put(int disc)
802 struct tty_ldisc *ld;
803 unsigned long flags;
805 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
807 spin_lock_irqsave(&tty_ldisc_lock, flags);
808 ld = &tty_ldiscs[disc];
809 BUG_ON(ld->refcount == 0);
810 ld->refcount--;
811 module_put(ld->owner);
812 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
815 EXPORT_SYMBOL_GPL(tty_ldisc_put);
818 * tty_ldisc_assign - set ldisc on a tty
819 * @tty: tty to assign
820 * @ld: line discipline
822 * Install an instance of a line discipline into a tty structure. The
823 * ldisc must have a reference count above zero to ensure it remains/
824 * The tty instance refcount starts at zero.
826 * Locking:
827 * Caller must hold references
830 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
832 tty->ldisc = *ld;
833 tty->ldisc.refcount = 0;
837 * tty_ldisc_try - internal helper
838 * @tty: the tty
840 * Make a single attempt to grab and bump the refcount on
841 * the tty ldisc. Return 0 on failure or 1 on success. This is
842 * used to implement both the waiting and non waiting versions
843 * of tty_ldisc_ref
845 * Locking: takes tty_ldisc_lock
848 static int tty_ldisc_try(struct tty_struct *tty)
850 unsigned long flags;
851 struct tty_ldisc *ld;
852 int ret = 0;
854 spin_lock_irqsave(&tty_ldisc_lock, flags);
855 ld = &tty->ldisc;
856 if(test_bit(TTY_LDISC, &tty->flags))
858 ld->refcount++;
859 ret = 1;
861 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
862 return ret;
866 * tty_ldisc_ref_wait - wait for the tty ldisc
867 * @tty: tty device
869 * Dereference the line discipline for the terminal and take a
870 * reference to it. If the line discipline is in flux then
871 * wait patiently until it changes.
873 * Note: Must not be called from an IRQ/timer context. The caller
874 * must also be careful not to hold other locks that will deadlock
875 * against a discipline change, such as an existing ldisc reference
876 * (which we check for)
878 * Locking: call functions take tty_ldisc_lock
881 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
883 /* wait_event is a macro */
884 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
885 if(tty->ldisc.refcount == 0)
886 printk(KERN_ERR "tty_ldisc_ref_wait\n");
887 return &tty->ldisc;
890 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
893 * tty_ldisc_ref - get the tty ldisc
894 * @tty: tty device
896 * Dereference the line discipline for the terminal and take a
897 * reference to it. If the line discipline is in flux then
898 * return NULL. Can be called from IRQ and timer functions.
900 * Locking: called functions take tty_ldisc_lock
903 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
905 if(tty_ldisc_try(tty))
906 return &tty->ldisc;
907 return NULL;
910 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
913 * tty_ldisc_deref - free a tty ldisc reference
914 * @ld: reference to free up
916 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
917 * be called in IRQ context.
919 * Locking: takes tty_ldisc_lock
922 void tty_ldisc_deref(struct tty_ldisc *ld)
924 unsigned long flags;
926 BUG_ON(ld == NULL);
928 spin_lock_irqsave(&tty_ldisc_lock, flags);
929 if(ld->refcount == 0)
930 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
931 else
932 ld->refcount--;
933 if(ld->refcount == 0)
934 wake_up(&tty_ldisc_wait);
935 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
938 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
941 * tty_ldisc_enable - allow ldisc use
942 * @tty: terminal to activate ldisc on
944 * Set the TTY_LDISC flag when the line discipline can be called
945 * again. Do neccessary wakeups for existing sleepers.
947 * Note: nobody should set this bit except via this function. Clearing
948 * directly is allowed.
951 static void tty_ldisc_enable(struct tty_struct *tty)
953 set_bit(TTY_LDISC, &tty->flags);
954 wake_up(&tty_ldisc_wait);
958 * tty_set_ldisc - set line discipline
959 * @tty: the terminal to set
960 * @ldisc: the line discipline
962 * Set the discipline of a tty line. Must be called from a process
963 * context.
965 * Locking: takes tty_ldisc_lock.
966 * called functions take termios_mutex
969 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
971 int retval = 0;
972 struct tty_ldisc o_ldisc;
973 char buf[64];
974 int work;
975 unsigned long flags;
976 struct tty_ldisc *ld;
977 struct tty_struct *o_tty;
979 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
980 return -EINVAL;
982 restart:
984 ld = tty_ldisc_get(ldisc);
985 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
986 /* Cyrus Durgin <cider@speakeasy.org> */
987 if (ld == NULL) {
988 request_module("tty-ldisc-%d", ldisc);
989 ld = tty_ldisc_get(ldisc);
991 if (ld == NULL)
992 return -EINVAL;
995 * Problem: What do we do if this blocks ?
998 tty_wait_until_sent(tty, 0);
1000 if (tty->ldisc.num == ldisc) {
1001 tty_ldisc_put(ldisc);
1002 return 0;
1006 * No more input please, we are switching. The new ldisc
1007 * will update this value in the ldisc open function
1010 tty->receive_room = 0;
1012 o_ldisc = tty->ldisc;
1013 o_tty = tty->link;
1016 * Make sure we don't change while someone holds a
1017 * reference to the line discipline. The TTY_LDISC bit
1018 * prevents anyone taking a reference once it is clear.
1019 * We need the lock to avoid racing reference takers.
1022 spin_lock_irqsave(&tty_ldisc_lock, flags);
1023 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
1024 if(tty->ldisc.refcount) {
1025 /* Free the new ldisc we grabbed. Must drop the lock
1026 first. */
1027 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1028 tty_ldisc_put(ldisc);
1030 * There are several reasons we may be busy, including
1031 * random momentary I/O traffic. We must therefore
1032 * retry. We could distinguish between blocking ops
1033 * and retries if we made tty_ldisc_wait() smarter. That
1034 * is up for discussion.
1036 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
1037 return -ERESTARTSYS;
1038 goto restart;
1040 if(o_tty && o_tty->ldisc.refcount) {
1041 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1042 tty_ldisc_put(ldisc);
1043 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
1044 return -ERESTARTSYS;
1045 goto restart;
1049 /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
1051 if (!test_bit(TTY_LDISC, &tty->flags)) {
1052 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1053 tty_ldisc_put(ldisc);
1054 ld = tty_ldisc_ref_wait(tty);
1055 tty_ldisc_deref(ld);
1056 goto restart;
1059 clear_bit(TTY_LDISC, &tty->flags);
1060 if (o_tty)
1061 clear_bit(TTY_LDISC, &o_tty->flags);
1062 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1065 * From this point on we know nobody has an ldisc
1066 * usage reference, nor can they obtain one until
1067 * we say so later on.
1070 work = cancel_delayed_work(&tty->buf.work);
1072 * Wait for ->hangup_work and ->buf.work handlers to terminate
1075 flush_scheduled_work();
1076 /* Shutdown the current discipline. */
1077 if (tty->ldisc.close)
1078 (tty->ldisc.close)(tty);
1080 /* Now set up the new line discipline. */
1081 tty_ldisc_assign(tty, ld);
1082 tty_set_termios_ldisc(tty, ldisc);
1083 if (tty->ldisc.open)
1084 retval = (tty->ldisc.open)(tty);
1085 if (retval < 0) {
1086 tty_ldisc_put(ldisc);
1087 /* There is an outstanding reference here so this is safe */
1088 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1089 tty_set_termios_ldisc(tty, tty->ldisc.num);
1090 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1091 tty_ldisc_put(o_ldisc.num);
1092 /* This driver is always present */
1093 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1094 tty_set_termios_ldisc(tty, N_TTY);
1095 if (tty->ldisc.open) {
1096 int r = tty->ldisc.open(tty);
1098 if (r < 0)
1099 panic("Couldn't open N_TTY ldisc for "
1100 "%s --- error %d.",
1101 tty_name(tty, buf), r);
1105 /* At this point we hold a reference to the new ldisc and a
1106 a reference to the old ldisc. If we ended up flipping back
1107 to the existing ldisc we have two references to it */
1109 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1110 tty->driver->set_ldisc(tty);
1112 tty_ldisc_put(o_ldisc.num);
1115 * Allow ldisc referencing to occur as soon as the driver
1116 * ldisc callback completes.
1119 tty_ldisc_enable(tty);
1120 if (o_tty)
1121 tty_ldisc_enable(o_tty);
1123 /* Restart it in case no characters kick it off. Safe if
1124 already running */
1125 if (work)
1126 schedule_delayed_work(&tty->buf.work, 1);
1127 return retval;
1131 * get_tty_driver - find device of a tty
1132 * @dev_t: device identifier
1133 * @index: returns the index of the tty
1135 * This routine returns a tty driver structure, given a device number
1136 * and also passes back the index number.
1138 * Locking: caller must hold tty_mutex
1141 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1143 struct tty_driver *p;
1145 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1146 dev_t base = MKDEV(p->major, p->minor_start);
1147 if (device < base || device >= base + p->num)
1148 continue;
1149 *index = device - base;
1150 return p;
1152 return NULL;
1156 * tty_check_change - check for POSIX terminal changes
1157 * @tty: tty to check
1159 * If we try to write to, or set the state of, a terminal and we're
1160 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1161 * ignored, go ahead and perform the operation. (POSIX 7.2)
1163 * Locking: none
1166 int tty_check_change(struct tty_struct * tty)
1168 if (current->signal->tty != tty)
1169 return 0;
1170 if (!tty->pgrp) {
1171 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
1172 return 0;
1174 if (task_pgrp(current) == tty->pgrp)
1175 return 0;
1176 if (is_ignored(SIGTTOU))
1177 return 0;
1178 if (is_current_pgrp_orphaned())
1179 return -EIO;
1180 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
1181 set_thread_flag(TIF_SIGPENDING);
1182 return -ERESTARTSYS;
1185 EXPORT_SYMBOL(tty_check_change);
1187 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1188 size_t count, loff_t *ppos)
1190 return 0;
1193 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1194 size_t count, loff_t *ppos)
1196 return -EIO;
1199 /* No kernel lock held - none needed ;) */
1200 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1202 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1205 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1206 unsigned int cmd, unsigned long arg)
1208 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1211 static long hung_up_tty_compat_ioctl(struct file * file,
1212 unsigned int cmd, unsigned long arg)
1214 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1217 static const struct file_operations tty_fops = {
1218 .llseek = no_llseek,
1219 .read = tty_read,
1220 .write = tty_write,
1221 .poll = tty_poll,
1222 .ioctl = tty_ioctl,
1223 .compat_ioctl = tty_compat_ioctl,
1224 .open = tty_open,
1225 .release = tty_release,
1226 .fasync = tty_fasync,
1229 #ifdef CONFIG_UNIX98_PTYS
1230 static const struct file_operations ptmx_fops = {
1231 .llseek = no_llseek,
1232 .read = tty_read,
1233 .write = tty_write,
1234 .poll = tty_poll,
1235 .ioctl = tty_ioctl,
1236 .compat_ioctl = tty_compat_ioctl,
1237 .open = ptmx_open,
1238 .release = tty_release,
1239 .fasync = tty_fasync,
1241 #endif
1243 static const struct file_operations console_fops = {
1244 .llseek = no_llseek,
1245 .read = tty_read,
1246 .write = redirected_tty_write,
1247 .poll = tty_poll,
1248 .ioctl = tty_ioctl,
1249 .compat_ioctl = tty_compat_ioctl,
1250 .open = tty_open,
1251 .release = tty_release,
1252 .fasync = tty_fasync,
1255 static const struct file_operations hung_up_tty_fops = {
1256 .llseek = no_llseek,
1257 .read = hung_up_tty_read,
1258 .write = hung_up_tty_write,
1259 .poll = hung_up_tty_poll,
1260 .ioctl = hung_up_tty_ioctl,
1261 .compat_ioctl = hung_up_tty_compat_ioctl,
1262 .release = tty_release,
1265 static DEFINE_SPINLOCK(redirect_lock);
1266 static struct file *redirect;
1269 * tty_wakeup - request more data
1270 * @tty: terminal
1272 * Internal and external helper for wakeups of tty. This function
1273 * informs the line discipline if present that the driver is ready
1274 * to receive more output data.
1277 void tty_wakeup(struct tty_struct *tty)
1279 struct tty_ldisc *ld;
1281 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1282 ld = tty_ldisc_ref(tty);
1283 if(ld) {
1284 if(ld->write_wakeup)
1285 ld->write_wakeup(tty);
1286 tty_ldisc_deref(ld);
1289 wake_up_interruptible(&tty->write_wait);
1292 EXPORT_SYMBOL_GPL(tty_wakeup);
1295 * tty_ldisc_flush - flush line discipline queue
1296 * @tty: tty
1298 * Flush the line discipline queue (if any) for this tty. If there
1299 * is no line discipline active this is a no-op.
1302 void tty_ldisc_flush(struct tty_struct *tty)
1304 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1305 if(ld) {
1306 if(ld->flush_buffer)
1307 ld->flush_buffer(tty);
1308 tty_ldisc_deref(ld);
1310 tty_buffer_flush(tty);
1313 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1316 * tty_reset_termios - reset terminal state
1317 * @tty: tty to reset
1319 * Restore a terminal to the driver default state
1322 static void tty_reset_termios(struct tty_struct *tty)
1324 mutex_lock(&tty->termios_mutex);
1325 *tty->termios = tty->driver->init_termios;
1326 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1327 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1328 mutex_unlock(&tty->termios_mutex);
1332 * do_tty_hangup - actual handler for hangup events
1333 * @work: tty device
1335 * This can be called by the "eventd" kernel thread. That is process
1336 * synchronous but doesn't hold any locks, so we need to make sure we
1337 * have the appropriate locks for what we're doing.
1339 * The hangup event clears any pending redirections onto the hung up
1340 * device. It ensures future writes will error and it does the needed
1341 * line discipline hangup and signal delivery. The tty object itself
1342 * remains intact.
1344 * Locking:
1345 * BKL
1346 * redirect lock for undoing redirection
1347 * file list lock for manipulating list of ttys
1348 * tty_ldisc_lock from called functions
1349 * termios_mutex resetting termios data
1350 * tasklist_lock to walk task list for hangup event
1351 * ->siglock to protect ->signal/->sighand
1353 static void do_tty_hangup(struct work_struct *work)
1355 struct tty_struct *tty =
1356 container_of(work, struct tty_struct, hangup_work);
1357 struct file * cons_filp = NULL;
1358 struct file *filp, *f = NULL;
1359 struct task_struct *p;
1360 struct tty_ldisc *ld;
1361 int closecount = 0, n;
1363 if (!tty)
1364 return;
1366 /* inuse_filps is protected by the single kernel lock */
1367 lock_kernel();
1369 spin_lock(&redirect_lock);
1370 if (redirect && redirect->private_data == tty) {
1371 f = redirect;
1372 redirect = NULL;
1374 spin_unlock(&redirect_lock);
1376 check_tty_count(tty, "do_tty_hangup");
1377 file_list_lock();
1378 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1379 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1380 if (filp->f_op->write == redirected_tty_write)
1381 cons_filp = filp;
1382 if (filp->f_op->write != tty_write)
1383 continue;
1384 closecount++;
1385 tty_fasync(-1, filp, 0); /* can't block */
1386 filp->f_op = &hung_up_tty_fops;
1388 file_list_unlock();
1390 /* FIXME! What are the locking issues here? This may me overdoing things..
1391 * this question is especially important now that we've removed the irqlock. */
1393 ld = tty_ldisc_ref(tty);
1394 if(ld != NULL) /* We may have no line discipline at this point */
1396 if (ld->flush_buffer)
1397 ld->flush_buffer(tty);
1398 if (tty->driver->flush_buffer)
1399 tty->driver->flush_buffer(tty);
1400 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1401 ld->write_wakeup)
1402 ld->write_wakeup(tty);
1403 if (ld->hangup)
1404 ld->hangup(tty);
1407 /* FIXME: Once we trust the LDISC code better we can wait here for
1408 ldisc completion and fix the driver call race */
1410 wake_up_interruptible(&tty->write_wait);
1411 wake_up_interruptible(&tty->read_wait);
1414 * Shutdown the current line discipline, and reset it to
1415 * N_TTY.
1417 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1418 tty_reset_termios(tty);
1420 /* Defer ldisc switch */
1421 /* tty_deferred_ldisc_switch(N_TTY);
1423 This should get done automatically when the port closes and
1424 tty_release is called */
1426 read_lock(&tasklist_lock);
1427 if (tty->session) {
1428 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
1429 spin_lock_irq(&p->sighand->siglock);
1430 if (p->signal->tty == tty)
1431 p->signal->tty = NULL;
1432 if (!p->signal->leader) {
1433 spin_unlock_irq(&p->sighand->siglock);
1434 continue;
1436 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1437 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1438 put_pid(p->signal->tty_old_pgrp); /* A noop */
1439 if (tty->pgrp)
1440 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
1441 spin_unlock_irq(&p->sighand->siglock);
1442 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
1444 read_unlock(&tasklist_lock);
1446 tty->flags = 0;
1447 put_pid(tty->session);
1448 put_pid(tty->pgrp);
1449 tty->session = NULL;
1450 tty->pgrp = NULL;
1451 tty->ctrl_status = 0;
1453 * If one of the devices matches a console pointer, we
1454 * cannot just call hangup() because that will cause
1455 * tty->count and state->count to go out of sync.
1456 * So we just call close() the right number of times.
1458 if (cons_filp) {
1459 if (tty->driver->close)
1460 for (n = 0; n < closecount; n++)
1461 tty->driver->close(tty, cons_filp);
1462 } else if (tty->driver->hangup)
1463 (tty->driver->hangup)(tty);
1465 /* We don't want to have driver/ldisc interactions beyond
1466 the ones we did here. The driver layer expects no
1467 calls after ->hangup() from the ldisc side. However we
1468 can't yet guarantee all that */
1470 set_bit(TTY_HUPPED, &tty->flags);
1471 if (ld) {
1472 tty_ldisc_enable(tty);
1473 tty_ldisc_deref(ld);
1475 unlock_kernel();
1476 if (f)
1477 fput(f);
1481 * tty_hangup - trigger a hangup event
1482 * @tty: tty to hangup
1484 * A carrier loss (virtual or otherwise) has occurred on this like
1485 * schedule a hangup sequence to run after this event.
1488 void tty_hangup(struct tty_struct * tty)
1490 #ifdef TTY_DEBUG_HANGUP
1491 char buf[64];
1493 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1494 #endif
1495 schedule_work(&tty->hangup_work);
1498 EXPORT_SYMBOL(tty_hangup);
1501 * tty_vhangup - process vhangup
1502 * @tty: tty to hangup
1504 * The user has asked via system call for the terminal to be hung up.
1505 * We do this synchronously so that when the syscall returns the process
1506 * is complete. That guarantee is neccessary for security reasons.
1509 void tty_vhangup(struct tty_struct * tty)
1511 #ifdef TTY_DEBUG_HANGUP
1512 char buf[64];
1514 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1515 #endif
1516 do_tty_hangup(&tty->hangup_work);
1518 EXPORT_SYMBOL(tty_vhangup);
1521 * tty_hung_up_p - was tty hung up
1522 * @filp: file pointer of tty
1524 * Return true if the tty has been subject to a vhangup or a carrier
1525 * loss
1528 int tty_hung_up_p(struct file * filp)
1530 return (filp->f_op == &hung_up_tty_fops);
1533 EXPORT_SYMBOL(tty_hung_up_p);
1536 * is_tty - checker whether file is a TTY
1538 int is_tty(struct file *filp)
1540 return filp->f_op->read == tty_read
1541 || filp->f_op->read == hung_up_tty_read;
1544 static void session_clear_tty(struct pid *session)
1546 struct task_struct *p;
1547 do_each_pid_task(session, PIDTYPE_SID, p) {
1548 proc_clear_tty(p);
1549 } while_each_pid_task(session, PIDTYPE_SID, p);
1553 * disassociate_ctty - disconnect controlling tty
1554 * @on_exit: true if exiting so need to "hang up" the session
1556 * This function is typically called only by the session leader, when
1557 * it wants to disassociate itself from its controlling tty.
1559 * It performs the following functions:
1560 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1561 * (2) Clears the tty from being controlling the session
1562 * (3) Clears the controlling tty for all processes in the
1563 * session group.
1565 * The argument on_exit is set to 1 if called when a process is
1566 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1568 * Locking:
1569 * BKL is taken for hysterical raisins
1570 * tty_mutex is taken to protect tty
1571 * ->siglock is taken to protect ->signal/->sighand
1572 * tasklist_lock is taken to walk process list for sessions
1573 * ->siglock is taken to protect ->signal/->sighand
1576 void disassociate_ctty(int on_exit)
1578 struct tty_struct *tty;
1579 struct pid *tty_pgrp = NULL;
1581 lock_kernel();
1583 mutex_lock(&tty_mutex);
1584 tty = get_current_tty();
1585 if (tty) {
1586 tty_pgrp = get_pid(tty->pgrp);
1587 mutex_unlock(&tty_mutex);
1588 /* XXX: here we race, there is nothing protecting tty */
1589 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1590 tty_vhangup(tty);
1591 } else if (on_exit) {
1592 struct pid *old_pgrp;
1593 spin_lock_irq(&current->sighand->siglock);
1594 old_pgrp = current->signal->tty_old_pgrp;
1595 current->signal->tty_old_pgrp = NULL;
1596 spin_unlock_irq(&current->sighand->siglock);
1597 if (old_pgrp) {
1598 kill_pgrp(old_pgrp, SIGHUP, on_exit);
1599 kill_pgrp(old_pgrp, SIGCONT, on_exit);
1600 put_pid(old_pgrp);
1602 mutex_unlock(&tty_mutex);
1603 unlock_kernel();
1604 return;
1606 if (tty_pgrp) {
1607 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
1608 if (!on_exit)
1609 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
1610 put_pid(tty_pgrp);
1613 spin_lock_irq(&current->sighand->siglock);
1614 put_pid(current->signal->tty_old_pgrp);
1615 current->signal->tty_old_pgrp = NULL;
1616 spin_unlock_irq(&current->sighand->siglock);
1618 mutex_lock(&tty_mutex);
1619 /* It is possible that do_tty_hangup has free'd this tty */
1620 tty = get_current_tty();
1621 if (tty) {
1622 put_pid(tty->session);
1623 put_pid(tty->pgrp);
1624 tty->session = NULL;
1625 tty->pgrp = NULL;
1626 } else {
1627 #ifdef TTY_DEBUG_HANGUP
1628 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1629 " = NULL", tty);
1630 #endif
1632 mutex_unlock(&tty_mutex);
1634 /* Now clear signal->tty under the lock */
1635 read_lock(&tasklist_lock);
1636 session_clear_tty(task_session(current));
1637 read_unlock(&tasklist_lock);
1638 unlock_kernel();
1643 * no_tty - Ensure the current process does not have a controlling tty
1645 void no_tty(void)
1647 struct task_struct *tsk = current;
1648 if (tsk->signal->leader)
1649 disassociate_ctty(0);
1650 proc_clear_tty(tsk);
1655 * stop_tty - propagate flow control
1656 * @tty: tty to stop
1658 * Perform flow control to the driver. For PTY/TTY pairs we
1659 * must also propagate the TIOCKPKT status. May be called
1660 * on an already stopped device and will not re-call the driver
1661 * method.
1663 * This functionality is used by both the line disciplines for
1664 * halting incoming flow and by the driver. It may therefore be
1665 * called from any context, may be under the tty atomic_write_lock
1666 * but not always.
1668 * Locking:
1669 * Broken. Relies on BKL which is unsafe here.
1672 void stop_tty(struct tty_struct *tty)
1674 if (tty->stopped)
1675 return;
1676 tty->stopped = 1;
1677 if (tty->link && tty->link->packet) {
1678 tty->ctrl_status &= ~TIOCPKT_START;
1679 tty->ctrl_status |= TIOCPKT_STOP;
1680 wake_up_interruptible(&tty->link->read_wait);
1682 if (tty->driver->stop)
1683 (tty->driver->stop)(tty);
1686 EXPORT_SYMBOL(stop_tty);
1689 * start_tty - propagate flow control
1690 * @tty: tty to start
1692 * Start a tty that has been stopped if at all possible. Perform
1693 * any neccessary wakeups and propagate the TIOCPKT status. If this
1694 * is the tty was previous stopped and is being started then the
1695 * driver start method is invoked and the line discipline woken.
1697 * Locking:
1698 * Broken. Relies on BKL which is unsafe here.
1701 void start_tty(struct tty_struct *tty)
1703 if (!tty->stopped || tty->flow_stopped)
1704 return;
1705 tty->stopped = 0;
1706 if (tty->link && tty->link->packet) {
1707 tty->ctrl_status &= ~TIOCPKT_STOP;
1708 tty->ctrl_status |= TIOCPKT_START;
1709 wake_up_interruptible(&tty->link->read_wait);
1711 if (tty->driver->start)
1712 (tty->driver->start)(tty);
1714 /* If we have a running line discipline it may need kicking */
1715 tty_wakeup(tty);
1718 EXPORT_SYMBOL(start_tty);
1721 * tty_read - read method for tty device files
1722 * @file: pointer to tty file
1723 * @buf: user buffer
1724 * @count: size of user buffer
1725 * @ppos: unused
1727 * Perform the read system call function on this terminal device. Checks
1728 * for hung up devices before calling the line discipline method.
1730 * Locking:
1731 * Locks the line discipline internally while needed
1732 * For historical reasons the line discipline read method is
1733 * invoked under the BKL. This will go away in time so do not rely on it
1734 * in new code. Multiple read calls may be outstanding in parallel.
1737 static ssize_t tty_read(struct file * file, char __user * buf, size_t count,
1738 loff_t *ppos)
1740 int i;
1741 struct tty_struct * tty;
1742 struct inode *inode;
1743 struct tty_ldisc *ld;
1745 tty = (struct tty_struct *)file->private_data;
1746 inode = file->f_path.dentry->d_inode;
1747 if (tty_paranoia_check(tty, inode, "tty_read"))
1748 return -EIO;
1749 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1750 return -EIO;
1752 /* We want to wait for the line discipline to sort out in this
1753 situation */
1754 ld = tty_ldisc_ref_wait(tty);
1755 lock_kernel();
1756 if (ld->read)
1757 i = (ld->read)(tty,file,buf,count);
1758 else
1759 i = -EIO;
1760 tty_ldisc_deref(ld);
1761 unlock_kernel();
1762 if (i > 0)
1763 inode->i_atime = current_fs_time(inode->i_sb);
1764 return i;
1767 void tty_write_unlock(struct tty_struct *tty)
1769 mutex_unlock(&tty->atomic_write_lock);
1770 wake_up_interruptible(&tty->write_wait);
1773 int tty_write_lock(struct tty_struct *tty, int ndelay)
1775 if (!mutex_trylock(&tty->atomic_write_lock)) {
1776 if (ndelay)
1777 return -EAGAIN;
1778 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1779 return -ERESTARTSYS;
1781 return 0;
1785 * Split writes up in sane blocksizes to avoid
1786 * denial-of-service type attacks
1788 static inline ssize_t do_tty_write(
1789 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1790 struct tty_struct *tty,
1791 struct file *file,
1792 const char __user *buf,
1793 size_t count)
1795 ssize_t ret, written = 0;
1796 unsigned int chunk;
1798 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1799 if (ret < 0)
1800 return ret;
1803 * We chunk up writes into a temporary buffer. This
1804 * simplifies low-level drivers immensely, since they
1805 * don't have locking issues and user mode accesses.
1807 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1808 * big chunk-size..
1810 * The default chunk-size is 2kB, because the NTTY
1811 * layer has problems with bigger chunks. It will
1812 * claim to be able to handle more characters than
1813 * it actually does.
1815 * FIXME: This can probably go away now except that 64K chunks
1816 * are too likely to fail unless switched to vmalloc...
1818 chunk = 2048;
1819 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1820 chunk = 65536;
1821 if (count < chunk)
1822 chunk = count;
1824 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1825 if (tty->write_cnt < chunk) {
1826 unsigned char *buf;
1828 if (chunk < 1024)
1829 chunk = 1024;
1831 buf = kmalloc(chunk, GFP_KERNEL);
1832 if (!buf) {
1833 ret = -ENOMEM;
1834 goto out;
1836 kfree(tty->write_buf);
1837 tty->write_cnt = chunk;
1838 tty->write_buf = buf;
1841 /* Do the write .. */
1842 for (;;) {
1843 size_t size = count;
1844 if (size > chunk)
1845 size = chunk;
1846 ret = -EFAULT;
1847 if (copy_from_user(tty->write_buf, buf, size))
1848 break;
1849 lock_kernel();
1850 ret = write(tty, file, tty->write_buf, size);
1851 unlock_kernel();
1852 if (ret <= 0)
1853 break;
1854 written += ret;
1855 buf += ret;
1856 count -= ret;
1857 if (!count)
1858 break;
1859 ret = -ERESTARTSYS;
1860 if (signal_pending(current))
1861 break;
1862 cond_resched();
1864 if (written) {
1865 struct inode *inode = file->f_path.dentry->d_inode;
1866 inode->i_mtime = current_fs_time(inode->i_sb);
1867 ret = written;
1869 out:
1870 tty_write_unlock(tty);
1871 return ret;
1876 * tty_write - write method for tty device file
1877 * @file: tty file pointer
1878 * @buf: user data to write
1879 * @count: bytes to write
1880 * @ppos: unused
1882 * Write data to a tty device via the line discipline.
1884 * Locking:
1885 * Locks the line discipline as required
1886 * Writes to the tty driver are serialized by the atomic_write_lock
1887 * and are then processed in chunks to the device. The line discipline
1888 * write method will not be involked in parallel for each device
1889 * The line discipline write method is called under the big
1890 * kernel lock for historical reasons. New code should not rely on this.
1893 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1894 loff_t *ppos)
1896 struct tty_struct * tty;
1897 struct inode *inode = file->f_path.dentry->d_inode;
1898 ssize_t ret;
1899 struct tty_ldisc *ld;
1901 tty = (struct tty_struct *)file->private_data;
1902 if (tty_paranoia_check(tty, inode, "tty_write"))
1903 return -EIO;
1904 if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1905 return -EIO;
1907 ld = tty_ldisc_ref_wait(tty);
1908 if (!ld->write)
1909 ret = -EIO;
1910 else
1911 ret = do_tty_write(ld->write, tty, file, buf, count);
1912 tty_ldisc_deref(ld);
1913 return ret;
1916 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1917 loff_t *ppos)
1919 struct file *p = NULL;
1921 spin_lock(&redirect_lock);
1922 if (redirect) {
1923 get_file(redirect);
1924 p = redirect;
1926 spin_unlock(&redirect_lock);
1928 if (p) {
1929 ssize_t res;
1930 res = vfs_write(p, buf, count, &p->f_pos);
1931 fput(p);
1932 return res;
1935 return tty_write(file, buf, count, ppos);
1938 static char ptychar[] = "pqrstuvwxyzabcde";
1941 * pty_line_name - generate name for a pty
1942 * @driver: the tty driver in use
1943 * @index: the minor number
1944 * @p: output buffer of at least 6 bytes
1946 * Generate a name from a driver reference and write it to the output
1947 * buffer.
1949 * Locking: None
1951 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1953 int i = index + driver->name_base;
1954 /* ->name is initialized to "ttyp", but "tty" is expected */
1955 sprintf(p, "%s%c%x",
1956 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1957 ptychar[i >> 4 & 0xf], i & 0xf);
1961 * pty_line_name - generate name for a tty
1962 * @driver: the tty driver in use
1963 * @index: the minor number
1964 * @p: output buffer of at least 7 bytes
1966 * Generate a name from a driver reference and write it to the output
1967 * buffer.
1969 * Locking: None
1971 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1973 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1977 * init_dev - initialise a tty device
1978 * @driver: tty driver we are opening a device on
1979 * @idx: device index
1980 * @tty: returned tty structure
1982 * Prepare a tty device. This may not be a "new" clean device but
1983 * could also be an active device. The pty drivers require special
1984 * handling because of this.
1986 * Locking:
1987 * The function is called under the tty_mutex, which
1988 * protects us from the tty struct or driver itself going away.
1990 * On exit the tty device has the line discipline attached and
1991 * a reference count of 1. If a pair was created for pty/tty use
1992 * and the other was a pty master then it too has a reference count of 1.
1994 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1995 * failed open. The new code protects the open with a mutex, so it's
1996 * really quite straightforward. The mutex locking can probably be
1997 * relaxed for the (most common) case of reopening a tty.
2000 static int init_dev(struct tty_driver *driver, int idx,
2001 struct tty_struct **ret_tty)
2003 struct tty_struct *tty, *o_tty;
2004 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
2005 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
2006 int retval = 0;
2008 /* check whether we're reopening an existing tty */
2009 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2010 tty = devpts_get_tty(idx);
2012 * If we don't have a tty here on a slave open, it's because
2013 * the master already started the close process and there's
2014 * no relation between devpts file and tty anymore.
2016 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
2017 retval = -EIO;
2018 goto end_init;
2021 * It's safe from now on because init_dev() is called with
2022 * tty_mutex held and release_dev() won't change tty->count
2023 * or tty->flags without having to grab tty_mutex
2025 if (tty && driver->subtype == PTY_TYPE_MASTER)
2026 tty = tty->link;
2027 } else {
2028 tty = driver->ttys[idx];
2030 if (tty) goto fast_track;
2033 * First time open is complex, especially for PTY devices.
2034 * This code guarantees that either everything succeeds and the
2035 * TTY is ready for operation, or else the table slots are vacated
2036 * and the allocated memory released. (Except that the termios
2037 * and locked termios may be retained.)
2040 if (!try_module_get(driver->owner)) {
2041 retval = -ENODEV;
2042 goto end_init;
2045 o_tty = NULL;
2046 tp = o_tp = NULL;
2047 ltp = o_ltp = NULL;
2049 tty = alloc_tty_struct();
2050 if(!tty)
2051 goto fail_no_mem;
2052 initialize_tty_struct(tty);
2053 tty->driver = driver;
2054 tty->index = idx;
2055 tty_line_name(driver, idx, tty->name);
2057 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2058 tp_loc = &tty->termios;
2059 ltp_loc = &tty->termios_locked;
2060 } else {
2061 tp_loc = &driver->termios[idx];
2062 ltp_loc = &driver->termios_locked[idx];
2065 if (!*tp_loc) {
2066 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2067 if (!tp)
2068 goto free_mem_out;
2069 *tp = driver->init_termios;
2072 if (!*ltp_loc) {
2073 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
2074 if (!ltp)
2075 goto free_mem_out;
2078 if (driver->type == TTY_DRIVER_TYPE_PTY) {
2079 o_tty = alloc_tty_struct();
2080 if (!o_tty)
2081 goto free_mem_out;
2082 initialize_tty_struct(o_tty);
2083 o_tty->driver = driver->other;
2084 o_tty->index = idx;
2085 tty_line_name(driver->other, idx, o_tty->name);
2087 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2088 o_tp_loc = &o_tty->termios;
2089 o_ltp_loc = &o_tty->termios_locked;
2090 } else {
2091 o_tp_loc = &driver->other->termios[idx];
2092 o_ltp_loc = &driver->other->termios_locked[idx];
2095 if (!*o_tp_loc) {
2096 o_tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2097 if (!o_tp)
2098 goto free_mem_out;
2099 *o_tp = driver->other->init_termios;
2102 if (!*o_ltp_loc) {
2103 o_ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
2104 if (!o_ltp)
2105 goto free_mem_out;
2109 * Everything allocated ... set up the o_tty structure.
2111 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
2112 driver->other->ttys[idx] = o_tty;
2114 if (!*o_tp_loc)
2115 *o_tp_loc = o_tp;
2116 if (!*o_ltp_loc)
2117 *o_ltp_loc = o_ltp;
2118 o_tty->termios = *o_tp_loc;
2119 o_tty->termios_locked = *o_ltp_loc;
2120 driver->other->refcount++;
2121 if (driver->subtype == PTY_TYPE_MASTER)
2122 o_tty->count++;
2124 /* Establish the links in both directions */
2125 tty->link = o_tty;
2126 o_tty->link = tty;
2130 * All structures have been allocated, so now we install them.
2131 * Failures after this point use release_tty to clean up, so
2132 * there's no need to null out the local pointers.
2134 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2135 driver->ttys[idx] = tty;
2138 if (!*tp_loc)
2139 *tp_loc = tp;
2140 if (!*ltp_loc)
2141 *ltp_loc = ltp;
2142 tty->termios = *tp_loc;
2143 tty->termios_locked = *ltp_loc;
2144 /* Compatibility until drivers always set this */
2145 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2146 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2147 driver->refcount++;
2148 tty->count++;
2151 * Structures all installed ... call the ldisc open routines.
2152 * If we fail here just call release_tty to clean up. No need
2153 * to decrement the use counts, as release_tty doesn't care.
2156 if (tty->ldisc.open) {
2157 retval = (tty->ldisc.open)(tty);
2158 if (retval)
2159 goto release_mem_out;
2161 if (o_tty && o_tty->ldisc.open) {
2162 retval = (o_tty->ldisc.open)(o_tty);
2163 if (retval) {
2164 if (tty->ldisc.close)
2165 (tty->ldisc.close)(tty);
2166 goto release_mem_out;
2168 tty_ldisc_enable(o_tty);
2170 tty_ldisc_enable(tty);
2171 goto success;
2174 * This fast open can be used if the tty is already open.
2175 * No memory is allocated, and the only failures are from
2176 * attempting to open a closing tty or attempting multiple
2177 * opens on a pty master.
2179 fast_track:
2180 if (test_bit(TTY_CLOSING, &tty->flags)) {
2181 retval = -EIO;
2182 goto end_init;
2184 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2185 driver->subtype == PTY_TYPE_MASTER) {
2187 * special case for PTY masters: only one open permitted,
2188 * and the slave side open count is incremented as well.
2190 if (tty->count) {
2191 retval = -EIO;
2192 goto end_init;
2194 tty->link->count++;
2196 tty->count++;
2197 tty->driver = driver; /* N.B. why do this every time?? */
2199 /* FIXME */
2200 if(!test_bit(TTY_LDISC, &tty->flags))
2201 printk(KERN_ERR "init_dev but no ldisc\n");
2202 success:
2203 *ret_tty = tty;
2205 /* All paths come through here to release the mutex */
2206 end_init:
2207 return retval;
2209 /* Release locally allocated memory ... nothing placed in slots */
2210 free_mem_out:
2211 kfree(o_tp);
2212 if (o_tty)
2213 free_tty_struct(o_tty);
2214 kfree(ltp);
2215 kfree(tp);
2216 free_tty_struct(tty);
2218 fail_no_mem:
2219 module_put(driver->owner);
2220 retval = -ENOMEM;
2221 goto end_init;
2223 /* call the tty release_tty routine to clean out this slot */
2224 release_mem_out:
2225 if (printk_ratelimit())
2226 printk(KERN_INFO "init_dev: ldisc open failed, "
2227 "clearing slot %d\n", idx);
2228 release_tty(tty, idx);
2229 goto end_init;
2233 * release_one_tty - release tty structure memory
2235 * Releases memory associated with a tty structure, and clears out the
2236 * driver table slots. This function is called when a device is no longer
2237 * in use. It also gets called when setup of a device fails.
2239 * Locking:
2240 * tty_mutex - sometimes only
2241 * takes the file list lock internally when working on the list
2242 * of ttys that the driver keeps.
2243 * FIXME: should we require tty_mutex is held here ??
2245 static void release_one_tty(struct tty_struct *tty, int idx)
2247 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2248 struct ktermios *tp;
2250 if (!devpts)
2251 tty->driver->ttys[idx] = NULL;
2253 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2254 tp = tty->termios;
2255 if (!devpts)
2256 tty->driver->termios[idx] = NULL;
2257 kfree(tp);
2259 tp = tty->termios_locked;
2260 if (!devpts)
2261 tty->driver->termios_locked[idx] = NULL;
2262 kfree(tp);
2266 tty->magic = 0;
2267 tty->driver->refcount--;
2269 file_list_lock();
2270 list_del_init(&tty->tty_files);
2271 file_list_unlock();
2273 free_tty_struct(tty);
2277 * release_tty - release tty structure memory
2279 * Release both @tty and a possible linked partner (think pty pair),
2280 * and decrement the refcount of the backing module.
2282 * Locking:
2283 * tty_mutex - sometimes only
2284 * takes the file list lock internally when working on the list
2285 * of ttys that the driver keeps.
2286 * FIXME: should we require tty_mutex is held here ??
2288 static void release_tty(struct tty_struct *tty, int idx)
2290 struct tty_driver *driver = tty->driver;
2292 if (tty->link)
2293 release_one_tty(tty->link, idx);
2294 release_one_tty(tty, idx);
2295 module_put(driver->owner);
2299 * Even releasing the tty structures is a tricky business.. We have
2300 * to be very careful that the structures are all released at the
2301 * same time, as interrupts might otherwise get the wrong pointers.
2303 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2304 * lead to double frees or releasing memory still in use.
2306 static void release_dev(struct file * filp)
2308 struct tty_struct *tty, *o_tty;
2309 int pty_master, tty_closing, o_tty_closing, do_sleep;
2310 int devpts;
2311 int idx;
2312 char buf[64];
2313 unsigned long flags;
2315 tty = (struct tty_struct *)filp->private_data;
2316 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "release_dev"))
2317 return;
2319 check_tty_count(tty, "release_dev");
2321 tty_fasync(-1, filp, 0);
2323 idx = tty->index;
2324 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2325 tty->driver->subtype == PTY_TYPE_MASTER);
2326 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2327 o_tty = tty->link;
2329 #ifdef TTY_PARANOIA_CHECK
2330 if (idx < 0 || idx >= tty->driver->num) {
2331 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2332 "free (%s)\n", tty->name);
2333 return;
2335 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2336 if (tty != tty->driver->ttys[idx]) {
2337 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2338 "for (%s)\n", idx, tty->name);
2339 return;
2341 if (tty->termios != tty->driver->termios[idx]) {
2342 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2343 "for (%s)\n",
2344 idx, tty->name);
2345 return;
2347 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2348 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2349 "termios_locked for (%s)\n",
2350 idx, tty->name);
2351 return;
2354 #endif
2356 #ifdef TTY_DEBUG_HANGUP
2357 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2358 tty_name(tty, buf), tty->count);
2359 #endif
2361 #ifdef TTY_PARANOIA_CHECK
2362 if (tty->driver->other &&
2363 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2364 if (o_tty != tty->driver->other->ttys[idx]) {
2365 printk(KERN_DEBUG "release_dev: other->table[%d] "
2366 "not o_tty for (%s)\n",
2367 idx, tty->name);
2368 return;
2370 if (o_tty->termios != tty->driver->other->termios[idx]) {
2371 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2372 "not o_termios for (%s)\n",
2373 idx, tty->name);
2374 return;
2376 if (o_tty->termios_locked !=
2377 tty->driver->other->termios_locked[idx]) {
2378 printk(KERN_DEBUG "release_dev: other->termios_locked["
2379 "%d] not o_termios_locked for (%s)\n",
2380 idx, tty->name);
2381 return;
2383 if (o_tty->link != tty) {
2384 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2385 return;
2388 #endif
2389 if (tty->driver->close)
2390 tty->driver->close(tty, filp);
2393 * Sanity check: if tty->count is going to zero, there shouldn't be
2394 * any waiters on tty->read_wait or tty->write_wait. We test the
2395 * wait queues and kick everyone out _before_ actually starting to
2396 * close. This ensures that we won't block while releasing the tty
2397 * structure.
2399 * The test for the o_tty closing is necessary, since the master and
2400 * slave sides may close in any order. If the slave side closes out
2401 * first, its count will be one, since the master side holds an open.
2402 * Thus this test wouldn't be triggered at the time the slave closes,
2403 * so we do it now.
2405 * Note that it's possible for the tty to be opened again while we're
2406 * flushing out waiters. By recalculating the closing flags before
2407 * each iteration we avoid any problems.
2409 while (1) {
2410 /* Guard against races with tty->count changes elsewhere and
2411 opens on /dev/tty */
2413 mutex_lock(&tty_mutex);
2414 tty_closing = tty->count <= 1;
2415 o_tty_closing = o_tty &&
2416 (o_tty->count <= (pty_master ? 1 : 0));
2417 do_sleep = 0;
2419 if (tty_closing) {
2420 if (waitqueue_active(&tty->read_wait)) {
2421 wake_up(&tty->read_wait);
2422 do_sleep++;
2424 if (waitqueue_active(&tty->write_wait)) {
2425 wake_up(&tty->write_wait);
2426 do_sleep++;
2429 if (o_tty_closing) {
2430 if (waitqueue_active(&o_tty->read_wait)) {
2431 wake_up(&o_tty->read_wait);
2432 do_sleep++;
2434 if (waitqueue_active(&o_tty->write_wait)) {
2435 wake_up(&o_tty->write_wait);
2436 do_sleep++;
2439 if (!do_sleep)
2440 break;
2442 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2443 "active!\n", tty_name(tty, buf));
2444 mutex_unlock(&tty_mutex);
2445 schedule();
2449 * The closing flags are now consistent with the open counts on
2450 * both sides, and we've completed the last operation that could
2451 * block, so it's safe to proceed with closing.
2453 if (pty_master) {
2454 if (--o_tty->count < 0) {
2455 printk(KERN_WARNING "release_dev: bad pty slave count "
2456 "(%d) for %s\n",
2457 o_tty->count, tty_name(o_tty, buf));
2458 o_tty->count = 0;
2461 if (--tty->count < 0) {
2462 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2463 tty->count, tty_name(tty, buf));
2464 tty->count = 0;
2468 * We've decremented tty->count, so we need to remove this file
2469 * descriptor off the tty->tty_files list; this serves two
2470 * purposes:
2471 * - check_tty_count sees the correct number of file descriptors
2472 * associated with this tty.
2473 * - do_tty_hangup no longer sees this file descriptor as
2474 * something that needs to be handled for hangups.
2476 file_kill(filp);
2477 filp->private_data = NULL;
2480 * Perform some housekeeping before deciding whether to return.
2482 * Set the TTY_CLOSING flag if this was the last open. In the
2483 * case of a pty we may have to wait around for the other side
2484 * to close, and TTY_CLOSING makes sure we can't be reopened.
2486 if(tty_closing)
2487 set_bit(TTY_CLOSING, &tty->flags);
2488 if(o_tty_closing)
2489 set_bit(TTY_CLOSING, &o_tty->flags);
2492 * If _either_ side is closing, make sure there aren't any
2493 * processes that still think tty or o_tty is their controlling
2494 * tty.
2496 if (tty_closing || o_tty_closing) {
2497 read_lock(&tasklist_lock);
2498 session_clear_tty(tty->session);
2499 if (o_tty)
2500 session_clear_tty(o_tty->session);
2501 read_unlock(&tasklist_lock);
2504 mutex_unlock(&tty_mutex);
2506 /* check whether both sides are closing ... */
2507 if (!tty_closing || (o_tty && !o_tty_closing))
2508 return;
2510 #ifdef TTY_DEBUG_HANGUP
2511 printk(KERN_DEBUG "freeing tty structure...");
2512 #endif
2514 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2515 * kill any delayed work. As this is the final close it does not
2516 * race with the set_ldisc code path.
2518 clear_bit(TTY_LDISC, &tty->flags);
2519 cancel_delayed_work(&tty->buf.work);
2522 * Wait for ->hangup_work and ->buf.work handlers to terminate
2525 flush_scheduled_work();
2528 * Wait for any short term users (we know they are just driver
2529 * side waiters as the file is closing so user count on the file
2530 * side is zero.
2532 spin_lock_irqsave(&tty_ldisc_lock, flags);
2533 while(tty->ldisc.refcount)
2535 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2536 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2537 spin_lock_irqsave(&tty_ldisc_lock, flags);
2539 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2541 * Shutdown the current line discipline, and reset it to N_TTY.
2542 * N.B. why reset ldisc when we're releasing the memory??
2544 * FIXME: this MUST get fixed for the new reflocking
2546 if (tty->ldisc.close)
2547 (tty->ldisc.close)(tty);
2548 tty_ldisc_put(tty->ldisc.num);
2551 * Switch the line discipline back
2553 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2554 tty_set_termios_ldisc(tty,N_TTY);
2555 if (o_tty) {
2556 /* FIXME: could o_tty be in setldisc here ? */
2557 clear_bit(TTY_LDISC, &o_tty->flags);
2558 if (o_tty->ldisc.close)
2559 (o_tty->ldisc.close)(o_tty);
2560 tty_ldisc_put(o_tty->ldisc.num);
2561 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2562 tty_set_termios_ldisc(o_tty,N_TTY);
2565 * The release_tty function takes care of the details of clearing
2566 * the slots and preserving the termios structure.
2568 release_tty(tty, idx);
2570 #ifdef CONFIG_UNIX98_PTYS
2571 /* Make this pty number available for reallocation */
2572 if (devpts) {
2573 down(&allocated_ptys_lock);
2574 idr_remove(&allocated_ptys, idx);
2575 up(&allocated_ptys_lock);
2577 #endif
2582 * tty_open - open a tty device
2583 * @inode: inode of device file
2584 * @filp: file pointer to tty
2586 * tty_open and tty_release keep up the tty count that contains the
2587 * number of opens done on a tty. We cannot use the inode-count, as
2588 * different inodes might point to the same tty.
2590 * Open-counting is needed for pty masters, as well as for keeping
2591 * track of serial lines: DTR is dropped when the last close happens.
2592 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2594 * The termios state of a pty is reset on first open so that
2595 * settings don't persist across reuse.
2597 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2598 * tty->count should protect the rest.
2599 * ->siglock protects ->signal/->sighand
2602 static int tty_open(struct inode * inode, struct file * filp)
2604 struct tty_struct *tty;
2605 int noctty, retval;
2606 struct tty_driver *driver;
2607 int index;
2608 dev_t device = inode->i_rdev;
2609 unsigned short saved_flags = filp->f_flags;
2611 nonseekable_open(inode, filp);
2613 retry_open:
2614 noctty = filp->f_flags & O_NOCTTY;
2615 index = -1;
2616 retval = 0;
2618 mutex_lock(&tty_mutex);
2620 if (device == MKDEV(TTYAUX_MAJOR,0)) {
2621 tty = get_current_tty();
2622 if (!tty) {
2623 mutex_unlock(&tty_mutex);
2624 return -ENXIO;
2626 driver = tty->driver;
2627 index = tty->index;
2628 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2629 /* noctty = 1; */
2630 goto got_driver;
2632 #ifdef CONFIG_VT
2633 if (device == MKDEV(TTY_MAJOR,0)) {
2634 extern struct tty_driver *console_driver;
2635 driver = console_driver;
2636 index = fg_console;
2637 noctty = 1;
2638 goto got_driver;
2640 #endif
2641 if (device == MKDEV(TTYAUX_MAJOR,1)) {
2642 driver = console_device(&index);
2643 if (driver) {
2644 /* Don't let /dev/console block */
2645 filp->f_flags |= O_NONBLOCK;
2646 noctty = 1;
2647 goto got_driver;
2649 mutex_unlock(&tty_mutex);
2650 return -ENODEV;
2653 driver = get_tty_driver(device, &index);
2654 if (!driver) {
2655 mutex_unlock(&tty_mutex);
2656 return -ENODEV;
2658 got_driver:
2659 retval = init_dev(driver, index, &tty);
2660 mutex_unlock(&tty_mutex);
2661 if (retval)
2662 return retval;
2664 filp->private_data = tty;
2665 file_move(filp, &tty->tty_files);
2666 check_tty_count(tty, "tty_open");
2667 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2668 tty->driver->subtype == PTY_TYPE_MASTER)
2669 noctty = 1;
2670 #ifdef TTY_DEBUG_HANGUP
2671 printk(KERN_DEBUG "opening %s...", tty->name);
2672 #endif
2673 if (!retval) {
2674 if (tty->driver->open)
2675 retval = tty->driver->open(tty, filp);
2676 else
2677 retval = -ENODEV;
2679 filp->f_flags = saved_flags;
2681 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2682 retval = -EBUSY;
2684 if (retval) {
2685 #ifdef TTY_DEBUG_HANGUP
2686 printk(KERN_DEBUG "error %d in opening %s...", retval,
2687 tty->name);
2688 #endif
2689 release_dev(filp);
2690 if (retval != -ERESTARTSYS)
2691 return retval;
2692 if (signal_pending(current))
2693 return retval;
2694 schedule();
2696 * Need to reset f_op in case a hangup happened.
2698 if (filp->f_op == &hung_up_tty_fops)
2699 filp->f_op = &tty_fops;
2700 goto retry_open;
2703 mutex_lock(&tty_mutex);
2704 spin_lock_irq(&current->sighand->siglock);
2705 if (!noctty &&
2706 current->signal->leader &&
2707 !current->signal->tty &&
2708 tty->session == NULL)
2709 __proc_set_tty(current, tty);
2710 spin_unlock_irq(&current->sighand->siglock);
2711 mutex_unlock(&tty_mutex);
2712 tty_audit_opening();
2713 return 0;
2716 #ifdef CONFIG_UNIX98_PTYS
2718 * ptmx_open - open a unix 98 pty master
2719 * @inode: inode of device file
2720 * @filp: file pointer to tty
2722 * Allocate a unix98 pty master device from the ptmx driver.
2724 * Locking: tty_mutex protects theinit_dev work. tty->count should
2725 protect the rest.
2726 * allocated_ptys_lock handles the list of free pty numbers
2729 static int ptmx_open(struct inode * inode, struct file * filp)
2731 struct tty_struct *tty;
2732 int retval;
2733 int index;
2734 int idr_ret;
2736 nonseekable_open(inode, filp);
2738 /* find a device that is not in use. */
2739 down(&allocated_ptys_lock);
2740 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2741 up(&allocated_ptys_lock);
2742 return -ENOMEM;
2744 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2745 if (idr_ret < 0) {
2746 up(&allocated_ptys_lock);
2747 if (idr_ret == -EAGAIN)
2748 return -ENOMEM;
2749 return -EIO;
2751 if (index >= pty_limit) {
2752 idr_remove(&allocated_ptys, index);
2753 up(&allocated_ptys_lock);
2754 return -EIO;
2756 up(&allocated_ptys_lock);
2758 mutex_lock(&tty_mutex);
2759 retval = init_dev(ptm_driver, index, &tty);
2760 mutex_unlock(&tty_mutex);
2762 if (retval)
2763 goto out;
2765 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2766 filp->private_data = tty;
2767 file_move(filp, &tty->tty_files);
2769 retval = -ENOMEM;
2770 if (devpts_pty_new(tty->link))
2771 goto out1;
2773 check_tty_count(tty, "tty_open");
2774 retval = ptm_driver->open(tty, filp);
2775 if (!retval) {
2776 tty_audit_opening();
2777 return 0;
2779 out1:
2780 release_dev(filp);
2781 return retval;
2782 out:
2783 down(&allocated_ptys_lock);
2784 idr_remove(&allocated_ptys, index);
2785 up(&allocated_ptys_lock);
2786 return retval;
2788 #endif
2791 * tty_release - vfs callback for close
2792 * @inode: inode of tty
2793 * @filp: file pointer for handle to tty
2795 * Called the last time each file handle is closed that references
2796 * this tty. There may however be several such references.
2798 * Locking:
2799 * Takes bkl. See release_dev
2802 static int tty_release(struct inode * inode, struct file * filp)
2804 lock_kernel();
2805 release_dev(filp);
2806 unlock_kernel();
2807 return 0;
2811 * tty_poll - check tty status
2812 * @filp: file being polled
2813 * @wait: poll wait structures to update
2815 * Call the line discipline polling method to obtain the poll
2816 * status of the device.
2818 * Locking: locks called line discipline but ldisc poll method
2819 * may be re-entered freely by other callers.
2822 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2824 struct tty_struct * tty;
2825 struct tty_ldisc *ld;
2826 int ret = 0;
2828 tty = (struct tty_struct *)filp->private_data;
2829 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2830 return 0;
2832 ld = tty_ldisc_ref_wait(tty);
2833 if (ld->poll)
2834 ret = (ld->poll)(tty, filp, wait);
2835 tty_ldisc_deref(ld);
2836 return ret;
2839 static int tty_fasync(int fd, struct file * filp, int on)
2841 struct tty_struct * tty;
2842 int retval;
2844 tty = (struct tty_struct *)filp->private_data;
2845 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2846 return 0;
2848 retval = fasync_helper(fd, filp, on, &tty->fasync);
2849 if (retval <= 0)
2850 return retval;
2852 if (on) {
2853 enum pid_type type;
2854 struct pid *pid;
2855 if (!waitqueue_active(&tty->read_wait))
2856 tty->minimum_to_wake = 1;
2857 if (tty->pgrp) {
2858 pid = tty->pgrp;
2859 type = PIDTYPE_PGID;
2860 } else {
2861 pid = task_pid(current);
2862 type = PIDTYPE_PID;
2864 retval = __f_setown(filp, pid, type, 0);
2865 if (retval)
2866 return retval;
2867 } else {
2868 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2869 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2871 return 0;
2875 * tiocsti - fake input character
2876 * @tty: tty to fake input into
2877 * @p: pointer to character
2879 * Fake input to a tty device. Does the neccessary locking and
2880 * input management.
2882 * FIXME: does not honour flow control ??
2884 * Locking:
2885 * Called functions take tty_ldisc_lock
2886 * current->signal->tty check is safe without locks
2888 * FIXME: may race normal receive processing
2891 static int tiocsti(struct tty_struct *tty, char __user *p)
2893 char ch, mbz = 0;
2894 struct tty_ldisc *ld;
2896 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2897 return -EPERM;
2898 if (get_user(ch, p))
2899 return -EFAULT;
2900 ld = tty_ldisc_ref_wait(tty);
2901 ld->receive_buf(tty, &ch, &mbz, 1);
2902 tty_ldisc_deref(ld);
2903 return 0;
2907 * tiocgwinsz - implement window query ioctl
2908 * @tty; tty
2909 * @arg: user buffer for result
2911 * Copies the kernel idea of the window size into the user buffer.
2913 * Locking: tty->termios_mutex is taken to ensure the winsize data
2914 * is consistent.
2917 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2919 int err;
2921 mutex_lock(&tty->termios_mutex);
2922 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2923 mutex_unlock(&tty->termios_mutex);
2925 return err ? -EFAULT: 0;
2929 * tiocswinsz - implement window size set ioctl
2930 * @tty; tty
2931 * @arg: user buffer for result
2933 * Copies the user idea of the window size to the kernel. Traditionally
2934 * this is just advisory information but for the Linux console it
2935 * actually has driver level meaning and triggers a VC resize.
2937 * Locking:
2938 * Called function use the console_sem is used to ensure we do
2939 * not try and resize the console twice at once.
2940 * The tty->termios_mutex is used to ensure we don't double
2941 * resize and get confused. Lock order - tty->termios_mutex before
2942 * console sem
2945 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2946 struct winsize __user * arg)
2948 struct winsize tmp_ws;
2950 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2951 return -EFAULT;
2953 mutex_lock(&tty->termios_mutex);
2954 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2955 goto done;
2957 #ifdef CONFIG_VT
2958 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2959 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2960 tmp_ws.ws_row)) {
2961 mutex_unlock(&tty->termios_mutex);
2962 return -ENXIO;
2965 #endif
2966 if (tty->pgrp)
2967 kill_pgrp(tty->pgrp, SIGWINCH, 1);
2968 if ((real_tty->pgrp != tty->pgrp) && real_tty->pgrp)
2969 kill_pgrp(real_tty->pgrp, SIGWINCH, 1);
2970 tty->winsize = tmp_ws;
2971 real_tty->winsize = tmp_ws;
2972 done:
2973 mutex_unlock(&tty->termios_mutex);
2974 return 0;
2978 * tioccons - allow admin to move logical console
2979 * @file: the file to become console
2981 * Allow the adminstrator to move the redirected console device
2983 * Locking: uses redirect_lock to guard the redirect information
2986 static int tioccons(struct file *file)
2988 if (!capable(CAP_SYS_ADMIN))
2989 return -EPERM;
2990 if (file->f_op->write == redirected_tty_write) {
2991 struct file *f;
2992 spin_lock(&redirect_lock);
2993 f = redirect;
2994 redirect = NULL;
2995 spin_unlock(&redirect_lock);
2996 if (f)
2997 fput(f);
2998 return 0;
3000 spin_lock(&redirect_lock);
3001 if (redirect) {
3002 spin_unlock(&redirect_lock);
3003 return -EBUSY;
3005 get_file(file);
3006 redirect = file;
3007 spin_unlock(&redirect_lock);
3008 return 0;
3012 * fionbio - non blocking ioctl
3013 * @file: file to set blocking value
3014 * @p: user parameter
3016 * Historical tty interfaces had a blocking control ioctl before
3017 * the generic functionality existed. This piece of history is preserved
3018 * in the expected tty API of posix OS's.
3020 * Locking: none, the open fle handle ensures it won't go away.
3023 static int fionbio(struct file *file, int __user *p)
3025 int nonblock;
3027 if (get_user(nonblock, p))
3028 return -EFAULT;
3030 if (nonblock)
3031 file->f_flags |= O_NONBLOCK;
3032 else
3033 file->f_flags &= ~O_NONBLOCK;
3034 return 0;
3038 * tiocsctty - set controlling tty
3039 * @tty: tty structure
3040 * @arg: user argument
3042 * This ioctl is used to manage job control. It permits a session
3043 * leader to set this tty as the controlling tty for the session.
3045 * Locking:
3046 * Takes tty_mutex() to protect tty instance
3047 * Takes tasklist_lock internally to walk sessions
3048 * Takes ->siglock() when updating signal->tty
3051 static int tiocsctty(struct tty_struct *tty, int arg)
3053 int ret = 0;
3054 if (current->signal->leader && (task_session(current) == tty->session))
3055 return ret;
3057 mutex_lock(&tty_mutex);
3059 * The process must be a session leader and
3060 * not have a controlling tty already.
3062 if (!current->signal->leader || current->signal->tty) {
3063 ret = -EPERM;
3064 goto unlock;
3067 if (tty->session) {
3069 * This tty is already the controlling
3070 * tty for another session group!
3072 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
3074 * Steal it away
3076 read_lock(&tasklist_lock);
3077 session_clear_tty(tty->session);
3078 read_unlock(&tasklist_lock);
3079 } else {
3080 ret = -EPERM;
3081 goto unlock;
3084 proc_set_tty(current, tty);
3085 unlock:
3086 mutex_unlock(&tty_mutex);
3087 return ret;
3091 * tiocgpgrp - get process group
3092 * @tty: tty passed by user
3093 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3094 * @p: returned pid
3096 * Obtain the process group of the tty. If there is no process group
3097 * return an error.
3099 * Locking: none. Reference to current->signal->tty is safe.
3102 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3105 * (tty == real_tty) is a cheap way of
3106 * testing if the tty is NOT a master pty.
3108 if (tty == real_tty && current->signal->tty != real_tty)
3109 return -ENOTTY;
3110 return put_user(pid_nr(real_tty->pgrp), p);
3114 * tiocspgrp - attempt to set process group
3115 * @tty: tty passed by user
3116 * @real_tty: tty side device matching tty passed by user
3117 * @p: pid pointer
3119 * Set the process group of the tty to the session passed. Only
3120 * permitted where the tty session is our session.
3122 * Locking: None
3125 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3127 struct pid *pgrp;
3128 pid_t pgrp_nr;
3129 int retval = tty_check_change(real_tty);
3131 if (retval == -EIO)
3132 return -ENOTTY;
3133 if (retval)
3134 return retval;
3135 if (!current->signal->tty ||
3136 (current->signal->tty != real_tty) ||
3137 (real_tty->session != task_session(current)))
3138 return -ENOTTY;
3139 if (get_user(pgrp_nr, p))
3140 return -EFAULT;
3141 if (pgrp_nr < 0)
3142 return -EINVAL;
3143 rcu_read_lock();
3144 pgrp = find_pid(pgrp_nr);
3145 retval = -ESRCH;
3146 if (!pgrp)
3147 goto out_unlock;
3148 retval = -EPERM;
3149 if (session_of_pgrp(pgrp) != task_session(current))
3150 goto out_unlock;
3151 retval = 0;
3152 put_pid(real_tty->pgrp);
3153 real_tty->pgrp = get_pid(pgrp);
3154 out_unlock:
3155 rcu_read_unlock();
3156 return retval;
3160 * tiocgsid - get session id
3161 * @tty: tty passed by user
3162 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3163 * @p: pointer to returned session id
3165 * Obtain the session id of the tty. If there is no session
3166 * return an error.
3168 * Locking: none. Reference to current->signal->tty is safe.
3171 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3174 * (tty == real_tty) is a cheap way of
3175 * testing if the tty is NOT a master pty.
3177 if (tty == real_tty && current->signal->tty != real_tty)
3178 return -ENOTTY;
3179 if (!real_tty->session)
3180 return -ENOTTY;
3181 return put_user(pid_nr(real_tty->session), p);
3185 * tiocsetd - set line discipline
3186 * @tty: tty device
3187 * @p: pointer to user data
3189 * Set the line discipline according to user request.
3191 * Locking: see tty_set_ldisc, this function is just a helper
3194 static int tiocsetd(struct tty_struct *tty, int __user *p)
3196 int ldisc;
3198 if (get_user(ldisc, p))
3199 return -EFAULT;
3200 return tty_set_ldisc(tty, ldisc);
3204 * send_break - performed time break
3205 * @tty: device to break on
3206 * @duration: timeout in mS
3208 * Perform a timed break on hardware that lacks its own driver level
3209 * timed break functionality.
3211 * Locking:
3212 * atomic_write_lock serializes
3216 static int send_break(struct tty_struct *tty, unsigned int duration)
3218 if (tty_write_lock(tty, 0) < 0)
3219 return -EINTR;
3220 tty->driver->break_ctl(tty, -1);
3221 if (!signal_pending(current))
3222 msleep_interruptible(duration);
3223 tty->driver->break_ctl(tty, 0);
3224 tty_write_unlock(tty);
3225 if (signal_pending(current))
3226 return -EINTR;
3227 return 0;
3231 * tiocmget - get modem status
3232 * @tty: tty device
3233 * @file: user file pointer
3234 * @p: pointer to result
3236 * Obtain the modem status bits from the tty driver if the feature
3237 * is supported. Return -EINVAL if it is not available.
3239 * Locking: none (up to the driver)
3242 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3244 int retval = -EINVAL;
3246 if (tty->driver->tiocmget) {
3247 retval = tty->driver->tiocmget(tty, file);
3249 if (retval >= 0)
3250 retval = put_user(retval, p);
3252 return retval;
3256 * tiocmset - set modem status
3257 * @tty: tty device
3258 * @file: user file pointer
3259 * @cmd: command - clear bits, set bits or set all
3260 * @p: pointer to desired bits
3262 * Set the modem status bits from the tty driver if the feature
3263 * is supported. Return -EINVAL if it is not available.
3265 * Locking: none (up to the driver)
3268 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3269 unsigned __user *p)
3271 int retval = -EINVAL;
3273 if (tty->driver->tiocmset) {
3274 unsigned int set, clear, val;
3276 retval = get_user(val, p);
3277 if (retval)
3278 return retval;
3280 set = clear = 0;
3281 switch (cmd) {
3282 case TIOCMBIS:
3283 set = val;
3284 break;
3285 case TIOCMBIC:
3286 clear = val;
3287 break;
3288 case TIOCMSET:
3289 set = val;
3290 clear = ~val;
3291 break;
3294 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3295 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3297 retval = tty->driver->tiocmset(tty, file, set, clear);
3299 return retval;
3303 * Split this up, as gcc can choke on it otherwise..
3305 int tty_ioctl(struct inode * inode, struct file * file,
3306 unsigned int cmd, unsigned long arg)
3308 struct tty_struct *tty, *real_tty;
3309 void __user *p = (void __user *)arg;
3310 int retval;
3311 struct tty_ldisc *ld;
3313 tty = (struct tty_struct *)file->private_data;
3314 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3315 return -EINVAL;
3317 /* CHECKME: is this safe as one end closes ? */
3319 real_tty = tty;
3320 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3321 tty->driver->subtype == PTY_TYPE_MASTER)
3322 real_tty = tty->link;
3325 * Break handling by driver
3327 if (!tty->driver->break_ctl) {
3328 switch(cmd) {
3329 case TIOCSBRK:
3330 case TIOCCBRK:
3331 if (tty->driver->ioctl)
3332 return tty->driver->ioctl(tty, file, cmd, arg);
3333 return -EINVAL;
3335 /* These two ioctl's always return success; even if */
3336 /* the driver doesn't support them. */
3337 case TCSBRK:
3338 case TCSBRKP:
3339 if (!tty->driver->ioctl)
3340 return 0;
3341 retval = tty->driver->ioctl(tty, file, cmd, arg);
3342 if (retval == -ENOIOCTLCMD)
3343 retval = 0;
3344 return retval;
3349 * Factor out some common prep work
3351 switch (cmd) {
3352 case TIOCSETD:
3353 case TIOCSBRK:
3354 case TIOCCBRK:
3355 case TCSBRK:
3356 case TCSBRKP:
3357 retval = tty_check_change(tty);
3358 if (retval)
3359 return retval;
3360 if (cmd != TIOCCBRK) {
3361 tty_wait_until_sent(tty, 0);
3362 if (signal_pending(current))
3363 return -EINTR;
3365 break;
3368 switch (cmd) {
3369 case TIOCSTI:
3370 return tiocsti(tty, p);
3371 case TIOCGWINSZ:
3372 return tiocgwinsz(tty, p);
3373 case TIOCSWINSZ:
3374 return tiocswinsz(tty, real_tty, p);
3375 case TIOCCONS:
3376 return real_tty!=tty ? -EINVAL : tioccons(file);
3377 case FIONBIO:
3378 return fionbio(file, p);
3379 case TIOCEXCL:
3380 set_bit(TTY_EXCLUSIVE, &tty->flags);
3381 return 0;
3382 case TIOCNXCL:
3383 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3384 return 0;
3385 case TIOCNOTTY:
3386 if (current->signal->tty != tty)
3387 return -ENOTTY;
3388 no_tty();
3389 return 0;
3390 case TIOCSCTTY:
3391 return tiocsctty(tty, arg);
3392 case TIOCGPGRP:
3393 return tiocgpgrp(tty, real_tty, p);
3394 case TIOCSPGRP:
3395 return tiocspgrp(tty, real_tty, p);
3396 case TIOCGSID:
3397 return tiocgsid(tty, real_tty, p);
3398 case TIOCGETD:
3399 /* FIXME: check this is ok */
3400 return put_user(tty->ldisc.num, (int __user *)p);
3401 case TIOCSETD:
3402 return tiocsetd(tty, p);
3403 #ifdef CONFIG_VT
3404 case TIOCLINUX:
3405 return tioclinux(tty, arg);
3406 #endif
3408 * Break handling
3410 case TIOCSBRK: /* Turn break on, unconditionally */
3411 tty->driver->break_ctl(tty, -1);
3412 return 0;
3414 case TIOCCBRK: /* Turn break off, unconditionally */
3415 tty->driver->break_ctl(tty, 0);
3416 return 0;
3417 case TCSBRK: /* SVID version: non-zero arg --> no break */
3418 /* non-zero arg means wait for all output data
3419 * to be sent (performed above) but don't send break.
3420 * This is used by the tcdrain() termios function.
3422 if (!arg)
3423 return send_break(tty, 250);
3424 return 0;
3425 case TCSBRKP: /* support for POSIX tcsendbreak() */
3426 return send_break(tty, arg ? arg*100 : 250);
3428 case TIOCMGET:
3429 return tty_tiocmget(tty, file, p);
3431 case TIOCMSET:
3432 case TIOCMBIC:
3433 case TIOCMBIS:
3434 return tty_tiocmset(tty, file, cmd, p);
3435 case TCFLSH:
3436 switch (arg) {
3437 case TCIFLUSH:
3438 case TCIOFLUSH:
3439 /* flush tty buffer and allow ldisc to process ioctl */
3440 tty_buffer_flush(tty);
3441 break;
3443 break;
3445 if (tty->driver->ioctl) {
3446 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3447 if (retval != -ENOIOCTLCMD)
3448 return retval;
3450 ld = tty_ldisc_ref_wait(tty);
3451 retval = -EINVAL;
3452 if (ld->ioctl) {
3453 retval = ld->ioctl(tty, file, cmd, arg);
3454 if (retval == -ENOIOCTLCMD)
3455 retval = -EINVAL;
3457 tty_ldisc_deref(ld);
3458 return retval;
3461 #ifdef CONFIG_COMPAT
3462 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
3463 unsigned long arg)
3465 struct inode *inode = file->f_dentry->d_inode;
3466 struct tty_struct *tty = file->private_data;
3467 struct tty_ldisc *ld;
3468 int retval = -ENOIOCTLCMD;
3470 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3471 return -EINVAL;
3473 if (tty->driver->compat_ioctl) {
3474 retval = (tty->driver->compat_ioctl)(tty, file, cmd, arg);
3475 if (retval != -ENOIOCTLCMD)
3476 return retval;
3479 ld = tty_ldisc_ref_wait(tty);
3480 if (ld->compat_ioctl)
3481 retval = ld->compat_ioctl(tty, file, cmd, arg);
3482 tty_ldisc_deref(ld);
3484 return retval;
3486 #endif
3489 * This implements the "Secure Attention Key" --- the idea is to
3490 * prevent trojan horses by killing all processes associated with this
3491 * tty when the user hits the "Secure Attention Key". Required for
3492 * super-paranoid applications --- see the Orange Book for more details.
3494 * This code could be nicer; ideally it should send a HUP, wait a few
3495 * seconds, then send a INT, and then a KILL signal. But you then
3496 * have to coordinate with the init process, since all processes associated
3497 * with the current tty must be dead before the new getty is allowed
3498 * to spawn.
3500 * Now, if it would be correct ;-/ The current code has a nasty hole -
3501 * it doesn't catch files in flight. We may send the descriptor to ourselves
3502 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3504 * Nasty bug: do_SAK is being called in interrupt context. This can
3505 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3507 void __do_SAK(struct tty_struct *tty)
3509 #ifdef TTY_SOFT_SAK
3510 tty_hangup(tty);
3511 #else
3512 struct task_struct *g, *p;
3513 struct pid *session;
3514 int i;
3515 struct file *filp;
3516 struct fdtable *fdt;
3518 if (!tty)
3519 return;
3520 session = tty->session;
3522 tty_ldisc_flush(tty);
3524 if (tty->driver->flush_buffer)
3525 tty->driver->flush_buffer(tty);
3527 read_lock(&tasklist_lock);
3528 /* Kill the entire session */
3529 do_each_pid_task(session, PIDTYPE_SID, p) {
3530 printk(KERN_NOTICE "SAK: killed process %d"
3531 " (%s): process_session(p)==tty->session\n",
3532 p->pid, p->comm);
3533 send_sig(SIGKILL, p, 1);
3534 } while_each_pid_task(session, PIDTYPE_SID, p);
3535 /* Now kill any processes that happen to have the
3536 * tty open.
3538 do_each_thread(g, p) {
3539 if (p->signal->tty == tty) {
3540 printk(KERN_NOTICE "SAK: killed process %d"
3541 " (%s): process_session(p)==tty->session\n",
3542 p->pid, p->comm);
3543 send_sig(SIGKILL, p, 1);
3544 continue;
3546 task_lock(p);
3547 if (p->files) {
3549 * We don't take a ref to the file, so we must
3550 * hold ->file_lock instead.
3552 spin_lock(&p->files->file_lock);
3553 fdt = files_fdtable(p->files);
3554 for (i=0; i < fdt->max_fds; i++) {
3555 filp = fcheck_files(p->files, i);
3556 if (!filp)
3557 continue;
3558 if (filp->f_op->read == tty_read &&
3559 filp->private_data == tty) {
3560 printk(KERN_NOTICE "SAK: killed process %d"
3561 " (%s): fd#%d opened to the tty\n",
3562 p->pid, p->comm, i);
3563 force_sig(SIGKILL, p);
3564 break;
3567 spin_unlock(&p->files->file_lock);
3569 task_unlock(p);
3570 } while_each_thread(g, p);
3571 read_unlock(&tasklist_lock);
3572 #endif
3575 static void do_SAK_work(struct work_struct *work)
3577 struct tty_struct *tty =
3578 container_of(work, struct tty_struct, SAK_work);
3579 __do_SAK(tty);
3583 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3584 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3585 * the values which we write to it will be identical to the values which it
3586 * already has. --akpm
3588 void do_SAK(struct tty_struct *tty)
3590 if (!tty)
3591 return;
3592 schedule_work(&tty->SAK_work);
3595 EXPORT_SYMBOL(do_SAK);
3598 * flush_to_ldisc
3599 * @work: tty structure passed from work queue.
3601 * This routine is called out of the software interrupt to flush data
3602 * from the buffer chain to the line discipline.
3604 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3605 * while invoking the line discipline receive_buf method. The
3606 * receive_buf method is single threaded for each tty instance.
3609 static void flush_to_ldisc(struct work_struct *work)
3611 struct tty_struct *tty =
3612 container_of(work, struct tty_struct, buf.work.work);
3613 unsigned long flags;
3614 struct tty_ldisc *disc;
3615 struct tty_buffer *tbuf, *head;
3616 char *char_buf;
3617 unsigned char *flag_buf;
3619 disc = tty_ldisc_ref(tty);
3620 if (disc == NULL) /* !TTY_LDISC */
3621 return;
3623 spin_lock_irqsave(&tty->buf.lock, flags);
3624 set_bit(TTY_FLUSHING, &tty->flags); /* So we know a flush is running */
3625 head = tty->buf.head;
3626 if (head != NULL) {
3627 tty->buf.head = NULL;
3628 for (;;) {
3629 int count = head->commit - head->read;
3630 if (!count) {
3631 if (head->next == NULL)
3632 break;
3633 tbuf = head;
3634 head = head->next;
3635 tty_buffer_free(tty, tbuf);
3636 continue;
3638 /* Ldisc or user is trying to flush the buffers
3639 we are feeding to the ldisc, stop feeding the
3640 line discipline as we want to empty the queue */
3641 if (test_bit(TTY_FLUSHPENDING, &tty->flags))
3642 break;
3643 if (!tty->receive_room) {
3644 schedule_delayed_work(&tty->buf.work, 1);
3645 break;
3647 if (count > tty->receive_room)
3648 count = tty->receive_room;
3649 char_buf = head->char_buf_ptr + head->read;
3650 flag_buf = head->flag_buf_ptr + head->read;
3651 head->read += count;
3652 spin_unlock_irqrestore(&tty->buf.lock, flags);
3653 disc->receive_buf(tty, char_buf, flag_buf, count);
3654 spin_lock_irqsave(&tty->buf.lock, flags);
3656 /* Restore the queue head */
3657 tty->buf.head = head;
3659 /* We may have a deferred request to flush the input buffer,
3660 if so pull the chain under the lock and empty the queue */
3661 if (test_bit(TTY_FLUSHPENDING, &tty->flags)) {
3662 __tty_buffer_flush(tty);
3663 clear_bit(TTY_FLUSHPENDING, &tty->flags);
3664 wake_up(&tty->read_wait);
3666 clear_bit(TTY_FLUSHING, &tty->flags);
3667 spin_unlock_irqrestore(&tty->buf.lock, flags);
3669 tty_ldisc_deref(disc);
3673 * tty_flip_buffer_push - terminal
3674 * @tty: tty to push
3676 * Queue a push of the terminal flip buffers to the line discipline. This
3677 * function must not be called from IRQ context if tty->low_latency is set.
3679 * In the event of the queue being busy for flipping the work will be
3680 * held off and retried later.
3682 * Locking: tty buffer lock. Driver locks in low latency mode.
3685 void tty_flip_buffer_push(struct tty_struct *tty)
3687 unsigned long flags;
3688 spin_lock_irqsave(&tty->buf.lock, flags);
3689 if (tty->buf.tail != NULL)
3690 tty->buf.tail->commit = tty->buf.tail->used;
3691 spin_unlock_irqrestore(&tty->buf.lock, flags);
3693 if (tty->low_latency)
3694 flush_to_ldisc(&tty->buf.work.work);
3695 else
3696 schedule_delayed_work(&tty->buf.work, 1);
3699 EXPORT_SYMBOL(tty_flip_buffer_push);
3703 * initialize_tty_struct
3704 * @tty: tty to initialize
3706 * This subroutine initializes a tty structure that has been newly
3707 * allocated.
3709 * Locking: none - tty in question must not be exposed at this point
3712 static void initialize_tty_struct(struct tty_struct *tty)
3714 memset(tty, 0, sizeof(struct tty_struct));
3715 tty->magic = TTY_MAGIC;
3716 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3717 tty->session = NULL;
3718 tty->pgrp = NULL;
3719 tty->overrun_time = jiffies;
3720 tty->buf.head = tty->buf.tail = NULL;
3721 tty_buffer_init(tty);
3722 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3723 init_MUTEX(&tty->buf.pty_sem);
3724 mutex_init(&tty->termios_mutex);
3725 init_waitqueue_head(&tty->write_wait);
3726 init_waitqueue_head(&tty->read_wait);
3727 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3728 mutex_init(&tty->atomic_read_lock);
3729 mutex_init(&tty->atomic_write_lock);
3730 spin_lock_init(&tty->read_lock);
3731 INIT_LIST_HEAD(&tty->tty_files);
3732 INIT_WORK(&tty->SAK_work, do_SAK_work);
3736 * The default put_char routine if the driver did not define one.
3739 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3741 tty->driver->write(tty, &ch, 1);
3744 static struct class *tty_class;
3747 * tty_register_device - register a tty device
3748 * @driver: the tty driver that describes the tty device
3749 * @index: the index in the tty driver for this tty device
3750 * @device: a struct device that is associated with this tty device.
3751 * This field is optional, if there is no known struct device
3752 * for this tty device it can be set to NULL safely.
3754 * Returns a pointer to the struct device for this tty device
3755 * (or ERR_PTR(-EFOO) on error).
3757 * This call is required to be made to register an individual tty device
3758 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3759 * that bit is not set, this function should not be called by a tty
3760 * driver.
3762 * Locking: ??
3765 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3766 struct device *device)
3768 char name[64];
3769 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3771 if (index >= driver->num) {
3772 printk(KERN_ERR "Attempt to register invalid tty line number "
3773 " (%d).\n", index);
3774 return ERR_PTR(-EINVAL);
3777 if (driver->type == TTY_DRIVER_TYPE_PTY)
3778 pty_line_name(driver, index, name);
3779 else
3780 tty_line_name(driver, index, name);
3782 return device_create(tty_class, device, dev, name);
3786 * tty_unregister_device - unregister a tty device
3787 * @driver: the tty driver that describes the tty device
3788 * @index: the index in the tty driver for this tty device
3790 * If a tty device is registered with a call to tty_register_device() then
3791 * this function must be called when the tty device is gone.
3793 * Locking: ??
3796 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3798 device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3801 EXPORT_SYMBOL(tty_register_device);
3802 EXPORT_SYMBOL(tty_unregister_device);
3804 struct tty_driver *alloc_tty_driver(int lines)
3806 struct tty_driver *driver;
3808 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3809 if (driver) {
3810 driver->magic = TTY_DRIVER_MAGIC;
3811 driver->num = lines;
3812 /* later we'll move allocation of tables here */
3814 return driver;
3817 void put_tty_driver(struct tty_driver *driver)
3819 kfree(driver);
3822 void tty_set_operations(struct tty_driver *driver,
3823 const struct tty_operations *op)
3825 driver->open = op->open;
3826 driver->close = op->close;
3827 driver->write = op->write;
3828 driver->put_char = op->put_char;
3829 driver->flush_chars = op->flush_chars;
3830 driver->write_room = op->write_room;
3831 driver->chars_in_buffer = op->chars_in_buffer;
3832 driver->ioctl = op->ioctl;
3833 driver->compat_ioctl = op->compat_ioctl;
3834 driver->set_termios = op->set_termios;
3835 driver->throttle = op->throttle;
3836 driver->unthrottle = op->unthrottle;
3837 driver->stop = op->stop;
3838 driver->start = op->start;
3839 driver->hangup = op->hangup;
3840 driver->break_ctl = op->break_ctl;
3841 driver->flush_buffer = op->flush_buffer;
3842 driver->set_ldisc = op->set_ldisc;
3843 driver->wait_until_sent = op->wait_until_sent;
3844 driver->send_xchar = op->send_xchar;
3845 driver->read_proc = op->read_proc;
3846 driver->write_proc = op->write_proc;
3847 driver->tiocmget = op->tiocmget;
3848 driver->tiocmset = op->tiocmset;
3852 EXPORT_SYMBOL(alloc_tty_driver);
3853 EXPORT_SYMBOL(put_tty_driver);
3854 EXPORT_SYMBOL(tty_set_operations);
3857 * Called by a tty driver to register itself.
3859 int tty_register_driver(struct tty_driver *driver)
3861 int error;
3862 int i;
3863 dev_t dev;
3864 void **p = NULL;
3866 if (driver->flags & TTY_DRIVER_INSTALLED)
3867 return 0;
3869 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3870 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3871 if (!p)
3872 return -ENOMEM;
3875 if (!driver->major) {
3876 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3877 driver->name);
3878 if (!error) {
3879 driver->major = MAJOR(dev);
3880 driver->minor_start = MINOR(dev);
3882 } else {
3883 dev = MKDEV(driver->major, driver->minor_start);
3884 error = register_chrdev_region(dev, driver->num, driver->name);
3886 if (error < 0) {
3887 kfree(p);
3888 return error;
3891 if (p) {
3892 driver->ttys = (struct tty_struct **)p;
3893 driver->termios = (struct ktermios **)(p + driver->num);
3894 driver->termios_locked = (struct ktermios **)(p + driver->num * 2);
3895 } else {
3896 driver->ttys = NULL;
3897 driver->termios = NULL;
3898 driver->termios_locked = NULL;
3901 cdev_init(&driver->cdev, &tty_fops);
3902 driver->cdev.owner = driver->owner;
3903 error = cdev_add(&driver->cdev, dev, driver->num);
3904 if (error) {
3905 unregister_chrdev_region(dev, driver->num);
3906 driver->ttys = NULL;
3907 driver->termios = driver->termios_locked = NULL;
3908 kfree(p);
3909 return error;
3912 if (!driver->put_char)
3913 driver->put_char = tty_default_put_char;
3915 mutex_lock(&tty_mutex);
3916 list_add(&driver->tty_drivers, &tty_drivers);
3917 mutex_unlock(&tty_mutex);
3919 if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3920 for(i = 0; i < driver->num; i++)
3921 tty_register_device(driver, i, NULL);
3923 proc_tty_register_driver(driver);
3924 return 0;
3927 EXPORT_SYMBOL(tty_register_driver);
3930 * Called by a tty driver to unregister itself.
3932 int tty_unregister_driver(struct tty_driver *driver)
3934 int i;
3935 struct ktermios *tp;
3936 void *p;
3938 if (driver->refcount)
3939 return -EBUSY;
3941 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3942 driver->num);
3943 mutex_lock(&tty_mutex);
3944 list_del(&driver->tty_drivers);
3945 mutex_unlock(&tty_mutex);
3948 * Free the termios and termios_locked structures because
3949 * we don't want to get memory leaks when modular tty
3950 * drivers are removed from the kernel.
3952 for (i = 0; i < driver->num; i++) {
3953 tp = driver->termios[i];
3954 if (tp) {
3955 driver->termios[i] = NULL;
3956 kfree(tp);
3958 tp = driver->termios_locked[i];
3959 if (tp) {
3960 driver->termios_locked[i] = NULL;
3961 kfree(tp);
3963 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3964 tty_unregister_device(driver, i);
3966 p = driver->ttys;
3967 proc_tty_unregister_driver(driver);
3968 driver->ttys = NULL;
3969 driver->termios = driver->termios_locked = NULL;
3970 kfree(p);
3971 cdev_del(&driver->cdev);
3972 return 0;
3974 EXPORT_SYMBOL(tty_unregister_driver);
3976 dev_t tty_devnum(struct tty_struct *tty)
3978 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3980 EXPORT_SYMBOL(tty_devnum);
3982 void proc_clear_tty(struct task_struct *p)
3984 spin_lock_irq(&p->sighand->siglock);
3985 p->signal->tty = NULL;
3986 spin_unlock_irq(&p->sighand->siglock);
3988 EXPORT_SYMBOL(proc_clear_tty);
3990 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3992 if (tty) {
3993 /* We should not have a session or pgrp to here but.... */
3994 put_pid(tty->session);
3995 put_pid(tty->pgrp);
3996 tty->session = get_pid(task_session(tsk));
3997 tty->pgrp = get_pid(task_pgrp(tsk));
3999 put_pid(tsk->signal->tty_old_pgrp);
4000 tsk->signal->tty = tty;
4001 tsk->signal->tty_old_pgrp = NULL;
4004 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
4006 spin_lock_irq(&tsk->sighand->siglock);
4007 __proc_set_tty(tsk, tty);
4008 spin_unlock_irq(&tsk->sighand->siglock);
4011 struct tty_struct *get_current_tty(void)
4013 struct tty_struct *tty;
4014 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
4015 tty = current->signal->tty;
4017 * session->tty can be changed/cleared from under us, make sure we
4018 * issue the load. The obtained pointer, when not NULL, is valid as
4019 * long as we hold tty_mutex.
4021 barrier();
4022 return tty;
4024 EXPORT_SYMBOL_GPL(get_current_tty);
4027 * Initialize the console device. This is called *early*, so
4028 * we can't necessarily depend on lots of kernel help here.
4029 * Just do some early initializations, and do the complex setup
4030 * later.
4032 void __init console_init(void)
4034 initcall_t *call;
4036 /* Setup the default TTY line discipline. */
4037 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
4040 * set up the console device so that later boot sequences can
4041 * inform about problems etc..
4043 call = __con_initcall_start;
4044 while (call < __con_initcall_end) {
4045 (*call)();
4046 call++;
4050 #ifdef CONFIG_VT
4051 extern int vty_init(void);
4052 #endif
4054 static int __init tty_class_init(void)
4056 tty_class = class_create(THIS_MODULE, "tty");
4057 if (IS_ERR(tty_class))
4058 return PTR_ERR(tty_class);
4059 return 0;
4062 postcore_initcall(tty_class_init);
4064 /* 3/2004 jmc: why do these devices exist? */
4066 static struct cdev tty_cdev, console_cdev;
4067 #ifdef CONFIG_UNIX98_PTYS
4068 static struct cdev ptmx_cdev;
4069 #endif
4070 #ifdef CONFIG_VT
4071 static struct cdev vc0_cdev;
4072 #endif
4075 * Ok, now we can initialize the rest of the tty devices and can count
4076 * on memory allocations, interrupts etc..
4078 static int __init tty_init(void)
4080 cdev_init(&tty_cdev, &tty_fops);
4081 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
4082 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
4083 panic("Couldn't register /dev/tty driver\n");
4084 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
4086 cdev_init(&console_cdev, &console_fops);
4087 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
4088 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
4089 panic("Couldn't register /dev/console driver\n");
4090 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
4092 #ifdef CONFIG_UNIX98_PTYS
4093 cdev_init(&ptmx_cdev, &ptmx_fops);
4094 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
4095 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
4096 panic("Couldn't register /dev/ptmx driver\n");
4097 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
4098 #endif
4100 #ifdef CONFIG_VT
4101 cdev_init(&vc0_cdev, &console_fops);
4102 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
4103 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
4104 panic("Couldn't register /dev/tty0 driver\n");
4105 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
4107 vty_init();
4108 #endif
4109 return 0;
4111 module_init(tty_init);