ccwgroup: move attributes to attribute group
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / nommu.c
blob406e8d47ce49f76180667647cffc717b029ff950
1 /*
2 * linux/mm/nommu.c
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include "internal.h"
39 static inline __attribute__((format(printf, 1, 2)))
40 void no_printk(const char *fmt, ...)
44 #if 0
45 #define kenter(FMT, ...) \
46 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
47 #define kleave(FMT, ...) \
48 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
49 #define kdebug(FMT, ...) \
50 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
51 #else
52 #define kenter(FMT, ...) \
53 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
54 #define kleave(FMT, ...) \
55 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
56 #define kdebug(FMT, ...) \
57 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
58 #endif
60 void *high_memory;
61 struct page *mem_map;
62 unsigned long max_mapnr;
63 unsigned long num_physpages;
64 unsigned long highest_memmap_pfn;
65 struct percpu_counter vm_committed_as;
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
69 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
70 int heap_stack_gap = 0;
72 atomic_long_t mmap_pages_allocated;
74 EXPORT_SYMBOL(mem_map);
75 EXPORT_SYMBOL(num_physpages);
77 /* list of mapped, potentially shareable regions */
78 static struct kmem_cache *vm_region_jar;
79 struct rb_root nommu_region_tree = RB_ROOT;
80 DECLARE_RWSEM(nommu_region_sem);
82 const struct vm_operations_struct generic_file_vm_ops = {
86 * Return the total memory allocated for this pointer, not
87 * just what the caller asked for.
89 * Doesn't have to be accurate, i.e. may have races.
91 unsigned int kobjsize(const void *objp)
93 struct page *page;
96 * If the object we have should not have ksize performed on it,
97 * return size of 0
99 if (!objp || !virt_addr_valid(objp))
100 return 0;
102 page = virt_to_head_page(objp);
105 * If the allocator sets PageSlab, we know the pointer came from
106 * kmalloc().
108 if (PageSlab(page))
109 return ksize(objp);
112 * If it's not a compound page, see if we have a matching VMA
113 * region. This test is intentionally done in reverse order,
114 * so if there's no VMA, we still fall through and hand back
115 * PAGE_SIZE for 0-order pages.
117 if (!PageCompound(page)) {
118 struct vm_area_struct *vma;
120 vma = find_vma(current->mm, (unsigned long)objp);
121 if (vma)
122 return vma->vm_end - vma->vm_start;
126 * The ksize() function is only guaranteed to work for pointers
127 * returned by kmalloc(). So handle arbitrary pointers here.
129 return PAGE_SIZE << compound_order(page);
132 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
133 unsigned long start, int nr_pages, unsigned int foll_flags,
134 struct page **pages, struct vm_area_struct **vmas)
136 struct vm_area_struct *vma;
137 unsigned long vm_flags;
138 int i;
140 /* calculate required read or write permissions.
141 * If FOLL_FORCE is set, we only require the "MAY" flags.
143 vm_flags = (foll_flags & FOLL_WRITE) ?
144 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
145 vm_flags &= (foll_flags & FOLL_FORCE) ?
146 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
148 for (i = 0; i < nr_pages; i++) {
149 vma = find_vma(mm, start);
150 if (!vma)
151 goto finish_or_fault;
153 /* protect what we can, including chardevs */
154 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
155 !(vm_flags & vma->vm_flags))
156 goto finish_or_fault;
158 if (pages) {
159 pages[i] = virt_to_page(start);
160 if (pages[i])
161 page_cache_get(pages[i]);
163 if (vmas)
164 vmas[i] = vma;
165 start += PAGE_SIZE;
168 return i;
170 finish_or_fault:
171 return i ? : -EFAULT;
175 * get a list of pages in an address range belonging to the specified process
176 * and indicate the VMA that covers each page
177 * - this is potentially dodgy as we may end incrementing the page count of a
178 * slab page or a secondary page from a compound page
179 * - don't permit access to VMAs that don't support it, such as I/O mappings
181 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
182 unsigned long start, int nr_pages, int write, int force,
183 struct page **pages, struct vm_area_struct **vmas)
185 int flags = 0;
187 if (write)
188 flags |= FOLL_WRITE;
189 if (force)
190 flags |= FOLL_FORCE;
192 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
194 EXPORT_SYMBOL(get_user_pages);
197 * follow_pfn - look up PFN at a user virtual address
198 * @vma: memory mapping
199 * @address: user virtual address
200 * @pfn: location to store found PFN
202 * Only IO mappings and raw PFN mappings are allowed.
204 * Returns zero and the pfn at @pfn on success, -ve otherwise.
206 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
207 unsigned long *pfn)
209 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
210 return -EINVAL;
212 *pfn = address >> PAGE_SHIFT;
213 return 0;
215 EXPORT_SYMBOL(follow_pfn);
217 DEFINE_RWLOCK(vmlist_lock);
218 struct vm_struct *vmlist;
220 void vfree(const void *addr)
222 kfree(addr);
224 EXPORT_SYMBOL(vfree);
226 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
229 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
230 * returns only a logical address.
232 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
234 EXPORT_SYMBOL(__vmalloc);
236 void *vmalloc_user(unsigned long size)
238 void *ret;
240 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
241 PAGE_KERNEL);
242 if (ret) {
243 struct vm_area_struct *vma;
245 down_write(&current->mm->mmap_sem);
246 vma = find_vma(current->mm, (unsigned long)ret);
247 if (vma)
248 vma->vm_flags |= VM_USERMAP;
249 up_write(&current->mm->mmap_sem);
252 return ret;
254 EXPORT_SYMBOL(vmalloc_user);
256 struct page *vmalloc_to_page(const void *addr)
258 return virt_to_page(addr);
260 EXPORT_SYMBOL(vmalloc_to_page);
262 unsigned long vmalloc_to_pfn(const void *addr)
264 return page_to_pfn(virt_to_page(addr));
266 EXPORT_SYMBOL(vmalloc_to_pfn);
268 long vread(char *buf, char *addr, unsigned long count)
270 memcpy(buf, addr, count);
271 return count;
274 long vwrite(char *buf, char *addr, unsigned long count)
276 /* Don't allow overflow */
277 if ((unsigned long) addr + count < count)
278 count = -(unsigned long) addr;
280 memcpy(addr, buf, count);
281 return(count);
285 * vmalloc - allocate virtually continguos memory
287 * @size: allocation size
289 * Allocate enough pages to cover @size from the page level
290 * allocator and map them into continguos kernel virtual space.
292 * For tight control over page level allocator and protection flags
293 * use __vmalloc() instead.
295 void *vmalloc(unsigned long size)
297 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
299 EXPORT_SYMBOL(vmalloc);
301 void *vmalloc_node(unsigned long size, int node)
303 return vmalloc(size);
305 EXPORT_SYMBOL(vmalloc_node);
307 #ifndef PAGE_KERNEL_EXEC
308 # define PAGE_KERNEL_EXEC PAGE_KERNEL
309 #endif
312 * vmalloc_exec - allocate virtually contiguous, executable memory
313 * @size: allocation size
315 * Kernel-internal function to allocate enough pages to cover @size
316 * the page level allocator and map them into contiguous and
317 * executable kernel virtual space.
319 * For tight control over page level allocator and protection flags
320 * use __vmalloc() instead.
323 void *vmalloc_exec(unsigned long size)
325 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
329 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
330 * @size: allocation size
332 * Allocate enough 32bit PA addressable pages to cover @size from the
333 * page level allocator and map them into continguos kernel virtual space.
335 void *vmalloc_32(unsigned long size)
337 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
339 EXPORT_SYMBOL(vmalloc_32);
342 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
343 * @size: allocation size
345 * The resulting memory area is 32bit addressable and zeroed so it can be
346 * mapped to userspace without leaking data.
348 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
349 * remap_vmalloc_range() are permissible.
351 void *vmalloc_32_user(unsigned long size)
354 * We'll have to sort out the ZONE_DMA bits for 64-bit,
355 * but for now this can simply use vmalloc_user() directly.
357 return vmalloc_user(size);
359 EXPORT_SYMBOL(vmalloc_32_user);
361 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
363 BUG();
364 return NULL;
366 EXPORT_SYMBOL(vmap);
368 void vunmap(const void *addr)
370 BUG();
372 EXPORT_SYMBOL(vunmap);
374 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
376 BUG();
377 return NULL;
379 EXPORT_SYMBOL(vm_map_ram);
381 void vm_unmap_ram(const void *mem, unsigned int count)
383 BUG();
385 EXPORT_SYMBOL(vm_unmap_ram);
387 void vm_unmap_aliases(void)
390 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
393 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
394 * have one.
396 void __attribute__((weak)) vmalloc_sync_all(void)
400 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
401 struct page *page)
403 return -EINVAL;
405 EXPORT_SYMBOL(vm_insert_page);
408 * sys_brk() for the most part doesn't need the global kernel
409 * lock, except when an application is doing something nasty
410 * like trying to un-brk an area that has already been mapped
411 * to a regular file. in this case, the unmapping will need
412 * to invoke file system routines that need the global lock.
414 SYSCALL_DEFINE1(brk, unsigned long, brk)
416 struct mm_struct *mm = current->mm;
418 if (brk < mm->start_brk || brk > mm->context.end_brk)
419 return mm->brk;
421 if (mm->brk == brk)
422 return mm->brk;
425 * Always allow shrinking brk
427 if (brk <= mm->brk) {
428 mm->brk = brk;
429 return brk;
433 * Ok, looks good - let it rip.
435 return mm->brk = brk;
439 * initialise the VMA and region record slabs
441 void __init mmap_init(void)
443 int ret;
445 ret = percpu_counter_init(&vm_committed_as, 0);
446 VM_BUG_ON(ret);
447 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
451 * validate the region tree
452 * - the caller must hold the region lock
454 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
455 static noinline void validate_nommu_regions(void)
457 struct vm_region *region, *last;
458 struct rb_node *p, *lastp;
460 lastp = rb_first(&nommu_region_tree);
461 if (!lastp)
462 return;
464 last = rb_entry(lastp, struct vm_region, vm_rb);
465 BUG_ON(unlikely(last->vm_end <= last->vm_start));
466 BUG_ON(unlikely(last->vm_top < last->vm_end));
468 while ((p = rb_next(lastp))) {
469 region = rb_entry(p, struct vm_region, vm_rb);
470 last = rb_entry(lastp, struct vm_region, vm_rb);
472 BUG_ON(unlikely(region->vm_end <= region->vm_start));
473 BUG_ON(unlikely(region->vm_top < region->vm_end));
474 BUG_ON(unlikely(region->vm_start < last->vm_top));
476 lastp = p;
479 #else
480 static void validate_nommu_regions(void)
483 #endif
486 * add a region into the global tree
488 static void add_nommu_region(struct vm_region *region)
490 struct vm_region *pregion;
491 struct rb_node **p, *parent;
493 validate_nommu_regions();
495 parent = NULL;
496 p = &nommu_region_tree.rb_node;
497 while (*p) {
498 parent = *p;
499 pregion = rb_entry(parent, struct vm_region, vm_rb);
500 if (region->vm_start < pregion->vm_start)
501 p = &(*p)->rb_left;
502 else if (region->vm_start > pregion->vm_start)
503 p = &(*p)->rb_right;
504 else if (pregion == region)
505 return;
506 else
507 BUG();
510 rb_link_node(&region->vm_rb, parent, p);
511 rb_insert_color(&region->vm_rb, &nommu_region_tree);
513 validate_nommu_regions();
517 * delete a region from the global tree
519 static void delete_nommu_region(struct vm_region *region)
521 BUG_ON(!nommu_region_tree.rb_node);
523 validate_nommu_regions();
524 rb_erase(&region->vm_rb, &nommu_region_tree);
525 validate_nommu_regions();
529 * free a contiguous series of pages
531 static void free_page_series(unsigned long from, unsigned long to)
533 for (; from < to; from += PAGE_SIZE) {
534 struct page *page = virt_to_page(from);
536 kdebug("- free %lx", from);
537 atomic_long_dec(&mmap_pages_allocated);
538 if (page_count(page) != 1)
539 kdebug("free page %p: refcount not one: %d",
540 page, page_count(page));
541 put_page(page);
546 * release a reference to a region
547 * - the caller must hold the region semaphore for writing, which this releases
548 * - the region may not have been added to the tree yet, in which case vm_top
549 * will equal vm_start
551 static void __put_nommu_region(struct vm_region *region)
552 __releases(nommu_region_sem)
554 kenter("%p{%d}", region, atomic_read(&region->vm_usage));
556 BUG_ON(!nommu_region_tree.rb_node);
558 if (atomic_dec_and_test(&region->vm_usage)) {
559 if (region->vm_top > region->vm_start)
560 delete_nommu_region(region);
561 up_write(&nommu_region_sem);
563 if (region->vm_file)
564 fput(region->vm_file);
566 /* IO memory and memory shared directly out of the pagecache
567 * from ramfs/tmpfs mustn't be released here */
568 if (region->vm_flags & VM_MAPPED_COPY) {
569 kdebug("free series");
570 free_page_series(region->vm_start, region->vm_top);
572 kmem_cache_free(vm_region_jar, region);
573 } else {
574 up_write(&nommu_region_sem);
579 * release a reference to a region
581 static void put_nommu_region(struct vm_region *region)
583 down_write(&nommu_region_sem);
584 __put_nommu_region(region);
588 * update protection on a vma
590 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
592 #ifdef CONFIG_MPU
593 struct mm_struct *mm = vma->vm_mm;
594 long start = vma->vm_start & PAGE_MASK;
595 while (start < vma->vm_end) {
596 protect_page(mm, start, flags);
597 start += PAGE_SIZE;
599 update_protections(mm);
600 #endif
604 * add a VMA into a process's mm_struct in the appropriate place in the list
605 * and tree and add to the address space's page tree also if not an anonymous
606 * page
607 * - should be called with mm->mmap_sem held writelocked
609 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
611 struct vm_area_struct *pvma, **pp, *next;
612 struct address_space *mapping;
613 struct rb_node **p, *parent;
615 kenter(",%p", vma);
617 BUG_ON(!vma->vm_region);
619 mm->map_count++;
620 vma->vm_mm = mm;
622 protect_vma(vma, vma->vm_flags);
624 /* add the VMA to the mapping */
625 if (vma->vm_file) {
626 mapping = vma->vm_file->f_mapping;
628 flush_dcache_mmap_lock(mapping);
629 vma_prio_tree_insert(vma, &mapping->i_mmap);
630 flush_dcache_mmap_unlock(mapping);
633 /* add the VMA to the tree */
634 parent = NULL;
635 p = &mm->mm_rb.rb_node;
636 while (*p) {
637 parent = *p;
638 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
640 /* sort by: start addr, end addr, VMA struct addr in that order
641 * (the latter is necessary as we may get identical VMAs) */
642 if (vma->vm_start < pvma->vm_start)
643 p = &(*p)->rb_left;
644 else if (vma->vm_start > pvma->vm_start)
645 p = &(*p)->rb_right;
646 else if (vma->vm_end < pvma->vm_end)
647 p = &(*p)->rb_left;
648 else if (vma->vm_end > pvma->vm_end)
649 p = &(*p)->rb_right;
650 else if (vma < pvma)
651 p = &(*p)->rb_left;
652 else if (vma > pvma)
653 p = &(*p)->rb_right;
654 else
655 BUG();
658 rb_link_node(&vma->vm_rb, parent, p);
659 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
661 /* add VMA to the VMA list also */
662 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
663 if (pvma->vm_start > vma->vm_start)
664 break;
665 if (pvma->vm_start < vma->vm_start)
666 continue;
667 if (pvma->vm_end < vma->vm_end)
668 break;
671 next = *pp;
672 *pp = vma;
673 vma->vm_next = next;
674 if (next)
675 next->vm_prev = vma;
679 * delete a VMA from its owning mm_struct and address space
681 static void delete_vma_from_mm(struct vm_area_struct *vma)
683 struct vm_area_struct **pp;
684 struct address_space *mapping;
685 struct mm_struct *mm = vma->vm_mm;
687 kenter("%p", vma);
689 protect_vma(vma, 0);
691 mm->map_count--;
692 if (mm->mmap_cache == vma)
693 mm->mmap_cache = NULL;
695 /* remove the VMA from the mapping */
696 if (vma->vm_file) {
697 mapping = vma->vm_file->f_mapping;
699 flush_dcache_mmap_lock(mapping);
700 vma_prio_tree_remove(vma, &mapping->i_mmap);
701 flush_dcache_mmap_unlock(mapping);
704 /* remove from the MM's tree and list */
705 rb_erase(&vma->vm_rb, &mm->mm_rb);
706 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
707 if (*pp == vma) {
708 *pp = vma->vm_next;
709 break;
713 vma->vm_mm = NULL;
717 * destroy a VMA record
719 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
721 kenter("%p", vma);
722 if (vma->vm_ops && vma->vm_ops->close)
723 vma->vm_ops->close(vma);
724 if (vma->vm_file) {
725 fput(vma->vm_file);
726 if (vma->vm_flags & VM_EXECUTABLE)
727 removed_exe_file_vma(mm);
729 put_nommu_region(vma->vm_region);
730 kmem_cache_free(vm_area_cachep, vma);
734 * look up the first VMA in which addr resides, NULL if none
735 * - should be called with mm->mmap_sem at least held readlocked
737 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
739 struct vm_area_struct *vma;
740 struct rb_node *n = mm->mm_rb.rb_node;
742 /* check the cache first */
743 vma = mm->mmap_cache;
744 if (vma && vma->vm_start <= addr && vma->vm_end > addr)
745 return vma;
747 /* trawl the tree (there may be multiple mappings in which addr
748 * resides) */
749 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
750 vma = rb_entry(n, struct vm_area_struct, vm_rb);
751 if (vma->vm_start > addr)
752 return NULL;
753 if (vma->vm_end > addr) {
754 mm->mmap_cache = vma;
755 return vma;
759 return NULL;
761 EXPORT_SYMBOL(find_vma);
764 * find a VMA
765 * - we don't extend stack VMAs under NOMMU conditions
767 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
769 return find_vma(mm, addr);
773 * expand a stack to a given address
774 * - not supported under NOMMU conditions
776 int expand_stack(struct vm_area_struct *vma, unsigned long address)
778 return -ENOMEM;
782 * look up the first VMA exactly that exactly matches addr
783 * - should be called with mm->mmap_sem at least held readlocked
785 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
786 unsigned long addr,
787 unsigned long len)
789 struct vm_area_struct *vma;
790 struct rb_node *n = mm->mm_rb.rb_node;
791 unsigned long end = addr + len;
793 /* check the cache first */
794 vma = mm->mmap_cache;
795 if (vma && vma->vm_start == addr && vma->vm_end == end)
796 return vma;
798 /* trawl the tree (there may be multiple mappings in which addr
799 * resides) */
800 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
801 vma = rb_entry(n, struct vm_area_struct, vm_rb);
802 if (vma->vm_start < addr)
803 continue;
804 if (vma->vm_start > addr)
805 return NULL;
806 if (vma->vm_end == end) {
807 mm->mmap_cache = vma;
808 return vma;
812 return NULL;
816 * determine whether a mapping should be permitted and, if so, what sort of
817 * mapping we're capable of supporting
819 static int validate_mmap_request(struct file *file,
820 unsigned long addr,
821 unsigned long len,
822 unsigned long prot,
823 unsigned long flags,
824 unsigned long pgoff,
825 unsigned long *_capabilities)
827 unsigned long capabilities, rlen;
828 unsigned long reqprot = prot;
829 int ret;
831 /* do the simple checks first */
832 if (flags & MAP_FIXED) {
833 printk(KERN_DEBUG
834 "%d: Can't do fixed-address/overlay mmap of RAM\n",
835 current->pid);
836 return -EINVAL;
839 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
840 (flags & MAP_TYPE) != MAP_SHARED)
841 return -EINVAL;
843 if (!len)
844 return -EINVAL;
846 /* Careful about overflows.. */
847 rlen = PAGE_ALIGN(len);
848 if (!rlen || rlen > TASK_SIZE)
849 return -ENOMEM;
851 /* offset overflow? */
852 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
853 return -EOVERFLOW;
855 if (file) {
856 /* validate file mapping requests */
857 struct address_space *mapping;
859 /* files must support mmap */
860 if (!file->f_op || !file->f_op->mmap)
861 return -ENODEV;
863 /* work out if what we've got could possibly be shared
864 * - we support chardevs that provide their own "memory"
865 * - we support files/blockdevs that are memory backed
867 mapping = file->f_mapping;
868 if (!mapping)
869 mapping = file->f_path.dentry->d_inode->i_mapping;
871 capabilities = 0;
872 if (mapping && mapping->backing_dev_info)
873 capabilities = mapping->backing_dev_info->capabilities;
875 if (!capabilities) {
876 /* no explicit capabilities set, so assume some
877 * defaults */
878 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
879 case S_IFREG:
880 case S_IFBLK:
881 capabilities = BDI_CAP_MAP_COPY;
882 break;
884 case S_IFCHR:
885 capabilities =
886 BDI_CAP_MAP_DIRECT |
887 BDI_CAP_READ_MAP |
888 BDI_CAP_WRITE_MAP;
889 break;
891 default:
892 return -EINVAL;
896 /* eliminate any capabilities that we can't support on this
897 * device */
898 if (!file->f_op->get_unmapped_area)
899 capabilities &= ~BDI_CAP_MAP_DIRECT;
900 if (!file->f_op->read)
901 capabilities &= ~BDI_CAP_MAP_COPY;
903 /* The file shall have been opened with read permission. */
904 if (!(file->f_mode & FMODE_READ))
905 return -EACCES;
907 if (flags & MAP_SHARED) {
908 /* do checks for writing, appending and locking */
909 if ((prot & PROT_WRITE) &&
910 !(file->f_mode & FMODE_WRITE))
911 return -EACCES;
913 if (IS_APPEND(file->f_path.dentry->d_inode) &&
914 (file->f_mode & FMODE_WRITE))
915 return -EACCES;
917 if (locks_verify_locked(file->f_path.dentry->d_inode))
918 return -EAGAIN;
920 if (!(capabilities & BDI_CAP_MAP_DIRECT))
921 return -ENODEV;
923 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
924 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
925 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
927 printk("MAP_SHARED not completely supported on !MMU\n");
928 return -EINVAL;
931 /* we mustn't privatise shared mappings */
932 capabilities &= ~BDI_CAP_MAP_COPY;
934 else {
935 /* we're going to read the file into private memory we
936 * allocate */
937 if (!(capabilities & BDI_CAP_MAP_COPY))
938 return -ENODEV;
940 /* we don't permit a private writable mapping to be
941 * shared with the backing device */
942 if (prot & PROT_WRITE)
943 capabilities &= ~BDI_CAP_MAP_DIRECT;
946 /* handle executable mappings and implied executable
947 * mappings */
948 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
949 if (prot & PROT_EXEC)
950 return -EPERM;
952 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
953 /* handle implication of PROT_EXEC by PROT_READ */
954 if (current->personality & READ_IMPLIES_EXEC) {
955 if (capabilities & BDI_CAP_EXEC_MAP)
956 prot |= PROT_EXEC;
959 else if ((prot & PROT_READ) &&
960 (prot & PROT_EXEC) &&
961 !(capabilities & BDI_CAP_EXEC_MAP)
963 /* backing file is not executable, try to copy */
964 capabilities &= ~BDI_CAP_MAP_DIRECT;
967 else {
968 /* anonymous mappings are always memory backed and can be
969 * privately mapped
971 capabilities = BDI_CAP_MAP_COPY;
973 /* handle PROT_EXEC implication by PROT_READ */
974 if ((prot & PROT_READ) &&
975 (current->personality & READ_IMPLIES_EXEC))
976 prot |= PROT_EXEC;
979 /* allow the security API to have its say */
980 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
981 if (ret < 0)
982 return ret;
984 /* looks okay */
985 *_capabilities = capabilities;
986 return 0;
990 * we've determined that we can make the mapping, now translate what we
991 * now know into VMA flags
993 static unsigned long determine_vm_flags(struct file *file,
994 unsigned long prot,
995 unsigned long flags,
996 unsigned long capabilities)
998 unsigned long vm_flags;
1000 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1001 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1002 /* vm_flags |= mm->def_flags; */
1004 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1005 /* attempt to share read-only copies of mapped file chunks */
1006 if (file && !(prot & PROT_WRITE))
1007 vm_flags |= VM_MAYSHARE;
1009 else {
1010 /* overlay a shareable mapping on the backing device or inode
1011 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1012 * romfs/cramfs */
1013 if (flags & MAP_SHARED)
1014 vm_flags |= VM_MAYSHARE | VM_SHARED;
1015 else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1016 vm_flags |= VM_MAYSHARE;
1019 /* refuse to let anyone share private mappings with this process if
1020 * it's being traced - otherwise breakpoints set in it may interfere
1021 * with another untraced process
1023 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1024 vm_flags &= ~VM_MAYSHARE;
1026 return vm_flags;
1030 * set up a shared mapping on a file (the driver or filesystem provides and
1031 * pins the storage)
1033 static int do_mmap_shared_file(struct vm_area_struct *vma)
1035 int ret;
1037 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1038 if (ret == 0) {
1039 vma->vm_region->vm_top = vma->vm_region->vm_end;
1040 return 0;
1042 if (ret != -ENOSYS)
1043 return ret;
1045 /* getting an ENOSYS error indicates that direct mmap isn't
1046 * possible (as opposed to tried but failed) so we'll fall
1047 * through to making a private copy of the data and mapping
1048 * that if we can */
1049 return -ENODEV;
1053 * set up a private mapping or an anonymous shared mapping
1055 static int do_mmap_private(struct vm_area_struct *vma,
1056 struct vm_region *region,
1057 unsigned long len,
1058 unsigned long capabilities)
1060 struct page *pages;
1061 unsigned long total, point, n, rlen;
1062 void *base;
1063 int ret, order;
1065 /* invoke the file's mapping function so that it can keep track of
1066 * shared mappings on devices or memory
1067 * - VM_MAYSHARE will be set if it may attempt to share
1069 if (capabilities & BDI_CAP_MAP_DIRECT) {
1070 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1071 if (ret == 0) {
1072 /* shouldn't return success if we're not sharing */
1073 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1074 vma->vm_region->vm_top = vma->vm_region->vm_end;
1075 return 0;
1077 if (ret != -ENOSYS)
1078 return ret;
1080 /* getting an ENOSYS error indicates that direct mmap isn't
1081 * possible (as opposed to tried but failed) so we'll try to
1082 * make a private copy of the data and map that instead */
1085 rlen = PAGE_ALIGN(len);
1087 /* allocate some memory to hold the mapping
1088 * - note that this may not return a page-aligned address if the object
1089 * we're allocating is smaller than a page
1091 order = get_order(rlen);
1092 kdebug("alloc order %d for %lx", order, len);
1094 pages = alloc_pages(GFP_KERNEL, order);
1095 if (!pages)
1096 goto enomem;
1098 total = 1 << order;
1099 atomic_long_add(total, &mmap_pages_allocated);
1101 point = rlen >> PAGE_SHIFT;
1103 /* we allocated a power-of-2 sized page set, so we may want to trim off
1104 * the excess */
1105 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1106 while (total > point) {
1107 order = ilog2(total - point);
1108 n = 1 << order;
1109 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1110 atomic_long_sub(n, &mmap_pages_allocated);
1111 total -= n;
1112 set_page_refcounted(pages + total);
1113 __free_pages(pages + total, order);
1117 for (point = 1; point < total; point++)
1118 set_page_refcounted(&pages[point]);
1120 base = page_address(pages);
1121 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1122 region->vm_start = (unsigned long) base;
1123 region->vm_end = region->vm_start + rlen;
1124 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1126 vma->vm_start = region->vm_start;
1127 vma->vm_end = region->vm_start + len;
1129 if (vma->vm_file) {
1130 /* read the contents of a file into the copy */
1131 mm_segment_t old_fs;
1132 loff_t fpos;
1134 fpos = vma->vm_pgoff;
1135 fpos <<= PAGE_SHIFT;
1137 old_fs = get_fs();
1138 set_fs(KERNEL_DS);
1139 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1140 set_fs(old_fs);
1142 if (ret < 0)
1143 goto error_free;
1145 /* clear the last little bit */
1146 if (ret < rlen)
1147 memset(base + ret, 0, rlen - ret);
1149 } else {
1150 /* if it's an anonymous mapping, then just clear it */
1151 memset(base, 0, rlen);
1154 return 0;
1156 error_free:
1157 free_page_series(region->vm_start, region->vm_end);
1158 region->vm_start = vma->vm_start = 0;
1159 region->vm_end = vma->vm_end = 0;
1160 region->vm_top = 0;
1161 return ret;
1163 enomem:
1164 printk("Allocation of length %lu from process %d (%s) failed\n",
1165 len, current->pid, current->comm);
1166 show_free_areas();
1167 return -ENOMEM;
1171 * handle mapping creation for uClinux
1173 unsigned long do_mmap_pgoff(struct file *file,
1174 unsigned long addr,
1175 unsigned long len,
1176 unsigned long prot,
1177 unsigned long flags,
1178 unsigned long pgoff)
1180 struct vm_area_struct *vma;
1181 struct vm_region *region;
1182 struct rb_node *rb;
1183 unsigned long capabilities, vm_flags, result;
1184 int ret;
1186 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1188 /* decide whether we should attempt the mapping, and if so what sort of
1189 * mapping */
1190 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1191 &capabilities);
1192 if (ret < 0) {
1193 kleave(" = %d [val]", ret);
1194 return ret;
1197 /* we ignore the address hint */
1198 addr = 0;
1200 /* we've determined that we can make the mapping, now translate what we
1201 * now know into VMA flags */
1202 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1204 /* we're going to need to record the mapping */
1205 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1206 if (!region)
1207 goto error_getting_region;
1209 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1210 if (!vma)
1211 goto error_getting_vma;
1213 atomic_set(&region->vm_usage, 1);
1214 region->vm_flags = vm_flags;
1215 region->vm_pgoff = pgoff;
1217 INIT_LIST_HEAD(&vma->anon_vma_node);
1218 vma->vm_flags = vm_flags;
1219 vma->vm_pgoff = pgoff;
1221 if (file) {
1222 region->vm_file = file;
1223 get_file(file);
1224 vma->vm_file = file;
1225 get_file(file);
1226 if (vm_flags & VM_EXECUTABLE) {
1227 added_exe_file_vma(current->mm);
1228 vma->vm_mm = current->mm;
1232 down_write(&nommu_region_sem);
1234 /* if we want to share, we need to check for regions created by other
1235 * mmap() calls that overlap with our proposed mapping
1236 * - we can only share with a superset match on most regular files
1237 * - shared mappings on character devices and memory backed files are
1238 * permitted to overlap inexactly as far as we are concerned for in
1239 * these cases, sharing is handled in the driver or filesystem rather
1240 * than here
1242 if (vm_flags & VM_MAYSHARE) {
1243 struct vm_region *pregion;
1244 unsigned long pglen, rpglen, pgend, rpgend, start;
1246 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1247 pgend = pgoff + pglen;
1249 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1250 pregion = rb_entry(rb, struct vm_region, vm_rb);
1252 if (!(pregion->vm_flags & VM_MAYSHARE))
1253 continue;
1255 /* search for overlapping mappings on the same file */
1256 if (pregion->vm_file->f_path.dentry->d_inode !=
1257 file->f_path.dentry->d_inode)
1258 continue;
1260 if (pregion->vm_pgoff >= pgend)
1261 continue;
1263 rpglen = pregion->vm_end - pregion->vm_start;
1264 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1265 rpgend = pregion->vm_pgoff + rpglen;
1266 if (pgoff >= rpgend)
1267 continue;
1269 /* handle inexactly overlapping matches between
1270 * mappings */
1271 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1272 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1273 /* new mapping is not a subset of the region */
1274 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1275 goto sharing_violation;
1276 continue;
1279 /* we've found a region we can share */
1280 atomic_inc(&pregion->vm_usage);
1281 vma->vm_region = pregion;
1282 start = pregion->vm_start;
1283 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1284 vma->vm_start = start;
1285 vma->vm_end = start + len;
1287 if (pregion->vm_flags & VM_MAPPED_COPY) {
1288 kdebug("share copy");
1289 vma->vm_flags |= VM_MAPPED_COPY;
1290 } else {
1291 kdebug("share mmap");
1292 ret = do_mmap_shared_file(vma);
1293 if (ret < 0) {
1294 vma->vm_region = NULL;
1295 vma->vm_start = 0;
1296 vma->vm_end = 0;
1297 atomic_dec(&pregion->vm_usage);
1298 pregion = NULL;
1299 goto error_just_free;
1302 fput(region->vm_file);
1303 kmem_cache_free(vm_region_jar, region);
1304 region = pregion;
1305 result = start;
1306 goto share;
1309 /* obtain the address at which to make a shared mapping
1310 * - this is the hook for quasi-memory character devices to
1311 * tell us the location of a shared mapping
1313 if (capabilities & BDI_CAP_MAP_DIRECT) {
1314 addr = file->f_op->get_unmapped_area(file, addr, len,
1315 pgoff, flags);
1316 if (IS_ERR((void *) addr)) {
1317 ret = addr;
1318 if (ret != (unsigned long) -ENOSYS)
1319 goto error_just_free;
1321 /* the driver refused to tell us where to site
1322 * the mapping so we'll have to attempt to copy
1323 * it */
1324 ret = (unsigned long) -ENODEV;
1325 if (!(capabilities & BDI_CAP_MAP_COPY))
1326 goto error_just_free;
1328 capabilities &= ~BDI_CAP_MAP_DIRECT;
1329 } else {
1330 vma->vm_start = region->vm_start = addr;
1331 vma->vm_end = region->vm_end = addr + len;
1336 vma->vm_region = region;
1338 /* set up the mapping
1339 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1341 if (file && vma->vm_flags & VM_SHARED)
1342 ret = do_mmap_shared_file(vma);
1343 else
1344 ret = do_mmap_private(vma, region, len, capabilities);
1345 if (ret < 0)
1346 goto error_just_free;
1347 add_nommu_region(region);
1349 /* okay... we have a mapping; now we have to register it */
1350 result = vma->vm_start;
1352 current->mm->total_vm += len >> PAGE_SHIFT;
1354 share:
1355 add_vma_to_mm(current->mm, vma);
1357 up_write(&nommu_region_sem);
1359 if (prot & PROT_EXEC)
1360 flush_icache_range(result, result + len);
1362 kleave(" = %lx", result);
1363 return result;
1365 error_just_free:
1366 up_write(&nommu_region_sem);
1367 error:
1368 if (region->vm_file)
1369 fput(region->vm_file);
1370 kmem_cache_free(vm_region_jar, region);
1371 if (vma->vm_file)
1372 fput(vma->vm_file);
1373 if (vma->vm_flags & VM_EXECUTABLE)
1374 removed_exe_file_vma(vma->vm_mm);
1375 kmem_cache_free(vm_area_cachep, vma);
1376 kleave(" = %d", ret);
1377 return ret;
1379 sharing_violation:
1380 up_write(&nommu_region_sem);
1381 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1382 ret = -EINVAL;
1383 goto error;
1385 error_getting_vma:
1386 kmem_cache_free(vm_region_jar, region);
1387 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1388 " from process %d failed\n",
1389 len, current->pid);
1390 show_free_areas();
1391 return -ENOMEM;
1393 error_getting_region:
1394 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1395 " from process %d failed\n",
1396 len, current->pid);
1397 show_free_areas();
1398 return -ENOMEM;
1400 EXPORT_SYMBOL(do_mmap_pgoff);
1403 * split a vma into two pieces at address 'addr', a new vma is allocated either
1404 * for the first part or the tail.
1406 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1407 unsigned long addr, int new_below)
1409 struct vm_area_struct *new;
1410 struct vm_region *region;
1411 unsigned long npages;
1413 kenter("");
1415 /* we're only permitted to split anonymous regions that have a single
1416 * owner */
1417 if (vma->vm_file ||
1418 atomic_read(&vma->vm_region->vm_usage) != 1)
1419 return -ENOMEM;
1421 if (mm->map_count >= sysctl_max_map_count)
1422 return -ENOMEM;
1424 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1425 if (!region)
1426 return -ENOMEM;
1428 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1429 if (!new) {
1430 kmem_cache_free(vm_region_jar, region);
1431 return -ENOMEM;
1434 /* most fields are the same, copy all, and then fixup */
1435 *new = *vma;
1436 *region = *vma->vm_region;
1437 new->vm_region = region;
1439 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1441 if (new_below) {
1442 region->vm_top = region->vm_end = new->vm_end = addr;
1443 } else {
1444 region->vm_start = new->vm_start = addr;
1445 region->vm_pgoff = new->vm_pgoff += npages;
1448 if (new->vm_ops && new->vm_ops->open)
1449 new->vm_ops->open(new);
1451 delete_vma_from_mm(vma);
1452 down_write(&nommu_region_sem);
1453 delete_nommu_region(vma->vm_region);
1454 if (new_below) {
1455 vma->vm_region->vm_start = vma->vm_start = addr;
1456 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1457 } else {
1458 vma->vm_region->vm_end = vma->vm_end = addr;
1459 vma->vm_region->vm_top = addr;
1461 add_nommu_region(vma->vm_region);
1462 add_nommu_region(new->vm_region);
1463 up_write(&nommu_region_sem);
1464 add_vma_to_mm(mm, vma);
1465 add_vma_to_mm(mm, new);
1466 return 0;
1470 * shrink a VMA by removing the specified chunk from either the beginning or
1471 * the end
1473 static int shrink_vma(struct mm_struct *mm,
1474 struct vm_area_struct *vma,
1475 unsigned long from, unsigned long to)
1477 struct vm_region *region;
1479 kenter("");
1481 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1482 * and list */
1483 delete_vma_from_mm(vma);
1484 if (from > vma->vm_start)
1485 vma->vm_end = from;
1486 else
1487 vma->vm_start = to;
1488 add_vma_to_mm(mm, vma);
1490 /* cut the backing region down to size */
1491 region = vma->vm_region;
1492 BUG_ON(atomic_read(&region->vm_usage) != 1);
1494 down_write(&nommu_region_sem);
1495 delete_nommu_region(region);
1496 if (from > region->vm_start) {
1497 to = region->vm_top;
1498 region->vm_top = region->vm_end = from;
1499 } else {
1500 region->vm_start = to;
1502 add_nommu_region(region);
1503 up_write(&nommu_region_sem);
1505 free_page_series(from, to);
1506 return 0;
1510 * release a mapping
1511 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1512 * VMA, though it need not cover the whole VMA
1514 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1516 struct vm_area_struct *vma;
1517 struct rb_node *rb;
1518 unsigned long end = start + len;
1519 int ret;
1521 kenter(",%lx,%zx", start, len);
1523 if (len == 0)
1524 return -EINVAL;
1526 /* find the first potentially overlapping VMA */
1527 vma = find_vma(mm, start);
1528 if (!vma) {
1529 static int limit = 0;
1530 if (limit < 5) {
1531 printk(KERN_WARNING
1532 "munmap of memory not mmapped by process %d"
1533 " (%s): 0x%lx-0x%lx\n",
1534 current->pid, current->comm,
1535 start, start + len - 1);
1536 limit++;
1538 return -EINVAL;
1541 /* we're allowed to split an anonymous VMA but not a file-backed one */
1542 if (vma->vm_file) {
1543 do {
1544 if (start > vma->vm_start) {
1545 kleave(" = -EINVAL [miss]");
1546 return -EINVAL;
1548 if (end == vma->vm_end)
1549 goto erase_whole_vma;
1550 rb = rb_next(&vma->vm_rb);
1551 vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1552 } while (rb);
1553 kleave(" = -EINVAL [split file]");
1554 return -EINVAL;
1555 } else {
1556 /* the chunk must be a subset of the VMA found */
1557 if (start == vma->vm_start && end == vma->vm_end)
1558 goto erase_whole_vma;
1559 if (start < vma->vm_start || end > vma->vm_end) {
1560 kleave(" = -EINVAL [superset]");
1561 return -EINVAL;
1563 if (start & ~PAGE_MASK) {
1564 kleave(" = -EINVAL [unaligned start]");
1565 return -EINVAL;
1567 if (end != vma->vm_end && end & ~PAGE_MASK) {
1568 kleave(" = -EINVAL [unaligned split]");
1569 return -EINVAL;
1571 if (start != vma->vm_start && end != vma->vm_end) {
1572 ret = split_vma(mm, vma, start, 1);
1573 if (ret < 0) {
1574 kleave(" = %d [split]", ret);
1575 return ret;
1578 return shrink_vma(mm, vma, start, end);
1581 erase_whole_vma:
1582 delete_vma_from_mm(vma);
1583 delete_vma(mm, vma);
1584 kleave(" = 0");
1585 return 0;
1587 EXPORT_SYMBOL(do_munmap);
1589 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1591 int ret;
1592 struct mm_struct *mm = current->mm;
1594 down_write(&mm->mmap_sem);
1595 ret = do_munmap(mm, addr, len);
1596 up_write(&mm->mmap_sem);
1597 return ret;
1601 * release all the mappings made in a process's VM space
1603 void exit_mmap(struct mm_struct *mm)
1605 struct vm_area_struct *vma;
1607 if (!mm)
1608 return;
1610 kenter("");
1612 mm->total_vm = 0;
1614 while ((vma = mm->mmap)) {
1615 mm->mmap = vma->vm_next;
1616 delete_vma_from_mm(vma);
1617 delete_vma(mm, vma);
1618 cond_resched();
1621 kleave("");
1624 unsigned long do_brk(unsigned long addr, unsigned long len)
1626 return -ENOMEM;
1630 * expand (or shrink) an existing mapping, potentially moving it at the same
1631 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1633 * under NOMMU conditions, we only permit changing a mapping's size, and only
1634 * as long as it stays within the region allocated by do_mmap_private() and the
1635 * block is not shareable
1637 * MREMAP_FIXED is not supported under NOMMU conditions
1639 unsigned long do_mremap(unsigned long addr,
1640 unsigned long old_len, unsigned long new_len,
1641 unsigned long flags, unsigned long new_addr)
1643 struct vm_area_struct *vma;
1645 /* insanity checks first */
1646 if (old_len == 0 || new_len == 0)
1647 return (unsigned long) -EINVAL;
1649 if (addr & ~PAGE_MASK)
1650 return -EINVAL;
1652 if (flags & MREMAP_FIXED && new_addr != addr)
1653 return (unsigned long) -EINVAL;
1655 vma = find_vma_exact(current->mm, addr, old_len);
1656 if (!vma)
1657 return (unsigned long) -EINVAL;
1659 if (vma->vm_end != vma->vm_start + old_len)
1660 return (unsigned long) -EFAULT;
1662 if (vma->vm_flags & VM_MAYSHARE)
1663 return (unsigned long) -EPERM;
1665 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1666 return (unsigned long) -ENOMEM;
1668 /* all checks complete - do it */
1669 vma->vm_end = vma->vm_start + new_len;
1670 return vma->vm_start;
1672 EXPORT_SYMBOL(do_mremap);
1674 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1675 unsigned long, new_len, unsigned long, flags,
1676 unsigned long, new_addr)
1678 unsigned long ret;
1680 down_write(&current->mm->mmap_sem);
1681 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1682 up_write(&current->mm->mmap_sem);
1683 return ret;
1686 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1687 unsigned int foll_flags)
1689 return NULL;
1692 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1693 unsigned long to, unsigned long size, pgprot_t prot)
1695 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1696 return 0;
1698 EXPORT_SYMBOL(remap_pfn_range);
1700 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1701 unsigned long pgoff)
1703 unsigned int size = vma->vm_end - vma->vm_start;
1705 if (!(vma->vm_flags & VM_USERMAP))
1706 return -EINVAL;
1708 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1709 vma->vm_end = vma->vm_start + size;
1711 return 0;
1713 EXPORT_SYMBOL(remap_vmalloc_range);
1715 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1719 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1720 unsigned long len, unsigned long pgoff, unsigned long flags)
1722 return -ENOMEM;
1725 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1729 void unmap_mapping_range(struct address_space *mapping,
1730 loff_t const holebegin, loff_t const holelen,
1731 int even_cows)
1734 EXPORT_SYMBOL(unmap_mapping_range);
1737 * ask for an unmapped area at which to create a mapping on a file
1739 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1740 unsigned long len, unsigned long pgoff,
1741 unsigned long flags)
1743 unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1744 unsigned long, unsigned long);
1746 get_area = current->mm->get_unmapped_area;
1747 if (file && file->f_op && file->f_op->get_unmapped_area)
1748 get_area = file->f_op->get_unmapped_area;
1750 if (!get_area)
1751 return -ENOSYS;
1753 return get_area(file, addr, len, pgoff, flags);
1755 EXPORT_SYMBOL(get_unmapped_area);
1758 * Check that a process has enough memory to allocate a new virtual
1759 * mapping. 0 means there is enough memory for the allocation to
1760 * succeed and -ENOMEM implies there is not.
1762 * We currently support three overcommit policies, which are set via the
1763 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1765 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1766 * Additional code 2002 Jul 20 by Robert Love.
1768 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1770 * Note this is a helper function intended to be used by LSMs which
1771 * wish to use this logic.
1773 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1775 unsigned long free, allowed;
1777 vm_acct_memory(pages);
1780 * Sometimes we want to use more memory than we have
1782 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1783 return 0;
1785 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1786 unsigned long n;
1788 free = global_page_state(NR_FILE_PAGES);
1789 free += nr_swap_pages;
1792 * Any slabs which are created with the
1793 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1794 * which are reclaimable, under pressure. The dentry
1795 * cache and most inode caches should fall into this
1797 free += global_page_state(NR_SLAB_RECLAIMABLE);
1800 * Leave the last 3% for root
1802 if (!cap_sys_admin)
1803 free -= free / 32;
1805 if (free > pages)
1806 return 0;
1809 * nr_free_pages() is very expensive on large systems,
1810 * only call if we're about to fail.
1812 n = nr_free_pages();
1815 * Leave reserved pages. The pages are not for anonymous pages.
1817 if (n <= totalreserve_pages)
1818 goto error;
1819 else
1820 n -= totalreserve_pages;
1823 * Leave the last 3% for root
1825 if (!cap_sys_admin)
1826 n -= n / 32;
1827 free += n;
1829 if (free > pages)
1830 return 0;
1832 goto error;
1835 allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1837 * Leave the last 3% for root
1839 if (!cap_sys_admin)
1840 allowed -= allowed / 32;
1841 allowed += total_swap_pages;
1843 /* Don't let a single process grow too big:
1844 leave 3% of the size of this process for other processes */
1845 if (mm)
1846 allowed -= mm->total_vm / 32;
1848 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1849 return 0;
1851 error:
1852 vm_unacct_memory(pages);
1854 return -ENOMEM;
1857 int in_gate_area_no_task(unsigned long addr)
1859 return 0;
1862 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1864 BUG();
1865 return 0;
1867 EXPORT_SYMBOL(filemap_fault);
1870 * Access another process' address space.
1871 * - source/target buffer must be kernel space
1873 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1875 struct vm_area_struct *vma;
1876 struct mm_struct *mm;
1878 if (addr + len < addr)
1879 return 0;
1881 mm = get_task_mm(tsk);
1882 if (!mm)
1883 return 0;
1885 down_read(&mm->mmap_sem);
1887 /* the access must start within one of the target process's mappings */
1888 vma = find_vma(mm, addr);
1889 if (vma) {
1890 /* don't overrun this mapping */
1891 if (addr + len >= vma->vm_end)
1892 len = vma->vm_end - addr;
1894 /* only read or write mappings where it is permitted */
1895 if (write && vma->vm_flags & VM_MAYWRITE)
1896 len -= copy_to_user((void *) addr, buf, len);
1897 else if (!write && vma->vm_flags & VM_MAYREAD)
1898 len -= copy_from_user(buf, (void *) addr, len);
1899 else
1900 len = 0;
1901 } else {
1902 len = 0;
1905 up_read(&mm->mmap_sem);
1906 mmput(mm);
1907 return len;