brd: handle on-demand devices correctly
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / block / brd.c
blobc94bc48d99df7b74efefb821e0b6cc9313dfb588
1 /*
2 * Ram backed block device driver.
4 * Copyright (C) 2007 Nick Piggin
5 * Copyright (C) 2007 Novell Inc.
7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8 * of their respective owners.
9 */
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/mutex.h>
19 #include <linux/radix-tree.h>
20 #include <linux/buffer_head.h> /* invalidate_bh_lrus() */
21 #include <linux/slab.h>
23 #include <asm/uaccess.h>
25 #define SECTOR_SHIFT 9
26 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
27 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
30 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
31 * the pages containing the block device's contents. A brd page's ->index is
32 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
33 * with, the kernel's pagecache or buffer cache (which sit above our block
34 * device).
36 struct brd_device {
37 int brd_number;
38 int brd_refcnt;
39 loff_t brd_offset;
40 loff_t brd_sizelimit;
41 unsigned brd_blocksize;
43 struct request_queue *brd_queue;
44 struct gendisk *brd_disk;
45 struct list_head brd_list;
48 * Backing store of pages and lock to protect it. This is the contents
49 * of the block device.
51 spinlock_t brd_lock;
52 struct radix_tree_root brd_pages;
56 * Look up and return a brd's page for a given sector.
58 static DEFINE_MUTEX(brd_mutex);
59 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
61 pgoff_t idx;
62 struct page *page;
65 * The page lifetime is protected by the fact that we have opened the
66 * device node -- brd pages will never be deleted under us, so we
67 * don't need any further locking or refcounting.
69 * This is strictly true for the radix-tree nodes as well (ie. we
70 * don't actually need the rcu_read_lock()), however that is not a
71 * documented feature of the radix-tree API so it is better to be
72 * safe here (we don't have total exclusion from radix tree updates
73 * here, only deletes).
75 rcu_read_lock();
76 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
77 page = radix_tree_lookup(&brd->brd_pages, idx);
78 rcu_read_unlock();
80 BUG_ON(page && page->index != idx);
82 return page;
86 * Look up and return a brd's page for a given sector.
87 * If one does not exist, allocate an empty page, and insert that. Then
88 * return it.
90 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
92 pgoff_t idx;
93 struct page *page;
94 gfp_t gfp_flags;
96 page = brd_lookup_page(brd, sector);
97 if (page)
98 return page;
101 * Must use NOIO because we don't want to recurse back into the
102 * block or filesystem layers from page reclaim.
104 * Cannot support XIP and highmem, because our ->direct_access
105 * routine for XIP must return memory that is always addressable.
106 * If XIP was reworked to use pfns and kmap throughout, this
107 * restriction might be able to be lifted.
109 gfp_flags = GFP_NOIO | __GFP_ZERO;
110 #ifndef CONFIG_BLK_DEV_XIP
111 gfp_flags |= __GFP_HIGHMEM;
112 #endif
113 page = alloc_page(gfp_flags);
114 if (!page)
115 return NULL;
117 if (radix_tree_preload(GFP_NOIO)) {
118 __free_page(page);
119 return NULL;
122 spin_lock(&brd->brd_lock);
123 idx = sector >> PAGE_SECTORS_SHIFT;
124 if (radix_tree_insert(&brd->brd_pages, idx, page)) {
125 __free_page(page);
126 page = radix_tree_lookup(&brd->brd_pages, idx);
127 BUG_ON(!page);
128 BUG_ON(page->index != idx);
129 } else
130 page->index = idx;
131 spin_unlock(&brd->brd_lock);
133 radix_tree_preload_end();
135 return page;
138 static void brd_free_page(struct brd_device *brd, sector_t sector)
140 struct page *page;
141 pgoff_t idx;
143 spin_lock(&brd->brd_lock);
144 idx = sector >> PAGE_SECTORS_SHIFT;
145 page = radix_tree_delete(&brd->brd_pages, idx);
146 spin_unlock(&brd->brd_lock);
147 if (page)
148 __free_page(page);
151 static void brd_zero_page(struct brd_device *brd, sector_t sector)
153 struct page *page;
155 page = brd_lookup_page(brd, sector);
156 if (page)
157 clear_highpage(page);
161 * Free all backing store pages and radix tree. This must only be called when
162 * there are no other users of the device.
164 #define FREE_BATCH 16
165 static void brd_free_pages(struct brd_device *brd)
167 unsigned long pos = 0;
168 struct page *pages[FREE_BATCH];
169 int nr_pages;
171 do {
172 int i;
174 nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
175 (void **)pages, pos, FREE_BATCH);
177 for (i = 0; i < nr_pages; i++) {
178 void *ret;
180 BUG_ON(pages[i]->index < pos);
181 pos = pages[i]->index;
182 ret = radix_tree_delete(&brd->brd_pages, pos);
183 BUG_ON(!ret || ret != pages[i]);
184 __free_page(pages[i]);
187 pos++;
190 * This assumes radix_tree_gang_lookup always returns as
191 * many pages as possible. If the radix-tree code changes,
192 * so will this have to.
194 } while (nr_pages == FREE_BATCH);
198 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
200 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
202 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
203 size_t copy;
205 copy = min_t(size_t, n, PAGE_SIZE - offset);
206 if (!brd_insert_page(brd, sector))
207 return -ENOMEM;
208 if (copy < n) {
209 sector += copy >> SECTOR_SHIFT;
210 if (!brd_insert_page(brd, sector))
211 return -ENOMEM;
213 return 0;
216 static void discard_from_brd(struct brd_device *brd,
217 sector_t sector, size_t n)
219 while (n >= PAGE_SIZE) {
221 * Don't want to actually discard pages here because
222 * re-allocating the pages can result in writeback
223 * deadlocks under heavy load.
225 if (0)
226 brd_free_page(brd, sector);
227 else
228 brd_zero_page(brd, sector);
229 sector += PAGE_SIZE >> SECTOR_SHIFT;
230 n -= PAGE_SIZE;
235 * Copy n bytes from src to the brd starting at sector. Does not sleep.
237 static void copy_to_brd(struct brd_device *brd, const void *src,
238 sector_t sector, size_t n)
240 struct page *page;
241 void *dst;
242 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
243 size_t copy;
245 copy = min_t(size_t, n, PAGE_SIZE - offset);
246 page = brd_lookup_page(brd, sector);
247 BUG_ON(!page);
249 dst = kmap_atomic(page, KM_USER1);
250 memcpy(dst + offset, src, copy);
251 kunmap_atomic(dst, KM_USER1);
253 if (copy < n) {
254 src += copy;
255 sector += copy >> SECTOR_SHIFT;
256 copy = n - copy;
257 page = brd_lookup_page(brd, sector);
258 BUG_ON(!page);
260 dst = kmap_atomic(page, KM_USER1);
261 memcpy(dst, src, copy);
262 kunmap_atomic(dst, KM_USER1);
267 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
269 static void copy_from_brd(void *dst, struct brd_device *brd,
270 sector_t sector, size_t n)
272 struct page *page;
273 void *src;
274 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
275 size_t copy;
277 copy = min_t(size_t, n, PAGE_SIZE - offset);
278 page = brd_lookup_page(brd, sector);
279 if (page) {
280 src = kmap_atomic(page, KM_USER1);
281 memcpy(dst, src + offset, copy);
282 kunmap_atomic(src, KM_USER1);
283 } else
284 memset(dst, 0, copy);
286 if (copy < n) {
287 dst += copy;
288 sector += copy >> SECTOR_SHIFT;
289 copy = n - copy;
290 page = brd_lookup_page(brd, sector);
291 if (page) {
292 src = kmap_atomic(page, KM_USER1);
293 memcpy(dst, src, copy);
294 kunmap_atomic(src, KM_USER1);
295 } else
296 memset(dst, 0, copy);
301 * Process a single bvec of a bio.
303 static int brd_do_bvec(struct brd_device *brd, struct page *page,
304 unsigned int len, unsigned int off, int rw,
305 sector_t sector)
307 void *mem;
308 int err = 0;
310 if (rw != READ) {
311 err = copy_to_brd_setup(brd, sector, len);
312 if (err)
313 goto out;
316 mem = kmap_atomic(page, KM_USER0);
317 if (rw == READ) {
318 copy_from_brd(mem + off, brd, sector, len);
319 flush_dcache_page(page);
320 } else {
321 flush_dcache_page(page);
322 copy_to_brd(brd, mem + off, sector, len);
324 kunmap_atomic(mem, KM_USER0);
326 out:
327 return err;
330 static int brd_make_request(struct request_queue *q, struct bio *bio)
332 struct block_device *bdev = bio->bi_bdev;
333 struct brd_device *brd = bdev->bd_disk->private_data;
334 int rw;
335 struct bio_vec *bvec;
336 sector_t sector;
337 int i;
338 int err = -EIO;
340 sector = bio->bi_sector;
341 if (sector + (bio->bi_size >> SECTOR_SHIFT) >
342 get_capacity(bdev->bd_disk))
343 goto out;
345 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
346 err = 0;
347 discard_from_brd(brd, sector, bio->bi_size);
348 goto out;
351 rw = bio_rw(bio);
352 if (rw == READA)
353 rw = READ;
355 bio_for_each_segment(bvec, bio, i) {
356 unsigned int len = bvec->bv_len;
357 err = brd_do_bvec(brd, bvec->bv_page, len,
358 bvec->bv_offset, rw, sector);
359 if (err)
360 break;
361 sector += len >> SECTOR_SHIFT;
364 out:
365 bio_endio(bio, err);
367 return 0;
370 #ifdef CONFIG_BLK_DEV_XIP
371 static int brd_direct_access(struct block_device *bdev, sector_t sector,
372 void **kaddr, unsigned long *pfn)
374 struct brd_device *brd = bdev->bd_disk->private_data;
375 struct page *page;
377 if (!brd)
378 return -ENODEV;
379 if (sector & (PAGE_SECTORS-1))
380 return -EINVAL;
381 if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk))
382 return -ERANGE;
383 page = brd_insert_page(brd, sector);
384 if (!page)
385 return -ENOMEM;
386 *kaddr = page_address(page);
387 *pfn = page_to_pfn(page);
389 return 0;
391 #endif
393 static int brd_ioctl(struct block_device *bdev, fmode_t mode,
394 unsigned int cmd, unsigned long arg)
396 int error;
397 struct brd_device *brd = bdev->bd_disk->private_data;
399 if (cmd != BLKFLSBUF)
400 return -ENOTTY;
403 * ram device BLKFLSBUF has special semantics, we want to actually
404 * release and destroy the ramdisk data.
406 mutex_lock(&brd_mutex);
407 mutex_lock(&bdev->bd_mutex);
408 error = -EBUSY;
409 if (bdev->bd_openers <= 1) {
411 * Invalidate the cache first, so it isn't written
412 * back to the device.
414 * Another thread might instantiate more buffercache here,
415 * but there is not much we can do to close that race.
417 invalidate_bh_lrus();
418 truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
419 brd_free_pages(brd);
420 error = 0;
422 mutex_unlock(&bdev->bd_mutex);
423 mutex_unlock(&brd_mutex);
425 return error;
428 static const struct block_device_operations brd_fops = {
429 .owner = THIS_MODULE,
430 .ioctl = brd_ioctl,
431 #ifdef CONFIG_BLK_DEV_XIP
432 .direct_access = brd_direct_access,
433 #endif
437 * And now the modules code and kernel interface.
439 static int rd_nr;
440 int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
441 static int max_part;
442 static int part_shift;
443 module_param(rd_nr, int, 0);
444 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
445 module_param(rd_size, int, 0);
446 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
447 module_param(max_part, int, 0);
448 MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk");
449 MODULE_LICENSE("GPL");
450 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
451 MODULE_ALIAS("rd");
453 #ifndef MODULE
454 /* Legacy boot options - nonmodular */
455 static int __init ramdisk_size(char *str)
457 rd_size = simple_strtol(str, NULL, 0);
458 return 1;
460 __setup("ramdisk_size=", ramdisk_size);
461 #endif
464 * The device scheme is derived from loop.c. Keep them in synch where possible
465 * (should share code eventually).
467 static LIST_HEAD(brd_devices);
468 static DEFINE_MUTEX(brd_devices_mutex);
470 static struct brd_device *brd_alloc(int i)
472 struct brd_device *brd;
473 struct gendisk *disk;
475 brd = kzalloc(sizeof(*brd), GFP_KERNEL);
476 if (!brd)
477 goto out;
478 brd->brd_number = i;
479 spin_lock_init(&brd->brd_lock);
480 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
482 brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
483 if (!brd->brd_queue)
484 goto out_free_dev;
485 blk_queue_make_request(brd->brd_queue, brd_make_request);
486 blk_queue_max_hw_sectors(brd->brd_queue, 1024);
487 blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
489 brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
490 brd->brd_queue->limits.max_discard_sectors = UINT_MAX;
491 brd->brd_queue->limits.discard_zeroes_data = 1;
492 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
494 disk = brd->brd_disk = alloc_disk(1 << part_shift);
495 if (!disk)
496 goto out_free_queue;
497 disk->major = RAMDISK_MAJOR;
498 disk->first_minor = i << part_shift;
499 disk->fops = &brd_fops;
500 disk->private_data = brd;
501 disk->queue = brd->brd_queue;
502 disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
503 sprintf(disk->disk_name, "ram%d", i);
504 set_capacity(disk, rd_size * 2);
506 return brd;
508 out_free_queue:
509 blk_cleanup_queue(brd->brd_queue);
510 out_free_dev:
511 kfree(brd);
512 out:
513 return NULL;
516 static void brd_free(struct brd_device *brd)
518 put_disk(brd->brd_disk);
519 blk_cleanup_queue(brd->brd_queue);
520 brd_free_pages(brd);
521 kfree(brd);
524 static struct brd_device *brd_init_one(int i)
526 struct brd_device *brd;
528 list_for_each_entry(brd, &brd_devices, brd_list) {
529 if (brd->brd_number == i)
530 goto out;
533 brd = brd_alloc(i);
534 if (brd) {
535 add_disk(brd->brd_disk);
536 list_add_tail(&brd->brd_list, &brd_devices);
538 out:
539 return brd;
542 static void brd_del_one(struct brd_device *brd)
544 list_del(&brd->brd_list);
545 del_gendisk(brd->brd_disk);
546 brd_free(brd);
549 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
551 struct brd_device *brd;
552 struct kobject *kobj;
554 mutex_lock(&brd_devices_mutex);
555 brd = brd_init_one(MINOR(dev) >> part_shift);
556 kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM);
557 mutex_unlock(&brd_devices_mutex);
559 *part = 0;
560 return kobj;
563 static int __init brd_init(void)
565 int i, nr;
566 unsigned long range;
567 struct brd_device *brd, *next;
570 * brd module now has a feature to instantiate underlying device
571 * structure on-demand, provided that there is an access dev node.
572 * However, this will not work well with user space tool that doesn't
573 * know about such "feature". In order to not break any existing
574 * tool, we do the following:
576 * (1) if rd_nr is specified, create that many upfront, and this
577 * also becomes a hard limit.
578 * (2) if rd_nr is not specified, create 1 rd device on module
579 * load, user can further extend brd device by create dev node
580 * themselves and have kernel automatically instantiate actual
581 * device on-demand.
584 part_shift = 0;
585 if (max_part > 0)
586 part_shift = fls(max_part);
588 if ((1UL << part_shift) > DISK_MAX_PARTS)
589 return -EINVAL;
591 if (rd_nr > 1UL << (MINORBITS - part_shift))
592 return -EINVAL;
594 if (rd_nr) {
595 nr = rd_nr;
596 range = rd_nr << part_shift;
597 } else {
598 nr = CONFIG_BLK_DEV_RAM_COUNT;
599 range = 1UL << MINORBITS;
602 if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
603 return -EIO;
605 for (i = 0; i < nr; i++) {
606 brd = brd_alloc(i);
607 if (!brd)
608 goto out_free;
609 list_add_tail(&brd->brd_list, &brd_devices);
612 /* point of no return */
614 list_for_each_entry(brd, &brd_devices, brd_list)
615 add_disk(brd->brd_disk);
617 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
618 THIS_MODULE, brd_probe, NULL, NULL);
620 printk(KERN_INFO "brd: module loaded\n");
621 return 0;
623 out_free:
624 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
625 list_del(&brd->brd_list);
626 brd_free(brd);
628 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
630 return -ENOMEM;
633 static void __exit brd_exit(void)
635 unsigned long range;
636 struct brd_device *brd, *next;
638 range = rd_nr ? rd_nr << part_shift : 1UL << MINORBITS;
640 list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
641 brd_del_one(brd);
643 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
644 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
647 module_init(brd_init);
648 module_exit(brd_exit);