ccwgroup: move attributes to attribute group
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / dm-crypt.c
blob959d6d14cee0039200c7177ccb859519fff9b98a
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
7 */
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <asm/atomic.h>
22 #include <linux/scatterlist.h>
23 #include <asm/page.h>
24 #include <asm/unaligned.h>
26 #include <linux/device-mapper.h>
28 #define DM_MSG_PREFIX "crypt"
29 #define MESG_STR(x) x, sizeof(x)
32 * context holding the current state of a multi-part conversion
34 struct convert_context {
35 struct completion restart;
36 struct bio *bio_in;
37 struct bio *bio_out;
38 unsigned int offset_in;
39 unsigned int offset_out;
40 unsigned int idx_in;
41 unsigned int idx_out;
42 sector_t sector;
43 atomic_t pending;
47 * per bio private data
49 struct dm_crypt_io {
50 struct dm_target *target;
51 struct bio *base_bio;
52 struct work_struct work;
54 struct convert_context ctx;
56 atomic_t pending;
57 int error;
58 sector_t sector;
59 struct dm_crypt_io *base_io;
62 struct dm_crypt_request {
63 struct convert_context *ctx;
64 struct scatterlist sg_in;
65 struct scatterlist sg_out;
68 struct crypt_config;
70 struct crypt_iv_operations {
71 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
72 const char *opts);
73 void (*dtr)(struct crypt_config *cc);
74 int (*init)(struct crypt_config *cc);
75 int (*wipe)(struct crypt_config *cc);
76 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
79 struct iv_essiv_private {
80 struct crypto_cipher *tfm;
81 struct crypto_hash *hash_tfm;
82 u8 *salt;
85 struct iv_benbi_private {
86 int shift;
90 * Crypt: maps a linear range of a block device
91 * and encrypts / decrypts at the same time.
93 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
94 struct crypt_config {
95 struct dm_dev *dev;
96 sector_t start;
99 * pool for per bio private data, crypto requests and
100 * encryption requeusts/buffer pages
102 mempool_t *io_pool;
103 mempool_t *req_pool;
104 mempool_t *page_pool;
105 struct bio_set *bs;
107 struct workqueue_struct *io_queue;
108 struct workqueue_struct *crypt_queue;
111 * crypto related data
113 struct crypt_iv_operations *iv_gen_ops;
114 char *iv_mode;
115 union {
116 struct iv_essiv_private essiv;
117 struct iv_benbi_private benbi;
118 } iv_gen_private;
119 sector_t iv_offset;
120 unsigned int iv_size;
123 * Layout of each crypto request:
125 * struct ablkcipher_request
126 * context
127 * padding
128 * struct dm_crypt_request
129 * padding
130 * IV
132 * The padding is added so that dm_crypt_request and the IV are
133 * correctly aligned.
135 unsigned int dmreq_start;
136 struct ablkcipher_request *req;
138 char cipher[CRYPTO_MAX_ALG_NAME];
139 char chainmode[CRYPTO_MAX_ALG_NAME];
140 struct crypto_ablkcipher *tfm;
141 unsigned long flags;
142 unsigned int key_size;
143 u8 key[0];
146 #define MIN_IOS 16
147 #define MIN_POOL_PAGES 32
148 #define MIN_BIO_PAGES 8
150 static struct kmem_cache *_crypt_io_pool;
152 static void clone_init(struct dm_crypt_io *, struct bio *);
153 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
156 * Different IV generation algorithms:
158 * plain: the initial vector is the 32-bit little-endian version of the sector
159 * number, padded with zeros if necessary.
161 * essiv: "encrypted sector|salt initial vector", the sector number is
162 * encrypted with the bulk cipher using a salt as key. The salt
163 * should be derived from the bulk cipher's key via hashing.
165 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
166 * (needed for LRW-32-AES and possible other narrow block modes)
168 * null: the initial vector is always zero. Provides compatibility with
169 * obsolete loop_fish2 devices. Do not use for new devices.
171 * plumb: unimplemented, see:
172 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
175 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
177 memset(iv, 0, cc->iv_size);
178 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
180 return 0;
183 /* Initialise ESSIV - compute salt but no local memory allocations */
184 static int crypt_iv_essiv_init(struct crypt_config *cc)
186 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
187 struct hash_desc desc;
188 struct scatterlist sg;
189 int err;
191 sg_init_one(&sg, cc->key, cc->key_size);
192 desc.tfm = essiv->hash_tfm;
193 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
195 err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
196 if (err)
197 return err;
199 return crypto_cipher_setkey(essiv->tfm, essiv->salt,
200 crypto_hash_digestsize(essiv->hash_tfm));
203 /* Wipe salt and reset key derived from volume key */
204 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
206 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
207 unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
209 memset(essiv->salt, 0, salt_size);
211 return crypto_cipher_setkey(essiv->tfm, essiv->salt, salt_size);
214 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
216 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
218 crypto_free_cipher(essiv->tfm);
219 essiv->tfm = NULL;
221 crypto_free_hash(essiv->hash_tfm);
222 essiv->hash_tfm = NULL;
224 kzfree(essiv->salt);
225 essiv->salt = NULL;
228 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
229 const char *opts)
231 struct crypto_cipher *essiv_tfm = NULL;
232 struct crypto_hash *hash_tfm = NULL;
233 u8 *salt = NULL;
234 int err;
236 if (!opts) {
237 ti->error = "Digest algorithm missing for ESSIV mode";
238 return -EINVAL;
241 /* Allocate hash algorithm */
242 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
243 if (IS_ERR(hash_tfm)) {
244 ti->error = "Error initializing ESSIV hash";
245 err = PTR_ERR(hash_tfm);
246 goto bad;
249 salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
250 if (!salt) {
251 ti->error = "Error kmallocing salt storage in ESSIV";
252 err = -ENOMEM;
253 goto bad;
256 /* Allocate essiv_tfm */
257 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
258 if (IS_ERR(essiv_tfm)) {
259 ti->error = "Error allocating crypto tfm for ESSIV";
260 err = PTR_ERR(essiv_tfm);
261 goto bad;
263 if (crypto_cipher_blocksize(essiv_tfm) !=
264 crypto_ablkcipher_ivsize(cc->tfm)) {
265 ti->error = "Block size of ESSIV cipher does "
266 "not match IV size of block cipher";
267 err = -EINVAL;
268 goto bad;
271 cc->iv_gen_private.essiv.salt = salt;
272 cc->iv_gen_private.essiv.tfm = essiv_tfm;
273 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
275 return 0;
277 bad:
278 if (essiv_tfm && !IS_ERR(essiv_tfm))
279 crypto_free_cipher(essiv_tfm);
280 if (hash_tfm && !IS_ERR(hash_tfm))
281 crypto_free_hash(hash_tfm);
282 kfree(salt);
283 return err;
286 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
288 memset(iv, 0, cc->iv_size);
289 *(u64 *)iv = cpu_to_le64(sector);
290 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv.tfm, iv, iv);
291 return 0;
294 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
295 const char *opts)
297 unsigned bs = crypto_ablkcipher_blocksize(cc->tfm);
298 int log = ilog2(bs);
300 /* we need to calculate how far we must shift the sector count
301 * to get the cipher block count, we use this shift in _gen */
303 if (1 << log != bs) {
304 ti->error = "cypher blocksize is not a power of 2";
305 return -EINVAL;
308 if (log > 9) {
309 ti->error = "cypher blocksize is > 512";
310 return -EINVAL;
313 cc->iv_gen_private.benbi.shift = 9 - log;
315 return 0;
318 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
322 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
324 __be64 val;
326 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
328 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi.shift) + 1);
329 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
331 return 0;
334 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
336 memset(iv, 0, cc->iv_size);
338 return 0;
341 static struct crypt_iv_operations crypt_iv_plain_ops = {
342 .generator = crypt_iv_plain_gen
345 static struct crypt_iv_operations crypt_iv_essiv_ops = {
346 .ctr = crypt_iv_essiv_ctr,
347 .dtr = crypt_iv_essiv_dtr,
348 .init = crypt_iv_essiv_init,
349 .wipe = crypt_iv_essiv_wipe,
350 .generator = crypt_iv_essiv_gen
353 static struct crypt_iv_operations crypt_iv_benbi_ops = {
354 .ctr = crypt_iv_benbi_ctr,
355 .dtr = crypt_iv_benbi_dtr,
356 .generator = crypt_iv_benbi_gen
359 static struct crypt_iv_operations crypt_iv_null_ops = {
360 .generator = crypt_iv_null_gen
363 static void crypt_convert_init(struct crypt_config *cc,
364 struct convert_context *ctx,
365 struct bio *bio_out, struct bio *bio_in,
366 sector_t sector)
368 ctx->bio_in = bio_in;
369 ctx->bio_out = bio_out;
370 ctx->offset_in = 0;
371 ctx->offset_out = 0;
372 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
373 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
374 ctx->sector = sector + cc->iv_offset;
375 init_completion(&ctx->restart);
378 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
379 struct ablkcipher_request *req)
381 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
384 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
385 struct dm_crypt_request *dmreq)
387 return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
390 static int crypt_convert_block(struct crypt_config *cc,
391 struct convert_context *ctx,
392 struct ablkcipher_request *req)
394 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
395 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
396 struct dm_crypt_request *dmreq;
397 u8 *iv;
398 int r = 0;
400 dmreq = dmreq_of_req(cc, req);
401 iv = (u8 *)ALIGN((unsigned long)(dmreq + 1),
402 crypto_ablkcipher_alignmask(cc->tfm) + 1);
404 dmreq->ctx = ctx;
405 sg_init_table(&dmreq->sg_in, 1);
406 sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
407 bv_in->bv_offset + ctx->offset_in);
409 sg_init_table(&dmreq->sg_out, 1);
410 sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
411 bv_out->bv_offset + ctx->offset_out);
413 ctx->offset_in += 1 << SECTOR_SHIFT;
414 if (ctx->offset_in >= bv_in->bv_len) {
415 ctx->offset_in = 0;
416 ctx->idx_in++;
419 ctx->offset_out += 1 << SECTOR_SHIFT;
420 if (ctx->offset_out >= bv_out->bv_len) {
421 ctx->offset_out = 0;
422 ctx->idx_out++;
425 if (cc->iv_gen_ops) {
426 r = cc->iv_gen_ops->generator(cc, iv, ctx->sector);
427 if (r < 0)
428 return r;
431 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
432 1 << SECTOR_SHIFT, iv);
434 if (bio_data_dir(ctx->bio_in) == WRITE)
435 r = crypto_ablkcipher_encrypt(req);
436 else
437 r = crypto_ablkcipher_decrypt(req);
439 return r;
442 static void kcryptd_async_done(struct crypto_async_request *async_req,
443 int error);
444 static void crypt_alloc_req(struct crypt_config *cc,
445 struct convert_context *ctx)
447 if (!cc->req)
448 cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
449 ablkcipher_request_set_tfm(cc->req, cc->tfm);
450 ablkcipher_request_set_callback(cc->req, CRYPTO_TFM_REQ_MAY_BACKLOG |
451 CRYPTO_TFM_REQ_MAY_SLEEP,
452 kcryptd_async_done,
453 dmreq_of_req(cc, cc->req));
457 * Encrypt / decrypt data from one bio to another one (can be the same one)
459 static int crypt_convert(struct crypt_config *cc,
460 struct convert_context *ctx)
462 int r;
464 atomic_set(&ctx->pending, 1);
466 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
467 ctx->idx_out < ctx->bio_out->bi_vcnt) {
469 crypt_alloc_req(cc, ctx);
471 atomic_inc(&ctx->pending);
473 r = crypt_convert_block(cc, ctx, cc->req);
475 switch (r) {
476 /* async */
477 case -EBUSY:
478 wait_for_completion(&ctx->restart);
479 INIT_COMPLETION(ctx->restart);
480 /* fall through*/
481 case -EINPROGRESS:
482 cc->req = NULL;
483 ctx->sector++;
484 continue;
486 /* sync */
487 case 0:
488 atomic_dec(&ctx->pending);
489 ctx->sector++;
490 cond_resched();
491 continue;
493 /* error */
494 default:
495 atomic_dec(&ctx->pending);
496 return r;
500 return 0;
503 static void dm_crypt_bio_destructor(struct bio *bio)
505 struct dm_crypt_io *io = bio->bi_private;
506 struct crypt_config *cc = io->target->private;
508 bio_free(bio, cc->bs);
512 * Generate a new unfragmented bio with the given size
513 * This should never violate the device limitations
514 * May return a smaller bio when running out of pages, indicated by
515 * *out_of_pages set to 1.
517 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
518 unsigned *out_of_pages)
520 struct crypt_config *cc = io->target->private;
521 struct bio *clone;
522 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
523 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
524 unsigned i, len;
525 struct page *page;
527 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
528 if (!clone)
529 return NULL;
531 clone_init(io, clone);
532 *out_of_pages = 0;
534 for (i = 0; i < nr_iovecs; i++) {
535 page = mempool_alloc(cc->page_pool, gfp_mask);
536 if (!page) {
537 *out_of_pages = 1;
538 break;
542 * if additional pages cannot be allocated without waiting,
543 * return a partially allocated bio, the caller will then try
544 * to allocate additional bios while submitting this partial bio
546 if (i == (MIN_BIO_PAGES - 1))
547 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
549 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
551 if (!bio_add_page(clone, page, len, 0)) {
552 mempool_free(page, cc->page_pool);
553 break;
556 size -= len;
559 if (!clone->bi_size) {
560 bio_put(clone);
561 return NULL;
564 return clone;
567 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
569 unsigned int i;
570 struct bio_vec *bv;
572 for (i = 0; i < clone->bi_vcnt; i++) {
573 bv = bio_iovec_idx(clone, i);
574 BUG_ON(!bv->bv_page);
575 mempool_free(bv->bv_page, cc->page_pool);
576 bv->bv_page = NULL;
580 static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
581 struct bio *bio, sector_t sector)
583 struct crypt_config *cc = ti->private;
584 struct dm_crypt_io *io;
586 io = mempool_alloc(cc->io_pool, GFP_NOIO);
587 io->target = ti;
588 io->base_bio = bio;
589 io->sector = sector;
590 io->error = 0;
591 io->base_io = NULL;
592 atomic_set(&io->pending, 0);
594 return io;
597 static void crypt_inc_pending(struct dm_crypt_io *io)
599 atomic_inc(&io->pending);
603 * One of the bios was finished. Check for completion of
604 * the whole request and correctly clean up the buffer.
605 * If base_io is set, wait for the last fragment to complete.
607 static void crypt_dec_pending(struct dm_crypt_io *io)
609 struct crypt_config *cc = io->target->private;
610 struct bio *base_bio = io->base_bio;
611 struct dm_crypt_io *base_io = io->base_io;
612 int error = io->error;
614 if (!atomic_dec_and_test(&io->pending))
615 return;
617 mempool_free(io, cc->io_pool);
619 if (likely(!base_io))
620 bio_endio(base_bio, error);
621 else {
622 if (error && !base_io->error)
623 base_io->error = error;
624 crypt_dec_pending(base_io);
629 * kcryptd/kcryptd_io:
631 * Needed because it would be very unwise to do decryption in an
632 * interrupt context.
634 * kcryptd performs the actual encryption or decryption.
636 * kcryptd_io performs the IO submission.
638 * They must be separated as otherwise the final stages could be
639 * starved by new requests which can block in the first stages due
640 * to memory allocation.
642 static void crypt_endio(struct bio *clone, int error)
644 struct dm_crypt_io *io = clone->bi_private;
645 struct crypt_config *cc = io->target->private;
646 unsigned rw = bio_data_dir(clone);
648 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
649 error = -EIO;
652 * free the processed pages
654 if (rw == WRITE)
655 crypt_free_buffer_pages(cc, clone);
657 bio_put(clone);
659 if (rw == READ && !error) {
660 kcryptd_queue_crypt(io);
661 return;
664 if (unlikely(error))
665 io->error = error;
667 crypt_dec_pending(io);
670 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
672 struct crypt_config *cc = io->target->private;
674 clone->bi_private = io;
675 clone->bi_end_io = crypt_endio;
676 clone->bi_bdev = cc->dev->bdev;
677 clone->bi_rw = io->base_bio->bi_rw;
678 clone->bi_destructor = dm_crypt_bio_destructor;
681 static void kcryptd_io_read(struct dm_crypt_io *io)
683 struct crypt_config *cc = io->target->private;
684 struct bio *base_bio = io->base_bio;
685 struct bio *clone;
687 crypt_inc_pending(io);
690 * The block layer might modify the bvec array, so always
691 * copy the required bvecs because we need the original
692 * one in order to decrypt the whole bio data *afterwards*.
694 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
695 if (unlikely(!clone)) {
696 io->error = -ENOMEM;
697 crypt_dec_pending(io);
698 return;
701 clone_init(io, clone);
702 clone->bi_idx = 0;
703 clone->bi_vcnt = bio_segments(base_bio);
704 clone->bi_size = base_bio->bi_size;
705 clone->bi_sector = cc->start + io->sector;
706 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
707 sizeof(struct bio_vec) * clone->bi_vcnt);
709 generic_make_request(clone);
712 static void kcryptd_io_write(struct dm_crypt_io *io)
714 struct bio *clone = io->ctx.bio_out;
715 generic_make_request(clone);
718 static void kcryptd_io(struct work_struct *work)
720 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
722 if (bio_data_dir(io->base_bio) == READ)
723 kcryptd_io_read(io);
724 else
725 kcryptd_io_write(io);
728 static void kcryptd_queue_io(struct dm_crypt_io *io)
730 struct crypt_config *cc = io->target->private;
732 INIT_WORK(&io->work, kcryptd_io);
733 queue_work(cc->io_queue, &io->work);
736 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
737 int error, int async)
739 struct bio *clone = io->ctx.bio_out;
740 struct crypt_config *cc = io->target->private;
742 if (unlikely(error < 0)) {
743 crypt_free_buffer_pages(cc, clone);
744 bio_put(clone);
745 io->error = -EIO;
746 crypt_dec_pending(io);
747 return;
750 /* crypt_convert should have filled the clone bio */
751 BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
753 clone->bi_sector = cc->start + io->sector;
755 if (async)
756 kcryptd_queue_io(io);
757 else
758 generic_make_request(clone);
761 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
763 struct crypt_config *cc = io->target->private;
764 struct bio *clone;
765 struct dm_crypt_io *new_io;
766 int crypt_finished;
767 unsigned out_of_pages = 0;
768 unsigned remaining = io->base_bio->bi_size;
769 sector_t sector = io->sector;
770 int r;
773 * Prevent io from disappearing until this function completes.
775 crypt_inc_pending(io);
776 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
779 * The allocated buffers can be smaller than the whole bio,
780 * so repeat the whole process until all the data can be handled.
782 while (remaining) {
783 clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
784 if (unlikely(!clone)) {
785 io->error = -ENOMEM;
786 break;
789 io->ctx.bio_out = clone;
790 io->ctx.idx_out = 0;
792 remaining -= clone->bi_size;
793 sector += bio_sectors(clone);
795 crypt_inc_pending(io);
796 r = crypt_convert(cc, &io->ctx);
797 crypt_finished = atomic_dec_and_test(&io->ctx.pending);
799 /* Encryption was already finished, submit io now */
800 if (crypt_finished) {
801 kcryptd_crypt_write_io_submit(io, r, 0);
804 * If there was an error, do not try next fragments.
805 * For async, error is processed in async handler.
807 if (unlikely(r < 0))
808 break;
810 io->sector = sector;
814 * Out of memory -> run queues
815 * But don't wait if split was due to the io size restriction
817 if (unlikely(out_of_pages))
818 congestion_wait(BLK_RW_ASYNC, HZ/100);
821 * With async crypto it is unsafe to share the crypto context
822 * between fragments, so switch to a new dm_crypt_io structure.
824 if (unlikely(!crypt_finished && remaining)) {
825 new_io = crypt_io_alloc(io->target, io->base_bio,
826 sector);
827 crypt_inc_pending(new_io);
828 crypt_convert_init(cc, &new_io->ctx, NULL,
829 io->base_bio, sector);
830 new_io->ctx.idx_in = io->ctx.idx_in;
831 new_io->ctx.offset_in = io->ctx.offset_in;
834 * Fragments after the first use the base_io
835 * pending count.
837 if (!io->base_io)
838 new_io->base_io = io;
839 else {
840 new_io->base_io = io->base_io;
841 crypt_inc_pending(io->base_io);
842 crypt_dec_pending(io);
845 io = new_io;
849 crypt_dec_pending(io);
852 static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
854 if (unlikely(error < 0))
855 io->error = -EIO;
857 crypt_dec_pending(io);
860 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
862 struct crypt_config *cc = io->target->private;
863 int r = 0;
865 crypt_inc_pending(io);
867 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
868 io->sector);
870 r = crypt_convert(cc, &io->ctx);
872 if (atomic_dec_and_test(&io->ctx.pending))
873 kcryptd_crypt_read_done(io, r);
875 crypt_dec_pending(io);
878 static void kcryptd_async_done(struct crypto_async_request *async_req,
879 int error)
881 struct dm_crypt_request *dmreq = async_req->data;
882 struct convert_context *ctx = dmreq->ctx;
883 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
884 struct crypt_config *cc = io->target->private;
886 if (error == -EINPROGRESS) {
887 complete(&ctx->restart);
888 return;
891 mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
893 if (!atomic_dec_and_test(&ctx->pending))
894 return;
896 if (bio_data_dir(io->base_bio) == READ)
897 kcryptd_crypt_read_done(io, error);
898 else
899 kcryptd_crypt_write_io_submit(io, error, 1);
902 static void kcryptd_crypt(struct work_struct *work)
904 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
906 if (bio_data_dir(io->base_bio) == READ)
907 kcryptd_crypt_read_convert(io);
908 else
909 kcryptd_crypt_write_convert(io);
912 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
914 struct crypt_config *cc = io->target->private;
916 INIT_WORK(&io->work, kcryptd_crypt);
917 queue_work(cc->crypt_queue, &io->work);
921 * Decode key from its hex representation
923 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
925 char buffer[3];
926 char *endp;
927 unsigned int i;
929 buffer[2] = '\0';
931 for (i = 0; i < size; i++) {
932 buffer[0] = *hex++;
933 buffer[1] = *hex++;
935 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
937 if (endp != &buffer[2])
938 return -EINVAL;
941 if (*hex != '\0')
942 return -EINVAL;
944 return 0;
948 * Encode key into its hex representation
950 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
952 unsigned int i;
954 for (i = 0; i < size; i++) {
955 sprintf(hex, "%02x", *key);
956 hex += 2;
957 key++;
961 static int crypt_set_key(struct crypt_config *cc, char *key)
963 unsigned key_size = strlen(key) >> 1;
965 if (cc->key_size && cc->key_size != key_size)
966 return -EINVAL;
968 cc->key_size = key_size; /* initial settings */
970 if ((!key_size && strcmp(key, "-")) ||
971 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
972 return -EINVAL;
974 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
976 return 0;
979 static int crypt_wipe_key(struct crypt_config *cc)
981 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
982 memset(&cc->key, 0, cc->key_size * sizeof(u8));
983 return 0;
987 * Construct an encryption mapping:
988 * <cipher> <key> <iv_offset> <dev_path> <start>
990 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
992 struct crypt_config *cc;
993 struct crypto_ablkcipher *tfm;
994 char *tmp;
995 char *cipher;
996 char *chainmode;
997 char *ivmode;
998 char *ivopts;
999 unsigned int key_size;
1000 unsigned long long tmpll;
1002 if (argc != 5) {
1003 ti->error = "Not enough arguments";
1004 return -EINVAL;
1007 tmp = argv[0];
1008 cipher = strsep(&tmp, "-");
1009 chainmode = strsep(&tmp, "-");
1010 ivopts = strsep(&tmp, "-");
1011 ivmode = strsep(&ivopts, ":");
1013 if (tmp)
1014 DMWARN("Unexpected additional cipher options");
1016 key_size = strlen(argv[1]) >> 1;
1018 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1019 if (cc == NULL) {
1020 ti->error =
1021 "Cannot allocate transparent encryption context";
1022 return -ENOMEM;
1025 if (crypt_set_key(cc, argv[1])) {
1026 ti->error = "Error decoding key";
1027 goto bad_cipher;
1030 /* Compatiblity mode for old dm-crypt cipher strings */
1031 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
1032 chainmode = "cbc";
1033 ivmode = "plain";
1036 if (strcmp(chainmode, "ecb") && !ivmode) {
1037 ti->error = "This chaining mode requires an IV mechanism";
1038 goto bad_cipher;
1041 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
1042 chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
1043 ti->error = "Chain mode + cipher name is too long";
1044 goto bad_cipher;
1047 tfm = crypto_alloc_ablkcipher(cc->cipher, 0, 0);
1048 if (IS_ERR(tfm)) {
1049 ti->error = "Error allocating crypto tfm";
1050 goto bad_cipher;
1053 strcpy(cc->cipher, cipher);
1054 strcpy(cc->chainmode, chainmode);
1055 cc->tfm = tfm;
1058 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
1059 * See comments at iv code
1062 if (ivmode == NULL)
1063 cc->iv_gen_ops = NULL;
1064 else if (strcmp(ivmode, "plain") == 0)
1065 cc->iv_gen_ops = &crypt_iv_plain_ops;
1066 else if (strcmp(ivmode, "essiv") == 0)
1067 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1068 else if (strcmp(ivmode, "benbi") == 0)
1069 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1070 else if (strcmp(ivmode, "null") == 0)
1071 cc->iv_gen_ops = &crypt_iv_null_ops;
1072 else {
1073 ti->error = "Invalid IV mode";
1074 goto bad_ivmode;
1077 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
1078 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
1079 goto bad_ivmode;
1081 if (cc->iv_gen_ops && cc->iv_gen_ops->init &&
1082 cc->iv_gen_ops->init(cc) < 0) {
1083 ti->error = "Error initialising IV";
1084 goto bad_slab_pool;
1087 cc->iv_size = crypto_ablkcipher_ivsize(tfm);
1088 if (cc->iv_size)
1089 /* at least a 64 bit sector number should fit in our buffer */
1090 cc->iv_size = max(cc->iv_size,
1091 (unsigned int)(sizeof(u64) / sizeof(u8)));
1092 else {
1093 if (cc->iv_gen_ops) {
1094 DMWARN("Selected cipher does not support IVs");
1095 if (cc->iv_gen_ops->dtr)
1096 cc->iv_gen_ops->dtr(cc);
1097 cc->iv_gen_ops = NULL;
1101 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1102 if (!cc->io_pool) {
1103 ti->error = "Cannot allocate crypt io mempool";
1104 goto bad_slab_pool;
1107 cc->dmreq_start = sizeof(struct ablkcipher_request);
1108 cc->dmreq_start += crypto_ablkcipher_reqsize(tfm);
1109 cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1110 cc->dmreq_start += crypto_ablkcipher_alignmask(tfm) &
1111 ~(crypto_tfm_ctx_alignment() - 1);
1113 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1114 sizeof(struct dm_crypt_request) + cc->iv_size);
1115 if (!cc->req_pool) {
1116 ti->error = "Cannot allocate crypt request mempool";
1117 goto bad_req_pool;
1119 cc->req = NULL;
1121 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1122 if (!cc->page_pool) {
1123 ti->error = "Cannot allocate page mempool";
1124 goto bad_page_pool;
1127 cc->bs = bioset_create(MIN_IOS, 0);
1128 if (!cc->bs) {
1129 ti->error = "Cannot allocate crypt bioset";
1130 goto bad_bs;
1133 if (crypto_ablkcipher_setkey(tfm, cc->key, key_size) < 0) {
1134 ti->error = "Error setting key";
1135 goto bad_device;
1138 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1139 ti->error = "Invalid iv_offset sector";
1140 goto bad_device;
1142 cc->iv_offset = tmpll;
1144 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1145 ti->error = "Invalid device sector";
1146 goto bad_device;
1148 cc->start = tmpll;
1150 if (dm_get_device(ti, argv[3], cc->start, ti->len,
1151 dm_table_get_mode(ti->table), &cc->dev)) {
1152 ti->error = "Device lookup failed";
1153 goto bad_device;
1156 if (ivmode && cc->iv_gen_ops) {
1157 if (ivopts)
1158 *(ivopts - 1) = ':';
1159 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
1160 if (!cc->iv_mode) {
1161 ti->error = "Error kmallocing iv_mode string";
1162 goto bad_ivmode_string;
1164 strcpy(cc->iv_mode, ivmode);
1165 } else
1166 cc->iv_mode = NULL;
1168 cc->io_queue = create_singlethread_workqueue("kcryptd_io");
1169 if (!cc->io_queue) {
1170 ti->error = "Couldn't create kcryptd io queue";
1171 goto bad_io_queue;
1174 cc->crypt_queue = create_singlethread_workqueue("kcryptd");
1175 if (!cc->crypt_queue) {
1176 ti->error = "Couldn't create kcryptd queue";
1177 goto bad_crypt_queue;
1180 ti->num_flush_requests = 1;
1181 ti->private = cc;
1182 return 0;
1184 bad_crypt_queue:
1185 destroy_workqueue(cc->io_queue);
1186 bad_io_queue:
1187 kfree(cc->iv_mode);
1188 bad_ivmode_string:
1189 dm_put_device(ti, cc->dev);
1190 bad_device:
1191 bioset_free(cc->bs);
1192 bad_bs:
1193 mempool_destroy(cc->page_pool);
1194 bad_page_pool:
1195 mempool_destroy(cc->req_pool);
1196 bad_req_pool:
1197 mempool_destroy(cc->io_pool);
1198 bad_slab_pool:
1199 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1200 cc->iv_gen_ops->dtr(cc);
1201 bad_ivmode:
1202 crypto_free_ablkcipher(tfm);
1203 bad_cipher:
1204 /* Must zero key material before freeing */
1205 kzfree(cc);
1206 return -EINVAL;
1209 static void crypt_dtr(struct dm_target *ti)
1211 struct crypt_config *cc = (struct crypt_config *) ti->private;
1213 destroy_workqueue(cc->io_queue);
1214 destroy_workqueue(cc->crypt_queue);
1216 if (cc->req)
1217 mempool_free(cc->req, cc->req_pool);
1219 bioset_free(cc->bs);
1220 mempool_destroy(cc->page_pool);
1221 mempool_destroy(cc->req_pool);
1222 mempool_destroy(cc->io_pool);
1224 kfree(cc->iv_mode);
1225 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1226 cc->iv_gen_ops->dtr(cc);
1227 crypto_free_ablkcipher(cc->tfm);
1228 dm_put_device(ti, cc->dev);
1230 /* Must zero key material before freeing */
1231 kzfree(cc);
1234 static int crypt_map(struct dm_target *ti, struct bio *bio,
1235 union map_info *map_context)
1237 struct dm_crypt_io *io;
1238 struct crypt_config *cc;
1240 if (unlikely(bio_empty_barrier(bio))) {
1241 cc = ti->private;
1242 bio->bi_bdev = cc->dev->bdev;
1243 return DM_MAPIO_REMAPPED;
1246 io = crypt_io_alloc(ti, bio, bio->bi_sector - ti->begin);
1248 if (bio_data_dir(io->base_bio) == READ)
1249 kcryptd_queue_io(io);
1250 else
1251 kcryptd_queue_crypt(io);
1253 return DM_MAPIO_SUBMITTED;
1256 static int crypt_status(struct dm_target *ti, status_type_t type,
1257 char *result, unsigned int maxlen)
1259 struct crypt_config *cc = (struct crypt_config *) ti->private;
1260 unsigned int sz = 0;
1262 switch (type) {
1263 case STATUSTYPE_INFO:
1264 result[0] = '\0';
1265 break;
1267 case STATUSTYPE_TABLE:
1268 if (cc->iv_mode)
1269 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
1270 cc->iv_mode);
1271 else
1272 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
1274 if (cc->key_size > 0) {
1275 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1276 return -ENOMEM;
1278 crypt_encode_key(result + sz, cc->key, cc->key_size);
1279 sz += cc->key_size << 1;
1280 } else {
1281 if (sz >= maxlen)
1282 return -ENOMEM;
1283 result[sz++] = '-';
1286 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1287 cc->dev->name, (unsigned long long)cc->start);
1288 break;
1290 return 0;
1293 static void crypt_postsuspend(struct dm_target *ti)
1295 struct crypt_config *cc = ti->private;
1297 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1300 static int crypt_preresume(struct dm_target *ti)
1302 struct crypt_config *cc = ti->private;
1304 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1305 DMERR("aborting resume - crypt key is not set.");
1306 return -EAGAIN;
1309 return 0;
1312 static void crypt_resume(struct dm_target *ti)
1314 struct crypt_config *cc = ti->private;
1316 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1319 /* Message interface
1320 * key set <key>
1321 * key wipe
1323 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1325 struct crypt_config *cc = ti->private;
1326 int ret = -EINVAL;
1328 if (argc < 2)
1329 goto error;
1331 if (!strnicmp(argv[0], MESG_STR("key"))) {
1332 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1333 DMWARN("not suspended during key manipulation.");
1334 return -EINVAL;
1336 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set"))) {
1337 ret = crypt_set_key(cc, argv[2]);
1338 if (ret)
1339 return ret;
1340 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1341 ret = cc->iv_gen_ops->init(cc);
1342 return ret;
1344 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe"))) {
1345 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1346 ret = cc->iv_gen_ops->wipe(cc);
1347 if (ret)
1348 return ret;
1350 return crypt_wipe_key(cc);
1354 error:
1355 DMWARN("unrecognised message received.");
1356 return -EINVAL;
1359 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1360 struct bio_vec *biovec, int max_size)
1362 struct crypt_config *cc = ti->private;
1363 struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1365 if (!q->merge_bvec_fn)
1366 return max_size;
1368 bvm->bi_bdev = cc->dev->bdev;
1369 bvm->bi_sector = cc->start + bvm->bi_sector - ti->begin;
1371 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1374 static int crypt_iterate_devices(struct dm_target *ti,
1375 iterate_devices_callout_fn fn, void *data)
1377 struct crypt_config *cc = ti->private;
1379 return fn(ti, cc->dev, cc->start, ti->len, data);
1382 static struct target_type crypt_target = {
1383 .name = "crypt",
1384 .version = {1, 7, 0},
1385 .module = THIS_MODULE,
1386 .ctr = crypt_ctr,
1387 .dtr = crypt_dtr,
1388 .map = crypt_map,
1389 .status = crypt_status,
1390 .postsuspend = crypt_postsuspend,
1391 .preresume = crypt_preresume,
1392 .resume = crypt_resume,
1393 .message = crypt_message,
1394 .merge = crypt_merge,
1395 .iterate_devices = crypt_iterate_devices,
1398 static int __init dm_crypt_init(void)
1400 int r;
1402 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1403 if (!_crypt_io_pool)
1404 return -ENOMEM;
1406 r = dm_register_target(&crypt_target);
1407 if (r < 0) {
1408 DMERR("register failed %d", r);
1409 kmem_cache_destroy(_crypt_io_pool);
1412 return r;
1415 static void __exit dm_crypt_exit(void)
1417 dm_unregister_target(&crypt_target);
1418 kmem_cache_destroy(_crypt_io_pool);
1421 module_init(dm_crypt_init);
1422 module_exit(dm_crypt_exit);
1424 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1425 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1426 MODULE_LICENSE("GPL");